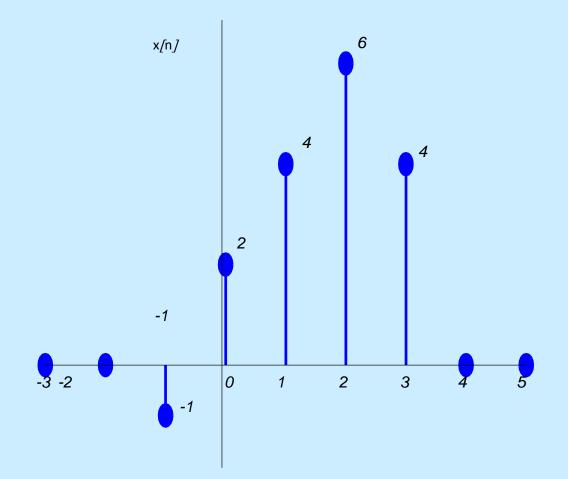


Modified TLH Lecture Chapter 5 FIR Filtering Intro

- RUNNING (MOVING) AVERAGE FILTER
- CAUSAL Filter >= 0
- Finite Impulse Response Description
- Unit Impulse Signal and Filter Response
- Compare 3-point and 7-point Averge

Consider the points



The Running (Moving) Average Filter

• A three-sample *causal* moving average filter is a special case of (5.1)

$$y[n] = \frac{1}{3}(x[n] + x[n-1] + x[n-2]), \qquad (5.4)$$

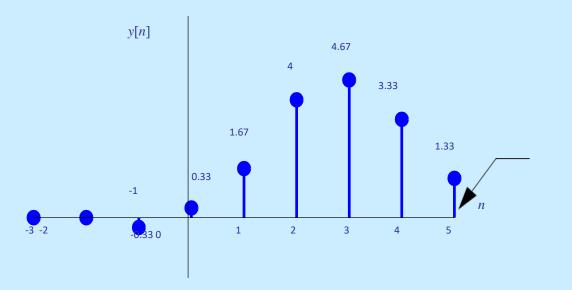
which uses no future input values to compute the present output

From ECE 2601 Chapter 5 Causal is From The Past

```
The Running (Moving) Average Filter ECE 2610 Signals and Systems 5–4
>> n= -3:5;
>> x = [0 \ 0 \ -1 \ 2 \ 4 \ 6 \ 4 \ 0 \ 0]
>> % We will learn about the filter function later
>> y = filter(1/3*[1 \ 1 \ 1],1,x);
>> stem(n,y,'filled')
```

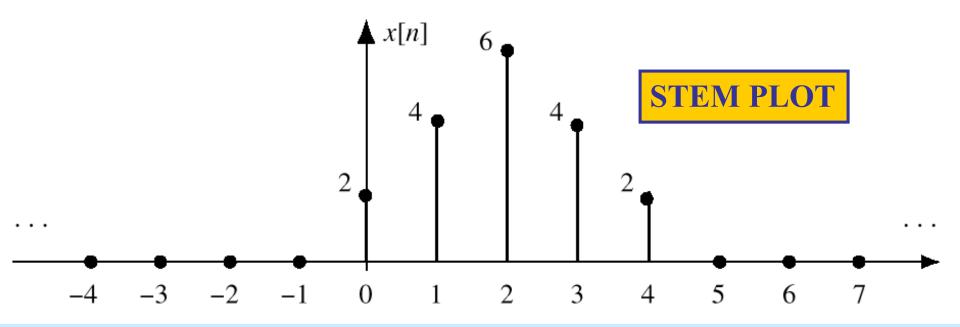
• The action of the moving average filter has resulted in the output being *smoother* than the input

• Since only past and present values of the input are being used to calculate the present output, this filtering operation can operate in *real-time*



DISCRETE-TIME SIGNAL

x[n] is a LIST of NUMBERS INDEXED by "n"



GENERAL CAUSAL FIR FILTER

• FILTER COEFFICIENTS {b_k} • DEFINE THE FILTER **NOTE: Index k = 0, 1,2,...** $y[n] = \sum_{k=0}^{M} b_k x[n-k]$

• For example,
$$b_k = \{3, -1, 2, 1\}$$

$$y[n] = \sum_{k=0}^{3} b_k x[n-k]$$

= $3x[n] - x[n-1] + 2x[n-2] + x[n-3]$

GENERAL CAUSAL FIR FILTER

FILTER COEFFICIENTS {b_k}

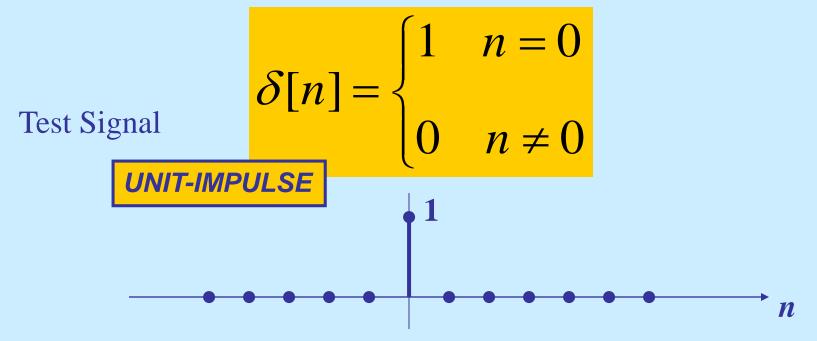
$$y[n] = \sum_{k=0}^{M} b_k x[n-k]$$

FILTER <u>ORDER</u> is M FILTER <u>"LENGTH"</u> is L = M+1 NUMBER of FILTER COEFFS is L

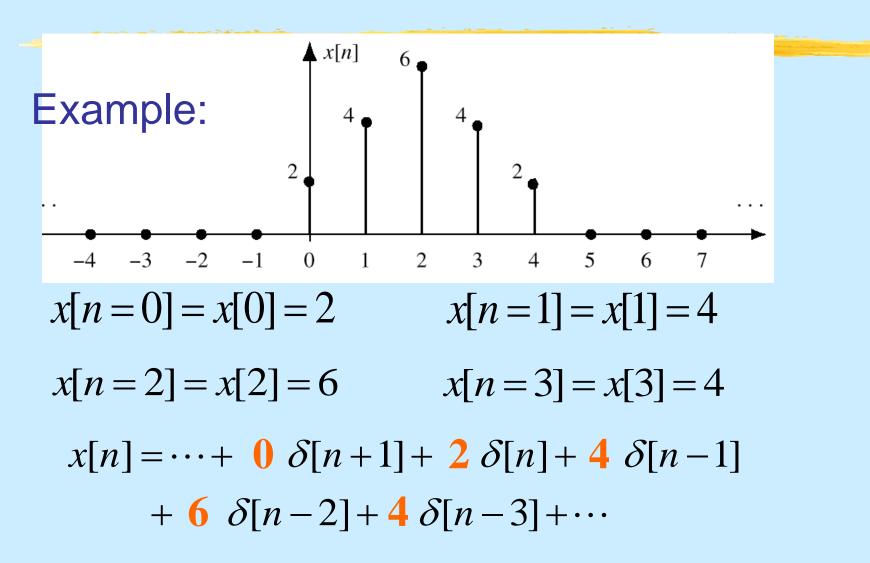
FILTERED STOCK SIGNAL

SPECIAL INPUT SIGNALS

x[n] has only one NON-ZERO VALUE



Sequence Representation



UNIT IMPULSE RESPONSE

 FIR filter description usually given in terms of coefficients b_k

$$y[n] = \sum_{k=0}^{M} b_k x[n-k]$$

- Can we describe the filter using a <u>SIGNAL</u> instead?
- What happens if input is a unit impulse?

Example: 4-pt AVERAGER

CAUSAL SYSTEM: USE PAST VALUES

 $y[n] = \frac{1}{4}(x[n] + x[n-1] + x[n-2] + x[n-3])$

• INPUT = UNIT IMPULSE SIGNAL = $\delta[n]$

$$x[n] = \delta[n]$$

$$y[n] = \frac{1}{4}\delta[n] + \frac{1}{4}\delta[n-1] + \frac{1}{4}\delta[n-2] + \frac{1}{4}\delta[n-3]$$

OUTPUT is called "IMPULSE RESPONSE"
 Denoted h[n]=y[n] when x[n]=δ[n]

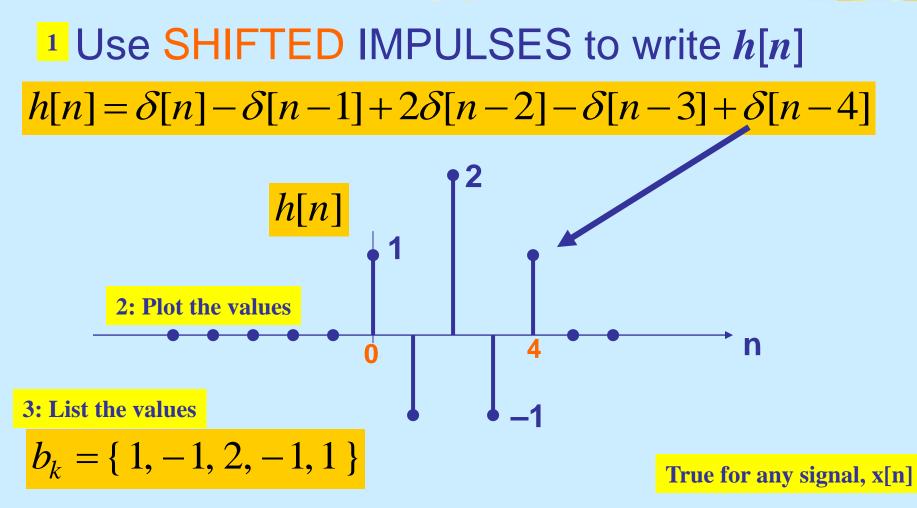
FIR IMPULSE RESPONSE

$$y[n] = \sum_{k=0}^{M} b_k x[n-k]$$

$$h[n] = \sum_{k=0}^{M} b_k \delta[n-k]$$

n	<i>n</i> < 0	0	1	2	3		М	M+1	n > M + 1
$x[n] = \delta[n]$	0	1	0	0	0	0	0	0	0
y[n] = h[n]	0	b_0	b_1	b_2	b_3		b_M	0	0

3 Ways to Represent the FIR filter



FILTERING EXAMPLE

- 7-point AVERAGER
 - Removes cosine

$$y_7[n] = \sum_{k=0}^{6} \left(\frac{1}{7}\right) x[n-k]$$

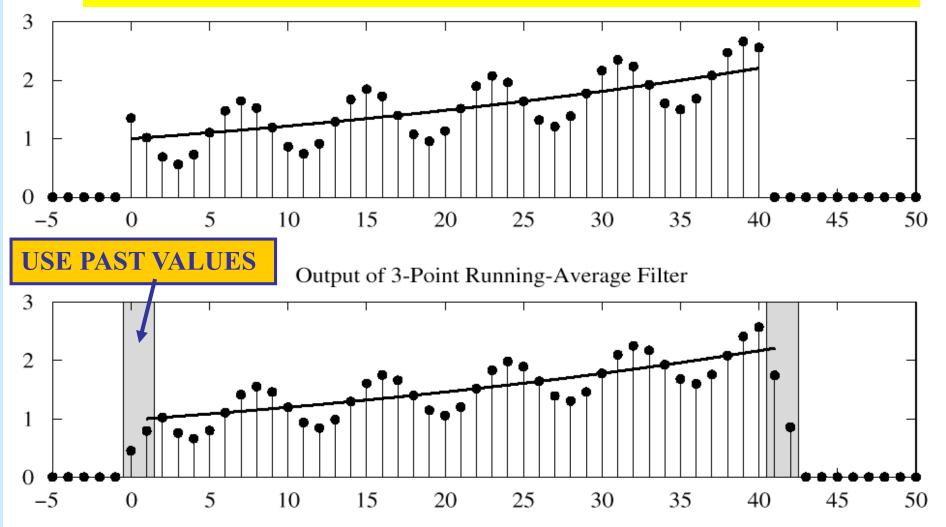
By making its amplitude (A) smaller

3-point AVERAGER
Changes A slightly

$$y_3[n] = \sum_{k=0}^{2} \left(\frac{1}{3}\right) x[n-k]$$

3-pt AVG EXAMPLE

Input : $x[n] = (1.02)^n + \cos(2\pi n/8 + \pi/4)$ for $0 \le n \le 40$



7-pt FIR EXAMPLE (AVG)

