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center is given by

= SMI?

~o VST &9 (Tl

vnap. s

(3.2.16)

The center of mass is located in the middle of the bar at /2 and has been
designated as the y axis in Figure 3.2.9. Therefore, by Eq. (3.2.15) we obtain

EMI? + M(I2)?

J. =
’ (3.2.17)
= iMI? .
Figure Jy J, N
Slender Bar 0 é Me? ‘1_2 Me2
PZ?aICtI:I';%?;aeL :—2M(32 + b?) :—2 M(a? + ¢?) “_2 M(b? + c?)
e + MR? MR 5 e
A inaar ™ | aM@ERz + 9 | mmERe | MR
Sphere % MR? % MR? % MR2

Figure 3.2.9 Centroidal moments of inertia for some common shapes.
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Example 3.2.2 can also be used to illustrate a common error used in computing -
the moment of inertia about an axis. Although Eq. (3.2.13) correctly defines the
moment of inertia of a point mass about an axis it cannot always be applied to
obtain the moment of inertia of a body of arbitrary shape. Consider, for example,
that we approximate the body as a point mass physically located at its center of
gravity and then use this point to define the distance of the body from its axis of
rotation. For the case of the rod shown in Figure 3.2.10, if we had used the center
of gravity to compute the moment of inertia about the y’ axis, the result would be

J, = M1 (3.2.21)

Comparing this with the correct result of Eq. (3.2.17) shows that an error of
25% on the low side has been made. This error could cause serious problems in
that the payload of a robot may be incorrectly calculated, thereby causing the
system to be unable to perform adequately.

Based on the previous discussions, it should be obvious that the point-mass
approximation of Eq. (3.2.13) should not be used arbitrarily to compute the inertia
of an object. In some cases this approximation is sufficient. However, one must
ensure that the error introduced does not produce misleading values. A more
conservative approach is to decompose the body into elementary shapes as shown:
in a table of centroidal moments (e.g., those in Figure 3.2.9) and then use the
parallel axis theorem [Eq. (3.2.15)] to compute the inertia of the object in questlon
Example 3.2.3 illustrates this procedure.

o

\o\“‘

. N’«t%

kow‘f/ From Figure 3.2.9 we identify the axes associated with each rectangula

EXAMPLE 3.2.3: CALCULATION OF INERTIA FROM ELEMENTARY SHAPE

Figures 3.2.11 and 3.2.12 show a simplified parallel-jaw type gripper whic
has been modeled by three rectangular parallelepipeds, each consisting of
length, width, and height dimension. The density of the material, aluminum
is 1.56 oz/in.?. For the particular application being analyzed, the gripper i
free to rotate about two perpendicular axes (z and y) as shown (i.e., the ro
and pitch axes). Note that the z axis goes through the center of the gripper
while the y axis is some distance from the back surface. For the dimension
shown, compute the moment of inertia about both the z and y axes.

member as shown in the exploded view of the gripper given in Figure 3.2.12
The dimensions a, b, and ¢ correspond to the formulas given in Figure 3.2.9
and we 1dentify the components by the subscript top, side, and bottom t
delineate the members. :

The contribution to the moment of inertia about the z axis is compute
by first determining the moment of inertia of each member about the cemn:
troidal axis parallel to the z axis of the complete gripper and then using the
parallel axis theorem. By summing the moment of inertia of the three me
bers referenced to the z axis, we find the total moment of inertia about
z axis. Equations (3.2.22) through (3.2.24) show the value of each of t
three members referenced to the z axis of the gripper.
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Top
Pivot

Point _\

Yy Jy g/
3.0in. \—T —
Figure 3.2.11 Parallel-jaw gripper model.

S-EE F‘?)-k-lz leDp - —l%Mtop(bz + cz) + Mtop (3.222)
Jove = Moot(6? + ) + Moo, 12, (3.2.23)
Zside = %Mside(az + 02) (3224)

Note that the parallel axis theorem was not needed to compute the
contribution from the side member since its centroidal y axis was coincident
with the z axis of the gripper. Therefore, the total moment of inertia about

the z axis is given by

Z1otal = leop + szm + stidc . (3 2 25)
Utilizing the actual dimensions given in Figure 3.2.12 yields M‘r g = 1)(
_ £\ i
WENGWT Jow = 0.0753  o0z-in.-s? UJ_’_L (3.2.26) gpjaﬂ
ot ¥ _ . o Pl
oD The moment of inertia about the y axis of the gripper iscomputedina ~———
9«(2/ similar manner. In this case, however, the parallel axis theorem must be
W used for all three members since none of the centroidal axes under consid-
3\»”“/7 eration are coincident with the y axis. Equations (3.2.27) through (3.2.29)
define the moments of inertia due to each plate about the y axis.
Soon = BM,op, (@* + %) + M, 1}, (3.2.27)
Ybot = 1lZ[MbO! (az + b2) + Mbot rib (3228)
Vase 12Msnde ((1 + bZ) + Msnde ys (3229)
Yiotal = Jylop + J,Vbol + J}'sn}c (3-2.30)
Again substituting the dimension values of Figure 3.2.12 yields :
¢ g somk
J, . = 0.525 oz-in.-s? (3.231) pawt/
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N,

T,
/'n TPLER
X

N;

Ny
—
T'If 0!
Tz, 62
N.

Schematic Representation
of Gear Train

Figure 3.3.1 Ideal gear train with parameters.

Finally, noting that since the two gear radii do not vary with time, if Egs. (3.3.2)
and (3.3.3) are differentiated with respect to time, their relationship still holds but
with respect to 6 (i.e., the angular velocity *) or  (i.e., the angular acceleration,
a). Using this concept, we may write
. J N N W (3.3.4)
N, rn T, 6, o o
Equation (3.3.4) can be used to investigate various properties of the “ideal
gear train.” For example, assume that the speed of both shafts is known and that
the speed of shaft 1 i1s greater than the speed of shaft 2; then we know that the
number of teeth on gear 2 is greater than that on gear 1. In addition, we also

*Although not shown explicitly, the reader should keep in mind that w, o, and 7 are functions
of time.



a8 (N}/N;).
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know the ratio N,/N,. Finally, if the torque on shaft 1 is known, we can comput
the torque on shaft 2 by

This particular relationship shows the speed reduction and torque multiplication
property of a gear train.

A commonly used definition in motion conversion is that of the coupling ratio
Loosely defined, this ratio is the angular movement of the input compared to the
load. For a rotational system, a coupling ratio of 2:1 defines a gear train in which
two turns of the input shaft produce a single rotation of the output. Note that in
this case the coupling ratio is the inverse of the tooth ratio, TR, which we define

It is interesting to note that the ideal gear train is similar to the ideal electrical
transformer. In fact, one may transform a mechanical system containing a gear
train into an analogous electrical network containing a transformer. In Section
3.5.4 we discuss this in more detail. :

Employing the same concepts that were used to develop Eq. (3.3.4), the
transfer relationship between the input and output shafts of a compound gear train
(i.e., one consisting of more than two gears) may be derived.

Gear trains can be used to change “‘mechanical loads” in a manner that is
similar to using a transformer to reduce or increase electrical impedances. For
example, if a pure inertial load is placed on the output of a gear train as shown in
Figure 3.3.2a, the input torque required to accelerate that load is given by

T, = %az Jy (3.3.
We may ask the question: What inertia is “seen’ by the input shaft? Or in oth
words: What inertial load applied to the input shaft produces the same torq
requirement as that of the original load? Figure 3.3.2b shows this equivalent
system.

Assuming that T accelerates an inertial load J,, at an angular acceleratiof.
of a;, we may write

N,

al‘]eq = ]\_/2 az ‘]2 (3.3-

Using the relationships of Eq. (3.3.4), we may solve for the equivalent inertia /e,
2
N
Jog = <]7;> I (3.3.7

For speed reduction and torque multiplication at the output of the gear train, th
ratio Ny/N, is less than 1. The reflected inertia at the input shaft is seen to D
less than that on the load.
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N,
Ty(t)
Shaft 1
Ja
Shaft 2
N,
(a) (b}

Figure 3.3.2 (a) Gear train with inertial load; (b) equivalent system.

Besides inertia, both the reflected viscous and Coulomb frictions are reduced
by a gear train. Figure 3.3.3 shows two gears each having an inertia and friction
on their shafts. The total torque as seen by the M is given by Egs. (3.3.8a)

through (3.3.8c). e B U
Tow = (J; + TRY,);, + (B, + TR?B,)6, + T, (3.3.8a)
T, = F. sgn (6;) + TR F_, sgn (6,) (3.3.8b)
ZV] " _ *
TR = PR 1= (3.3.80)

Cevienp 2,210 .
Note that both inertia and viscous friction are reduced (or increased) by the factor
(Ny/N,) squared, whereas Coulomb friction is reduced by the factor (N,/N,). Note
also that Eq. (3.3.8a) is nonlinear.

By making TR less than 1, it is seen from Eqgs. (3.3.8a) through (3.3.8c) that
the gear train is effective in reducing the reflected inertial and viscous loads that
must be accelerated by a motor (or other actuator). This is an attractive feature
since the actuator does not actually have to produce the high torque needed at the
output to drive the load but rather, a reduced value. Thus the actuator’s size and
torque capability can be significantly smaller than that required to drive the load
directly. In robotic applications where large inertial loads must be accelerated,
this property of reducing the inertia is often utilized in order to reduce significantly Y,
the size, weight, volume, and cost of the various joint actuators. K«G A é‘vq\)



THE ADVANTAGES OF HARMONIC DRIVE GEARING KLA;’S’E GG

Because il consisls of only three simple parts, Harmonic Drive
gearing oflers design engineers the freedom lo inlegrale drive
components direclly into machines or equipment. Harmonic
Drive is a pure torque couple with all concentric elements and
requires less space and less bulky supporl structures than
conventional gearing.

Harmonic Drive’s precision and pérlormance are ideal in
applications requiring accurate posilioning or precise motion
conlrol.

Low or Zero Backlash
Natural gear preload and almosl pure radial loolth engagement
allow standard Harmonic Drive gearing o operate wilh essentially

V

High Single-Stage Ratios From 50:1 Up

Depending on size, Harmonic Drive products offer ralios from
50:1 (G0:1 for standard products) lo as high as 320:1. Using
compound drives, much higher ratios can be achieved.

Torque Equal to Drives Twice as Large
Pound lor pound, no other mechanical power transmission can
compare with Harmonic Drive gearing for torque capacily.

Excellent Positional Accuracy and Repeatability
Harmonic Drive gearing's design ensures that approximalely
10% of the lotal teelh are engaged at any pointin ime, minimizing
the elfect of tooth-to-tooth error. Accuracies as line as 30 arc
seconds are achievable in some sizes. Repealabililies are in

the arc second range.

zero backlash for the entire gear lile
without preload adjustments or
significant wear.

HDC CUP COMPONENT GEAR SET

Design Flexibility
Harmonic Drive gearing allows designers
multiple inpul/output possibilities in

Efficiencies as High as 90%
Measured on actual shalt-to-shaft losses
rather than tooth losses (as with other
gearing), standard Harmonic Drive

Flexspline
An eliiplical,
nonrigid,
exlernal gear

speed reduction and speed increasing
applications. Concentric shafting makes
it ideal for differential designs.

gearing efficiencies are normally in the
80 - 90% range.

Simple Support Requirements

Since lorque is transmitted by pure
couple, Harmonic-Drive gearing does
not generale radial loads and, therefore,
can be used with much simpler bearings
and less structural support than other

Circular Spline
A round, rigid,
internal gear

Wave Generalor
An elijptical
ball bearing assembly

Long Life and High Reliability
Proven in years of industrial, military,
and other applications, Harmonic Drive
gearing has an average life of over
15,000 hours al rated loads. {n addition,
the tooth mesh is unaffected by the
impacl of stepping motors or frequent
slarts, stops, and reversals.

forms of gearing.

Eliiptical Wave Generator inpul defiects
Flexspline to engage leeth at the major axis.

Flexspline leeth at minor axis are
fully disengaged — most of the relalive
motipn belween teeth occurs here.

Flexspline output rolates in
opposile direction to input.

Rigid Circular Spline is rotationally fixed.

Nole: The amounl of Flexspline defiection has been exaggeraled in the diagrams in order lo demonslrate the principle.

Aclual deflection is much smaller than shown and is well within the malerial fatigue limits for infinite service lite.

The teeth on the nonrigid Flexspline and the
rigid Circular Spline are in continuous engage-
ment. Since the Flexspline has two teeth fewer
than the Circular Spline, one revolulion of the
inpul causes relative motion belween the
Flexspline and the Circular Spline equal lo

output through the Flexspline with the Circular
Spline rotationally fixed. However, any drive
element may funclion as the input, output, or
fixed member.

- = Zero Backlash

two leeth. With the Circular Spline rotationally
fixed, the Flexspline rotates in the opposite direc-
tion lo the input at a reduction ralio equal to
one-half the number of teeth on the Flexspline.
This relalive rotation may be seen by exam-
ining the motion of a single Flexspline loolh
over one-hall an input revolution. The tooth
"~ Iully engaged when the major axis of the Wave Generalor
pulis al 0°. When the Wave Generalor's major axis rolales lo
90°, the tooth is fully disengaged. Full reengagement occurs in
Ihe adjacent Circular Spline looth space when the major axis
is rolaled to 180°. This motion repeals as the major axis rolates
another 180° back lo 0°, thereby producing the two looth
advancement per input revolution.
All tabulated Harmonic Drive gear reduclion ratios assume

= All Harmonic Drive cup-type gearing products
have zero backlash at the gear mesh.

Under mos! circumstances, this zero backlash
lasts beyond lhe expected life of the drive. This
unusual characteristic is due to the unconven-
tional tooth path combined with a slight cone
angling of the teeth caused by deflection of
the cup walls, Together, these factors produce preload and
ensure very little sliding and no relalive motion between teeth al
lhe points where mos! of the torque is transferred.

While a small amount of backlash occurs al the oldham input
coupling, because of the high ratios involved, this backlash
becomes negligible when measured at the outpul. Even this
backlash can be eliminated by coupling direclly lo the Wave
Generator. Please consull the factory for methods and guidelines.
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3.4.1 Efficiency

Efficiency m is defined as the ratio of the output power to the input power, or the
ratio of the work output to the work input over the same period of time. For an
ideal mechanism, the efficiency is 1 or 100%. In the case of real components, the
work output is less than the work input, with the difference being dissipated in
friction. Equation (3.4.1) defines efficiency.

__ power out _ work output
power in work input

(3.4.1)

For the case of a gear train, we may restate Eq. (3.4.1) as the ratio of the
actual output torque divided by the ideal output torque. Thus for a gear train
having a tooth ratio TR of N,/N,, with N,>N; so that torque multiplication results,
we obtain

actual output torque
input torque/TR

n= (3.4.2)
Figure 3.4.1 shows a transmission consisting of a right-angle gear train having a
tooth ratio of 1s and a set of antibacklash gears having a ratio of 3. A plot of the
input versus the output torques for the assembly is shown in Figure 3.4.2. Note
that the actual overall transmission has a measured efficiency of only 22% as
compared with an ideal performance of 100%. Although it is possible for efficiency
to be a function of speed, a first approximation would consider it to be dependent
only on the forces encountered by the gear teeth, which are primarily frictional in
nature. Since these forces are directly proportional to torques, the efficiency of

15:1 Right Angle Worm Gear

-«——Shaft Support

O Payload

l W =5 Ibs.

5:1 1:1 }A 9.56" =]I

Anti-Backlash Gears

Figure 3.4.1 Complex gear assembly.
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Input
Torque 1=22%
(0z-in)
30 4+
Actual Assembly
6.66 Ideal Assembly

Output Torque (o0z-in)

Figure 3.4.2 Actual and theoretical torque transfer curves.

the transmission can be approximated by measuring the resulting torque on the
output for static torques applied to the input shaft. -

The efficiency of any mechanical device becomes important in sizing actuators. ..
It is no longer safe to assume that the output loads are reflected to the input shaft
by a function of the gear ratio as defined in Egs. (3.3.8a) through (3.3.8c), but
one must now include the efficiency. These equations then become

TR? . TR? .
Ttota] = (Jl + —n—]2>91 + (Bl + —'f]_ Bz) 91 S Tf (3433)

TR <lo
T; = F_, sgn(8;) + _'ﬂ— F,, sgn(6,) ’7? < (3.4.3b)
_ N
TR = N, (3.4.3¢)

These equations reveal that any efﬁciency less than 1 (i.e., 100%) will increase the
torque required to accelerate a given inertial load or overcome an external forque
load. It is important to note that efficiency does not affect the actual transfer
ratio of the gears (or other transmission device) in terms of displacement, velocity,
or acceleration, but greatly affects any torque-related property.



SEFiIcieney  Pl4Y -14S

= powet ol Weq < nTpoT
Power 1N Ladx upoT

Le Y% Sav The Q\‘/Hc:enot » [~ Tl

Wenty we caLeuc
/ ATED o 63— MO

Iveor T bbb Rt Ts ‘/_\/,\7[‘;’7%

——, e

Sutpt T Seo
- N 2 @
6U‘. T-T\\"dl/:-{]—i, +— (/‘/N;_) 77;)9‘{“.6
- om

So j:oLg,Loo‘r = '75)( bbbey-tn = SO o540
bol Tackoall = 122 xSoo = [LO o4 (n
SO MoTue- Terque T s :
bl — 2o,z L TY an

zZ — N
Muclna
T4k Fyoez-m




