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Assuming that x(t) is defined on the interval −T/2 ≤ t ≤ T/2 and is periodic
with period T seconds, the coefficients ak and bk of the Fourier Series of x(t)
can be computed by the formulas

a0 =
1

T

∫ T/2

−T/2

x(t) dt,

ak =
2

T

∫ T/2

−T/2

x(t) cos

(

2kπt

T

)

dt,

bk =
2

T

∫ T/2

−T/2

x(t) sin

(

2kπt

T

)

dt, (1)

where k = 1, 2, . . . is any positive integer and if T is in seconds,

ω0 =
2π

T
= 2πf0 radians/second.

The Fourier series on the interval [−T/2, T/2 ] is thus

f(t) = a0 +

∞
∑

k=1

[

ak cos

(

2kπt

T

)

+ bk sin

(

2kπt

T

)]

. (2)

In terms of the fundamental radian frequency w0, the shifted cosine series
can be written

f(t) =
a0

2
+

∞
∑

k=1

[Ak cos(ω0kt + θk)], (3)

in which the numerical value of Ak is the amplitude and the angle θk is the
phase of the kth harmonic.

The complex series (Page 108) is

x(t) =

∞
∑

k=−∞

ckeikω0t =

∞
∑

k=−∞

ckei2πkf0t,

has coefficients cn that are in general complex and ck and c−k are complex
conjugates.
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Complex Series The Fourier trigonometric series contains a series of sines
and cosines and thus involves real functions. It is often convenient to write the
series for a function x(t) with period T as a sum of exponential functions in the
form

x(t) =

∞
∑

k=−∞

ckeikω0t, (4)

where ω0 = 2π/T as before and the coefficients ck are the complex Fourier
coefficients.

By substituting the identities

cos(nω0t) =
einω0t + e−inω0t

2
,

sin(nω0t) =
einω0t − e−inω0t

2i
, (5)

in the trigonometric form of the series (K and H Eq 3.4), the relationship be-
tween the trigonometric and exponential coefficients is found to be

c0 = a0,

ck =
ak − ibk

2
for k > 0 ,

c−k =
ak + ibk

2
. (6)

Notice that c−k is the complex conjugate of the term ck. Thus, the series in
Equation 4 becomes

x(t) = c0 +

∞
∑

k=1

[ckeikω0t + c−ke−ikω0t]. (7)

Orthogonality To find the coefficients in Equation 4, each side is multiplied
by e−ikω0t and integrated over the period to yield

∫ T/2

−T/2

x(t)e−ikω0t dt =

∞
∑

k=−∞

αk

∫ T/2

−T/2

ei(n−m)ω0t dt. (8)

Since the terms with different exponents are orthogonal, all terms but that for
which m = k are zero for the integral on the right-hand side. Thus,

∫ T/2

−T/2

x(t)e−ikω0t dt =

∫ T/2

−T/2

e−ikω0teikω0t dt = cnT,

so that dividing both sides T yields the coefficients

ck =
1

T

∫ T/2

−T/2

x(t)e−ikω0t dt. (9)
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Even Pulse Example Page 103 Example 3.2

Complex Series Square Wave Example

Consider an odd square wave and the complex Fourier coefficients

ck =
1

T

∫ 0

−T/2

(−A)e−ikω0t dt +
1

T

∫ T/2

0

(A)e−ikω0t dt, (10)

which leads to the series

f(t) =
2A

iπ

∞
∑

k=−∞

ei(2k−1)ω0t

(2k − 1)
, (11)

as defined in Equation 4.
This form contains complex coefficients, but the series can be written in

terms of sine waves by combining the corresponding terms for positive and
negative arguments. To determine the coefficients, the amount of difficulty is
about the same for the trigonometric series and the complex series. However, the
complex series perhaps has an advantage when the magnitude of the coefficients
are of interest.

Each coefficient has the form

ck =
2A

ikπ
=

2A

kπ
e−iπ/2, k = ±1,±3, . . . ,

and the coefficients for even values, k = 0,±2, . . ., are zero. Notice that the
coefficients decrease as the index k increases. The use of these coefficients to
compute the frequency spectrum of f(t) is considered later.

The trigonometric series is derived from the complex series by expanding
the complex series of Equation 11 as

f(t) =

∞
∑

k=−∞

ckeikω0t

= · · · − 2A

3πi
e−i3ω0t − 2A

πi
e−iω0t +

2A

πi
eiω0t +

2A

3πi
ei3ω0t + · · ·

and recognizing the sum of negative and positive terms for each k as 2 sin(kω0t).
The trigonometric series becomes

f(t) =
4A

π

(

sin(ω0t) +
sin(3ω0t)

3
+ · · ·

)

=
4A

π

∞
∑

k=1

sin[(2k − 1)ω0t]

(2k − 1)
,

which is the result of Example 8.4.
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Fourier Series Sine Wave of Period T and Power

Find the Fourier series of the function

f(t) = A sin ωt 0 ≤ t ≤ T, T =
2π

ω
=

2π

2πf
=

1

f

with the period T seconds. We observe the following since the function sinωt
is an odd functions (K&H Page 101):

a0 =
1

T

∫ T/2

−T/2

A sin ωt dt = 0,

an =
2

T

∫ T/2

−T/2

A sin ωt cos

(

2nπt

T

)

dt = 0.

(12)

Thus, the possible nonzero components are

bn =
2

T

∫ T/2

−T/2

A sin ωt sin

(

2nπt

T

)

dt,

and this integral is nonzero only when

ω =
2nπ

T
=

2nπω

2π
= nω.

This requires that n = 1. The integral of A(sin ωt)2 is 2A/T making b1 = A so
the Fourier series for f(t) = A sin ωt is actually

f(t) = A sin ωt.

Taking the standard ac wave with f = 60 Hz,ω ≈ 377 rad/sec, we find
T = 1/f ≈ 16.67 ms. If A = 170 volts is the amplitude of the sine wave, the
power in the sine wave is proportional to the value

P =
1

T

∫ T/2

−T/2

(A sin ωt)2 dt =
A2

2
.

A constant voltage signal with the same power is the rms (root mean square)

value given by
√

P = A/
√

2) = 170/
√

2 = 120 volts rms. Thus, the voltage
supplying a common household appliance is about 120 volts rms or 2×170 = 340
volts peak to peak. See K&H Page 113- Parseval’s Theorem, Power is the same
value in the time or frequency domain.
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Fourier Transform If the Fourier transform of f(t) exists, it is defined as

F [f(t)] = F (iω) =

∫

∞

−∞

f(t)e−iωt dt. (13)

The transform F (iω) represents the frequency spectrum of f(t), and it may be
complex even though f(t) is real. The magnitude |F (iω)| is called the amplitude
spectrum of F (iω). See K&H Section 3.4.

Definition of DFT Assume that a function f(t) is defined at a set of N
points, f(nTs) for n = 0, . . . , N − 1 values. The DFT yields the frequency
spectrum at N points by the formula

Fk = F

(

k

NTs

)

=

N−1
∑

n=0

f [nTs]e
−i2πnk/N (14)

for k = 0, . . . , N − 1. Thus, N sample points of the signal in time lead to
N frequency components in the discrete spectrum spaced at intervals fs =
1/(NTs).

Figure 1: Sampled Signal

If the bandwidth of the sampled signals in radians/sec is ωb = 2πfb, the
sampling rate in samples/second should be

ωs = 2πfs = 2ωb.

The DFT approximates the Fourier Transform when the DFT is multiplied by
Ts if ωTs is small. See K&H Section 5.4.
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Laplace Transform Chapter 6

L[f(t)] = F (s) =

∫

∞

0

f(t)e−st dt. (15)

f(t) F (s) F (iω)

δ(t) 1 1

U(t)
1

s

1

iω
+ πδ(ω)

e−at U(t)
1

s + a

1

iω + a

t e−at U(t)
1

(s + a)2
1

(iω + a)2

Table 1: Laplace and Fourier Transform Pairs

Use of Fourier Transform in Differential Equations Assume that f(t)
is piecewise continuous and that f(t) and its derivative f ′(t) have absolutely

convergent integrals for all t. Then,

F [
df

dt
] = (iω)F (iω).

By extension, the nth derivative f(n)(t) has the Fourier transform

F [f(n)(t)] = (iω)nF (iω)

.

Laplace Transforms of Derivatives The notation for the derivative of
f(t) with respect to t will be ḟ in this section.

Suppose that f(t) is continuous for all t ≥ 0 and that f(t) is of exponential

order, and its derivative ḟ(t) is piecewise continuous on every interval. Then,

for a function f(t) with Laplace transform F (s)

L
[

df

dt

]

= L
[

ḟ(t)
]

= sF (s) − f(0). (16)

Applying this to the second derivative d2f/dt2 ≡ f̈(t) yields

L
[

f̈(t)
]

= sL[ḟ(t)] − ḟ(0)

= s{sL[f(t)] − f(0)} − ḟ(0)

= s2L[f(t)] − sf(0) − ḟ(0). (17)

In general, the nth derivative f(n)(t) has the Laplace transform

L[f(n)(t)] = snL[f(t)] − sn−1f(0) − sn−2ḟ(0) − · · · − f(n−1)(0) (18)

See Examples in Section 6.4.
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Z-transforms Chapter 7 The one-sided Z-transform is defined by the series

Z[f [n]] =

∞
∑

n=0

f [n]z−n = f [0] +
f [1]

z
+

f [2]

z2
+ · · · . (19)

f [n] F (z)

δ[n] 1

u[n]
z

z − 1

an u[n]
z

z − a
=

1

1 − az−1

n u[n]
z

(z − 1)2

x[n − m] z−m X(z) if x(n < 0) = 0

x[n − 1] z−1 X(z) + x[−1]

x[n + 1] z X(z) − x[0]z

x[n + 2] z2 X(z) − x[0]z2 − x[1]z

Table 2: Z-transforms One-Sided

Solution of Difference Equations Difference equations can be solved by
recursion (Section 2.3) or by using z-transforms (Section7.4). They can also
be solved by the classical method of finding the homogeneous and particular
solutions. When inverting F (z), it is usually better to use partial fraction
expansion on

F (z)

z
.
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