

Signal Processing Ch1

Analog Signals – s(t); t is time

- Analogous to the actual physical signal
- Typically continuous temperature, etc.
 Values are real numbers

Discrete-time signals s[n]=s(nTs); n= 1,2,...

- Ts is the sampling period in seconds
- Amplitude of s(nTs) is a real number
- Signal is Quantized in Time!

LECTURE OBJECTIVES

- Introduce more tools for manipulating complex numbers Euler Eq.
 - Conjugate
 - Multiplication & Division
 - Powers
 - N-th Roots of unity

$$re^{j\theta} = r\cos(\theta) + jr\sin(\theta)$$

Euler's FORMULA

Complex Exponential

- Real part is cosine
- Imaginary part is sine
- Magnitude is one

$$e^{j\theta} = \cos(\theta) + j\sin(\theta)$$

$$re^{j\theta} = r\cos(\theta) + jr\sin(\theta)$$

COMPLEX EXPONENTIAL

$$e^{j\omega t} = \cos(\omega t) + j\sin(\omega t)$$

- Interpret this as a Rotating Vector
 - $\theta = \omega t$
 - Angle changes vs. time
 - ex: $\omega = 20\pi$ rad/s
 - Rotates 0.2π in 0.01 secs

$$e^{j\theta} = \cos(\theta) + j\sin(\theta)$$

TIME-SHIFT

• In a mathematical formula we can replace t with t-t_m

$$x(t-t_m) = A\cos(\omega(t-t_m))$$

Thus the t=0 point moves to t=t_m

Peak value of cos(ω(t-t_m)) is now at t=t_m

Figure 2-9: Plotting the 40-h z Sampled Cosine 2.8(b) for

(A)
$$T_s = 0.005 S$$
; (B) $T_s = 0.0025 S$; (C) $T_s = 0.0005 S$

Page 20

Time t (s)

Copyright © 2016, 1998 Pearson Education, Inc. All Rights Reserved

PHASOR ADDITION RULE

Page 29
$$x(t) = \sum_{k=1}^{N} A_k \cos(\omega_0 t + \varphi_k)$$
$$= A\cos(\omega_0 t + \varphi)$$

Get the new complex amplitude by complex addition

Find Amplitude and Phase – ω is Known!

$$\sum_{k=1}^{N} A_k e^{j\varphi_k} = A e^{j\varphi}$$

Example 3-1: To determine the spectrum of the following signal,

$$x(t) = 10 + 14\cos(200\pi t - \pi/3) + 8\cos(500\pi t + \pi/2)$$

which is the sum of a constant and two sinusoids, we must convert from the general form in (3.2) to the two-sided form in (3.4). After we apply the inverse Euler formula, we get the following five terms:

$$x(t) = 10 + 7e^{-j\pi/3}e^{j2\pi(100)t} + 7e^{j\pi/3}e^{-j2\pi(100)t} + 4e^{j\pi/2}e^{j2\pi(250)t} + 4e^{-j\pi/2}e^{-j2\pi(250)t}$$
(3.1)

Note that the constant component of the signal, often called the DC component, can be expressed as a complex exponential signal with zero frequency (i.e., $10e^{j0t} = 10$). Therefore, in the list form suggested in (3.5), the spectrum of this signal is the set of five rotating phasors represented by the frequency/ complex amplitude pairs

$$\{(0, 10), (100, 7e^{-j\pi/3}), (-100, 7e^{j\pi/3}), (250, 4e^{j\pi/2}), (-250, 4e^{-j\pi/2})\}$$

Note: The terminology "DC" comes from electric circuits, where a constant value of current is called direct current, or DC. It is common to call $X_0 = A_0$ the DC component of the spectrum. Since the DC component is constant, its frequency is f = 0.

. . .

FREQUENCY DIAGRAM

- Want to visualize relationship between frequencies, amplitudes and phases
- Plot Complex Amplitude vs. Frequency

Euler's Formula Reversed

Solve for cosine (or sine)

$$e^{j\omega t} = \cos(\omega t) + j\sin(\omega t)$$

$$e^{-j\omega t} = \cos(-\omega t) + j\sin(-\omega t)$$

$$e^{-j\omega t} = \cos(\omega t) - j\sin(\omega t)$$

$$e^{j\omega t} + e^{-j\omega t} = 2\cos(\omega t)$$

$$\cos(\omega t) = \frac{1}{2}(e^{j\omega t} + e^{-j\omega t})$$

INVERSE Euler's Formula

- What is the "spectrum" representation for a single sinusoid?
- Solve Euler's formula for cosine (or sine)

$$\cos(\omega t) = \frac{1}{2} (e^{j\omega t} + e^{-j\omega t})$$

$$\sin(\omega t) = \frac{1}{2j} (e^{j\omega t} - e^{-j\omega t})$$

SPECTRUM Interpretation

Cosine = sum of 2 complex exponentials:

$$A\cos(7t) = \frac{A}{2}e^{j7t} + \frac{A}{2}e^{-j7t}$$

- One has a positive frequency
- The other has negative freq.
- Amplitude of each is half as big

GRAPHICAL SPECTRUM

AMPLITUDE, PHASE & FREQUENCY are labels

REPRESENTATION of SINE

• Sine = sum of 2 complex exponentials:

$$A\sin(7t) = \frac{A}{2j}e^{j7t} - \frac{A}{2j}e^{-j7t}$$
$$= \frac{1}{2}Ae^{-j0.5\pi}e^{j7t} + \frac{1}{2}Ae^{j0.5\pi}e^{-j7t}$$

- Positive freq. has phase = -0.5π
- Negative freq. has phase = $+0.5\pi$

$$\frac{-1}{j} = j = e^{j0.5\pi}$$

SPECTRUM ---> SINUSOID

Add the spectrum components:

What is the formula for the signal x(t)?

Add Spectrum Components-2

Simplify Components

$$x(t) = 10 +$$

$$7e^{-j\pi/3}e^{j2\pi(100)t} + 7e^{j\pi/3}e^{-j2\pi(100)t}$$

$$4e^{j\pi/2}e^{j2\pi(250)t} + 4e^{-j\pi/2}e^{-j2\pi(250)t}$$

Use Euler's Formula to get REAL sinusoids:

$$A\cos(\omega t + \varphi) = \frac{1}{2}Ae^{j\varphi}e^{j\omega t} + \frac{1}{2}Ae^{-j\varphi}e^{-j\omega t}$$

FINAL ANSWER

$$x(t) = 10 + 14\cos(2\pi(100)t - \pi/3) + 8\cos(2\pi(250)t + \pi/2)$$

- sine(x) = cos(x)cos(pi/2) - sin(x)sin(pi/2)

Example 3-1

So, we get the general form:
$$x(t) = A_0 + \sum_{k=1}^{N} A_k \cos(2\pi f_k t + \varphi_k)$$

Harmonic Signal

Periodic signal :
$$x(t) = x(t+T)$$

Periodic signal : x(t) = x(t+T)Can only have *harmonic* freqs : $f_k = kf_0$

$$x(t) = A_0 + \sum_{k=1}^{N} A_k \cos(2\pi k f_0 t + \varphi_k)$$

$$x(t) \text{ is periodic if}$$

$$\cos(2\pi k f_0 (t + T) + \varphi_k) = \cos(2\pi k f_0 t + 2\pi k f_0 T + \varphi_k)$$

Define FUNDAMENTAL FREQ

$$x(t) = A_0 + \sum_{k=1}^{N} A_k \cos(2\pi k f_0 t + \varphi_k)$$

Largest
$$f_0$$
 such that
$$f_k = k f_0 \qquad (\omega_0 = 2\pi f_0)$$

 f_0 = fundamenta 1 Frequency $f_k / f_0 = \text{integer}$, for all k T_0 = fundamenta 1 Period

Main point:

for periodic signals, all spectral lines have frequencies that are integer multiples of the fundamental frequency

LECTURE OBJECTIVES

Work with the Fourier Series Integral

$$a_k = \frac{1}{T_0} \int_0^{T_0} x(t) e^{-j(2\pi k/T_0)t} dt$$

- ANALYSIS via Fourier Series
 - For <u>PERIODIC</u> signals: $x(t+T_0) = x(t)$
 - Draw spectrum from the Fourier Series coeffs

NEXT SLIDE SHOW

Joseph Fourier lived from 1768 to 1830

Fourier studied the mathematical theory of heat conduction. He established the partial differential equation governing heat diffusion and solved it by using infinite series of trigonometric functions.