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2.1 Input/Output Representation
of Discrete-Time Systems

* N-Point Moving Average
v[n] = (1/N) {x[n] + x[n-1] + ...+x[n-N +1] } (2.1)
 Generalization (linear, time-invariant, causal)

y[nl= > wix[n —i]

This is a weighted Moving average Filter — page 45 K&H



2.1.1 Exponentially Weighted
Moving Average
e Leta=(1-b)/(1-b")

yIn]= Y a(b'xin-i)

1

SPECIAL CASE a = ~ b =1 Moving Average



The moving average smooths and delays the data P47 K&H
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2.1.2 General Class of Systems

e Upper index (N-1) can be replaced by n.

e Unit impulse response of the system can be
obtained by letting x[n] = o[n]. P48 K&H

hin] = anwié[n —1],n=0

e h|n] = Wy, = 0 Unit Impulse response
Is equal to the weights (FIR FILTER)

UNITPULSE (p15) 6 =1 ifn=1i



Convolution Equation

e The input/output representation can be
rewritten with the weighting function

replaced with the input response function
values, h[i]. The result is called convolution.

y[n] = h[n]* x[n] = Zn:h[i]x[n —i]l,n=>0

THIS IS THE BIG RESULT ! FROM IMPULSE RESPONSE
WE FIND THE GENERAL RESPONSE! PAGE 49



WE DEAL WITH SUMS FOR THE DISCRETE CASES.

Geometric Series A geometric series is a series with each term after
the first being a fixed multiple of the preceding term. The multiplier is a
real number r, called the ratio, so that a,,; = ra,. If the sum i1s taken
from n = 0, the geometric series is represented as

™

Z ar" =a+ar+--- (a#0). (6.9)

n O

From Harman et. al
Advanced Engineering Mathematics With MATLAB



We will show that the series converges to the sum

3 arn == (6.10)
n=>0

1—r

if —1 < r < 1 but diverges if |r| > 1. Furthermore, if the infinite series
with nth partial sum S,, converges and has sum S, then for every number
€ > 0, there exists a number N such that

S —Sal <e

for every n > N. Thus, we can approximate the sum as closely as desired
by taking more terms in the series if necessary.

The nth partial sum for the geometric series is found by subtracting
the terms

8, =8, = a+ar+---+ar"—(ar+ar2+---+ar"+l)
= a__a,rn-l-l‘
so that S, — rS,, = a(l — r™*'). Thus, solving for S,, leads to the result

n+1
S, — a(l — r»+1)
1—r
for the sum of the first n + 1 terms. Taking the limit as n goes to infinity
with |r| < 1 shows that the sum of the series is a/(1 — r), as shown in
Equation 6.10.
Consider the fraction 1/3 represented as the series

1 3 3 3
3 * 000 T

3710 © 100

Substituting a = 3/10 and r = 1/10 in Equation 6.9 leads to the result
i 3 (1)"_ 3 1 1
Car 10 \ 10 101 -1/10 3

Considering the partial sums of this series, we are confident that taking
more terms in a truncated series leads to a better approximation for 1/3.



MATLAB

 The matlab function conv can be used to
compute discrete convolution.

e Examples on page 52 and 53 illustrate the
results.

* NEXT SLIDE IS EXAMPLE 2.4 PAGE 52
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% Convolution example 2.4 K&H P52
x=[ 1 23 45] % Lx=5 Start n=-1, End n=3
v=[-1 53 -2 1] % Lv=5 Start n=-2, End n=2
% Expect Lconv= Lx+Lv-1=9,

Start n=-1-2=-3, End n= 2+3=5

y=conv(X,V)
%y =-1 3 10 15 21 33 10 -6
%n = -3 -2 -1 0 1 2 3 4

11
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Difference Equation Models

* |[n some applications, a causal linear time-
invariant discrete-time system is given by an
input/output difference equation instead of
an input/output convolution model.

e First order linear difference equation for loan
payment K&H p56

y[n] —ay[n-1] = -x[n]

See K&H P56-57 and MATLAB Figure 2.7 Page 57



2.3.1 Nth-Order Input/Output
Difference Equations
 Nth Order Equation (2.25 P57)

y[n]+ Zaiy[n —i]= Zbix[n —i]

HERE THERE ARE N COEFFICIENTS FOR THE EQUATION

AND M+1 COEFFICIENTS FOR THE INPUT FUNCTION



y[n]+ Zaiy[n —i]= Zbix[n — 1]

UJRECURSIVE DIGITAL FILTER
ONEXT VALUE IS COMBINATION OF THE PAST N VALUES

dTHUS, OUTPUT NOW DEPENDS ON PAST OUTPUTS

JTHE EQUATION REQUIRES N INITIAL VALUES



Compound Interest Problem

Suppose money 15 deposited in a savings aceount that pays interest at the
rate p percent, paid at regular intervals of time. For example, let $1000.00 he
deposited with the interest rate 6% a year and the interest compounded every
vear. The value when the first interest payment is made after a vear will be
$1000 + 0.06 = $1000 =$1060.

In & more general case, consider the compound interest equation

e —(14+ L yinT-
y(nT) =y(nT-T) o y(nT-T)+2(nT)= (l + ll}I]) y(nT-T)+z(nT), (1)
where y(nT'} represents the amount of money in an aceount at time ¢ = nT,
ylnT —T) is the money in the account at the time of the previous computation,
p is the percent interest paid in the interval of time T', and 2(nT) is the amount

of money deposited or withdrawn at £ = nT.

15



Designating the discrete values as y(n), we define
g{n) =y(nT), n=0,12...

to form a sequence of discrete values of the bank balance. If there are no extra
deposits or withdrawals, x(nT") = 0 and Equation 1 can be written as

y(n) = ay(n — 1), (2)

where a = (1 + p/100).

As an numerical example, assume that x{nT) is zero and p = 6% a year
with an initial deposit of y(0) dollars. Applying Equation 2 repeatedly yields
the equations

y(1) = (1.06) y(0)
y(2) = (L.06) y(1) = (1.06)* y(0)
y(n) = (L06)y(n—1)=(1.06)" y(0).
It appears that the solution to the equation y(n) = a y(n — 1) is
y(n) = a™ y(0). (3)

16



% EX10_1.M MATLAB solution of the

%  compound interest eqgquation

% y(nD=y(nT-T) + (p/100)*y(nT-T)

% for p = 6 percent and initial deposit yO = $ 1000
% y(n) represents the balance after the nth year

clear

format bank %
a=1.06; %
y0 = 1000 %
for n=1:5

y(n) = a~(n)*yo
end

% y = 1060.00
% year 1

Show results as currency
Calculation for 5 years at 6% Interest
Initial deposit

1123.60 1191.02 1262.48 1338.23

2 3 4 S

17



Examples

e Example 2.6 Second Order System p60

— System can be solved recursively.

— Look at this example carefully and trace the steps
in the MATLAB program.

— Remember the MATLAB index y(1), y(2), ...
and the math index y[-m], y[-m+1] .....



Ex. 2.6 Pg60 He solves the 2"d order difference equation
y[n]-1.5y[n-1]+y[n-2]=2u[n-2], y(-2)=2, y(-1)=1 using
Routine recur. N=length a= 2, M=length b -1 =3 -1=2

function y = recur(a,b,n,x,x0,y0);
N = length(a); % Number of Coefficients in vy
M = length(b)-1; % Number of Coefficients -1 iIn X
it length(y0) ~= N,
error("Lengths of a and yO must match")
end
it length(x0) ~= M,
error("Length of xO0 must match length of b-1%)

end

y = [y0 zeros(l,length(n))]; % Initial Values

X = [x0 x]

al = a(length(a):-1:1) % reverses the elements In a

bl = b(length(b):-1:1)
for 1=N+1:N+length(n),
y(i1) = —al*y(i-N:i1-1)" + b1*x(i-N:i-N+M)*"; % Transpose
end
y = y(N+1:N+length(n))

% Output yO, y1, yn (MATH) but
% Yy(N+1) y(N+2) MATLAB, so y(-2) = y(1)mat



Note Index in loop starts at N=3 for MATLAB

% Figure 2.9 Page 62
a =[-1.51]; b =0 0 2]; %[al a2]; [bO bl b2]
yO = [2 1]; xO = [O O]; % Initial values

n = 0:20; % 21 points

X = ones(1,length(n)); % Unit step Input
y = recur(a,b,n,x,x0,y0);

stem(n,y, "filled"™) % Plot 1t
xlabel("n")

ylabel ("y[n]~)

Figure 2.9 Pg62 y[n]-1.5y[n-1]+y[n-2]=2u[n-2]



Figure 2.9 Pg62 y[n]-1.5y[n-1]+y[n-2]=2u[n-2]
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2.4 Differential Equation Models

Example 2.8 Series RC Circuit P65
We will do this in detail in later slides

Other Models:
Example 2.9 Mass-Spring-Damper System P67
Example 2.10 Motor with Load P69



First Order Differential Equations Consider the first-order, linear dif-
ferential equation

dy(t) _
—ar T plt)y(t) = f(t), (1)

which we write as §y+ p(t)y = f(t). Assuming that p(¢) and f(t) are continuous
in some common interval, the equation can be solved by multiplving each term

_fp(r,]-u!r,

by an infegrating factor in the form e to vield

Qefp(:]dr. —I—p[t}yﬂjpmdr’ _ f{t]ﬂfpmd:.

Notice that the left side of this equation is the derivative of the produet ye
Thus,

% [yefp{t}dt] _ f{tjﬂfpl:t]d:

can be integrated and solved for y(t), with the result

where ¢ is the constant of integration. This expression is the general solution
to Equation 1.

fp(n]-dnL

23



The general solution of Equation 2 contains two terms. The hrst term de-
scribes the effect of the function f(t), which is often called the forcing function

when used in problems that model physical systems. In the study of linear sys-
tems in engineering, the function f(t) is alzo called the input or input function,
and the solution y(t) is termed the oufput. The differential equation describes
how the system reacts to the effects of the input function.

The second term in Equation 2 contains an arbitrary constant ¢, which is
determined by demanding that the solution meet an inifial condition. This
specifies the value of y at some specific value of ¢, say, 5. Mathematically, we
write the initial condition as y(#p) = yo. The differential equation and the initial
condition taken together is called an initial value problem.

24



Constant Coefficients In case the function p(f) = a where a is a scalar,
Equation 1 becomes
dy(t)

L2+ ay(t) = f(0). (3)

Assuming that the equation is defined on the interval ¢ > 0, the integrating
factor for the equation is

i
Ej;' adr _ Eﬂt:,
where the variable of interration has been changed to 7 to emphasize that the
integral is a function of ¢, the upper limit of integration, not the “*dummy”
variable T.
The complete solution then takes the form

y(t) = fﬂ f(r)e™t"dr + ce—" (1)

where the integral term represents convolution. See Kamen and Heck result for
the RC circuit with a pulse input Example 2.14 Pg 77, This can also be written
as

y(t) = e ﬁ f(r)e™ dr + ce~. (5)

25



For the RC circuit

'M ..Ir|:|.

i,
Ofp = e | = Tl = vl

the differential equation is written using Kirchhoff’s laws and the basic
physics of a capacitor

i(t) = f:'djf]_
In the hgure
Ri(t)+ y(t) —z(t) =0
so that

duv(t) 1 1
TR oL iC A ol
Using the results above with a = 1/RC and x(¢) = U{t) the unit step, yields
the step response as

y(t) =1 —e™

26



Taking the derivative of the step response vields the impulse response

duv(i) . | |
rrai ) Ry s

K&H Example 2.11 P72 and Example 2.14 states
these results.

27



2.5 Solution Of Differential Equations

e Example 2.11 Series RC Circuit

+

x(t) = wv(r) (i
N

\_/

AWV

R

C

1 i(r)
+

—_— Y1) =vD)

e See My slides “First Order Differential Equations” and

examples from

K&H pg 72 (Solution of RC) and pg77 superposition for

convolution solution

K&H solve it by recursion, Euler method, and ODE



Example 2.11,2.12 Using Recursion, Euler and MATLAB ODE Solver

Let’'s cover K&H pages 70 to 75 using the RC circuit
The key to recursion solution is to keep the time between samples T small.

What does small mean ? Small compared to the time constant of the system-
which is a measure of how fast the system responds to a step input.

Let T=RC be the time constant of the system, so the step response is
y(t) = 1—e~t" and let a=1/r in Equation 2.61 (Euler) or in the
Taylor Series solution Equation 2.66.

For all of these to be useful, the sampling time T is selected so that

T<<1l/la=t seconds.

ODE is a sophisticated routine that chooses T by the Runge-Kutta algorithm.
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Example 2.13 MATLAB Symbolic MATH Solver dsolve
% Example 2.13 K&H Page75

% Symbolically solve the RC circuit

% He uses R=C=1 (silly) Let RC=0.5 ms
=tau

tau=0.5*10"(-3)
y=dsolve("Dy=(1/tau)*(1-y)", "y(0)=0%)
%

%y =1 - exp(-t/tau)

Do >>help dsolve for more information
See also K&H Example of 2" order solution — Pg 75

31



2.6 Convolution Representation of
Continuous-Time Systems

e Example 2.14 RC Circuit Page 77
 See Following Slides

e 2.6.1 Graphical Approach to Convolution



ha(—1) ha{l— =)

0 T Ry E
=l (9
(7} THE PRODUGT: f(r)hait — 7)
THE AREA = f(r)*hs(t) = g(1)
i alt -_tlmn.m — ndr
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FIGURE 4. cont’d c) hs(— 7): hs(7) folded about the ordinate
d) hg(t — 7): hz(r) folded and shifted
e) through n) the output response g(t) of the network whose
impulse response hsz(7) is excited by a function f(7).
Or the convolution, f(7)*hg(t), of f(t) with hz(t).
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% Convolution h(t)= 1/RC)exp(-t/RC) and X(t)=p(t)0 <=t<=l.sec
% Let RC = 1s and assume h(t)=0 after 5s. K&H P77
% Note scaling of the convolution to approximate the integral

n=(0:499);

ts=0.01 % Sample every 0.01 ms
h=1*exp(-1*n*ts); % Impulse response
time=(0:499)*ts;

figure(l), plot(time,h) % Plot impulse response

title("Impulse response 1*exp(-t)*")

xlabel("Time in Seconds®),ylabel("h(t)")

% Pulse One second long 100 X ts

x=zeros(size(n));

X(1:100)=0nes(1,100); % Create the step function
figure(2),plot(time,x)

title("1s pulse i1nput®)

xlabel("Time in Seconds®),ylabel("x(t)")

y=conv(Xx,h)*ts; % Scale by ts to approximate continuous case
% Length 1s Lx+Lh -1

figure(3),plot(time,y(1:500))

title("Convolution of exp(-t) with 1s pulse®)

xlabel("Time In Seconds®),ylabel("x(t)*h(t)*ts-Scaled"),grid

35



Figure 2.18

Convolution of exp(-tiwith 1s pulse
07 ! ! ! !

x*h(*s - Sealed

Time in Seconds

The time constant of the circuit is 1 second. The circuit responds 98%
in about 5.



Vlaboy + ‘{Mﬂe—

15 DISCRETE-TIME CONVOLUTION 349
—
Table 7-4: Comparison of convolution properties for continuous-time and discrete-time signals.
Property Continuous Time Discrete Time
o0 o0
Definition y)y=h@)xx(t) = [ h(t) x(t —t)dt  y[n] = h[n] *xx[n] = Z hli] x[n —i]
—oo i=—00
1. Commutative x()* h(t) = h(r) *x(1) x[n] * h[n] = h[n] * x[n]
2. Associative [g(t) * h()] x x(t) = g(t) * [A(r) * x(1)] [g[n] * h[n]] * x[n] = g[n] * [h[n] * x[n]]
3, Distributive x()x[h(t)+ -+ hy(@)] = x[n] * [hi[n)+---+hyn]) =
x(6) % hy(8) + - -+ x() x hn(t) x[n) % hi[n] + - - + x[n] * hn[n]
! n
4. Causal » Causal = Causal  y(1) = u(1) fh(r) x(t—1)drt y[n] = u[n] Z hli] x[n —i]
0 i=0
5. Time-shift h(t—T)xx(t —T) =yt —T) = T») hln —al*x[n —b] = yln —a —b]
6. Convolution with Impulse x(1)*é(t —T)=x(t—T) x[n] *8[n —al = x[n —a]
7. Width width y(r) = width x(¢) + width A(r) width y[n] =
width x[n] + width A[n] — 1
s 0 ] o0
8. Area area of y(1) = area of x(r) x areaof h(r) Y y[n]= ( 3. h{n]) ( 3 x[n])
n=—o00 n=—00 n=—00
f n
9. Convolution with step y) =x(@) *u(t) = f x(t) dr x[n] x uln] = Z x[i]
(mTEGraTeN B0 Sum) T i=—oo

XY <LZ3,40 # hinl=0s,6,7)

Since A[i] =0 for all values of i except i =0, 1, and 2, it 2 ) y
follows that h[n — i] = O for all values of i except for i = n, yB1= Zx['] h[3 —1]
n—1,and n — 2. With this constraint in mind, we can apply i=l
Eq. (7.52) at discrete values of n, starting at n = 0: =x[11A[2) + x[2] A[1] =3 x 7+ 4 x 6 =45,
2
0 5 &
Yl = xli] A4 —i]=x[2] h[2) =4 x T =28,
.V[O]=Zx[i]h[0—i]=x[0]h[0]=2x5:10, ;
i=0
=0, otherwise. =
1 y["] 1: {%[@2161*-
Y1l = x[i] Al1 i) Hence, T ALY
i=0 y[n] = {10, 27,52, 45, 28}.
=x[0] A[1]+x[11A[0) =2 x 6+ 3 x 5 =27, . 71_-;—5»(?1__[.-5 )
i 7-5.2 Discrete-Time Convolution Properties
y2] = Ex[i 1h[2-1] With one notable difference, the properties of the discrete-time
i=0 convolution are the same as those for continuous time. If (1)
= x[0] A[2] + x[1] A[1] + x[2] R[O] is rgplaced with [n] and integrals are replaced with sums, the

convolution properties derived in Chapter 2 lead to those listed
=2x74+3x6+4x5=52, in Table 7-4.
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