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The relationship between vector spaces and linearity for the points

in R2 is that if a set of points represented by vectors Xl, X2, ... ,Xn all
lie on one line through the origin, any linear combination of them lies in
the same line since they are all multiples of the same vector. Also, the
zero vector is in the set. We say that a subset S of a vector space V is a
linear subspace if every linear combination of elements of S is also in S.
Usually, the linear subspace is simply called a subspace, as was the case
in our discussions in Chapter 2. .

TRANSFORMATIONS IN THE PLANE AND THREE-DIMENSIONAL SPACE
In computer graphics, a typical problem is to display a view of a 2D or 3D
object on a video screen. Using matrix algebra, new views of the object
can be generated' by rotation, translation, and scaling. Describing the
motion (kinematics) of a robot manipulator is an important problem in
robotics. Matrices can be used to define the position and orientation of
the manipulator at any time with respect to the coordinates of the robot's
reference frame. ;,

In general, matrices can be used to allow points and vectors to be
rotated about coordinate axes, translated in space, and referenced relative
to other reference frames. As shown in a later chapter, we may also
use matrices to map the coordinates of spherical or cylindrical reference
frames into xyz-coordinates (Cartesian space), or vice versa.
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Rotations in the Plane In Figure 3.2, a vector X = [x,y] is rotated
through the angle () to become the vector x' = [x', y'].

y

(x', y') = [r cos (8 + ex), r sin(8 + ex)]

\
\

\

• (x, y) = [r cos ex, r sin ex]

o~--~----~----------------------------------~x

FIGURE 3.2 Rotation of a two-dimensional vector

The length r of the vector is not changed by rotation. From the
geometry, the coordinates of x in terms of the angles involved are

x = r cos a and y = r sin a.



It is desired to obtain the coordinates of the rotated vector in terms of x, y,
and the angle (). Thus, the rotated vector x' in Figure 3.2 has coordinates

X' rcos(() + a) = r cos e cos o - r sin e sin o ,
y' r sin(() + a) = r sin ()cos a + r cos ()sin a.

Thus, the relationship between the endpoint coordinates is

X' = X cos ()- y sin (),
y' = x sin ()+ y cos ().

Defining the 2D rotation matrix as

"'--
we see that

R = [ cos()
o sin ()

- sin () ]
cos () , (3.28)

R(} [ ~ ] = [ ~~]

by multiplying XT by R(}. If the angle () is changed to -(), the sign of
the off-diagonal terms are changed. Of course, the rotation matrix should
become the identity matrix if () = 0°.

Notice that in these operations, the vectors are considered 2 x 1 col-
umn vectors. Also, the series of operations R(}I R(}2XT results in a rotation
by angle ()2 + ()l. If the order of matrix multiplications is reversed, the
rotation angle remains the same. This is always the case when a series of
rotations of a vector from the origin are made in the plane.

Three-dimensional Rotations Figure 3.3 illustrates the 3D reference
frame we will use for rotations.
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FIGURE 3.3 Cartesian reference frame in three dimensions
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o
- s~na l;
cos o

(3.29)

In three dimensions, the axis of rotation must be specified. The sub-
scripts for a rotation matrix will indicate the axis of rotation and the
angle. The rotation matrices for the three axes are as follows:

1. Rotation by an angle a about the x-axis:

cos o
sin c

2. Rotation by an angle <p about the y-axis:

sin <p 1o ;
cos <p

(3.30)

3. Rotation by an angle () about the z-axis:

[

cos ()
Rz,9 = Si~ () (3.31)

When performing a series of 3D rotations about several axes by matrix
multiplications, the order in which the rotations are performed is impor-
tant, since the rotation matrices do not commute in general. Except for
special cases, applying the rotation matrices to a vector in different order
will generate a different result. As a check on the results, the rotation
matrices should become identity matrices when the angles involved are
set to zero. Also, the rotation matrices are orthogonal matrices, so the
columns (or rows) must be orthonormal.
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Homogeneous Transformations (Optional) The 3x3 rotation ma-
trix does not provide for translation or scaling of a vector. The concept
of homogeneous coordinate representation is introduced to develop matrix
transformations that include rotation, translation, scaling, and perspec-
tive transformation. Using homogeneous transformations, the transfor-
mation of an n-dimensional vector is performed in an (n + 1)-dimensional
space.

In homogeneous transformations, the true vectors in R3 are written
as vectors in R4 with a scaling factor as the last component. Let the 3D
column vector be defined as



Then, the homogeneous representation is

where s is a numerical scaling value. We will assume that this scaling
factor is 1 for our present purposes. The rotation matrices that multiply
this vector must be 4 x 4. This is accomplished by adding another row
and column to the rotation matrices previously defined. For example, the
homogeneous rotation matrix about the z-axis is

[

cosO
Rh = sinO

z,e 0

o

- sinO 0
cosO 0

o 1
o 0

A homogeneous translation matrix in effect adds a translation vector
to the vector being transformed. Assume that the translation values are
[tl, t2, t3]. Then, a homogeneous translation matrix has the form

o 0
1 0
o 1
o 0

o EXAMPLE 3.19 MATLAB Homogeneous Transformations
Linear transformations are easily accomplished using MATLAB. The ac-

companying scripts show the M-file (CLXROTZ.M) as well as the function
(clxrotzf) that perform a homogeneous transformation to rotate a 3D vector
by an arbitrary angle in degrees around the z-axis, A test case is shown from
the diary file created when the M-file was executed. The test vector is input
as [1 2 3] and the rotation angle is 600

• The diary file showing the results is
included with the M-file script.

MATLAB Script _
Example 3.19
i. CLXROTZ.MRotate a vector around the z axis
i. Input the vector [x y z] and the angle in degrees.
i. Function clxrotzf is ~alled to perform rotation
v1=input(' Vector [x y z]= ,)
theta=input(' Input rotation angle (degrees)= ')
v11=[v1 1]'; i. Form homogeneous vector
vrotz=clxrotzf(v11,theta); i. Rotate
fprintf('Rotated vector\n')
vrotz i. Display result
i.
i. -------------------------------------------
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% Results (Rotation matrix and rotated vector}
x
»clxrotz
Vector [x y z]= [1 2 3]

vi =
1 2 3

o

Input rotation angle (degrees)= 60

theta =
60

Rotated vector
vrotz =

-1.2321
1.8660
3.0000
1.0000

»quit

The function clxrotzf rotates the vector passed to it by the specified angle
in degrees about the z-axis. The homogeneous transformation yields a 4 x 1
vector as the result. In space, the vector [1,2, 3]T is rotated to a new vector
with the coordinates

[

-1.2321 1
1.8660 .
3.0000

MATLAB Script _
Example 3.19
function yh3rotz=clxrotzf(xto_rot,theta_rot)
Yo CALL: yh3rotz=clxrotzf(xto_rot,theta_rot)
Yo Rotate the vector xto_rot by the angle theta_rot
Yo around the z axis
Yo xto_rot must be a 4 x 1 column vector, theta rot in degrees.
theta_rot=theta_rot*pi/180; Yo Convert to radians
Arotz=[cos(theta_rot) -sin(theta_rot) OO;sin(theta_rot) ...
cos(theta_rot) 0 0

o 0 1 0;0 0 0 1];
yh3rotz=Arotz*xto_rot;
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functions to be studied in this section and in later chapters are mostly
vectors defined on R 2 or R 3. In R 3, the vector function would have the
form

written in terms of the components. As a vector in rectangular coordi-
nates, F could be written

F(x, y, z) = FI (x, y, z) i+ F2(x, y, z)j + F3(X, y, z) k,

using the unit vectors i, j, k defined in Chapter 2. Such vector functions
will now be studied in the cylindrical and spherical coordinate systems.-
Many formulas in engineering and physics can be simplified by choosing
the most convenient system of coordinates. Mathematically, the coordi-
nates of the formula may originally be designated as (Xl, ... , xn) and
a transformation is sought to assign new coordinates (UI, .•. , Un ). Al-
though there are many possible coordinate systems, this section discusses
only the cylindrical and spherical systems shown in Figure 12.12. These
systems are of primary interest in mathematical physics.

Y-----r--.y

CURVILINEAR
COORDINATES

z z

P(r,e,z)

~~----~----.y

ia

x x
(a)

FIGURE 12.12 The cylindrical and spherical coordinate systems
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Figure 12.12 shows the cylindrical and spherical coordinate systems
and the unit vectors associated with each system. These two systems are
examples of coordinate systems called curvilinear because if all but one
of the nonrectangular coordinates are held fixed and the remaining one
is varied, the coordinate transformation describes a curve in space. An
important consequence of this is that the unit vectors defining a point in
the curvilinear coordinate system may not be constant as the point moves
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CYLINDRICAL
COORDINATES

in space since their direction changes as the point changes position. In
Figure 12.12, this is true for all of the unit vectors, except for i, j, k in
rectangular coordinates and iz = k in cylindrical coordinates.

Notation. In this section, the vector R will be used as the vector from
the origin to a point in space. The vector r is used as in Figure 12.12
to indicate the vector in cylindrical coordinates from the z-axis to the
projection of the point of interest in the xy-plane. Some textbooks make
no distinction and others use p in place of the vector r. In any case,
care should be taken not to confuse the two position vectors in cylindrical
coordinates.

The dot notation,

j(t) == d~~t) ,

is used to indicate the derivative with respect to t for any function of
time. The second derivative with respect to time is often designated j(t).

Consider the position vector of a point moving in rectangular coordi-
nates,

R(t) = x(t) i+ y(t) j + z(t) k, (12.54)

where x(t), y(t), and y(t) define the positions of the point at each mo-
ment along the x, y, and z axes, respectively. The time derivative of R
represents the velocity of the point and is computed as

dR
dt

x(t) i+ y(t)j + i(t) k + x(t) ddi + y(t) ddj + z(t) dk
t t dt

x(t)i+y(t)j+i(t)k (12.55)

since the rectangular unit vectors are constants.

Referring to Figure 12.12, the cylindrical coordinates (r, 0, z) are related
to rectangular coordinates by

x = r cos 0, (12.56)y = r sin e', z = z.

Writing the unit vectors in cylindrical coordinates in terrns of the rectan-
gular set yields

cos 0 i +
- sinO i +

k.

sin B j,
cos 0 j,

Both the scalar transformation of Equation 12.56 and the transfor-
mations for the unit vectors of Equation 12.57 can be solved to define the'
inverse transformation. Table 12.5 indicates both transformations.

590 Chapter 12 •



n
1

TABLE 12.5 Cylindrical coordinates

Cylindrical rOz Rectangular xyz

r = VX2 +y2
0= arctan y/x
z=z

x = rcosO
y = rsinO
z=z
i = cos 0 ir - sin 0 ill
j = sin 0 ir + cos 0 ill
k = i;

ir = cos 0 i + sin 0 j
ill = - sin 0 i + cos 0 j
i,= k

DISTANCE
FORMULA

The distance between endpoints of two vectors in curvilinear coordinates
can be computed by transforming to rectangular coordinates. Thus, the
distance between two points in cylindrical coordinates PI (rl' 81, ZI) and
P2(r2, 82, Z2) is

Expanding and collecting terms results in the distance formula

for the distance between two points in cylindrical coordinates.

o EXAMPLE 12.16 Cylindrical Coordinates
Suppose the position of a particle is defined by the vector

R(t) = x(t) i+ y(t)j + z(t) k

in rectangular coordinates, and it is desired to determine the velocity of the
particle in cylindrical coordinates. The position vector in cylindrical coordinates
is easily determined by writing R{t) with x and y converted to cylindrical
coordinates and using the conversions of the unit vectors in Table 12.5. The
result is

R(t) rcosOi + rsinOj + zk

in which r, 0, Z, and the unit vector ir are functions of time.
The velocity of the particle is found by differentiating the position vector

with respect to time, including the unit vector ir, to yield

dR(t) dr , dir dz .
v = ~ = dt lr + rdi + dt lz·
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SPHERICAL
COORDINATES

D

Differentiating the unit vector ir with respect to time leads to the expression

The speed is determined by combining the radial velocity, angular velocity,
and the velocity in the z-direction as

Referring to Figure 12.12, the spherical coordinates (T, (), ¢» are related to
rectangular coordinates by the equations

(12.59)

Notice that if ¢>= 90°, the spherical relationships become those for cylin-
drical coordinates in the xy-plane. If ¢>= 0°, T = z, The transformations
between.rectangular and spherical coordinates, including the unit vectors,
are listed in Table 12.6.

592

dir
dt

!(cosBi + sin()j)

dB [ . (). () 'J d() • ()'•dt - sm 1+ cos J = dt 10 = 10,

so that the expression for dR(t)/dt becomes

x = T cos() sin ¢>, y = Tsin()sin¢>, Z = TCOS¢>.

TABLE 12.6 Spherical coordinates

Rectangular xyz Spherical r()¢

x = rcos()sin¢
y = r sin ()sin ¢
z = r coe o
Spherical unit vectors:
ir = cos ()sin ¢ i + sin ()sin if> j + cos ¢ k
io = -sin()i+cos()j
iq, = cos ()cos ¢ i+ sin ()cos ¢ j - sin ¢ k

Rectangular unit vectors:
i = cos B sin ¢ i; - sin ()io + cos ()cos ¢ iq,
j = sin ()sin ¢ ir + cos ()io + sin B cos ¢ iq,
k = cos ¢ ir - sin ¢ iq,

r = J X2 + y2 + Z2

()= arctany/x
¢ = arctan J'-x2""--+-y-2 / z
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