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3.1 Representation of Signals in 
Terms of Frequency Components 
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• Example 3.1 Sum of Sinusoids 
– 3 sinusoids—fixed frequency and 

phase 
– Different values for amplitudes (see 

Fig.3.1-3.4) 
– ?? Is x(t)  periodic? Can you show it? 
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Fig 3.2 p99 
Vary Ai 
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Always consider the phase = time shift 
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3.2 Trigonometric Fourier Series 

• Let T be a fixed positive real number. 
• Let x(t) be a periodic continuous-time 

signal with period T. 
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• Then x(t) can be expressed, in 
general, as an infinite sum of 
sinusoids. 
 

• x(t)=a0+∑k=1,∞ akcos(kω0t)+bksin(kω0t)  
 

     ∞< t < ∞  (Eq. 3.4) 



Fourier analysis 

Here is my “Real World” Experience – Short version 
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This is amazing and one of the most useful results in all of science and Engineering 

1. Propagation of signal in nerve fiber  
2. NASA Vibration and Acoustic Test Facility  Building 49 
3. Analysis of the periodicity of the Price of Gold 
4. Patent (with others) with anti-flicker frequency protection 
5. Harmonic analysis of products to determine Power Quality 
6. Image processing application using FFT 
7. Spectrometer Biosensor (Rice) – Spectral Analysis of Breath 
8. Piezoelectric ultrasonic motor rpm vs frequency input 
9. Analysis of pollution concentration- frequency sweep of concentrations 



3.2 Trig Fourier Series (p.101) 

• a0, ak, bk are real numbers. 
• ω0 is the fundamental frequency (rad/sec) 
• ω0 = 2π/T, where T is the fundamental 

period. 
• ak= 2/T  ∫0

T x(t) cos(kω0t) dt, k=1,2,… (3.5) 
• bk= 2/T  ∫0

T x(t) sin(kω0t) dt, k=1,2,...  (3.6) 
• a0= 1/T  ∫0

T x(t) dt, k = 1,2,…   (3.7) 
• The “with phase form”—3.8,3.9,3.10. 
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• Example 3.2 Rectangular Pulse Train 

3 terms 
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N=45 

PULSE TRAIN Figure 3.9 Page 108 
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% Consider a pulse train – Figure 3.5 page101  Period =1s A=1 
% computes trigonometric Fourier series for Example 3.2 
% used to generate Figures 3.6 - 3.9-  See Equation 3.25 Page 109 
t = -3:6/1000:3;   % 1001 points 
N = input('Number of harmonics '); 
c0 = 0.5;   % Average value  
w0 = pi;    % T=2 seconds 
xN = c0*ones(1,length(t));   % dc component 
for k=1:2:N,                 % even harmonics are zero 
  theta = ((-1)^((k-1)/2) - 1)*pi/2  %  
  xN = xN + 2/k/pi*cos(k*w0*t + theta); 
end 
plot(t,xN) 
title(['Example 3.4, N = ',num2str(N)]) 
xlabel('Time (sec)') 
ylabel(['x',num2str(N),'(t)']) 
  
%Number of harmonics 9 
%theta =     0      n=1 
%theta =   -3.1416  n=3 
%theta =     0      n=5 
%theta =   -3.1416  n=7 
%theta =     0      n=9 
 

LET’S WATCH A MOVIE – SEE HANDOUT 
 I DO A SQUARE WAVE a0 =0 
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The integral of any sinusoid over a period or multiple periods is 0. 
Therefore, only the term a0 T is left on the right-hand side.  
Equation 3.7 results. The is the average of the function over a period. 

The terms ak and bk are twice the average of x(t) multiplied by  
 the cos and sin terms respectively.  
 
Why is only ak left as in Equation 3.5 and all the other terms are o?? 



3.2 Trig Fourier Series (p.102) 

• Conditions for Existence (Dirichlet) 
– 1. x(t) is absolutely integrable over any period. 
– 2. x(t) has only a finite number of maxima and 

minima over any period. 
– 3. x(t) has only a finite number of 

discontinuities over any period. 
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3.2 Trig Fourier Series 

• 3.2.1 Even or Odd Symmetry Pg 104 
– Equations become 3.13-3.18. 
– Example 3.3 Use of Symmetry (Pulse Train) 
–   Save a lot of work. 

• 3.2.2 Gibbs Phenomenon 
– As terms are added (to improve the 

approximation) the overshoot remains 
approximately 9%. 

– Fig. 3.6, 3.7, 3.8 
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3.3 Complex Exponential Series 

• x(t) = ∑k=-∞,∞ ck exp(jω0t),  -∞< t < ∞  (3.19) 
• Equations for complex valued coefficients 

—3.20 – 3.24. 
• Example 3.4 Rectangular Pulse Train 
• 3.3.1Line Spectra 

– The magnitude and phase angle of the 
complex valued coefficients can be plotted 
vs.the frequency. 

– Examples 3.5 and 3.6 Line Spectra 
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3.3 Complex Exponential Series 
(p.2) 

• 3.3.2 Truncated Complex Fourier Series 
– As with trigonometric Fourier Series, a 

truncated version of the complex Fourier 
Series can be computed. 

– 3.3.3 Parseval’s Theorem 
• The average power P, of a signal x(t), can be 

computed as the sum of the magnitude squared of 
the coefficients. 
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