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2 NUMBERS AND

VECTORS

PREVIEW

Generally, the study of vectors in analytic geometry, calculus, and

elementary physics takes the geometric point of view when vectors are

spoken of as having magnitude and direction in two or three dimensions.

However, an algebraic approach is necessary for computer representation

and generalization beyond three dimensions. In many problems in physics

and engineering, as well as in mathematics, the variables describing a

physical situation are treated as functions of vectors. These vectors have

components that may represent the values of the variable in different

directions or at different times.

The chapter begins with a review of the properties of real and complex

numbers, including their representation in MATLAB. Then, we present the

basic properties of vectors in two and three dimensions. Many properties of

three-dimensional vectors are easily generalized to a vector with n > 3
components. Also, collections of functions and other mathematical entities

can be described as vectors in a vector space. That such generalizations are

useful is an indication of the great power of mathematics when applied to

physical problems. Just as the use of a three-dimensional vector to
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represent force is an abstraction from the physical world, these further

abstractions will prove valuable in analyzing many physical systems.

The remainder of the chapter considers vectors and vector spaces for

applications to problems in engineering and physics presented in later

chapters. The important topics include linear independence for vectors,

abstract vector spaces, and vector spaces of functions.

Table 2.1 lists various scalar and vector topics covered in this textbook.

TABLE 2.1 Topics in vector analysis

Chapter Symbol Topic

Chapter 2 α + β Sum of scalars
αβ Product of scalars
αx Scalar times vector
x + y Sum of vectors
x · y Dot product
x × y Cross product
||x|| Norm

Rn Real vector space
V Abstract vector space

Chapter 3 Ax = b Linear equations

Chapter 4 L(αx + βy) Linearity
Ax = λx Eigenvectors

Chapter 5, 6
dx

dt
= Ax Differential equations

Chapter 13
df(t)

dt
,

∂f(t)

∂t
Derivative of a function

dx(t)

dt
Derivative of a vector

∇f Gradient of a function

∇ · x Divergence of a vector

∇× x Curl of a vector

In the table, α and β are real numbers (scalars); x, y, and b are vectors;

and A is a matrix.
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2.1 PROPERTIES OF REAL NUMBERS

Since real numbers are used extensively to describe physical phenomena,
a review of the fundamental operations on real numbers is presented first
in this chapter. Then, we consider numbers as represented by MATLAB.

REAL NUMBERS The set of real numbers consists of integers, rational numbers, and irra-
tional numbers. The integers are 1, 2, 3, . . . ,−1,−2,−3, . . ., and 0. Frac-
tions in the form p/q, where p and q are integers, are rational numbers.
Irrational numbers can be represented by an infinite decimal expansion,
such as 3.14159 . . . for π. However, irrational numbers cannot be repre-
sented exactly as a ratio of integers.

Real numbers that are not integers can be represented by nonter-
minating decimal expansions, as in the example of π just given. The
sequence of decimal digits of π is both nonterminating and nonrepeat-
ing . In contrast, rational numbers have a repeating decimal expansion,
such as 1

4 = 0.25000000..., in which the repeated digit is zero. In most
cases, the repeated digits will not be zero. For example, the fraction
7
22 = 0.3181818 . . . has a nonterminating but repeating decimal expan-
sion.

Since the representation of most real numbers requires an infinite se-
ries of digits, we expect that only certain numbers can be represented
exactly for hand or computer calculations because the number of decimal
places is limited in any such calculations. The importance of these ob-
servations will be explored later when MATLAB computer numbers are
described.

Axioms for Real Numbers In mathematics, certain operations and
basic properties involving the quantities being considered such as num-
bers, vectors or matrices are assumed to be true. These assumptions
are called axioms or postulates and no proof is necessary. Most of the
other properties are presented by theorems , which are proven using the
postulates and perhaps other theorems. The theorems allow further gen-
eralizations and applications to be developed.

The basic axioms for real numbers define how numbers are combined
by addition and multiplication. These axioms define the associative, com-
mutative, and distributive laws as well as the identity and inverse elements
for any real numbers x, y, and z.

Associative laws. For real numbers, the grouping of the operations
for addition or multiplication is not important, since

1. (x + y) + z = x + (y + z),

2. (x × y) × z = x × (y × z).
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A number of basic operations are not associative. For example, sub-
traction is not associative, since

(x − y) − z 6= x − (y − z).

Thus, if x = 5, y = 3, z = 1, the left grouping yields 1, but 3 results
from the operations on the right. For nonassociative operations, careful
grouping is important.

Commutative laws. The order of addition or multiplication of real
numbers does not matter:

1. x + y = y + x,

2. x × y = y × x.

Certain operations of importance in vector and matrix algebra that we
will study later are not commutative with respect to multiplication.

Distributive laws. Addition and multiplication are connected by the
distributive law:

x × (y + z) = x × y + x × z.

Identity elements. The numbers 0 and 1 are called the identity ele-
ments for addition and multiplication, respectively:

1. x + 0 = x,

2. 1 × x = x.

Inverse elements. For each real number x there is an inverse element
for addition, and if the real number is not zero there is an inverse for
multiplication:

1. x + (−x) = 0,

2. if x 6= 0, x × (1/x) = 1.

The inverse for addition is called the negative of the number and the
inverse for multiplication is called the reciprocal . The negative can be used
to define the operation of subtraction as addition of the negative, writing
x − y = x + (−y). The reciprocal can be used to define the operation
of division as multiplication by the reciprocal, x ÷ y = x × (1/y) where
y 6= 0.

It is interesting to note that the properties just listed do not uniquely
define the real numbers. For example, the complex numbers and the
binary numbers also satisfy these properties.

Generalization Part of our mathematical education is the generaliza-
tion of the concept of number from the positive integers (counting num-
bers) to fractions (rational numbers) and then to negative and irrational
numbers. The generalization continues with the study of transcendental
numbers such as π and finally the complex numbers. All these numbers
satisfy the axioms just presented.
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ABSOLUTE
VALUE

The real numbers can be represented as points on the real number line
shown in Figure 2.1. For convenience, the entire real number line will
be referred to as R. Thus, a statement about R applies to all the real
numbers.

On R, the distance of any real number from the origin is the mag-
nitude, or absolute value, of the number. The absolute value is defined
as

| x | =
{

x, if x ≥ 0,
−x, if x < 0.

(2.1)

Applying the formula, +5 has the absolute value 5, as expected. The
number −5 also has the absolute value −(−5) = 5.

–3 –2 –1 0 1 2 3

√2 π–1/2

FIGURE 2.1 The number line R

The distance between the real numbers x and y is defined as | x − y |.
This distance is the length of the line segment of R with the endpoints
x and y. The distance on R between the numbers −5 and 5 is then
| −5 − (+5) | = 10. Notice that the absolute value defines the positive
distance of the number x from the origin where x = 0. These concepts
will be generalized when vectors are studied.

2.2 MATLAB COMPUTER NUMBERS (OPTIONAL)

In modern computer systems, numbers are represented in the binary num-
ber system. The digits are 0 and 1 and the computer can store a finite
number of binary digits to represent any number. For integers, the deci-
mal value of a binary number is

N =
m−1∑

i=0

di 2i = d0 + d1 × 2 + d2 × 22 + · · · + dm−1 × 2m−1, (2.2)

where m is the number of digits and the di are binary digits.
The number range for a binary number with m digits is from

(000 . . .0000)2 to (11111 . . .1111)2,

where the notation (N)2 means that N is a number in base 2.1 The most
positive value sums to the decimal value 2m−1. An 8-digit positive binary

1In the text, numbers other than decimal numbers will have the base specified explicitly.
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number thus has the maximum value of 28−1, or 255. The number 10112

has the decimal value 11 using the expansion of Equation 2.2.
If a fraction is to be represented, a binary point is used to separate

the integer from the fractional part of the number, just as the decimal
point is used for decimal numbers. The binary number (0.11111 . . .1111)2
has the decimal value

N =
m∑

i=1

d−i 2−i = d−1 × 2−1 + d−2 × 2−2 + · · · + d−m × 2−m

=
1
2

+
1
4

+
1
8

+ · · · + d−m × 2−m, (2.3)

since d−i = 1 for i = 1, . . . , m. This is a geometric series whose sum con-
verges to 1 as m goes to infinity, as you are asked to show in Problem 2.3.
For a finite value of m digits, the sum is 1− 2−m. With 16 binary digits,
the value is

1 − 2−16 = 0.99998

to five places after the decimal.

FIXED-POINT
NOTATION

The binary number representation just discussed assumes that the bi-
nary point was located in a fixed position, yielding either an integer or a
fraction as the interpretation of the internal machine representation. Un-
fortunately, the binary point is not actually stored with the number, but
its position must be remembered by the programmer (or the program) to
display the results in the usual form. This method of representation is
called fixed point .

It is a theorem that any real number x such that 0 < x ≤ 1 can
be represented in a unique manner as a nonterminating binary fraction.
In the computer, the binary series must be terminated after m digits to
represent a decimal number. Except in special cases such as 1/2, the
binary representation will be an approximation. The error can be shown
to be less than 2−m.

In practice, the machine number also is limited to a finite range de-
termined by the number of binary digits used in the representation. For a
32-digit binary number, the range of positive fixed-point integers is about
+232 or +1011, obtained by solving the equation 232 = 10y for the expo-
nent y = 32 log10 2. This limited range of the fixed-point numbers is a
drawback for certain applications.

FLOATING-
POINT
NOTATION

To overcome many of the limitations of fixed-point notation, a method
that is the counterpart of scientific notation is used for number represen-
tation in computers. Floating-point notation represents a number as a
fractional part times a selected base raised to a power. The choice for
the base is usually 2, although base 16 is sometimes used. In the machine
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representation, only the fractional part and the value of the exponent are
stored. The decimal equivalent is written as

N.n = f × 2e (2.4)

using base 2 in this case. Thus, 1.5 could be written as (11)2 × 2−1. The
fraction f is called the mantissa and e is the exponent .

In floating-point notation, the number of binary digits devoted to the
fraction determines the precision and the length of the exponent in digits
determines the range. The actual arithmetic operations may be carried
out by a computer’s Central Processing Unit (CPU) or by a separate
hardware chip called a co-processor. In some cases, the arithmetic is
performed by a software package containing routines for floating-point
arithmetic.

MATLAB Floating-point Notation MATLAB and many other pro-
grams for mathematics may employ the IEEE floating-point standard rep-
resentation for machine numbers.2 The results of a calculation for this
format can contain as many as 16 significant decimal digits and have a
range of from 10−308 to 10308. However, the results may be displayed in
a number of different ways.

Comment: Unless floating-point operations are implemented in soft-
ware, the machine floating-point hardware actually determines the num-
ber format used. In fact, some machines do not conform to the IEEE
standard. Try the MATLAB command isieee to determine if your com-
puter uses IEEE arithmetic.

EXAMPLE 2.1 MATLAB Range of Numbers

Although MATLAB’s calculations are carried out to the maximum pre-
cision in floating point internally, the results may be displayed as fixed-point
decimal numbers or as numbers in scientific notation. Table 2.2 lists the choices.

Although physical measurements rarely justify the precision yielded by the
long display formats in the table, MATLAB computes values to the highest
precision to reduce roundoff errors. Roundoff error is the difference between
the perfectly accurate number used in mathematical analysis and the computed
number with only a fixed number of significant digits. The hexadecimal format
listed in the table is frequently used to read binary numbers in base 16 notation
for convenience.

2IEEE, usually pronounced I-triple-E, is the Institute of Electrical and Electronics Engineers.
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TABLE 2.2 MATLAB formats for numbers

Command Format

format Default setting (short)
format short Fixed-point format with 5 digits
format long Fixed-point format with 15 digits
format short e Floating-point format with 5 digits
format long e Floating-point format with 15 digits
format hex Hexadecimal format

The accompanying MATLAB script is taken from a diary file to show var-
ious numerical values. The diary file was edited to display the results of each
numerical input on the same line. The smallest fraction representable in the
author’s machine is shown in the MATLAB script as machine epsilon (eps).
Using eps can sometimes avoid a divide by zero. For example, consider the
limit

lim
x→0

sin x

x
= 1.

As computed by MATLAB, sin x/x with x = 0 would result in a divide-by-zero
error. However, the statements

x=x+eps

y=sin(x)/x

would lead to the correct result. Adding eps to each element in an array should
not affect the results of arithmetic operations unless the values are so small that
eps is significant.

Various long and short formats are also shown in the MATLAB script.
Each number was entered by typing the value at the MATLAB prompt, and
the MATLAB representation is shown on the same line. Notice that the pro-
gram warns the user if a division by zero occurs. Remember that machine
zero is simply a number smaller than the smallest possible computer number.
Mathematically, this number is not necessarily actually zero.

The answer NaN (Not a Number) is standard IEEE floating-point notation
for an indeterminate result. Thus, if the IEEE standard is being used, MATLAB
does not stop after calculations such as 0/0 or ∞/∞, although the results are
not meaningful. The purpose of introducing NaN in this way is so that a program
can determine that a calculation was invalid and proceed accordingly.

Next in the script, the value y is entered in exponential form representing
10306 . When multiplied by 100, the number is still within MATLAB’s range. If
the new y is then multiplied by 5, the value overflows and MATLAB indicates
that the product z is infinity. Other values, such as 10−307 and log10(2), are
also shown.
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MATLAB Script

Example 2.1

>>% (Machine epsilon)

% EX1_2.M

>>eps

eps = 2.2204e-016

>>format short

1/3

ans = 0.3333

>>format long

>>1/3

ans = 0.33333333333333

>>1/0

Warning: Divide by zero

ans = Inf

>>0/0

Warning: Divide by zero

ans = NaN

>>y=1.0e306

y = 1.000000000000000e+306

>>y=100*y

y = 1.000000000000001e+308

>>z=5*y

z = Inf

log10(2)

ans = 0.30102999566398

>>x=1e-307

x = 9.999999999999999e-308

>>log10(2)

ans = 0.30102999566398

>>quit

W H A T I F ? Suppose the MATLAB representation of a number is not
accurate enough for an application. Investigate the variable precision
arithmetic command vpa of the Symbolic Math Toolbox . Compare
MATLAB’s numerical value of π with the symbolic representation to
more than 15 digits.

Problem 2.18 and Problem 2.24 treat MATLAB roundoff errors. Use
the command format long to see the 15 digit fixed-point representation
of the numbers or format long e for the floating-point representation.
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MATLAB
COMMANDS
FOR REAL
NUMBERS

MATLAB has various commands that are useful for manipulating real
numbers. Some commands are listed in Table 2.3 and are illustrated
in Example 2.2. The abs command computes the absolute value. The
commands for rounding numbers produce the results listed in the table.
The sign evaluates the Signum function. The result from sign is zero if
the value being tested is zero, +1 if the value is positive, and −1 if the
value is negative.

TABLE 2.3 MATLAB commands for real numbers

Command Format

abs Absolute value
ceil Round toward infinity
fix Round toward zero
floor Round toward minus infinity
sign Signum function

EXAMPLE 2.2 MATLAB Commands for Real Numbers
Let x = 9.2. The accompanying script illustrates the edited results using

the commands from Table 2.3.

MATLAB Script

Example 2.2

>> x = 9.2

x = 9.2000

>> abs(x)

ans = 9.2000

>> ceil(x)

ans = 10

>> floor(x)

ans = 9

>> fix(x)

ans = 9

>> sign(x)

ans = 1
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2.3 COMPLEX NUMBERS

A complex number can be written z = x+ iy or z = x+yi, where x and y
are real numbers and i is the imaginary unit with the property i2 = −1.
The number x is called the real part of z and y is called the imaginary
part . In functional notation it is sometimes convenient to write

x = Re z and y = Im z. (2.5)

A complex number can also be represented as a point P (x, y) in the
xy-plane (Cartesian plane) as shown in Figure 2.2. This representation is
called an Argand diagram using the xy-plane to plot the complex number.
When used this way, the xy-plane is often referred to as the complex
plane or the z-plane. Another notation for a complex number is formed
by writing z = x + iy as the ordered pair

z = (x, y)

which gives the correspondence between an ordered pair of real numbers
and each complex number. Thus, x + iy is a single value in the xy-plane.

Polar coordinates can be associated with a complex number in the
complex plane. From the figure, the radial distance r and the polar angle
θ with respect to the positive real x-axis are

r =
√

x2 + y2

tan θ =
y

x
(2.6)

for x 6= 0. If x = 0, θ = π/2 when y > 0 and θ = −π/2 when y < 0.

Imaginary
axis

P(x,y) = x + iy = z

r

x
Real
axis

x – iy = z

θ

y

–

FIGURE 2.2 Complex numbers
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The radial distance of z is written as r = |z| and is called the magni-
tude of z. The magnitude is also called the modulus or length of z. The
complex conjugate of z is the number z̄ = x − iy in Figure 2.2 with polar
angle −θ. From the figure, it is evident that |z̄| = |z|. The polar angle is
called the argument of z, written arg z. We see that

arg z̄ = −arg z.

The value of arg z is usually taken to be in the range from −π to π, and
this value is called the principal value of the argument. In calculations,
it is frequently useful to take advantage of the fact that angle measure is
a multi-valued function, with values of the form θ + n2π, where n is an
integer and θ is a particular angle measure.

The complex numbers have operations of addition and multiplication
that obey the properties of real numbers previously listed. The sum of
two complex numbers is formed by adding the real and imaginary parts.
Thus, if z1 = x1 + iy1 and z2 = x2 + iy2, the sum is

z1 + z2 = (x1 + x2) + i(y1 + y2). (2.7)

The negative of z2 = x2 + iy2 is −z2 = −x2 − iy2. Subtraction can be
accomplished by adding −z2 to z1 to form the difference z1 − z2. Thus

z1 − z2 = (x1 − x2) + i(y1 − y2). (2.8)

The product of two complex numbers z1 and z2 is

z1z2 = (x1x2 − y1y2) + i(x1y2 + y1x2). (2.9)

From this formula, it follows that zz̄ = |z|2.
Using the definition of multiplication of complex numbers, division of

complex numbers can be shown to be given by the formula

z1

z2
=
(

z1

z2

)(
z̄2

z̄2

)
=

z1z̄2

|z2|2
=

(x1x2 + y1y2) + i(y1x2 − x1y2)
x2

2 + y2
2

. (2.10)

By definition, two complex numbers are equal if and only if their real
parts are equal and their imaginary parts are equal. Thus,

z1 = z2 if and only if Re z1 = Re z2 and Im z1 = Im z2 (2.11)

or

x1 + iy1 = x2 + iy2 if and only if x1 = x2 and y1 = y2. (2.12)

The real numbers can be viewed as a subset of the complex numbers,
namely the complex numbers of the form z = x+i0 = (x, 0). In the plane,
this set is the x-axis. Moreover, the definitions of addition, subtraction,
multiplication and division for these complex numbers correspond exactly
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to the usual definitions for real numbers. It is traditional to speak of a
complex number as real (or a real scalar) in this case. Since z = z̄ if and
only if Im z = 0, we have that z is real if and only if z = z̄. Multiplication
of z = x + iy by a real scalar value k yields the results

kz = k(x + iy) = (k + i0)(x + iy) = kx + iky. (2.13)

It is straightforward to show that the complex modulus function fol-
lows exactly the same rules relative to arithmetic as the real absolute
value function. Namely,

|z1z2| = |z1||z2|∣∣∣∣
z1

z2

∣∣∣∣ =
|z1|
|z2|

. (2.14)

POLAR FORM
OF COMPLEX
NUMBERS

Using the magnitude and argument of z in Figure 2.2, a complex number
can be expressed in the form

z = r(cos θ + i sin θ). (2.15)

Using Equation 2.15 and some basic trigonometry it can be shown that
for z1 = r1(cos θ1 + i sin θ1) and z2 = r1(cos θ2 + i sin θ2),

z1z2 = r1r2 [cos(θ1 + θ2) + i sin(θ1 + θ2)] (2.16)

which means that multiplying complex numbers not only corresponds to
multiplying their absolute values, as observed in Equation 2.14, but also
corresponds to adding their arguments, a quite useful fact in applications
involving rotations. Strictly speaking, the addition of arguments must
be understood modulo 2π, since the principal value of the argument of
(1 + i)(1 + i) = 2i is not 3π/2 (= 3π/4 + 3π/4), but rather −π/2.

Complex analysis extends the basic concepts and many of the familiar
functions of calculus to the set of complex numbers. For example, there
is a complex exponential function exp z, or ez, which has the values of the
real exponential function when z is real. In complex analysis it is shown
that the complex exponential function satisfies the relationship

eiθ = cos θ + i sin θ (2.17)

which is known as Euler’s formula. In Equation 2.17, the sin and cos
functions on the right are the familiar real valued functions.3 Thus, the
polar form of a complex number can also be written as

z = reiθ. (2.18)

3For our purposes, we will consider θ to be real, although actually Equation 2.17 holds for any complex
θ, with the extensions of the trigonometric functions to the complex numbers.
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This is a convenient form for certain applications, as discussed in Chap-
ter 5. Since the complex exponential function satisfies the same multipli-
cation rule as the real exponential function ex, the expression ez has the
representation

ez = ex+iy = exeiy = ex(cos y + i sin y). (2.19)

ROOTS OF
COMPLEX
NUMBERS

Let a be a nonzero complex number. Then if a complex number z satisfies
the equation

zN = a,

z is called an Nth root of a. The determination of the Nth roots of a uses
the theorem of De Moivre

(cos θ + i sin θ)N = cosNθ + i sin Nθ (2.20)

which follows from Equation 2.16. Writing a in polar coordinates as

a = r(cos θ + i sin θ),

the roots of a are

a1/N = N
√

r

[
cos
(

θ

N
+ p

2π

N

)
+ i sin

(
θ

N
+ p

2π

N

)]
(2.21)

where p takes the values 0, 1, . . . , N − 1. These are N distinct values, and
it can be shown that there are no others. The term N

√
r is the positive

real Nth root of r and for the specific case |a| = 1 this value is 1.

EXAMPLE 2.3 Complex Numbers

a. Various operations on complex numbers are illustrated as follows:

(i). (3 + 6i) + (2 − 3i) = 5 + 3i;

(ii). (7 + 5i) − (1 + 2i) = 6 + 3i;

(iii). (5 + 7i)(3 + 4i) = (15 − 28) + i(20 + 21) = −13 + 41i;

(iv).

4 + i

2 − 3i
=

4 + i

2 − 3i
· 2 + 3i

2 + 3i
=

(8 − 3) + i(2 + 12)

13
=

5 + 14i

13
=

5

13
+

14

13
i.

b. To solve the equation

(x + iy)(2 − i3) = 4 + i

for x and y, equate the real and imaginary parts to yield the simultane-
ous set of equations

2x + 3y = 4

−3x + 2y = 1.

The solutions are x = 5/13 and y = 14/13.
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c. In Equation 2.21, let a = 1. For this complex number, the argument θ
is zero and the magnitude is 1 so we can write

z = a1/N = eip 2π/N = cos
p 2π

N
+ i sin

p 2π

N

with the property that |a| = 1 so that every one of these complex num-
bers lies on the unit circle in the complex plane.

Consider the values (p/N)2π for integers p = 0, 1, 2, 3 when N = 4.
Writing z = eα where α = 2πp/4, these values correspond to the angles

α = 0 (2π), α = π/2, α = π and α = 3π/2

in the complex plane, respectively. The complex values allowed for z are
then

z0 = e0 = 1

z1 = eiπ/2 = i

z2 = eiπ = −1

z3 = ei3π/2 = −i.

(2.22)

The square roots of unity (N = 2) are ±1 and the square roots of
these roots are 1,−1, i,−i as is easily verified. The sum of the roots
(1 + i − 1 − i) is zero.

MATLAB
COMPLEX
NUMBERS

MATLAB accepts complex numbers in both Cartesian and polar form.
The Cartesian format for the complex number z = 3 + 4i would be

>> z=3+4i
>> z=3+4j

since either i or j can be used to specify the imaginary number
√
−1.

Because MATLAB would interpret i4 as a variable name, even though
mathematically 4i = i4, in MATLAB we must write i*4 in statements
such as z=3+i*4.

The MATLAB polar form is

>> w=r*exp(i*theta)

where r and theta must be defined before w is used.

Comment: It is important not to use the variables i and j for loop
variables or similar purposes in programs that also use MATLAB’s com-
plex numbers since the loop variables may override their definition as
imaginary numbers.

Table 2.4 lists some of the MATLAB commands that are useful for
manipulating complex numbers.

2.3 Complex Numbers 59



TABLE 2.4 MATLAB commands for complex numbers

Command Format

z=x+yi, z=x+yj Complex number
z=r*exp(i*theta) Polar form

abs Magnitude |z| =
√

x2 + y2

angle Angle in radians (−π, π); θ = tan−1(y/x)
conj Complex conjugate x − yi
imag Complex imaginary part y
real Complex real part x
Plotting:
compass Draws complex numbers as arrows on polar plot
feather Draws complex numbers as arrows on linear plot

Ordinary operations +,−, ∗, / for addition, subtraction, multiplication,
and division respectively perform these operations on two complex num-
bers.

EXAMPLE 2.4 MATLAB Complex Numbers
The accompanying script shows the MATLAB commands to compute Part a

and Part c of Example 2.3.

MATLAB Script

Example 2.4

>> 3+6i + 2-3i

ans = 5.0000 + 3.0000i

>> 7+5i -(1+2i)

ans = 6.0000 + 3.0000i

>> (5+7i)*(3+4i)

ans = -13.0000 +41.0000i

>> (4+i)/(2-3i)

ans = 0.3846 + 1.0769i

>> % Solve z^4-1=0

>> roots([1 0 0 0 -1])

ans =

-1.0000

0.0000 + 1.0000i

0.0000 - 1.0000i

1.0000
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2.4 VECTORS IN TWO DIMENSIONS AND THREE DIMENSIONS

The notion of vectors has proven invaluable in physics and mathematics.
The vector in space is a combination of a positive number called the
magnitude and a direction. One useful feature of vectors is that the
equations of physics can be represented in terms of vectors independent
of a particular coordinate system. Newton’s second law

F = ma

provides an example. The vector form of the equation is not altered
by a change in the coordinate axes. For example, the form shown for
Newton’s law holds whether F is defined in rectangular, polar, or spherical
coordinate systems. Also, the vector equation is a convenient “shorthand”
to represent complicated formulas. The use of vectors can lead to greater
understanding of a problem as well as simplification of computations as
will be shown in many examples in this text.

INTRODUCTION
TO VECTORS

In some cases involving two-dimensional (2D) and three-dimensional (3D)
space, visualization of a physical situation is aided by drawing the vectors
involved as directed line segments to give the vectors a geometric inter-
pretation. A vector can also be identified using coordinates that represent
its origin and endpoint. This latter view is the algebraic view.

As discussed previously, the real numbers can be identified with the
points of a straight line, as shown in Figure 2.1. Each number x is repre-
sented by a point on the line, so the value can be pictured geometrically
with respect to other real numbers. Similarly, the origin and endpoint
of vectors in the 2D plane can be represented as pairs of real numbers,
and the components can be plotted in the xy-plane, as shown in Fig-
ure 2.3. When the origin of the vector is [0, 0] in the xy-plane, the vector
is typically defined only by the coordinates of its endpoint.

4

3

2

1

1 2 3 4 5

[3, 4]

y

x

θ

FIGURE 2.3 Points and vectors
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For example, the 2D vector starting at [0, 0] with endpoint [3, 4] can be
drawn as a line segment from the origin [0, 0] to its endpoint 3 units in the
x direction and 4 units in the y direction. These values of 3 and 4 represent
the components of the vector in the x and y directions, respectively. In
three dimensions, the vector’s endpoints are represented by three real
numbers so the vector can be designated as [x1, x2, x3].

A vector can thus be described geometrically by a line from its origin
to its endpoint. The geometric view is used to visualize the problem at
hand, as when the vectors represent distances or forces in various direc-
tions. The algebraic notation is useful when performing calculations such
as addition with vectors. The legitimate operations that are allowed for
vectors will be defined later in this chapter.

Notation In this text, individual vectors are usually designated by ro-
man letters printed in boldface type (a,b,A,x . . .). As an example, the
equation a = [3, 4] defines a as the vector from the origin to the point
[3, 4]. The same notation means that the vector a has component 3 in the
x direction and component 4 in the y direction.

Numbers are often called scalars to emphasize the distinction between
numbers and vectors. Thus, energy and power in physics are scalar quan-
tities, whereas velocity and acceleration are vector quantities, since these
later quantities have a direction associated with them.

The term scalar multiple of a vector means multiplication of the vec-
tor components by a number. The multiplication operation is denoted as
αx for the scalar α and the vector x.

The notation R2 is used to denote the set of all 2D vectors, and R3

indicates all of the 3D vectors. The exponent defines the dimension of the
vectors being discussed. Thus, a = [3, 4] is a 2D vector that is a member
of R2.

Addition and Subtraction of Vectors Consider two arbitrary vec-
tors x = [x1, x2] and y = [y1, y2]. The sum and difference of the vectors
are the new vectors

x + y = [x1 + y1, x2 + y2],
x − y = [x1 − y1, x2 − y2],

in terms of the components of the original vectors. Notice that the result-
ing vectors would not generally have the origin as their beginning point.
We can also draw the vectors and determine the sum and difference as
shown in Figure 2.4.
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(x1 + y1, x2 + y2)

x + y

(x1, x2)

y

x

(a) Addition

y

x
0

x – y

y

x

(b) Subtraction

FIGURE 2.4 Addition and subtraction of vectors

In Figure 2.4(a), the vector y is shifted so that initial point of y is
placed at the terminal point of x. The vector x + y is the vector from
the origin to the end point of y in the figure. By drawing the diagram
with y at the origin, you can show that y + x = x + y. Notice that this
definition of addition of 2D vectors corresponds exactly to the addition of
complex numbers.

Figure 2.4(b) shows the subtraction of two vectors. As an aid to
remembering the direction, note that x = x− y + y, so that x− y is the
vector that must be added to y to obtain x. The vector y − x has the
same length as x − y but points in the opposite direction.

Scalar multiplication of vectors The multiplication of a vector x =
[x1, x2] by a scalar r is defined by

rx = [rx1, rx2]

which, for r positive, has the effect of stretching or shrinking x by a
factor of r. For r negative, it also reverses its direction. Notice that this
definition for 2D vectors corresponds exactly to the multiplication of a
complex number by a scalar.

Length of a Vector The length of a vector x is a nonnegative scalar
quantity that measures the distance between its initial point and terminal
point. In the Cartesian coordinate system, the components of a 3D vector
represent the lengths along the three mutually perpendicular axes x, y,
and z.

The length of a vector is also called its magnitude, especially when the
vector represents a physical quantity. Thus, if a defines the acceleration
vector for a body, the magnitude of the acceleration is written a in this
textbook.
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The length of a 2D vector with components [x1, x2] in the xy-plane
follows from the Pythagorean theorem as

|| x || =
√

x1
2 + x2

2. (2.23)

The length of the 2D vector a = [3, 4] previously defined is thus

|| a || =
√

32 + 42 = 5.

Generalization to three dimensions is straightforward.
The length of the vector a between points [x1, y1] and [x2, y2] can be

found by forming x = x2 − x1 and y = y2 − y1 and then computing

|| a || =
√

x2 + y2.

Some authors use the notation | a | to indicate the length or magni-
tude of the vector a. This representation is quite common for vectors in
R2 and R3. In a later section of this chapter, the length or magnitude of
a vector will be called the norm of the vector. This is a generalization of
the concept of length, which is useful for vectors with more than two or
three components. The norm of a is written || a ||.

Unit Vectors A vector x of length 1 (|| x || = 1) will be called a unit
vector . For any vector x, a unit vector n in the direction of x can be
computed as

n =
x

|| x ||
assuming that || x || is not zero. This unit vector defines the direction of
vector x.

A nonzero vector that is divided by its magnitude is said to be nor-
malized . Such a vector, as for example the vector n = x/||x||, has the
property that ||n|| = 1.

DOT PRODUCT An important operation for two vectors of the same dimension is the
scalar , or dot , product. One definition of the dot product for two nonzero
vectors with a common origin point is

x · y = || x || || y || cos θ. (2.24)

In the equation, θ is the angle between the vectors, usually measured in
radians, taken from the interval 0 ≤ θ ≤ π.

The dot product of the 3D vectors x = [x1, x2, x3] and y = [y1, y2, y3]
can also be shown to be

x · y = x1y1 + x2y2 + x3y3 (2.25)

in terms of their components. Of course, for 2D vectors the terms in x3

and y3 are not included. Notice that the length of the vector x can be
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computed as
√

x · x, as shown by letting x = y in Equation 2.25, which
defines the dot product in terms of the components of the vectors.

The two definitions just given for the dot product are equivalent. For
example, if x and y are two nonzero vectors in three dimensions that
originate from a common point, the cosine of the angle between them is

cos θ =
(x · y)

(|| x || || y ||)
(2.26)

=
x1y1 + x2y2 + x3y3√

x2
1 + x2

2 + x2
3

√
y2
1 + y2

2 + y2
3

. (2.27)

This relationship can be proven, as indicated by Problem 2.29.

EXAMPLE 2.5 Use of the Dot Product
Let x = [2, 4, 0] and y = [6,−4, 2]. Thus, the vectors have length

|| x || =
√

x · x =
√

4 + 16 + 0 = 2
√

5,

|| y || =
√

y · y =
√

36 + 16 + 4 = 2
√

14,

and the dot product is

x · y = (2)(6) + (4)(−4) + (0)(2) = −4.

By combining Equation 2.24 and Equation 2.23, the angle between the
vectors is computed as

θ = cos−1

[
x · y

|| x || || y ||

]

= cos−1

[
−4

(2
√

5)(2
√

14)

]
= cos−1

[
−1√
70

]
≈ 96.9◦.

If we define d = y − x, then the distance between the endpoints of y and
x is the length of d. Thus, the distance is

|| d || = || y − x ||

=
√

(6 − 2)2 + (−4 − 4)2 + (2 − 0)2 =
√

84

= 2
√

21.

Orthogonal Vectors If two vectors have a nonzero length and

x · y = 0,

the vectors are said to be perpendicular, or orthogonal , to each other. In
2D and 3D, the vectors thus meet at right angles, since θ = 90◦ when
cos θ = 0. The fact that two vectors x and y are orthogonal can be
represented by the notation x ⊥ y.
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Standard Unit Vectors The 3D unit vectors , defined as

i = [1, 0, 0] ,
j = [0, 1, 0] ,
k = [0, 0, 1] , (2.28)

are called the standard , or natural , unit vectors in R3. The triplet i, j,k
is also called a set of basis vectors , since any 3D vector can be represented
as a sum of scalar multiples of these three unit vectors.

The standard unit vectors all have length 1 and are mutually orthog-
onal, as is easily shown by forming the dot product between any pair of
these vectors. Such a set of vectors is said to form an orthonormal set.

EXAMPLE 2.6 Use of Unit Vectors
The unit vectors are frequently used to form an alternative notation for a

vector in ordinary 3D space. Thus, the vector F = [fx, fy, fz ] can be written as

F = fxi + fyj + fzk, (2.29)

where fx, fy, and fz represent the lengths of the vector along the x-, y-, and
z-axes, respectively.

However, the unit vectors and the dot product have far greater application
than notational convenience or geometrical interpretation. For example, assume
that the force on an object is defined by the vector F. Then, the component of
the force in the x-direction is given by F · i. The proof is straightforward, since

F · i = fx(i · i) + fy(j · i) + fz(k · i) = fx (2.30)

after taking the dot product of the standard unit vectors.

Application of the Dot Product The dot product is frequently used
to find the component of one vector in the direction of another. For
example, an important use of the dot product is to determine the work
done by a constant force F acting on a body moving a distance and in a
direction defined by the vector s. The magnitude of s defines the distance
moved, but only the component of F in the direction of s does work.
The calculation F · s multiplies the component of F in the direction of
motion times the distance traveled and hence defines the work done. In
vector calculus, the dot product plays a role in computing certain line
and surface integrals and in the definition of the divergence of a function
(∇ · F) to be studied in later chapters.

ROW AND
COLUMN
VECTORS

So far in this chapter, we have represented a vector as a row of numbers,
called a row vector . The vector x can also be represented as a column
vector in the form

x =




x1

x2

x3


.

66 Chapter 2 NUMBERS AND VECTORS



These representations of vectors will be useful in Chapter 3 when matrix
operations are considered. For two vectors x and y that have the same
number of components, the dot product can be computed by writing one
vector as a row vector and the other as a column vector and performing
matrix multiplication to yield

x · y = [ x1, x2, x3 ]




y1

y2

y3


 = x1y1 + x2y2 + x3y3. (2.31)

In some contexts, the terms scalar product and inner product are also
used to describe the product of Equation 2.31.

PROJECTIONS A very important application of the dot product of two vectors is in
determining the projection of one nonzero vector along another. Figure 2.5
shows the geometry of the problem.

Projxy

y

x

FIGURE 2.5 Projections

The figure shows the projection of y on x determined by dropping a
line from the end of y that is perpendicular to x in the plane of x and y.
Thus, the length of the projection measured from the origin of the vectors
to the intersection of the line with x is ||y|| cos θ. We now wish to define
the projection in terms of the dot product and also define the vector that
specifies the projection. This is accomplished by first observing that

||y|| cos θ =
(||x||)||y|| cos θ

||x||

and noting that x/||x|| is a unit vector in the direction of x and hence
defines the direction of the projection. Using the notation projxy to
indicate the projection of y on x, we can write

projxy =
(x · y)
||x||

x
||x||

=
(x · y)
||x||2

x. (2.32)

For the vectors in Figure 2.5, θ < π/2 so x · y > 0. If θ > π/2, x · y < 0.
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EXAMPLE 2.7 Projections
a. The projection of u = 2i + 3j on the vector v = i + j is given by

projvu =
5v

(
√

2)2
=

5

2
i +

5

2
j.

b. Let x be a nonzero vector. Then, for any other vector y, the vector

w = y − (y · x)

||x||2 x = y − projxy

is orthogonal to x. To show this, form the dot product of w and x and expand
as

w · x =

[
y − (y · x)

||x||2 x

]
·x = y · x− (y · x)

||x||2 x · x

= y · x − (y · x)||x||2

||x||2 = y · x − y · x = 0.

Using the vectors of Part a, the component of u perpendicular to v is

u⊥ = (−i + j)/2.

W H A T I F ? You should draw the vectors u and v in Example 2.7 to
confirm that the projection is correct. Also, show that u can be written
as the sum of the components parallel and perpendicular to v.

CROSS
PRODUCT

The cross product is an operation on vectors in R3 that has widespread
use in physics. Whereas the scalar (dot) product of two vectors yields a
scalar value, the cross product of two vectors is another vector. Thus,
some authors use the term vector product for this operation.

The cross product is indicated as c = a × b and satisfies the following
relationship:

c = || a || || b || sin θ n, (2.33)

where n is a unit vector that is perpendicular to both a and b. Since the
resulting vector is perpendicular to both a and b, we can write

c ⊥ a, c ⊥ b. (2.34)

The cross product is defined only in three dimensions, and it is natural
to apply it to vectors whose components are the value of the vector along
the x-, y-, and z-axes. For the vectors a = [ax, ay, az] and b = [bx, by, bz],
the expression for a × b can be written in terms of the vector components
as

a × b = (aybz − azby)i + (azbx − axbz)j + (axby − aybx)k. (2.35)
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A technique to remember the expansion of Equation 2.35 is to write the
array

a× b =

∣∣∣∣∣∣

i j k
ax ay az

bx by bz

∣∣∣∣∣∣
(2.36)

and expand this as a determinant in the form

a × b = i
∣∣∣∣

ay az

by bz

∣∣∣∣− j
∣∣∣∣

ax az

bx bz

∣∣∣∣+ k
∣∣∣∣

ax ay

bx by

∣∣∣∣. (2.37)

This is not a numerical determinant in the ordinary sense, as treated in
Chapter 3, but it is a useful mnemonic to expand the cross product.

Figure 2.6 shows the relationship of the vectors a, b, and c in the
cross product c = a × b for the positive direction of the cross product
vector c. This orientation of the vectors defines a right-handed system of
axes. Remember that a right-handed system is defined such that if the
fingers of your right hand curl from a to b, your thumb points in the
direction of the cross product vector.

c = a × b

 a 

b

θ

FIGURE 2.6 Cross product of two vectors

EXAMPLE 2.8 Cross Product
A result of electromagnetic field theory is that the force F acting on a

charge q moving with a velocity v in a magnetic field B is given by

F = q v × B,

where q is measured in coulombs and B has units of teslas in the mks (meter-
kilogram-second) system.4

Let the physical values be

q = 1.6 × 10−19 coulombs,

B = 0.5 i− 0.8 k teslas,

v = 10j meters/second,

where the physical units apply to the magnitude of the vectors.

4The mks system is also called the SI (International System of Units) measurement system.
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Then, the force acting on the charge is

q v ×B = q

∣∣∣∣∣
i j k
0 10 0

0.5 0 −0.8

∣∣∣∣∣
= q [−8.0i − 5.0k] .

The result is F = (−12.8i − 8.0k) × 10−19 newtons. Although the particle is

initially moving in the y-direction, the field gives the particle components of

velocity in the x- and z-directions as well.

Cross products are used extensively in mechanics to represent such
quantities as angular momentum. In electromagnetic field theory, the
cross product defines the direction of the force acting on a moving charged
particle in a magnetic field. The cross product will also be used again in
Chapter 13, where the expression ∇×F will be introduced as the curl of
a vector function.

Examples of Applications Table 2.5 lists a few of the applications
of vectors commonly used in physics.

TABLE 2.5 A few vector applications

Meaning Vector Form

Newton’s second law F = ma
Force on a charge F = qE
Linear momentum p = mv

Work W = F · s

Force on a charge F = qv × B
Torque T = r ×F
Angular acceleration L = r × p
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2.5 VECTORS IN HIGHER DIMENSIONS

In elementary physics, the vectors of interest represent physical phenom-
ena, such as the force or the electric field at a point in 2D or 3D space.
However, the generalization of the vector concept to vectors having more
than two or three components is useful in many areas of applied mathe-
matics.

The notation Rn will denote the set of all vectors with n real com-
ponents. In the previous section, R2 denoted the set containing all the
2D vectors with components of the form [x, y]. Similarly, R3 contains all
the 3D vectors with three real components. The emphasis on the real
components is made here because vectors may also have complex values
for components. Unless otherwise noted in the text, the vectors discussed
have real components.

When x is one of the vectors in the set Rn, we say that x is in Rn

or occasionally use the notation x ∈ Rn. Thus, the statement a ∈ R5

means that a is a five-dimensional vector with five real components.
An n-dimensional vector x in Rn is defined as the n-tuple of real

numbers written
x = [x1, x2, . . . , xn], (2.38)

where each xi is a real number. For convenience, such a vector is often
referred to as an n-vector or simply as a vector if n is understood.

Basic operations are defined for vectors in Rn that are straightforward
generalizations of the familiar operations of addition, multiplication by a
scalar, and defining the length of vectors in R2 and R3.

The addition of two vectors x and y in Rn is defined as

x + y = [x1, x2, . . . , xn] + [y1, y2, . . . , yn]
= [x1 + y1, x2 + y2, . . . , xn + yn] . (2.39)

The scalar multiple of a vector αx is formed by multiplication of each
component of a vector in Rn by a real number α, with the result

αx = [αx1, αx2, . . . , αxn] . (2.40)

The term norm is sometimes used for the length of vectors in Rn when
n > 3. The generalization of the vector length given in Equation 2.23 for
a vector with n components is

||x|| =

(
n∑

i=1

xi
2

)1/2

=
√

x2
1 + x2

2 + · · · + x2
n. (2.41)

The norm is a scalar value that measures the size of the vector in n-space.
However, there are different types of norms useful in some applications.
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Therefore, the norm in Equation 2.41 is properly referred to as the 2-
norm to distinguish it from other norms. The 2 defines the power to
which the components are raised. In physics, Rn with this norm is called
the Euclidean n-space.

EXAMPLE 2.9 Vectors of Higher Dimensions

Many physical quantities can be represented by an n-vector. For example,
suppose an analog signal sampled periodically yields n samples, denoted

[s1, s2, . . . , sn] .

Let the values be represented by the vector S, which could serve as a shorthand
notation when referring to the samples.

However, since S is a vector, useful computations can be performed on
S. If the signal is input to a multiplier circuit that multiplies the input by α,
then the sampled output is α S if the input and output signals are sampled
simultaneously. The norm of S also has physical meaning if the input signal
is an electrical signal. In this case, the root-mean-square (RMS) value is the
norm divided by

√
n.

Vector language and vectors of greater than three dimensions are used in

solving problems in many areas of physics. Equations of a mechanical system are

often described as having N degrees of freedom using N independent vectors to

express the solutions. In statistical mechanics, an n-dimensional space is used.

Relativity uses a four-dimensional space, and quantum mechanics even extends

the space of n dimensions to one with an infinite number of components.

2.6 MATLAB VECTORS

One of MATLAB’s fundamental data types is the n-dimensional vector.
The vector x can be entered in the form

>> x=[x1 x2 ...xn]

where the xi are the components written in a row with spaces separating
the values. This MATLAB form represents the vector x = [x1, x2, . . . , xn].
The fundamental operations on vectors are defined in Table 2.6, in which
the first column defines the operation, the second column shows the MAT-
LAB format, and the third column presents the mathematical result.
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TABLE 2.6 MATLAB Vector Operations

Operation MATLAB Form Mathematical Form

Vector [x1 x2 ...xn] [x1, x2, . . . , xn]
Addition x+y [x1 + y1, x2 + y2, . . . , xn + yn]
Subtraction x-y [x1 − y1, x2 − y2, . . . , xn − yn]
Scalar multiplication k*x [kx1, kx2, . . . , kxn]
Transpose x’ Column vector
Dot product x*y’ or dot(x,y) x1y1 + x2y2 + · · · + xnyn

Cross product cross(x,y) x× y
Norm norm(x) ||x||
Special:
xi × yi x.*y [x1y1, x2y2, . . . , xnyn]
xi/yi x./y [x1/y1, x2/y2, . . . , xn/yn]
xi

m
x.^m [x1

m, x2
m, . . . , xn

m]
f(xi) f(x) [f(x1), f(x2), . . . , f(xn)]
Augment [x y] [x1, x2, . . . , xn, y1, y2, . . . , yn]

Element xi x(i) xi

Row vector
Integers m,n x=m:n x = [m, m + 1, . . . , n]
Real a, dx, b x=a:dx:b x = [a, a + dx, a + 2dx, . . . , b]

To compute the dot product of two vectors, the transpose of one of
the vectors must be used in the product. The transpose of a vector xt is
entered as

>> xt=[x1 x2 ...xn]’

or as

>> xt=[x1;x2;...;xn]

with semicolons separating the components. The result is the column
vector

xt =




x1

x2

...
xn


 .

The MATLAB command

>> xt=x’

converts the row vector x into the column vector xt. The command dot
computes the dot product of two vectors without the need to form the
transpose of one of the vectors.

There are a number of special operations listed in the table that
are not standard vector operations. MATLAB operators multiply (.*)
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or divide (./) two vectors element by element when the period operator
follows the vector. Also, each element of a vector may be raised to a
power. Most of the MATLAB functions, such as exp or sqrt, can be
used to compute the function of each element of a vector.

The n components of a vector x can be augmented with the elements
of a vector y having n components with the command

>> z=[x y]

after which z becomes a row vector with 2n elements. The ith element
of a vector x is designated as x(i). Thus, the third element of x is
x(3). Finally, a vector with fixed increments between the elements can
be generated. For example, the command

>> x=[1:0.5:3]

creates the mathematical vector x = [1, 1.5, 2.0, 2.5, 3.0].

EXAMPLE 2.10 MATLAB Operations
The accompanying MATLAB sessions illustrate various operations from

previously presented discussions and examples. In the first script, the command
abs is used to compute the absolute value of a number. Next, the function
clbindec is called to convert a binary number to decimal using Equation 2.2.
The binary digits are entered as elements in a vector. After the conversion,
the result is displayed showing 1111102 converted to 62. The function is also
displayed for convenience. It is stored on disk as file CLBINDEC.M.

MATLAB Script
Example 2.10

>>x=-5

x =

-5

>>y=abs(x)

y =

5

>>xbin=[1 1 1 1 1 0]; % Convert binary to decimal

>>Ndec=clbindec(xbin)

Ndec =

62

%

function ndec=clbindec(xbin)

% CALL: ndec=clbindec(xbin), Convert positive binary number xbin

% to decimal value ndec. No error check if xbin is not binary

m=length(xbin);

ndec=0;

for I=1:m

ndec=ndec+xbin(I)*2^(m-I);

end

The second session shows the vector operations of Example 2.5 performed
with MATLAB commands. The commands compute the norms of the vectors,
the dot product, and the angle between the vectors in radians and degrees.
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MATLAB Script
Example 2.10

% Norm, Dot Product and Angle

>>x1=[2 4 0]

x1 =

2 4 0

>>y1=[6 -4 2]

y1 =

6 -4 2

>>% Compute norms

>>nx1=norm(x1)

nx1 =

4.4721

>>ny1=norm(y1)

ny1 =

7.4833

>>% Dot product

>>xdoty=x1*y1’

xdoty =

-4

>>% Angle between vectors

>>theta=acos(xdoty/(nx1*ny1))

theta =

1.6906

>>thetadeg=theta*180/pi

thetadeg =

96.8646

>>quit

Symbolic MATLAB The Symbolic Math Toolbox has commands to
manipulate vectors defined in symbolic form. For example, the command
symop performs symbolic operations on vectors and matrices. To com-
pute the norm of a vector and the dot product of vectors, the symbolic
command transpose is useful.

2.7 PROPERTIES OF VECTORS

Consider arbitrary vectors x and y ∈ Rn and a scalar α. A basic property
we assume to be true for any vectors in Rn is that the sum of the vectors
is also a vector in Rn. The scalar multiple of any vector in Rn is also
a vector in Rn. These statements are called closure properties and are
stated mathematically as

x + y ∈ Rn and αx ∈ Rn
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for vectors in Rn.
Other properties of vectors in Rn define various addition and multi-

plication operations. For vectors x, y, and z and scalars α and β, these
vectors satisfy the following relationships for addition and multiplication
by a scalar.

The properties of vector addition are as follows:

1. x + y = y + x. Commutative law

2. (x + y) + z = x + (y + z). Associative law

3. x + 0 = 0 + x = x, where 0 = [0, 0, ..., 0]. Zero element

4. x + (−x) = 0.

In Property 4, the negative of x is defined as (−1)x = −x or in terms of
the components,

−x = [−x1,−x2, ...,−xn] .

Let α and β be scalars. Then, the scalar multiplication properties of
vectors are

5. α(x + y) = αx + αy.

6. (α + β)x = αx + βx.

7. (αβ)x = α(βx).

8. x = 1× x

EXAMPLE 2.11 Commutative Law
There are several ways to define the basic properties of vectors with real

elements. Our approach is to postulate these properties without proof, as has
just been done. For example, the commutativity property of vectors is a propo-
sition that can be proven but was assumed. Thus, we state that addition of two
vectors is commutative because

x + y = y + x. (2.42)

Another approach to presenting the basic properties of vectors is to prove
the relationships using the axioms that were presented earlier for real numbers.
The properties of vectors listed in this section can all be proven from the def-
inition of vector addition and multiplication of a vector by a scalar using the
properties of real numbers. For example, given that α + β = β + α for any real
numbers α and β, proving the commutative law for vectors is straightforward.
Since the vectors have real components, the definition of x+y previously given
by Equation 2.39 yields the jth component of the sum as

xj + yj for j = 1, 2, . . . , n. (2.43)

Then, by the commutative law for real numbers, each component can also
be written as

yj + xj for j = 1, 2, . . . , n. (2.44)
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This latter sum is y + x, so vector addition is commutative, as stated in Equa-

tion 2.42.

In the relationships that hold for vectors, the associative, commuta-
tive, and distributive laws of multiplication that apply to real numbers
are not listed. Instead, the dot product of two vectors x and y is defined
as the sum of the products of the respective components.

The dot product of two n-dimensional vectors x and y is defined as

x · y = x1y1 + x2y2 + · · · + xnyn =
n∑

i=1

xiyi. (2.45)

From the definition, it is clear that the dot product is commutative, since
x · y = y · x. A useful equation relates the norm of a vector in Rn and
the dot product. Letting x = y in Equation 2.45, the square of the norm
is computed as

|| x ||2 = x · x, (2.46)

using the norm as previously defined in Equation 2.41.
Unfortunately, visualization of the geometric properties of vectors

as in R2 and R3 is difficult when the dimension is greater than three.
However, it is useful to define the concept of orthogonal vectors in Rn.

ORTHOGONAL
VECTORS AND
INNER
PRODUCT

In terms of the dot product, the nonzero vectors x and y are said to be
orthogonal if x · y = 0. Vectors in Rn that are mutually orthogonal and
of unit length (norm is 1) are called orthonormal . Thus, a set of vectors
x1,x2, . . . ,xn is orthonormal if

xi·xj =
{

1, if i = j,
0, if i 6= j.

The vector 0 is considered to be orthogonal to every vector in Rn,
since x · 0 = 0 for every vector x ∈ Rn. In the next section, orthonormal
sets of vectors will be used to represent vectors in Rn.

When dealing with vectors in Rn and in some other applications, the
dot product is often called the inner product . The operation is defined
by the notation

〈x,y〉 = x1y1 + x2y2 + · · · + xnyn (2.47)

for two vectors in Rn.
The notation for a set of orthonormal vectors can be simplified by

using the inner product and introducing the Kronecker delta with the
definition

δij =
{

1, if i = j,
0, if i 6= j.

Then, a set of vectors x1,x2, . . . ,xn is an orthonormal set if and only if

〈xi,xj〉 = δij i, j = 1, 2, . . . , n.
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2.8 COMPLEX VECTORS

The set of all n-dimensional vectors with complex components will be
designated as Cn. The vectors in the set have the form

z = [z1, z2, . . . , zn],

where each component is the complex number zi = xi + iyi, i = 1, 2, . . . n.
The vector z̄ has the ith component z̄i = xi − iyi. The scalars in Cn are
taken from C. With these understandings, addition and scalar multipli-
cation is “componentwise,” just as for real vectors.

The dimension n cannot be understood in the same geometric way as
for real vectors, because each component is really 2-dimensional. Thus,
the individual vectors in C2 could be visualized much like the individual
vectors in R4.

It is possible to define inner product and length for complex vectors.
As introduced earlier in the chapter, the length of the complex number
z = x + iy considered as a vector in xy-space is

||x + iy|| = (zz̄)1/2 =
√

(x + iy)(x − iy) =
√

x2 + y2.

Since x and y are real numbers, the length of the vector is a positive
number. Thus, if z is not zero, zz̄ is always real and positive.

With complex vectors, we wish to define an inner product such that
the length of a vector z is a positive number. Consider the vectors

z = [z1, z2, . . . , zn] and w = [w1, w2, . . . , wn]

with complex components. The complex conjugate of such vectors is
formed by conjugating each component of the vectors. The inner product
of complex vectors z and w can be defined as

〈z,w〉 = z̄1w1 + · · · + z̄nwn, (2.48)

in which the conjugate of the first vector is used. For complex vectors,
the inner product is thus formed by first conjugating z and then forming
the sum of the products of the corresponding elements of z̄ and w. Then,
the norm or length of the vector z can be defined as

||z|| = 〈z, z〉1/2 = 〈z, z〉1/2.

If z 6= 0, it is simple to prove that 〈z, z̄〉 > 0.
For complex vectors with real components, the dot product in Rn

and the inner product are identical since z = z̄ if z is a real number and
so it follows that z = z̄ for real vectors.

W H A T I F ? Suppose the definition of Equation 2.48 is given as 〈z, w̄〉.
Try both definitions with the vectors z1 = [i, 0] and z2 = [1, 0] and show
that the norms are different. Which definition does the MATLAB
command dot use for complex vectors?
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2.9 VECTOR SPACES

Thus far we have moved from the easily visualized vectors in R2 and
R3 to the more “abstract” vectors in Rn. However, except for the cross
product, the various vector properties and operations are equally valid
independent of the dimension of the vectors. One further generalization
dealing with vectors is of great importance in both theoretical studies and
certain practical problems.

Our final generalization for vectors in Rn introduces the concept of a
vector space. The vector space is a set of vectors together with the rules
for vector addition and multiplication by a scalar. Vectors in Rn are said
to form a vector space. These vectors satisfy the closure condition and
the eight properties of vectors listed previously.

EXAMPLE 2.12 Vector Space
The introduction of n-dimensional vectors and vector spaces represents

an important generalization from the 2D and 3D space of the physical world.
Advantages of the extension will be shown in a number of ways in this text.
The main principle is that once a fact about vector spaces in general is known
to be true, we can apply that fact to every vector space, rather than having to
prove the fact for each new vector space.

For example, the number zero (0) is itself a vector space that is sometimes
called the trivial vector space. Thus, zero satisfies all the properties of a vector
space such as 0 + 0 = 0, α × 0 = 0, and 0 = 1 × 0. Note that the number
1 does not form a vector space since it violates the closure property; that is,
1 + 1 = 2 but 2 is not in the space. Extending this argument slightly shows
that the vector 0 in Rn also forms a vector space. We will study much more
interesting vector spaces in the sections to follow.

The set of points in R2 that lie on a line passing through the origin consti-

tutes a vector space. The points [x, y] are defined by the equation y = mx where

m is a scalar constant. Letting x = [x1, y1] and y = [x2, y2] with y1 = mx1

and y2 = mx2, it is easy to show that the closure property and the other eight

properties for vector spaces are satisfied. However, the set of points on a line

not passing through the origin (y = mx+b, b 6= 0) does not form a vector space,

as you are asked to prove in Problem 2.12.

SUBSPACES In some problems, a subset of the vectors in Rn is important, rather than
the entire set. If the vectors in the subset satisfy the closure property of
addition and scalar multiplication, the vectors also form a vector space
called a subspace of Rn. A set of vectors S that is a subset of the vectors
in Rn forms a vector space if α is a scalar in R and for every vector x
and y in S,

1. x + y ∈ S. Closure under addition
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2. α x ∈ S, α a scalar. Closure under scalar multiplication

3. 0 ∈ S.

4. −x ∈ S.

A vector space with these properties is said to be a subspace of Rn.
The vector spaces R,R2, . . ., including Rn itself are subspaces of Rn.
Actually, Properties 3 and 4 follow from Property 2 and the fact that for
a vector in Rn, 0 × x = 0. Similarly, Property 4 can be derived from
Property 2 and the fact that −x = (−1)x for vectors in Rn.

There are two important properties of a subspace that are worth
mentioning explicitly:

1. Every subspace of a vector space contains 0.

2. Any subspace of a vector space is a vector space, with the opera-
tions inherited from the original space.

If the vectors in the subset of Rn form a subspace, it is not necessary
to verify that they satisfy the eight properties of vectors in a vector space
because the properties are satisfied in the larger space and will be satisfied
in every subspace. Conversely, if the subset does not form a subspace,
some of the properties associated with a vector space will not apply.

LINEAR
INDEPENDENCE
AND BASES

Representing one mathematical quantity in terms of a combination of
(presumably) simpler quantities is useful in many applications. As shown
in an earlier section of this chapter, a 3D vector may be expressed as a
sum of scalar multiples of three orthogonal unit vectors. In this section,
this concept is extended to vectors in Rn.

Extending the previous discussion of unit vectors in R3, it is natural
to write a vector x in Rn in the form

x = [x1, x2, . . . , xn] = x1e1 + x2e2 + · · · + xnen, (2.49)

where

e1 = [1, 0, . . . , 0] ,
e2 = [0, 1, . . . , 0] ,

...
en = [0, 0, . . . , 1] . (2.50)

This set of unit vectors forms an orthonormal set, and any vector in
Rn can be written as a sum of scalar multiples of these vectors. The
importance of this fundamental set of vectors for Rn will be explored in
more detail shortly.
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EXAMPLE 2.13 Vector in terms of Unit Vectors
In R3, the standard unit vectors would be e1, e2, and e3. In most ap-

plications, they are written i, j, and k, as used in Example 2.6. Thus, the
vector

x = [1, 1.5, 3, 7, 8]

can be written in terms of the unit vectors in R5 as follows:

x = 1e1 + 1.5e2 + 3e3 + 7e4 + 8e5. (2.51)

A vector component in the direction of a unit vector is determined by
taking the inner product of the vector and the unit vector. For the vector x,
the component in the direction of e1 is thus

〈x, e1〉 = 1〈e1, e1〉 + 1.5〈e1, e2〉 + · · · + 8〈e1, e5〉 = 1,

since the unit vectors form an orthonormal set. In terms of projections as
defined in Equation 2.32, the component of x in the direction of e1 is

proje1
x =

〈e1,x〉
||e1||2

e1 = 1e1.

Linear Independence of Vectors Many problems involving vector
spaces are simplified if we find a set of vectors that can be used to gen-
erate any vector in the space. Such a set is called a basis for the space.
The properties of a basis set will be explored after the concept of linear
independence is defined.

A vector y is called a linear combination of a set of vectors designated
x1,x2, . . . ,xn if y can be written as a sum of scalar multiples of these
vectors in the form

y = α1x1 + α2x2 + · · · + αnxn, (2.52)

where each αj is a scalar. The set of vectors

x1,x2, . . . ,xn (2.53)

is described as linearly independent if none of the vectors can be written as
a linear combination of the others. An equivalent statement expresses the
fact that a linear combination of independent vectors cannot be summed
to yield the zero vector unless each coefficient is zero.

A set of vectors x1,x2, . . . ,xn in Rn is said to be linearly independent
if the equation

α1x1 + α2x2 + · · · + αnxn = 0 (2.54)

is true only when the scalars α1 = α2 = · · · = αn = 0 . Otherwise,
the vectors are linearly dependent , and at least one of them is a linear
combination of the others. Thus, if the relation in Equation 2.54 does
hold with not all the α’s equal to 0, the vectors are linearly dependent .
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For two vectors, the definition means that the vectors are linearly
dependent if and only if one is a scalar multiple of the other. When more
than two vectors are involved, the test for independence results in a set
of equations for the coefficients.

EXAMPLE 2.14 Linearly Independent Vectors
To test the vectors i, j,k for linear independence, we form the equation

a1 i + a2 j + a2 k = 0,

which is equivalent to
[a1, a2, a3] = [0, 0, 0] .

By equating components, the vector equation leads to the conclusion

a1 = 0, a2 = 0, a3 = 0.

Hence, the three unit vectors in R3 are linearly independent. In fact, it is easy
to show that any set of mutually orthogonal nonzero vectors from Rn is linearly
independent.

The vectors [3, 2, 3], [1, 1, 0], [0, 1,−3] can be shown to be linearly dependent
by solving the system of equations resulting from setting

a1 [3, 2, 3] + a2 [1, 1, 0] + a3 [0, 1,−3] = [0, 0, 0] . (2.55)

The system
3a1 + a2 = 0
2a1 + a2 + a3 = 0
3a1 − 3a3 = 0

(2.56)

has a solution [a1, a2, a3] = [1,−3, 1], among others. Thus, the first vector is a
linear combination of the other two since

[3, 2, 3] = 3 [1, 1, 0] − 1 [0, 1,−3] . (2.57)

Although matrices and determinants are not treated until Chapter 3, a
useful result from matrix theory can be applied to determine if n vectors in Rn

are independent. First, form the matrix with the vectors as columns. Then, if
the determinant of the matrix is nonzero, the vectors are independent. If the
determinant is zero, the vectors are dependent. The determinant formed by the
unit vectors is

∣∣∣∣∣
1 0 0
0 1 0
0 0 1

∣∣∣∣∣ = 1, (2.58)

so the vectors are independent. The determinant for the other set is

∣∣∣∣∣
3 1 0
2 1 1
3 0 −3

∣∣∣∣∣ = 0, (2.59)

so the vectors are dependent.
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Basis Vectors A basis for a vector space consists of a set of vectors
that can be used to uniquely generate every vector in the space. Such
a set of basis vectors is said to span the space. Important results from
linear algebra allow us to determine the number of vectors that span the
space and the characteristics of the vectors that can serve as the basis.

A set of vectors x1,x2, . . . ,xn is said to form a basis for the vector
space of Rn if the following two conditions hold:

1. The set of vectors x1,x2, . . . ,xn is linearly independent.

2. Every vector in Rn can be written as a linear combination of the
independent vectors.

Considering the vector space Rn, it can be shown that every set of n
linearly independent vectors in Rn is a basis for the space. Furthermore,
although the basis set is not unique, every basis for Rn has exactly n
vectors. Thus, if x is a vector in Rn, then x can be written as

x = α1x1 + α2x2 + · · · + αnxn, (2.60)

where each αj is a scalar if the vectors xj , for j = 1, 2, . . . , n, are linearly
independent and span the vector space.

The dimension of the vector space is the number of vectors in the
basis, and this number is sometimes referred to as the number of degrees
of freedom of the space. In a vector space of dimension n, such as Rn, not
more than n vectors can be linearly independent. Also, any set of basis
vectors that span the space can contain no fewer than n vectors. Any sub-
space of Rn containing m vectors (m ≤ n) has dimension m and requires
m basis vectors. Thus, every basis of R2 must contain two independent
vectors, and any three vectors in R2 must be linearly dependent.

EXAMPLE 2.15 Orthonormal Basis for Rn

The orthonormal set of unit vectors

e1, e2, . . . , en (2.61)

defined in Equation 2.50 forms a basis for Rn. This set is often called the
standard basis, or the natural basis, for the space. However, this set is not
unique. Any set of n linearly independent vectors from Rn could serve as a
basis. For example, the set of vectors formed by multiplying each vector in the
natural basis by a nonzero constant would also serve as a basis for Rn.

In R1, any nonzero vector can serve as a basis. This is evident since any
two nonzero vectors a and b that lie along a line (collinear) can be written as
b = ka, where k is a nonzero number. To write this in the form to test for
linear dependence, let k = −α/β so that the relationship between the vectors
becomes

αa + βb = 0,

where neither α or β is zero. Considering the definition of linear dependence,
we conclude that two collinear vectors are always linearly dependent.
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In two dimensions, two noncollinear vectors a and b are linearly indepen-
dent. Thus, every vector in a plane can be represented as

c = k1a + k2b,

with the proper choice of the constants k1 and k2. The 2D vector space can be
defined by the equation

αa + βb + γc = 0.

By a similar argument, we can show that any vector in space can be represented
as

d = k1a + k2b + k3c,

where a, b, c are three noncoplanar vectors in R3.

Generalizing these observations, we conclude that every n-dimensional vec-

tor can be represented as the linear combination of n linearly independent vec-

tors. It is also clear that every set of more that n vectors must be linearly

dependent.

A fundamental result of linear algebra is that n linearly independent
vectors in Rn form a basis for Rn. Thus, any vector in Rn can be ex-
pressed uniquely as a linear combination of the basis vectors. If u1, . . . ,un

are linearly independent and v is any vector in Rn, then

v =
n∑

i=1

αiui = α1u1 + · · · + αnun, (2.62)

where the αi are uniquely determined. To solve for the coefficients, each
component can be written as

vk = α1u1k + · · · + αnunk =
n∑

i=1

αiuik, (2.63)

where the notation uik means the kth component (k = 1, . . . , n) of the
vector ui, i = 1, . . . , n. Thus, the ith vector in the linearly independent
set has components

ui = (ui1, ui2, . . . , uin).

Equation 2.63 represents an n× n system of linear equations that can be
solved for the coefficients in Equation 2.62, since the αi, i = 1, . . . , n are
unique.

Now suppose that a set of vectors ui, i = 1, . . . , n in Rn are orthog-
onal. It can be shown that the vectors are linearly independent. The
expansion of Equation 2.62 for any vector in Rn is again

v =
n∑

i=1

αiui, (2.64)
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but in this case the coefficients are easy to find. Simply take the inner
(dot) product of both sides of Equation 2.64 with each ui and use the
orthogonality property. Thus,

〈v,ui〉 =
n∑

i=1

αi〈ui,ui〉 = αi〈ui,ui〉. (2.65)

Solving for αi, the result for the coefficients is

αi =
〈v,ui〉
〈ui,ui〉

(2.66)

for i = 1, . . . , n. Notice that if the vectors ui are orthonormal, each
coefficient αi is simply the inner product of the vector v and ui since
〈ui,ui〉 = 1.

ORTHOGONAL
SETS OF
VECTORS

The importance of orthonormal sets is that they are equivalent to linearly
independent sets in many aspects, but they also have an inner product
associated with them. It is often more convenient to work with orthonor-
mal sets because of the computational simplifications that arise. Two
theorems relate linearly independent and orthonormal sets.

THEOREM 2.1 Orthogonal sets
An orthonormal set of vectors is linearly independent.

To show this result, let u1, . . . ,un be an orthonormal set and form
the vector equation

c1u1 + c2u2 + · · · + cnun = 0, (2.67)

where the ci’s (i = 1, 2, . . . , n) are constants. The set of vectors will be
linearly dependent if the only constants that satisfy Equation 2.67 are

c1 = c2 = · · · = cn = 0.

Taking the inner product of both sides of Equation 2.67 with u1 yields

〈c1u1 + c2u2 + · · · + cnun,u1〉 = 〈0,u1〉,

which can be written

c1〈u1,u1〉 + c2〈u2,u1〉 + · · · + cn〈un,u1〉 = 0.

Since 〈ui,u1〉 = δi1, the conclusion is that c1 = 0. Now taking the
inner product of Equation 2.67 successively with u2,u3, . . . ,un shows
that c2 = 0, . . . , cn = 0. Summarizing, the results, we find that all of the
constants are zero so the vectors are linearly independent.
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Construction of an Orthonormal Set Once an orthonormal basis
is found for a vector space, many computations are simplified since the
vectors are orthogonal. For example, finding the coefficients in the expan-
sion of an arbitrary vector in terms of the basis vectors is considerably
simplified using the dot product, as previously shown.

Given a basis for a vector space, is there a way to construct an or-
thonormal basis? Fortunately, the answer is yes, as will be shown in
the proof of the important theorem that states the existence of such an
orthonormal set.

THEOREM 2.2 Orthonormal vectors
For every linearly independent set of vectors x1, . . . ,xn, there exists an

orthonormal set of vectors
u1, . . . ,un

such that each uj , j = 1, 2, . . . , n, is a linear combination of x1, . . . ,xj.

To prove this theorem, an orthonormal set of vectors will be con-
structed using the Gram-Schmidt process.

Gram-Schmidt Process The Gram-Schmidt process is used to con-
struct an orthonormal set from an independent set. Let x1, . . . ,xn be a
linearly independent set in a vector space. An orthonormal set u1, . . . ,un

can be constructed by the following procedure:

1. Pick x1 and form a unit vector

u1 =
x1

||x1||

so that ||u1|| = 1.

2. Pick another element, say, x2, and form its projection on u1 by
forming the vector (x2 · u1)u1 and then letting

y2 = x2 − (x2 · u1)u1.

Then, create the unit vector

u2 =
y2

||y2||
.

Notice that from the definition of y2 that it cannot be zero because
that would imply that x2 and u1 are linearly dependent.

3. Continue in this way, successively computing u1, . . . ,uj , and form

yj+1 = xj+1 − (xj+1 · u1)u1 − · · · − (xj+1 · uj)uj ,

with
uj+1 =

yj+1

||yj+1||
.
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EXAMPLE 2.16 Gram-Schmidt Process
We first show that the vectors x1 = (1,−1, 2) and x2 = (1, 0,−1) are

linearly independent. Then, we use the Gram-Schmidt process to produce an
orthonormal set to be used as the basis for any vector in a plane in R3.

The vectors are linearly independent, since

c1x1 + c2x2 = 0

implies that c1 = c2 = 0, as you can easily prove by expanding the equation by
components of the vectors. Applying the Gram-Schmidt process,

u1 =
x1

||x1||
=

(1,−1, 2)√
6

and

y2 = x2 − (x2 · u1)u1

= (1, 0,−1) + (
1

6
,−1

6
,
1

3
) = (

7

6
,−1

6
,−2

3
).

Then

u2 =
y2

||y2||
=

( 7
6
,− 1

6
,− 2

3
)√

66/36
=

(7,−1,−4)√
66

.

Since two noncollinear vectors can be used to define a plane, the points in
the plane defined by the vectors x1 and x2 can be represented as

α1x1 + β1x2,

where the coefficients are real numbers. Another representation is

α2u1 + β2u2.

The representation in terms of u1 and u2 has the advantage that the vectors

are perpendicular and form an orthonormal set.

ABSTRACT
VECTOR
SPACES

In the earlier sections of this chapter, it was assumed that the vector space
under discussion contained vectors with n real components. Although the
concept of Rn as a vector space has great use in many applications, it
is possible to define more general vector spaces. For example, a vector
space can be defined in which the elements are complex numbers. Another
vector space could be defined that consists of all continuous real-valued
functions of a real variable. An example subspace of this vector space
would be the set of all polynomials.

This section discusses the extension to vector spaces consisting of
functions. Later chapters apply the technique to matrices, Fourier anal-
ysis, and the solution of differential equations. The approach frequently
leads not only to simplified mathematical analysis and computation but
also to useful physical insights in many problems of interest in physics
and engineering.
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Suppose V contains a collection of elements that may be vectors in
Rn, matrices, functions, or other elements. Further, assume that there
are two operations given in the definition of the space, called addition and
scalar multiplication. V is called an abstract vector space if the elements
a,b, and c ∈ V and α and β are scalars with the closure properties

a + b ∈ V and αa ∈ V

and the additional properties:

1. a + b = b + a. Commutative law for addition

2. (a + b) + c = a + (b + c). Associative law for addition

3. There is zero element such that a + 0 = a.

4. There is an inverse element such that a + (−a) = 0.

5. α(a + b) = αa + αb.

6. (α + β)a = αa + βa.

7. (αβ)a = α(βa).

8. There is an identity element such that 1 × a = a.

Comparing the properties of the abstract vector space with those of
Rn previously defined shows that the properties are the same. The term
abstract is used only to indicate that the vector space under discussion
may consist of objects other than the vectors in Rn. When no confusion
could arise, the abstract vector spaces discussed are simply termed vector
spaces . Also, when vector spaces of functions are considered, the boldface
notation will be discontinued and functions will be represented in their
ordinary mathematical form.

EXAMPLE 2.17 Polynomials
The set of all polynomials

P (x) = a0 + a1x + a2x
2 + · · · + akxk (2.68)

forms a vector space. In this case, vector addition is polynomial addition and
scalar multiplication is multiplication of P (x) by a constant.

Polynomials such as 1, x, x2, . . . , xn are linearly independent, since one of

these functions cannot be written as a linear combination of the others that

is valid for all x. However, the vector space does not have a finite number of

polynomials that span the space. In this case, the space is said to be an infinite-

dimensional vector space. A number of vector spaces containing functions will

have this property. This does not mean that the vector space does not have a

basis but that the basis contains an infinite number of functions.
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2.10 VECTOR SPACES OF FUNCTIONS

We now come to perhaps the most important generalizations of vector
theory in the chapter as they pertain to techniques in advanced mathe-
matics. Reaching this point has involved extending the theory of vectors
in R2 and R3 to those in Rn and then considering abstract vector spaces.
The key points to be considered here include

1. Generalizing the dot product for vectors to the inner product for
functions;

2. Extending the idea of length of a vector to define the norm of a
function;

3. Introducing the concept of expressing a function in terms of a linear
combination of orthogonal functions based on the expansion of a
vector in terms of the basis vectors for the vector space.

The discussion will be rather short, but these subjects will be revisited in
the chapters that treat differential equations, approximation of functions,
and Fourier analysis, as well as elsewhere in the text.

INNER
PRODUCT AND
NORM

When functions instead of vectors in Rn are the elements of a vector space,
it is necessary to carefully specify the operations on the elements that are
allowed. For example, it is possible to define a norm that measures the
“length” of a function. Since a continuous function f(x) is like a vector
with a continuous range of components, adding the squares of the values
obviously leads to an infinite result. However, a finite result is possible
when the summation is replaced by integration. If the dot product for
vectors is generalized to the inner product for functions, the norm can
then be defined accordingly.

As for vectors, the basic operations for functions are addition and
multiplication by a scalar. If f(x) and g(x) are continuous real-valued
functions, the addition and scalar multiplication are defined as

1. (f + g)(x) = f(x) + g(x),

2. (αf)(x) = αf(x),

where α is a scalar and x is real.
The inner product of f(x) and g(x) is defined on the interval [a, b] as

the integral of the product

〈f, g〉 =
∫ b

a

f(x) g(x) dx. (2.69)
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Based on the definition of the inner product, the norm is written as

‖f‖ = 〈f, f〉1/2 =
[∫

[f(x)]2 dx

]1/2

. (2.70)

If the inner product of two nonzero functions is zero, the functions are
said to be orthogonal .

EXAMPLE 2.18 MATLAB Norm
The norm of sin x on the interval [0, 2π] is computed as

‖ sin x‖ = 〈sin x, sin x〉1/2

=

[∫ 2π

0

[sin x]2 dx

]1/2

=

[
1

2

∫ 2π

0

[1 − cos(2x)] dx

]1/2

=

[
1

2

(
x − sin(2x)

2

)∣∣∣∣
2π

0

]1/2

=
√

π ≈ 1.7725.

MATLAB Integration. The accompanying MATLAB script shows the com-
putation of the norm of the sine both numerically and symbolically. The MAT-
LAB command quad is used to compute the integral of a function. The format
of the command is

>> quad(’function’,a,b)

where function is the name of a function file defining the function and a,b

defines the interval of integration. The second script shows the function to
return the values of sin2(x). The norm is then the square root of the result of
the integration performed by quad. MATLAB integration routines are treated
in more detail in Chapter 14.

The symbolic command int will attempt to integrate a function defined
symbolically. The limits [a, b] can be defined as symbolic or numeric expressions.
In the script, int is used to compute the symbolic indefinite and definite integral
of the sine. The command digits determines the accuracy of the symbolic
computations when they are converted to numerical values. Command sym
returns the symbolic square root of the symbolic value normsqn. Then, the
command double converts the symbolic representation of the square root of π
to a numerical value.

MATLAB Script
Example 2.18

% EX2_15.M Compute the norm of sin(x) on the interval [0,2pi]

% Compare symbolic and numerical result

% (This script requires the Symbolic Math Toolbox)

% Numerical value; call function sinsq to compute (sin(x))^2

normsin1=sqrt(quad(’sinsq’,0,2*pi));

digits(5) % Define numerical format

normsin1=sym(normsin1,’d’) % Numerical value

%

% Symbolic
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normsq=int(’sin(x)^(2)’); % Perform symbolic integration

normsq=simple(normsq) % Simplify the result

normsqn=int(’sin(x)^2’,0,2*pi) % Definite integral

norm2=sym(normsqn^(1/2)) % Symbolic square root

normsin=double(norm2) % Convert to a number

%

% Edited results from M-file EX2_15.M

%

>>ex2_15

normsin1 = 1.7725 % Numerical results

normsq = -1/4*sin(2*x)+1/2*x % Symbolic integration

normsqn = pi % Symbolic definite integral

norm2 = pi^(1/2) % Symbolic Square root

normsin = 1.7725 % Numerical value of symbolic result

%

The function sinsq returns the squared value of the sine of the argument
x passed to the function when it is called by the M-file.

MATLAB Script
Example 2.18

function yout=sinsq(x)

% CALL: yout=sinsq(x) returns the square of sine(x)

yout=sin(x).^2;

ORTHOGONAL
FUNCTIONS

Consider a set of functions φn(x), n = 1, 2, . . ., each of which is continu-
ous on the interval [a, b]. The set is orthogonal if the inner products of
different nonzero functions in the set are zero. Thus, the set of functions
is orthogonal if

〈φm(x), φn(x)〉 =
∫ b

a

[φm(x)φn(x)]dx = 0, m 6= n, (2.71)

and no φn(x) is identically zero except perhaps at a finite number of
points. Furthermore, the system is orthonormal if the functions satisfy
Equation 2.71 and

〈φn(x), φn(x)〉 =
∫ b

a

[ φ2
n(x) ]dx = 1, n = 1, 2, . . . . (2.72)

Suppose a function f(x) is continuous on the interval [a, b]. Then,
following an approach similar to that of expanding a vector in terms of
orthonormal basis vectors, we postulate that f(x) can be expressed as

f(x) =
∞∑

n=1

cnφn(x), (2.73)
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where the coefficient cm is determined as

cm =
∫ b

a

f(x)φm(x) dx. (2.74)

Of course, much is left to be said about the expansion of Equa-
tion 2.73. Questions about the accuracy of the approximation if a finite
number of terms is used and other considerations to guarantee that the
series actually represents f(x) will be explored in other chapters. Here we
will simply present a most famous set of orthogonal functions that have
enormous utility in mathematics and science.

Trigonometric Functions The set of functions

cosx, sin x, cos 2x, sin 2x, . . . , cosnx, sin nx

defined for −π ≤ x ≤ π span the vector space of trigonometric sums of
the form

T (x) =
n∑

k=1

[ak cos kx + bk sin kx]. (2.75)

The set of trigonometric basis functions can be shown to be orthonormal
with respect to the inner product,

〈f, g〉 =
1
π

∫ π

−π

[f(x) g(x)] dx. (2.76)

Example 2.19 discusses these functions further.
A coefficient such as ak is found by taking the inner product of each

side of Equation 2.75 with cos kx and similarly for bk using sin kx in the
inner product. Thus,

ak =
1
π

∫ π

−π

[ T (x) cos kx ] dx,

bk =
1
π

∫ π

−π

[ T (x) sin kx ] dx k = 1, 2, . . . . (2.77)

The numbers ak and bk are called the kth Fourier coefficients .

Fourier Techniques The applications of Fourier techniques are dis-
cussed in detail in Chapter 8 and Chapter 11. The reader who is familiar
with Fourier series to approximate functions should note that the trigono-
metric series in Equation 2.75 is not the complete series because it does
not include a constant term. The issue here is the orthogonality of the
trigonometric functions, not the approximation of arbitrary functions by
a Fourier trigonometric series as treated in Chapter 8.
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EXAMPLE 2.19 Orthogonal Functions
The functions sin x and cos x are orthogonal over the interval [−π, π], since

〈sin x, cos x〉 =

∫ π

−π

sin x cos xdx = 0 (2.78)

over this interval. This is easily seen if you recognize that the integrand is odd
over a full period of the sinusoids.5 Otherwise, make the substitution

1

2
sin 2x = sin x cos x

and integrate. For general integrals of this form, integrate by parts.
By integrating, we find that

〈cos nx, cos mx〉 =

∫ π

−π

cos nx cos mxdx =

{
0, n 6= m,
π, n = m.

(2.79)

These values for the inner product show that the cosine terms divided by
√

π
form an orthonormal set so that

〈
cos nx√

π
,
cos nx√

π

〉
, = 1.

The result for 〈sin nx, sin nx〉 is the same. Thus, the factor 1/π is used to
normalize the integral in Equation 2.76.

Polynomials can also be orthogonal over restricted intervals. For example,
over the interval −1 ≤ x ≤ 1, the set of polynomials

P0(x) = 1, P1(x) = x, and P2(x) =
3

2
x2 − 1

2

are orthogonal, as you are asked to show in Problem 2.17. These are known as

Legendre polynomials.

5Integrals of even and odd functions are discussed in Chapter 8.
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2.11 REINFORCEMENT EXERCISES AND EXPLORATION
PROBLEMS

REINFORCEMENT EXERCISES
In these problems, do the computations by hand unless otherwise indicated, and then check the
solution with MATLAB for problems that have numerical or symbolic results.

P2.1. Binary system Show that the binary system with elements (0,1) satisfies the
properties of real numbers if the operations are defined as

+ 0 1

0 0 1
1 1 0

× 0 1

0 0 0
1 0 1

P2.2. Associativity Using a simple example show that vector subtraction is not associative.
Vector subtraction is defined as

a − b = a + (−b).

P2.3. Sum of series Sum the series

N =

∞∑

i=0

di 2−i = d0 + d1 × 2−1 + d2 × 2−2 + · · ·

when each di = 1, and find the error when the series is truncated after m terms.

P2.4. Complex numbers For the complex number z = 3 − 4i, compute the following:
(a) z2 (b) zz̄ (c) z/z̄ (d) |z2|
P2.5. Polar form of complex number Write the complex number z =

√
3 + i in polar form

and find its magnitude and angle in the complex plane.

P2.6. Perpendicular vectors Determine the value α so that vectors

x = 2 i + α j + k and y = 4 i− 2 j − 2k

are perpendicular. Compute x · y to verify the result.

P2.7. Unit vector Prove that if x is any nonzero vector, u = x/
√

x · x is a unit vector.

P2.8. Angle between vectors Find the angles in the triangle with the vertices:

[2,−1, 0], [5,−4, 3], and [1,−3, 2].

P2.9. Cross product Show that the magnitude of the cross product a × b is the area of the
parallelogram determined by a and b.

P2.10. Basis vectors Given the following vectors, compute the sums and write them in terms
of the standard basis vectors, and compute the dot product:

a. x = [0, 1, 4,−3] , y = [2, 8, 6,−4];

b. x = [3,−5, 0, 8] , y = [6, 1,−7,−2].

P2.11. Vectors and subspaces Show which of the following subsets of R3 are subspaces and
which are not:
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a. The set of vectors in R3 with first component 1;

b. All vectors with x3 = 0;

c. The set of vectors with nonzero first component.

P2.12. Subspace Using the properties of vector spaces, prove the following:

a. The set of vectors in R2 that lie on a line passing through the origin (y = mx) form a
vector space.

b. The set of vectors in R2 that lie on a line not passing through the origin (y = mx + b,
b 6= 0) does not form a vector space.

Why should it be obvious that the set in (b) is not a subspace?

P2.13. Linear independent vectors Determine if the following vectors are linearly
independent:

a. [1, 2,−1, 2] , [−2,−5, 3, 0] , [1, 0, 1, 10];

b. [3, 0, 0, 2] , [1, 0, 0, 4].

P2.14. Independence of polynomials Are the following polynomials independent?

x2 − 1, x2 + x − 2, x2 + 3x + 2

P2.15. Complex vectors If we insist that the norm be a positive number, show that the
ordinary definition of dot product for real vectors does not hold in the vector space containing
complex numbers of the form z = x + iy, where x and y are real numbers and i is imaginary. What
is the proper definition?

P2.16. Inner product Compute the inner product of the following functions on the interval
[−π, π] with n and m distinct positive integers:

a. 〈sin mx, sin nx〉;
b. 〈cos mx, cos nx〉;
c. 〈cos mx, sin nx〉;
d. 〈cos nx, cos nx〉;
e. 〈sin nx, cos nx〉.

Which functions are orthogonal?

P2.17. Orthogonal Legendre functions Show that the Legendre polynomials in
Example 2.19 are orthogonal over the interval in R1 such that −1 ≤ x ≤ 1.

P2.18. MATLAB roundoff error Add the MATLAB value 10−6 in a loop N times, and
compare the result with the value N × 10−6. If there is a difference, explain it. Try values such as
N = 100 and N = 1000.

P2.19. MATLAB conversion Write a MATLAB function to convert an N -digit octal (base 8)
number to decimal. Test the function by converting 0.5028 .

P2.20. MATLAB vector operations For the vectors

x = [0,−1, 2, 3] and y = [5, 1, 2,−3] ,

compute the following:

a. x + y;
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b. 3 x;

c. x · y;

d. || x || and || y||.

P2.21. MATLAB cross product Write a MATLAB function to compute the cross product of
two 3D vectors. Test the function with the vectors in Example 2.8. Compare your version with the
MATLAB command cross.

P2.22. MATLAB orthogonal vectors Are the vectors

x = [
√

2/2,−1] and y = [1, sin(45◦)]

orthogonal? Do the problem analytically and using MATLAB.

P2.23. MATLAB vector norm Write a MATLAB function to compute the norm and the
corresponding unit vector for a vector in Rn. Test the result with the vector x = [2, 3, 6].

EXPLORATION PROBLEMS

P2.24. MATLAB roundoff Write a MATLAB program using the command floor to input a
real number r and an integer k and display r rounded to k decimal places. Test the program with
numbers such as π.

Hint: Investigate the MATLAB round and chop commands.

P2.25. DeMoivre’s theorem Given the complex numbers

z1 = r1(cos θ + i sin θ),

z2 = r2(cos φ + i sin φ)

and the result that
z1z2 = r1r2 [cos(θ + φ) + i sin(θ + φ)],

prove DeMoivre’s theorem,
zn = rn (cos nθ + i sin nθ),

if z = r(cos θ + i sin θ) and n is an integer.

Hint: Don’t forget the cases n ≤ 0.

P2.26. Complex functions Using the results of the previous problem, show that

cos 3θ = 4 cos3 θ − 3 cos θ.

P2.27. Complex plane For the equation
∣∣∣ z

z − 1

∣∣∣ = 2,

what is the locus of points in the complex (xy) plane?

P2.28. MATLAB complex numbers Find the following:
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a. the solution of z3 + 1 = 0 (or the three cube roots of −1);

b. (3 + 4i)1/3.

Then, compute the results using MATLAB.

P2.29. Dot product Prove the following theorem concerning the dot product.
If θ is the angle between two vectors x and y in R3, then

cos θ =
x · y

||x|| ||y|| .

Hint: Apply the law of cosines to the triangle with sides x, y, and x − y.

P2.30. Area of a parallelogram Consider the parallelogram defined by two vectors a and b at
an angle θ, as shown in Figure 2.7.

θ

b

a
h

FIGURE 2.7 Parallelogram

Show that the area of the parallelogram is defined by

A = ||a|| ||b|| sin θ,

which is the cross product of the two vectors. Test the result with the vectors a = [3, 1, 4] and
b = [−2, 5, 3].

Hint: The area is 17
√

3.

P2.31. Distance in polar coordinates Determine the distance between the points P1(r1, θ1)
and P2(r2, θ2) in the polar plane.

Hint: Write the points in rectangular coordinates and determine the distance.

Test the results with the points P1(1, 0) and P2(
√

2, π/4) with the angle measured in radians.
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P2.32. Polynomials Consider the polynomial of degree n

P (x) = a0 + a1 x + a2 x2 + · · · + an xn.

Define the polynomial as the inner product of two vectors. Then, compare the results with the
value computed by the MATLAB command polyval for the polynomial by testing both results
with the polynomial

P (x) = x5 + 5x3 + 3x2 + 4x + 2

evaluated at the points 1, 2, 3 and −1.

P2.33. Projections Given two vectors x and y in Rn, write the vector x as the sum of a vector
x|| parallel to y and a vector x⊥ perpendicular to y. Verify the results.

Hint: Draw two typical vectors in R2 to define the equations.

Test the expressions for x|| and x⊥ for the vectors

x = [4,−5, 3] and y = [2, 1,−2].

P2.34. Orthogonal vectors Consider a linear combination of the vectors

u1 = (1, 1, 1, 1)

u2 = (−1,−1, 1, 1)

u3 = (−1, 1,−1, 1)

u4 = (−1, 1, 1,−1)

to represent the vector v = (2, 3,−1, 4). Show the vectors are linearly independent and find the
expansion.

P2.35. MATLAB Gram-Schmidt process Write a MATLAB program to implement the
Gram-Schmidt procedure. Test the program with the vectors from Example 2.16.

P2.36. Orthonormal set of vectors Use the Gram-Schmidt process to produce an
orthonormal set from the complex vectors

x1 =

[
1
i

]
and x2 =

[
1 − i

i

]
.

P2.37. Test your computer Determine how fast your computer multiplies and what range of
numbers is permitted by doing the following:

a. Create a program to estimate the number of floating-point multiplications per second
(flops) for your computer.

b. Find the largest and smallest MATLAB numbers allowed by your computer.

P2.38. Summing-up questions

a. Give an example of a set of orthogonal vectors that are not linearly independent.

b. Give an example of a set of linearly independent vectors that are not mutually
orthogonal.

c. Suppose that x1, x2, x3, and x4 are four vectors in R3. Can these vectors be linearly
independent? Can these vectors be a basis for R3?

d. Find all the vectors orthogonal to the vectors

[1, 1, 1] and [1,−1, 0].
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2.13 ANSWERS

2.1 Binary system In the binary system, letting x, y, and z be 0 or 1, the associative,
commutative, and distributive laws are satisfied for both addition and multiplication. Identity
elements obviously exist since x + 0 = x and 1 × x = x. The equation 1 + 1 = 0 shows that the
system has an additive inverse.

2.3 Sum of series The series

S =

∞∑

i=0

di 2−i (2.80)

is a geometric series in the form S =
∑∞

k=1
a rk−1, with a = 1 and r = 1/2. To sum the series,

form the sum SN = a + ar + ar2 + · · · + arN−1 and the difference SN − rSN = a − arN , and solve

for SN . The sum of the geometric series for N terms is thus SN = a(1−rN )
1−r

. For the specific case of
Equation 2.80,

SN =
1 −

(
1
2

)N

1 − 1
2

,

which converges to 2 as N goes to infinity. The error for m terms is thus S − Sm = 2−m+1.
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2.5 Polar form of complex number The complex number z =
√

3 + i has the magnitude
and angle

r =
√

3 + 1 = 2

θ = tan−1(1/
√

3) =
π

6
+ 2nπ.

2.7 Unit vector Assuming that x is a nonzero vector,

u = x/
√

x · x =
x

(||x||2)1/2
.

Thus, forming u · u, the result is

x

||x|| · x

||x|| =
1

||x||2 (x · x) = 1

so that u is a unit vector.

2.9 Cross product Consider the parallelogram with sides a and b that meet at an angle of
θ degrees, as shown in Figure 2.8.

θ

b

a
h

FIGURE 2.8 Parallelogram formed by vectors a and b

The area of the parallelogram is the base time the height, or h||b||. From the figure, the area is
h||b|| = ||a|| sin θ||b|| = ||a × b||.
2.11 Vectors and subspaces

a. Considering the sum of two vectors in the space

[1, x2, x3] + [1, y2, y3] = [2, x2 + y2, x3 + y3],

it is clear that the sum of the vectors is not in the vector space since the sum has first
component 2. Thus, the vectors in R3 with first component 1 do not form a subspace.

b. All vectors with x3 = 0 form a subspace.

c. The set of vectors with nonzero first component form a subspace.

2.13 Linear independent vectors

a. Since the vectors have the relationship −5x1 − 2x2 +x3 = 0, the vectors are dependent.

b. The equations α[3, 0, 0, 2] + β[1, 0, 0, 4] = [0, 0, 0, 0] have the only solution α = β = 0,
so the vectors are independent.

2.15 Complex vectors Consider two complex vectors with components

z1 = x1 + iy1, z2 = x2 + iy2.

The ordinary dot product produces z1·z2 = x1x2 + (iy1)(iy2) = x1x2 − y1y2, which could be a
negative value. Forming the dot product with the conjugate vector yields the correct value

z1·z̄2 = x1x2 + (iy1)(−iy2) = x1x2 + (y1)(y2).
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2.17 Orthogonal Legendre functions Integrating P0P1 yields

〈P0, P1〉 =

∫ 1

−1

x dx = 0.

Similarly, 〈P0, P2〉 = 〈P1, P2〉 = 0 on the interval [−1, 1].

2.18 MATLAB roundoff error This problem is discussed in the December 1993 issue of the
MathWorks MATLAB Digest , Volume 1, number 5. Since 10−6 is not exactly representable in the
binary floating-point format, there is a possibility of round-off error at each step of a calculation.
The difference between the product N × 10−6 and N sums of 10−6 ranges from about −1.7 × 10−19

for N = 100 to 7.935 × 10−14 for N = 100, 000.
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