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2.1 Input/Output Representation 
of Discrete-Time Systems 

• N-Point Moving Average 
y[n] = (1/N) {x[n] + x[n-1] + …+x[n-N +1] }     (2.1) 

• Generalization (linear, time-invariant, causal)     
1
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This is a weighted Moving average Filter – page 45 K&H 



2.1.1 Exponentially Weighted 
Moving Average 

• Let a = (1-b)/(1-bn) 
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SPECIAL CASE   𝑎𝑎 = 1
𝑁𝑁

,   𝑏𝑏 = 1  Moving Average   
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The moving average smooths and delays the data P47 K&H 



2.1.2 General Class of Systems 

• Upper index (N-1) can be replaced by n. 
• Unit impulse response of the system can be 

obtained by letting x[n] = δ[n]. P48 K&H 
 
 

• ℎ 𝑛𝑛 =  𝑤𝑤𝑛𝑛,𝑛𝑛 ≥ 0   Unit Impulse response 
Is equal to the weights  (FIR FILTER) 

UNIT PULSE (p 15)   δ = 1  𝑖𝑖𝑖𝑖 𝑛𝑛 = 𝑖𝑖   
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Convolution Equation 

• The input/output representation can be 
rewritten with the weighting function 
replaced with the input response function 
values, h[i].  The result is called  convolution. 
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THIS IS THE BIG RESULT !  FROM IMPULSE RESPONSE  
WE FIND THE GENERAL RESPONSE!  PAGE 49 
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WE DEAL WITH SUMS FOR THE DISCRETE CASES. 

From Harman et. al   
Advanced Engineering Mathematics With MATLAB 
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MATLAB 

• The matlab function conv can be used to 
compute discrete convolution. 

• Examples on page 52 and 53 illustrate the 
results. 

• NEXT SLIDE IS EXAMPLE 2.4 PAGE 52 
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% Convolution example 2.4 K&H P52 
x=[ 1 2 3 4 5]  % Lx=5 Start n=-1, End n=3 
v=[-1 5 3 -2 1] % Lv=5 Start n=-2, End n=2 
% Expect Lconv= Lx+Lv-1=9,  
     Start n=-1-2=-3, End n= 2+3=5 
 
 
y=conv(x,v)  
%y =-1   3   10    15    21   33   10  -6    5 
%n = -3  -2  -1     0    1     2    3   4    5  



Difference Equation Models 

• In some applications, a causal linear time-
invariant discrete-time system is given by an 
input/output difference equation instead of 
an input/output convolution model. 

• First order linear difference equation for loan 
payment  K&H p56 

           y[n] –ay[n-1] = -x[n]  
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See K&H P56-57 and MATLAB Figure 2.7 Page 57 



2.3.1 Nth-Order Input/Output 
Difference Equations 

• Nth Order Equation  (2.25 P57) 
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HERE THERE ARE N COEFFICIENTS FOR THE EQUATION 
 
AND M+1  COEFFICIENTS FOR THE INPUT FUNCTION  
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RECURSIVE DIGITAL FILTER 
 

NEXT VALUE IS COMBINATION OF THE PAST N VALUES 
 

THUS, OUTPUT NOW DEPENDS ON PAST OUTPUTS 
 

THE EQUATION REQUIRES N INITIAL VALUES 
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% EX10_1.M MATLAB solution of the  
%   compound interest equation 
%    y(nT)=y(nT-T) + (p/100)*y(nT-T) 
%     for p = 6 percent and initial deposit y0 = $ 1000 
%   y(n) represents the balance after the nth year  
clear 
format bank    % Show results as currency 
a=1.06;        % Calculation for 5 years at 6% interest 
y0 = 1000      % Initial deposit  
for n=1:5 
 y(n) = a^(n)*y0 
end  
  
% y = 1060.00   1123.60  1191.02  1262.48  1338.23 
% year  1         2        3        4        5 



Examples 

• Example 2.6   Second Order System p60 
– System can be solved recursively. 

 
– Look at this example carefully and trace the steps 

in the MATLAB program.  
– Remember the MATLAB index y(1), y(2), … 
        and the math index   y[-m], y[-m+1] ….. 
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Ex. 2.6 Pg60 He solves the 2nd order difference equation 
y[n]-1.5y[n-1]+y[n-2]=2u[n-2], y(-2)=2, y(-1)=1 using 
Routine recur.     N=length a= 2, M=length b -1 =3 -1=2 
 

function y = recur(a,b,n,x,x0,y0); 
N = length(a);     % Number of Coefficients in y 
M = length(b)-1;   % Number of Coefficients -1 in x  
if length(y0) ~= N, 
  error('Lengths of a and y0 must match') 
end 
if length(x0) ~= M, 
  error('Length of x0 must match length of b-1') 
end 
y = [y0 zeros(1,length(n))];  % Initial Values 
x = [x0 x] 
a1 = a(length(a):-1:1)     % reverses the elements in a 
b1 = b(length(b):-1:1)        
for i=N+1:N+length(n),     
  y(i) = -a1*y(i-N:i-1)' + b1*x(i-N:i-N+M)'; % Transpose 
end 
y = y(N+1:N+length(n)) 
  

% Output y0, y1,   yn  (MATH)   but 
  %   y(N+1) y(N+2) MATLAB, so y(-2) = y(1)mat 
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% Figure 2.9  Page 62 
a = [-1.5 1]; b = [0 0 2]; %[a1 a2]; [b0 b1 b2] 
y0 = [2 1]; x0 = [0 0];    % Initial values 
n = 0:20;                  % 21 points  
x = ones(1,length(n));     % Unit step Input 
y = recur(a,b,n,x,x0,y0); 
stem(n,y,'filled')         % Plot it 
xlabel('n') 
ylabel('y[n]') 

Note Index in loop starts at N=3 for MATLAB 

Figure 2.9 Pg62  y[n]-1.5y[n-1]+y[n-2]=2u[n-2] 
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Figure 2.9 Pg62  y[n]-1.5y[n-1]+y[n-2]=2u[n-2] 

Note the two necessary Initial conditions  y(-2) and y(-1) 



2.4 Differential Equation Models 

• Example 2.8 Series RC Circuit  P65 
•  We will do this in detail in later slides  

 
• Other Models: 
• Example 2.9 Mass-Spring-Damper System P67 
• Example 2.10 Motor with Load P69 
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K&H Example 2.11 P72 and Example 2.14 states  
 these results.  



2.5 Solution Of Differential Equations 

• Example 2.11 Series RC Circuit 

 
 
 

• See My slides   “First Order Differential Equations” and 
examples from 

  K&H pg 72 (Solution of RC) and pg77 superposition for 
 convolution solution 

K&H solve it by recursion, Euler method, and ODE 
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Example 2.11,2.12 Using Recursion, Euler and MATLAB ODE Solver 

Let’s cover K&H pages 70 to 75 using the RC circuit 
 
The key to recursion solution is to keep the time between samples T small. 
What does small mean ? Small compared to the time constant of the system- 
  which is a measure of how fast the system responds to a step input. 
 

Let Ƭ=RC be the time constant of the system, so the step response is 
 
   𝑦𝑦 𝑡𝑡 =   1 − 𝑒𝑒−𝑡𝑡/𝜏𝜏  and let a=1/𝜏𝜏   in Equation 2.61 (Euler) or in the  
 
   Taylor Series solution Equation 2.66.  
 
For all of these to be useful, the sampling time T is selected so that 
 
  T << 1/a = 𝝉𝝉   𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔. 
 
ODE is a sophisticated routine that chooses T by the Runge-Kutta algorithm. 
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Example 2.13 MATLAB Symbolic MATH Solver   dsolve 
% Example 2.13 K&H Page75 
% Symbolically solve the RC circuit 
% He uses R=C=1 (silly)  Let RC=0.5 ms 
=tau 
tau=0.5*10^(-3) 
y=dsolve('Dy=(1/tau)*(1-y)', 'y(0)=0') 
% 
% y =1 - exp(-t/tau) 
 
Do >>help dsolve for more information 
See also K&H Example of 2nd order solution – Pg 75 
 
 



2.6  Convolution Representation of 
Continuous-Time Systems 

• Example 2.14 RC Circuit Page 77 
•   See Following Slides 

 
• 2.6.1 Graphical Approach to Convolution 

32 



33 



34 



35 

% Convolution h(t)= 1/RC)exp(-t/RC) and X(t)=p(t)0 <=t<=1.sec 
% Let RC = 1s and assume h(t)=0 after 5s. K&H P77 
% Note scaling of the convolution to approximate the integral 
n=(0:499); 
ts=0.01                     % Sample every 0.01 ms 
h=1*exp(-1*n*ts);           % Impulse response 
time=(0:499)*ts;   
figure(1), plot(time,h)     % Plot impulse response 
title('Impulse response 1*exp(-t)') 
xlabel('Time in Seconds'),ylabel('h(t)') 
%  Pulse One second long  100 x ts  
x=zeros(size(n)); 
x(1:100)=ones(1,100);  % Create the step function 
figure(2),plot(time,x) 
title('1s pulse input') 
xlabel('Time in Seconds'),ylabel('x(t)') 
y=conv(x,h)*ts;  % Scale by ts to approximate continuous case 
% Length is Lx+Lh -1 
figure(3),plot(time,y(1:500)) 
title('Convolution of exp(-t) with 1s pulse') 
xlabel('Time in Seconds'),ylabel('x(t)*h(t)*ts-Scaled'),grid 
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Figure 2.18 

The time constant of the circuit is 1 second. The circuit responds 98% 
 in about  5 τ. 
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