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Good Links 
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Good MATLAB Information and Help 
 
 
http://sceweb.sce.uhcl.edu/harman/        MY WEB SITE 
 
http://www.mathworks.com/access/ 
helpdesk/help/techdoc/matlab.shtml 

Kamen and Heck Website 
 
http://users.ece.gatech.edu/bonnie/book3/ 

http://sceweb.sce.uhcl.edu/harman/
http://sceweb.sce.uhcl.edu/harman/
http://www.mathworks.com/
http://www.mathworks.com/
http://www.mathworks.com/
http://www.mathworks.com/
http://www.mathworks.com/
http://www.mathworks.com/
http://users.ece.gatech.edu/bonnie/book3
http://users.ece.gatech.edu/bonnie/book3
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1.1 Continuous Time Signals 

• x(t) –a signal that is real-valued or scalar-
valued function of the time variable t. 

• When t takes on the values from the set of 
real numbers, t  is said to be a continuous-
time variable and the signal x(t) is said to be a 
continuous-time signal or an analog signal. 
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Examples of Continuous Signals 

• Figure 1.1 Speech Signal P2 
• Figure 1.2 Unit step and Unit ramp P2-3 
• Figure 1.3 Pulse Interpretation P3-4 
• Figure 1.4 Unit Impulse δ(t) 

 
• The step, ramp, pulse and unit impulse are the 

most important signals for testing a system. 
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• Example 1.1  Sum of Periodic Signals is 
periodic if “the two non-zero periods T1=a and T2=b are commensurate”  

 (if a/b is a rational number.) 
• Figure  1.5 Periodic Signal P5 
• A sin(𝜔𝜔𝑡𝑡 + 𝜑𝜑) 𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑡 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  

• 𝜔𝜔= 2 𝜋𝜋 𝑓𝑓 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

       𝑓𝑓 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

  𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻  

• The period T=1/f seconds or T= 2 𝜋𝜋 /𝜔𝜔 seconds 
 

http://en.wikipedia.org/wiki/Zero
http://en.wikipedia.org/wiki/Rational_number


% K&H Chapter 1 
% Periodic Ex 1.1 
t=0:0.1:24; 
y=cos(pi*t/2)+cos(pi*t/3);  
% T1=4s, T2=6s; LCM=12; GCD(1/4,1/6)=1/12 Hz 
% 
figure(1) 
subplot(2,1,1), plot(t,y)   
grid 
title('Sum of Sinusoids Period=12s') 
y1=sin(t)+sin(pi*t); 
subplot(2,1,2),plot(t,y1) 
grid 
title('Sum of Sinusoids Periods not Commenusurate') 
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More Continuous Time Signals 

• Figure 1.6 Time-Shifted Signals P6 
• (A transmitted signal is time shifted at the receiver- and probably 

attenuated!) 

• Figure 1.7 Triangular Pulse Function 
• Figure 1.8 Rectangular Pulse Function P8 
• Figure 1.9 Pulse train – approximate a 

computer clock signal 
• These are all test signals for systems or 

approximations to useful signals! 
 9 



1.1.6 Derivative of a Continuous-Time 
Signal 

• A continuous time signal is said to be 
differentiable at a fixed point t1 if as t0 the 
limit from above is the same as the limit from 
below. P9-10 

• 𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

 = lim
ℎ→0

𝑥𝑥 𝑡𝑡+ℎ −𝑥𝑥(𝑡𝑡)
ℎ

 

• Piecewise-continuous signals may have a 
derivative in the generalized sense. 𝛿𝛿(𝑡𝑡) 
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% PLOT  K&H Figure 1.10 decaying sinusoid    

% 

t = 0:0.1:30;                   % Plot from 0 to 30 seconds 

x = exp(-0.1*t).*sin((2/3)*t); 

% 

figure(1)        % Figure number if multiple figures 

plot(t,x) 

axis([0 30 -1 1 ])              % Set appropriate axis limits 

grid 

title('K&H Figure 1.10') 

xlabel('Time (sec)') 

ylabel('x(t)') 
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% Use MATLAB to plot using STEM Figure 1.11 K&H 
n = -2:6;        %Index -2, -1, 0, ... 6 (9 values) 
% x[0] =1, x[1]=2,x[2]=1, x[3]=0, x[4]= -1; others are zero  
% 
x= [0 0 1 2 1 0 -1 0 0] ; 
figure(1) 
stem (n,x,'filled');    % Plot Discrete with filled circles 
title('Figure 1.11 K&H') 
xlabel ('n') 
ylabel ('x[n]') 
 
The result using STEM is Figure 1.12 Page 13. 
 
This could represent a digital signal since the amplitude 
and index values are quantized. 
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>>help stem    % Use the help often! 
stem   Discrete sequence or "stem" plot. 
    stem(Y) plots the data sequence Y as stems from the x axis 
    terminated with circles for the data value. If Y is a matrix then 
    each column is plotted as a separate series. 
  
    stem(X,Y) plots the data sequence Y at the values specified 
    in X. 
  
    stem(...,'filled') produces a stem plot with filled markers. 
  
    stem(...,'LINESPEC') uses the linetype specified for the stems and 
    markers.  See PLOT for possibilities. 
  
    See also plot, bar, stairs. 
 
    Reference page in Help browser  Use this for more information! 
       doc stem   (Active Link from help stem screen) 
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More Discrete Time Signals 

• Sampling 
– x[n] = x(t)| t= nT = x(nT) 
– Example—a switch is closed every T seconds 
– Using “T seconds” brings in the “real world”. 

• Unit pulse– δ(0)—Figure 1.17 
• Periodic Discrete Time Signals—Figure 1.18a,b 
• F1.18a repeats every 6 cycles 
• Discrete Time Rectangular Pulse Figure 1.19 
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More Discrete Time Signals (2) 

• Digital Signals 
– Let {a1,a2,…,aN} be a set of N real numbers. 
– A digital signal x[n] is a discrete-time signal whose 

values belong to the finite set above. 
– A sampled continuous time signal (ideal case) is 

not necessarily a “digital signal”. Digital is 
quantized in time AND amplitude – i.e a computer 
value. 

– A binary signal is restricted to values of 0 and 1. 
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% K&H Figure 1.14   Compare this to Figure 1.10 
%  
n=0:30; 
x = exp(-.1*n).*sin(2/3*n); 
stem(n,x,'filled') 
axis([0 30 -1 1]); 
ylabel('x[n]') 
xlabel('n') 
title('Figure 1.14-Compare Figure 1.10') 
gtext('Sampled Signal x(t)=exp(-0.1*t)*Sin(2/3*t)') 
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Downloading Discrete-Time Data from 
the Web P18 

• Discrete-time data =  a time series 
• Time series data on websites can often be 

loaded into spreadsheets. 
• If the spreadsheet data can be saved in csv 

(comma-separated value) formatted files, 
MATLAB will be able to read the file. 
 

• OPTIONAL FOR US 
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Price Data for QQQ 

• QQQ data is the historical data for an index fund, 
whose value tracks the stock price of 100 companies. 

• Go to http://finance.yahoo.com 
• Near the top of the page enter QQQQ and click “GO”. 
• In the left hand column click on “historical prices”. 
• Click on “Download to Spreadsheet”. 
• Example 1.2. 
• (NOTE:  Some things have changed a little since the 

book was printed but this still works.) 
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http://finance.yahoo.com/


1.3  Systems 

• A system is a collection of one or more 
devices, processes, or computer-implemented 
algorithms that operates on an input signal x 
to produce an output signal y. 

• When the inputs and outputs are continuous-
time signals, the system is said to be a 
continuous-time system or an analog system. 

• When inputs are discrete-time signals, the 
system is said to be a discrete-time system. 
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READ PAGES 21 -24 CAREFULLY! 
 
SYSTEM EXAMPLES-MECHANICAL, ELECTRICAL,  
BIOLOGICAL 
 
SIGNAL ANALYSIS–In the time domain or frequency domain 
   rise time, amplitude, power, etc. in Time.  
   Frequency spectrum in frequency.  (Fourier) 
 
MATHEMATICAL MODELS of SYSTEMS  – IDEAL 
  differential equations or difference equations (Time) 
  Transfer function representations (Fourier, Laplace, z) 
 
 INPUT/OUTPUT  -   Time or Frequency 
 STATE-SPACE    -    Input, state, and output 
 
 



1.4 Examples of Systems 

• RC Circuit   P24 
  This is a model for input stages of many analog electronic systems. 

  The RC acts as a low-pass filter and attenuates high frequencies in 
       the input signal. 

• Mass-Spring-Damper System P26 
 Why is the world a 2nd Order system (almost)? 

• Moving Average Filter (Discrete) P 27 
– This is also a low-pass filter that acts to “smooth” the data.  
– See Example 1.4 

 
25 



1.5 Basic System Properties 
• Systems are classified as follows 

– Analog or Discrete (Digital) 
– Linear or Nonlinear 
– Time Invariant (shift invariant) or not 
– All analog physical systems are causal (as far as we 

know!) 

• Signals can be Analog or discrete (digital) and 
– continuous or discontinuous 
– Periodic or not 
– Even or Odd 

 26 



Linearity 

– A system is additive if for x1(t) and x2(t) (inputs), the 
response to the sum of the inputs is the sum of the 
individual outputs. 

– A system is homogeneous if the output for input ax(t) , 
where a is a scalar, is ay(t). 

– A system is linear if it is additive and homogenous. 
– That is, if x1(t) y1 (t), and x2(t)  y2(t), and a1 and a2 are 

scalars, then a system is linear if the input  
   x(t) = a1x1 (t) +a2x2 (t)  
produces the output  
   y(t)= a1y1 (t) + a2y2 (t). 
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Linear Systems Theory 
Professor David Heeger 
Characterizing the complete input-output 
properties of a system by exhaustive 
measurement is usually impossible. When a 
system qualifies as a linear system, it is 
possible to use the responses to a small set of 
inputs to predict the response to any possible 
input. This can save the scientist enormous 
amounts of work, and makes it possible to 
characterize the system completely.  
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•The challenge of characterizing a complex systems  
•Simple linear systems  
 

• Homogeneity - Double Input- Double Output 
 

• Additivity  - Sum of Outputs for Sum of Inputs 
 

• Superposition -  THE BIG ONE 
•         homogeneity and additivity = LINEAR 
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Heeger 

Think of 
 F=-kx 
 Spring 
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•Shift-invariance  
• Decomposing a signal into a set of 

shifted and scaled impulses  
• The impulse response function  
• Use of sinusoids in analyzing shift-

invariant linear systems  
• Decomposing stimuli into sinusoids via 

Fourier Series  
• Characterizing a shift-invariant system 

using sinusoids  
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 LINEAR 
 

 Systems described by Linear differential or difference equations 
 

 Passive Circuits  R, L, C and linear amplifiers and filters 
 

 Differentiation and integration or difference or running sum 
 

 Small perturbations in an otherwise nonlinear system 
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• NON LINEAR 
 

 NO STATIC LINEARITY  I.E,  NOT  Y=M X  such as P=𝑣𝑣2 R 
 

 NO SINUSOIDAL FIDELITY – PEAK DETECTION, SQUARING,  
 CLIPPING, FREQUENCY DOUBLING 
 
 Systems with hysteresis, saturation, or a threshold 

 
 DIODES FOR EXAMPLE 
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Shockley diode equation 

I is the diode current, 
IS is the reverse bias saturation current, 
VD is the voltage across the diode, 
VT is the thermal voltage-, and 
n is the ideality factor. 

 
Is and nVT  are constants. 

Let’s Linearize the Diode equation using Taylor’s series near          . 𝑉𝑉𝐷𝐷=0 

http://en.wikipedia.org/wiki/Saturation_current
http://en.wikipedia.org/wiki/Saturation_current
http://en.wikipedia.org/wiki/Thermal_voltage
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MacLaurin series:  
 

For small x -  close to the origin assume 𝑥𝑥2  ≪ 𝑥𝑥 𝑠𝑠𝑠𝑠 

𝑒𝑒𝑥𝑥 ~ 1 + 𝑥𝑥    𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑥𝑥 ℎ𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖   
𝑉𝑉𝐷𝐷
𝑛𝑛𝑛𝑛𝑇𝑇

 

The result is   

𝐼𝐼 ~ 𝐼𝐼𝑠𝑠    
𝑉𝑉𝐷𝐷
𝑛𝑛𝑛𝑛𝑇𝑇

 Linear in 𝑉𝑉𝐷𝐷 



Other System Properties 

• Time Invariance 
– A system is time invariant or constant if the 

response for the input x(t-t1) is y(t-t1). 
 

• Causality 
– A system is said to be causal or nonanticipatory if 

the output response to input x(t) for t=t1 does not 
depend on values of x(t) for t>t1  

 (ie, future inputs). 
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Important problems – whether I assign them or not ! 

1.2    Spacing when plotting or sampling 
 
1.18  Linearity – Integral, derivative 
 
1.21  Dead zone – Nonlinear 
 
1.23  Save some work –Impulse response is the derivative  
            of the step response 
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