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10 DISCRETE SYSTEMS

PREVIEW

This chapter presents various techniques useful to analyze sequences,

discrete signals, and discrete systems for which the variables involved are

defined only for discrete values of the independent variable. First in this

chapter we introduce discrete sequences. In systems described as discrete

systems, the inputs, outputs, and system characteristic are characterized by

such discrete data. As we shall see, MATLAB is well-suited to solve

problems involving discrete systems.

Difference equations are introduced in this chapter. We will

demonstrate solution methods parallel to those used for continuous

differential equations as presented in Chapter 5. We also apply difference

equation techniques to the approximation of differential equations.

An important area of study for discrete techniques is the digital signal

processing of signals. The chapter presents smoothing and digital filtering

as two example applications.

Discrete signals can also be analyzed by the Z-transform, which may

be regarded as a discrete version of the Laplace transform. After the

Z-transform and MATLAB commands for discrete systems are introduced,

the transform is applied to the solution of difference equations. Another

section compares the Laplace and Z-transforms.
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Discrete systems can be analyzed as to their characteristics and

stability by difference equations or by Z-transform techniques. Various

examples are presented in the chapter.

10.1 INTRODUCTION TO THE SEQUENCES AND DISCRETE

FUNCTIONS

The functions of interest in this chapter can be represented by sequences.
In these sequences, for each integer n in a set of consecutive integers,
there is assigned a number s(n). These numbers can be arranged in order
according to the values of n. For example, when the domain is the set of
all positive integers, the numbers form an infinite sequence

s(1), s(2), s(3), . . . , s(n), s(n + 1), . . . .

In general for sequences, n is called the index , which can be a positive or
negative integer.

A table or an equation could serve to define the correspondence that
associates each integer n with the value s(n). Also, the subscript nota-
tion sn is often used to designate a value rather than the usual function
notation s(n).

Sequences are often used to describe naturally occurring values such
as the Dow-Jones averages of the prices of stocks. A sequence

p(1), p(2), · · ·

could be used to designate the prices. In this sequence, if p(1) represents
the average on the first day of interest, p(2) could represent the value on
the second day. Thus, p(n) is used in this sequence to denote the price
on the nth day. In this case, there is no known relationship between the
terms despite many efforts to derive a mathematical description.

In some cases, a general rule of formation for the sequence is given.
Thus, the rule

Fn = 2n, n = 1, 2, . . .

designates the even integers. Another example leading to a formula relat-
ing the elements of a sequence is given by the compound interest problem
as Example 10.1 shows.
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EXAMPLE 10.1 Compound Interest Problem
Suppose money is deposited in a savings account that pays interest at the

rate p percent, paid at regular intervals of time. For example, let $1000.00 be
deposited with the interest rate 6% a year and the interest compounded every
year. The value when the first interest payment is made after a year will be
$1000 + 0.06× $1000 =$1060.

In a more general case, consider the compound interest equation

y(nT ) = y(nT −T )+
p

100
y(nT −T )+x(nT ) =

(

1 +
p

100

)

y(nT −T )+x(nT ),

(10.1)
where y(nT ) represents the amount of money in an account at time t = nT ,
y(nT −T ) is the money in the account at the time of the previous computation,
p is the percent interest paid in the interval of time T , and x(nT ) is the amount
of money deposited or withdrawn at t = nT .

Designating the discrete values as y(n), we define

y(n) = y(nT ), n = 0, 1, 2, . . .

to form a sequence of discrete values of the bank balance. If there are no extra
deposits or withdrawals, x(nT ) = 0 and Equation 10.1 can be written as

y(n) = ay(n − 1), (10.2)

where a = (1 + p/100).
As an numerical example, assume that x(nT ) is zero and p = 6% a year

with an initial deposit of y(0) dollars. Applying Equation 10.2 repeatedly yields
the equations

y(1) = (1.06) y(0)

y(2) = (1.06) y(1) = (1.06)2 y(0)

...

y(n) = (1.06) y(n − 1) = (1.06)n y(0).

It appears that the solution to the equation y(n) = a y(n − 1) is

y(n) = an y(0). (10.3)

The accompanying MATLAB script performs the numerical calculations

for Equation 10.3 each year for the period of five years with an initial deposit

of $1000. The result shows that the account contains $1338.20 at the end of

five years.

MATLAB Script

Example 10.1
% EX10_1.M MATLAB solution of the compound interest equation
% y(nT)=y(nT-T) + (p/100)*y(nT-T)
% for p = 6 percent and initial deposit y0 = $ 1000
% y(n) represents the balance after the nth year
clear
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format bank % Show results as currency
a=1.06; % Calculation for 5 years at 6% interest
y0 = 1000; % Initial deposit
for n=1:5
y(n) = a^(n)*y0

end
y = 1060.00 1123.60 1191.02 1262.48 1338.23

W H A T I F ? In Example 10.1, we compute that $1338.23 is in the
account after 5 years if the initial deposit is $1000. Suppose the interest
is compounded continuously so that the compound interest equation is

dy(t)

dt
= .06y(t).

Compute the new amount after 5 years.

We shall see that the compound interest Equation 10.1 represents a
difference equation that can be analyzed using techniques similar to those
used to solve differential equations. We introduce the techniques in the
next section.

10.2 LINEAR DIFFERENCE EQUATIONS

A difference equation expresses a relationship between the terms of a
sequence. In this section, linear difference equations with constant co-

efficients are considered. A simple example is the compound interest
Equation 10.1 written in its discrete form

y(n) −
(

1 +
p

100

)

y(n − 1) = x(n).

In this equation, x would be termed the input and y the output or solution
using definitions borrowed from the study of differential equations. The
order of the difference equation is the difference between the largest and
smallest indices of y appearing in the equation. In this case, n−(n−1) = 1,
so the equation is called first order. When the input x is zero as in
Example 10.1, the equation is called homogeneous. Given one initial
value, say y(n0) in a first-order equation, a numerical value of y(n) could
be found for each n ≥ n0.

A general form for an Nth-order linear difference equation with con-
stant coefficients is

a0 y(n) + a1 y(n − 1) + · · ·+ aN−1 y(n − N + 1) + aN y(n − N)

= b0 x(n) + b1 x(n − 1) + · · ·+ bM x(n − M),

(10.4)
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where a0, . . . , aN are constant with a0 and aN nonzero. The coefficients
b0, . . . , bM are also constant with b0 and bM nonzero in the general case.

In summation notation, Equation 10.4 becomes

N
∑

i=0

aiy(n − i) =

M
∑

i=0

bix(n − i). (10.5)

The coefficients will be assumed to be real. If the b coefficients are
nonzero, the x terms are considered the input terms for the current in-
stant n and M −1 previous instants, while the y terms are output values.
Notice that when N > 0, the current output y(n) depends not only on
the inputs but on previous values of the outputs if the a coefficients are
nonzero. When this is true, such equations are called recursive.

A solution to the difference equation is any sequence y(n) for which
Equation 10.5 is satisfied for n = 0, 1, 2, . . .. As with differential equa-
tions, the solution to Equation 10.5 will consist of a complementary so-
lution and a particular solution. The complementary solution to the ho-
mogeneous equation can be formed from the linear combination of N
linearly independent solutions of the homogeneous equation which con-
tains N arbitrary constants. If N initial values of y are given such as for
y(0), y(1), . . . y(N −1), the problem is called the initial value problem and
the values of the constants can be determined from the initial conditions.
To complete the solution, it is necessary to find a particular solution to
the inhomogeneous equation. The solution to the initial value problem is
unique.

Since Equation 10.5 is linear, the general solution to the difference
equation can be expressed as the sum

y(n) = yc(n) + yp(n) (10.6)

where yc(n) is called the complementary solution and yp(n) is a particular

solution.

THE COMPLE-

MENTARY

SOLUTION

The solution to the homogeneous equation

a0 y(n)+a1 y(n−1)+ · · ·+aN−1 y(n−N +1)+aN y(n−N) = 0 (10.7)

is called the complementary or homogeneous solution which we will des-
ignate as y(n) = yc(n) in the present discussion.

It can be shown that a solution is of the form

yc(n) = Crn (10.8)

where C and r are to be determined. Computing each term in Equa-
tion 10.7 yields the terms

yc(n) = Crn = Cr−NrNrn
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yc(n − 1) = Crn−1 = Cr−1 rn = Cr−NrN−1rn

...

yc(n − N) = Crn−N = Cr−N rn (10.9)

Substituting the terms in Equation 10.7 and taking out the term r−N

yields

(a0 + a1 r−1 + · · ·+ aN−1 r−(N−1) + aN r−N) Crn

= (a0 rN + a1 rN−1 + · · ·+ aN−1 r + aN )Cr−N rn = 0.

If the solution is nontrivial (C 6= 0), there results the polynomial equation

a0 rN + a1 rN−1 + · · ·+ aN−1 r + aN = 0. (10.10)

Describing a discrete system, this equation is called the characteristic

equation for the system.

Distinct Roots If the roots ri, i = 1, 2, . . .N are distinct, the linearity
of the homogeneous Equation 10.7 yields a solution in the form

yc(n) = C1 rn
1 + C2 rn

2 + · · ·+ CN rn
N . (10.11)

The N unknowns C1, C2, . . . , CN are determined by the general solution
and the initial conditions. Typically, one value such as y(0) would be spec-
ified for a first-order equation, y(0) and y(1) for a second-order system,
and y(0), y(1), . . . y(N − 1) for an Nth-order system.

EXAMPLE 10.2 Homogeneous Difference Equations

a. Consider the first-order difference equation

y(n) + y(n − 1) = 0

with the characteristic equation r + 1 = 0. Then, the solution given by
Equation 10.8 is y(n) = C1(−1)n. It is easily verified in this case, since
substituting the solution in the equation yields

C1(−1)n + C1(−1)n−1 = −C1(−1)n−1 + C1(−1)n−1 = 0.

The arbitrary constant would be determined if some value of y(n) were
known. For example, C1 = y(0) if y(0) is known.

b. The second-order equation

y(n) − 5y(n − 1) + 6y(n − 2) = 0

has the characteristic equation r2 − 5r + 6 = (r − 3)(r − 2) = 0 so that

y(n) = C1(2)
n + C2(3)

n.

The constants C1 and C2 can be determined from two values of y in the
solution set.
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The roots of the characteristic equation can be found using the MAT-
LAB command roots. For the last example, the MATLAB statements

>>p = [1 -5 6]

>> r = roots(p)

yield the roots.

Repeated Roots If the characteristic Equation 10.10 has roots that
are repeated, the form of the solutions to the difference equation must
be modified. For each real root r of multiplicity m, the solution can
be shown to have the terms rn, nrn, . . . , nm−1 rn. This is analogous to
the solutions teλt, t2eλt, . . . that arise from the homogeneous solution of
differential equations when the characteristic equation has repeated roots.

EXAMPLE 10.3 Homogeneous Difference Equation with Repeated Roots
Consider the difference equation

y(n) + 2y(n − 1) + y(n − 2) = 0

which has the characteristic equation r2 + 2r + 1 = (r + 1)2 = 0 so that
r1 = r2 = −1 is a repeated root. The solution is

y(n) = C1(−1)n + C2n(−1)n = (C1 + C2n)(−1)n.

In this case, C1 = y(0) and C2 = −C1 − y(1).

Second-order Difference Equation Consider the difference equation

y(n) − 2ay(n − 1) + y(n − 2) = 0 (10.12)

with a a real coefficient. This second-order homogeneous equation has
the characteristic equation

r2 − 2ar + 1 = 0

which has the roots

r1 = a +
√

a2 − 1

r2 = a −
√

a2 − 1. (10.13)

Based on the value of a, we consider the cases:

1. If |a| > 1, the roots are real and distinct so that

y(n) = C1(r1)
n + C2(r2)

n. (10.14)
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2. If |a| < 1, the roots are complex and distinct so

y(n) = C1(r1)
n + C2(r2)

n

= C1(a + i
√

1 − a2)n + C2(a − i
√

1 − a2)n. (10.15)

This result can be simplified by noting that a complex number can
be expressed as ρeiθ , so we can write

r1 = ρ1e
iθ1 , r2 = ρ2e

iθ2

where

ρ1 = ρ2 =
√

a2 + (1 − a2) = 1, θ1 = tan−1

√
1 − a2

a
= −θ2.

Also, applying Euler’s formula as described in Chapter 2

(ρeiθ)n = ρn(cos nθ + i sin nθ)

with ρ = 1, leads to the result

y(n) = C1 cos nθ + iC1 sinnθ + C2 cosnθ − iC2 sin nθ

= C3 cos nθ + C4 sin nθ. (10.16)

3. If a = 1, the roots are real and equal to 1, so that the solution is

y(n) = C1 + C2n. (10.17)

4. If a = −1, the roots are real and equal to −1, so that the solution
is

y(n) = (C1 + C2n)(−1)n. (10.18)

EXAMPLE 10.4 Rabbits and Fibonacci
Suppose one pair of newborn rabbits is left on an island to reproduce and

populate the island with their offspring and descendants. Further suppose that
a newborn pair produces offspring at 2 months of age but a pair of rabbits is
born each month to each adult pair. How will the rabbit population grow each
month?

Let y(n) denote the number of pairs of rabbits at the beginning of the nth
month with y(0) = 0 and y(1) = 1 pair. We could count the pairs to determine
the sequence

y(0) = 0, y(1) = 1, y(2) = 1, y(3) = 2, y(4) = 3, y(5) = 5, . . .

As a difference equation, the number at the beginning of a month y(n) is the
total number from the last month y(n − 1) (no rabbits pass away), plus the
number of newborns. Each pair that is two months or older produces a new
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pair so the number of fertile pairs in month n is y(n − 2). Thus, we find that
y(n) is defined by the difference equation

y(n) = y(n − 1) + y(n − 2), n = 2, 3, 4, . . . (10.19)

with y(0) = 0, y(1) = 1. The characteristic equation is r2 − r − 1 = 0 with the
roots

r1 =
1 +

√
5

2
, r2 =

1 −
√

5

2
.

The solution of Equation 10.19 is

y(n) = C1

(

1 +
√

5

2

)n

+ C2

(

1−
√

5

2

)n

(10.20)

with the constants determined by the conditions y(0) = 0 and y(1) = 1. You
are asked to show in Problem 10.3 that the solution becomes

y(n) =
1√
5

(

1 +
√

5

2

)n

− 1√
5

(

1 −
√

5

2

)n

. (10.21)

The Fibonacci sequence introduced in Chapter 6 can be described by the

difference equation derived for the rabbits. Every Fibonacci number after the

first two is the sum of its two predecessors.

Summary of Homogeneous Solutions Table 10.1 summarizes the
solutions to a linear homogeneous difference equation with constant coef-
ficients based on the form of the roots of the characteristic equation. For
combinations, use superposition to create the solution.

TABLE 10.1 Homogeneous solutions

Root of characteristic equation Choice for yc(n)

Real and distinct ri Crn
i

Complex conjugate a ± ib = ρe±iθ [C1 cos(nθ) + C2 sin(nθ)]ρn

Real repeated root rm (K0 + K1n + · · · + Kmnm)rn

Complex, repeated [ρeiθ]m (C0 + C1n + · · · + Cmnm) cos(nθ)rn

+(D0 + D1n + · · · + Dmnm) sin(nθ)rn
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PARTICULAR

SOLUTIONS TO

DIFFERENCE

EQUATIONS

We now turn to the task of finding a particular solution to the difference
equation

a0 y(n) + a1 y(n − 1) + · · ·+ aN−1 y(n − N − 1) + aN y(n − N) = x(n).
(10.22)

This is a special case of Equation 10.5 with b0 = 1 and M = 0. As with
differential equations, a particular solution sometimes can be determined
by the method of undetermined coefficients if the form of the forcing
function x(n) is simple as shown in Table 10.2.

TABLE 10.2 Undetermined coefficient solutions

x(n) Choice for yp(n)

C C1 (C and C1 constant)

nq Kqn
q + Kq−1n

q−1 + · · · + K1n + K0

an Can if a is not a root of the characteristic equation.
(C1 + C2n)an if a is a distinct root of the characteristic
equation.

(C1 + C2n + · · · + Cmnm)an if a is a multiple root
of the characteristic equation repeated m times.

EXAMPLE 10.5 General Solution to a Difference Equation
The difference equation

y(n) + y(n − 1) = n − 1

has the characteristic equation r + 1 = 0 so that the homogeneous solution is

yc(n) = C(−1)n.

A particular solution of the form yp(n) = K1n + K0 is assumed for the input
x(n) = n − 1 as found in Table 10.2 by combining the solutions for the input
function nq with q = 1 and a constant input. Substituting the choice for yp(n)
yields

K1(n) + K0 + K1(n − 1) + K0 = n − 1.

substituting the assumed particular solution for two points, say n = 0 and
n = 1, yields

2K0 − K1 = −1

2K0 + K1 = 0

and by solving this system we find K0 = −1/4 and K1 = −2K0 = 1/2. Thus,
The general solution is

y(n) = C(−1)n +
2n − 1

4
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as you should check by substituting the solution into the difference equation.

General Solutions In a manner similar to that for differential equa-
tions, the general solution for the linear nonhomogeneous difference equa-
tion can be found by first finding the general solution of the associated
homogeneous equation and then finding a particular solution of the non-
homogeneous equation. The complete solution is the sum of the two
solutions. In addition to the techniques discussed already in this chap-
ter, there are also approaches to solving the difference equation analogous
to the variation of parameters method described in Chapter 5. O’Neil’s
textbook and other references listed in the Annotated Bibliography for
this chapter presents the method. However, in this textbook, we will use
Z-transform techniques to find the general solutions as shown in a later
section.

10.3 APPROXIMATION TO DIFFERENTIAL EQUATIONS

It is often convenient to make an association between continuous quan-
tities and discrete quantities. In particular, a linear differential equa-
tion with constant coefficients can be discretized, resulting in a difference
equation that can be solved to approximate the solution of the differential
equation.

One method of associating a differential equation with a difference
equation approximates the derivatives with differences. For example, let-
ting ŷ(t) be a continuous function, the first derivative can be approxi-
mated as

dŷ(t)

dt

∣

∣

∣

∣

t=nT

≈ ŷ(nT + T ) − ŷ(nT )

T
(10.23)

as we have seen previously in Chapter 6 using the Euler approximation.
The second derivative can be approximated as

d2ŷ(t)

dt2

∣

∣

∣

∣

t=nT

≈
dŷ(nT + T )

dt
− dŷ(nT )

dt
T

=
ŷ(nT + 2T ) − 2ŷ(nT + T ) + ŷ(nT )

T 2
. (10.24)

From these approximations, a difference equation can be formed from a
given differential equation.
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EXAMPLE 10.6 First Order Equations
Consider the first-order differential equation

dŷ(t)

dt
+ aŷ(t) = bx̂(t) (10.25)

where a and b are constants with initial condition ŷ(0) given. Using the approx-
imation of Equation 10.23, this differential equation can be associated with the
difference equation

ŷ(nT + T ) − ŷ(nT )

T
+ aŷ(nT ) = bx̂(nT ).

Multiplying by T and replacing n by n − 1 yields the difference equation

y(n) − (1 − aT )y(n − 1) = bTx(n − 1). (10.26)

Since the characteristic equation is r − (1 − aT ) = 0, the homogeneous
solution to the difference equation is

y(n) = (1− aT )ny(0). (10.27)

Note that the homogeneous solution to the original differential equation is

ŷ(t) = e−atŷ(0), t ≥ 0. (10.28)

Problem 10.6 asks you to compare the difference equation solution with

this continuous solution.

10.4 SMOOTHING AND DIGITAL FILTERS

As an example of the use of difference equations, we will consider the
filtering of a signal that is sampled to form a discrete signal. In this
case, filtering is the process of modifying the frequency characteristics
of a signal. The primary objective is to remove unwanted signal energy
(noise) and enhance the signal information of interest. The filtered signal
is the output of the filter which is generally a smoothed version of the
input in time when noise removal is the objective of filtering.

If the signals are continuous in time, the input x̂(t) and output ŷ(t)
can be related by a differential equation representing the filter as an analog
system. When the filtering is done by a discrete system, the continuous
signals must be converted to a discrete format. This is typically accom-
plished by sampling the input signal at discrete instants of time to yield a
discrete signal . The discrete system is often called a digital filter in such
applications.

In this section, a digital filter is represented by a difference equation
and the input is the signal to be filtered. The output signal is the solution
to the difference equation. Since the independent variable is most often
time, the signals are called discrete-time signals.
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DISCRETE TIME

SIGNALS

A discrete-time signal is a signal defined only at discrete points of time.
The signal is defined by a sequence that defines the amplitude at the
discrete points in time. Although some signals are inherently discrete,
most discrete-time signals are obtained from continuous-time signals by
sampling . The continuous signal f̂(t), for example, can be sampled at the
times 0, Ts, 2Ts, . . . to produce the discrete time signal

f̂(nTs), n = 0, 1, . . .

for which there are various notations such as

f̂(nTs) = f̂(t)
∣

∣

∣

t=nTs

= f(n) = fn

to denote the amplitude of the sample at the time t = nTs.
1

For computer applications, the amplitude will also be a discrete value
that can only assume certain defined values, due to the character of
analog-to-digital converters and the necessity to store the sampled val-
ues in a memory with a limited number of bits. Discrete-time signals
with discrete amplitude values are called digital signals.

LOWPASS

FILTERS

We begin by introducing a particular type of filter called a lowpass or
smoothing filter. This filter is used to remove noise from a signal by
limiting the output variations of the filtered signal, and thus produce an
output that is smoother than the input signal. After giving an example of
a smoothing filter, we present the frequency response of filters described
by difference equations.

EXAMPLE 10.7 First-Order Smoothing Filter
Consider the discrete-time signal represented by the sequence

x(0), x(1), x(2), · · · ,

which we assume is a signal corrupted by random noise. One method of reduc-
ing the unwanted fluctuations is to compute a smoothed version of the signal
according to the rule

y(n) = a y(n − 1) + (1 − a) x(n) (10.29)

where 0 < a < 1 and y(−1) = 0.2 At each value n, the output y(n) is formed
as a weighted average of the new input x(n) and the output y(n − 1) at the
preceding time instant n − 1. If the constant a is almost zero, the output is
almost equal to the input. The closer a is to 1, the more the preceding output
is weighted and the “smoother” is the output.

1Some authors, particularly those describing signals and linear systems, use the notation f [n] with square

brackets to designate discrete values of f̂(t).
2It is assumed that the output y(n) cannot begin before the input x(0). Systems that do not respond

before being stimulated are called causal.
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For a given input sequence x(n), the output y(n) is easily calculated using
MATLAB. In the accompanying script, the input signal is a sampled sine wave
corrupted by random noise. The command rand generates random values from
0 to 1 in amplitude. Here the values are scaled to values between −0.05 and
+0.05.

Since MATLAB vectors are indexed from 1 to N , the first values of x and
y are x(1) and y(1) respectively in the script. Figure 10.1 shows the input
signal and the smoothed result for the value of a defined in the title. Notice the
change in amplitude and the shift of the peak value as well as the smoothness
of the filtered signal as compared to the unfiltered version.

MATLAB Script

Example 10.7

% SMOOTHER.M A smoothing filter defined as

% y(n) = a*y(n-1) +(1-a)*x(n) , y(-1)=0

% x(n) is input signal, y(n) is smoothed output

%

% Test signal is sin(w*t) with random noise

% INPUT: Weighing factor a

% OUTPUT: Plot of x and y

%

clear, clf

w=2*pi/5;

t = linspace(0,10,100); % Time steps

s = sin(w*t); % Noiseless signal

% Add random noise

len=size(t);

na = 0.1; % Noise amplitude

noise = na*(rand(len)-.5); % (-.05 to +.05)

x = s + noise;

%

% Weighing factor

a = input(’Weighing factor a= ’)

%

y(1)=(1-a)*x(1);

for I=2:100

y(I) = a*y(I-1) + (1-a)*x(I); % Digital Filter

end

plot(t,x,’--’,t,y,’-’)

xlabel(’Time’), ylabel(’Signals’)

title([’Effect of Smoothing Filter, a = ’, num2str(a)])

legend(’Input x’,’Output y’)
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FIGURE 10.1 Signal and Smoothed Version

In terms of the frequency spectrum of the input signal, the difference equa-

tion describes a lowpass filter when a is nonzero since higher frequencies are

removed from the input signal. The frequency characteristics of the smoothing

filter will be presented in Example 10.8.

FREQUENCY

RESPONSE OF

DIGITAL

FILTERS

As explained in Chapter 8, for continuous-time systems that are linear
and time invariant, the frequency response is determined by assuming a
sinusoidal signal as the input to the system. The steady state output is
also a sinusoid of the same frequency, perhaps with an amplitude scaling
and a phase shift compared to the input signal. In the differential equa-
tion model for the system with zero initial conditions, the ratio of the
output sinusoidal signal to the input sinusoidal signal is called the trans-

fer function of the system. The transfer function computed or plotted
for a range of input frequencies represents the frequency response of the
system.

In an analogous way, the frequency response of a linear, discrete-
time system that is time-independent is determined by using a complex
sampled sinusoid

x(n) = x̂(nTs) = AeiωnTs

as the input. The value A is a real constant and Ts is the time between
samples of the input signal. The ratio of the output y(n) to x(n) is the
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transfer function for the discrete system. By varying the input frequency,
the frequency response of the discrete system is determined.

Often the linear frequency variable (hertz) is normalized to yield the
digital frequency

F =
f

fs

= fTs. (10.30)

Also, Ω = 2πF = ωTs is the digital radian frequency. The analog fre-
quency f = 1/Ts corresponds to the digital frequency F = 1 or Ω = 2π.

Difference Equations To determine the frequency response of a sys-
tem described by the difference equation

y(n) +

N
∑

m=1

am y(n − m) =

M
∑

m=0

bm x(n − m), (10.31)

we apply a unit sinusoid

x(n) = eiΩn

as the discrete input and assume the solution to the difference equation
has the form

y(n) = HeiΩn.

Thus, H is the transfer function for the system.
Substituting the assumed response into Equation 10.31 yields

HeiΩn +

N
∑

m=1

amHeiΩ(n−m) =

M
∑

m=0

bmeiΩ(n−m).

Dividing out eiΩn and solving for H shows that the frequency response is

H =

M
∑

m=0

bme−iΩm

1 +

N
∑

m=1

ame−iΩm

. (10.32)

Although H is a complex constant for each digital frequency, H will
vary as the input frequency changes and it is customary to write the
transfer function as H(eiΩ) to emphasize the dependence on eiΩ in Equa-
tion 10.32. Notice that the discrete-time system frequency response is
periodic with the sampling frequency

ωs =
2π

Ts

since H(ei(ω+kωs)Ts) = H(eiωTs) where k is an integer.
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EXAMPLE 10.8 Frequency Response of First-Order System
The frequency response of a first-order discrete system will be investigated.

Consider the smoothing filter of Example 10.7

y(n) = a y(n − 1) + (1 − a) x(n)

where 0 < a < 1. Using Equation 10.32 with a1 = −a and b0 = (1 − a),

H =
1 − a

1 − ae−iΩ
=

1− a

1 − ae−i2πF

=
1 − a

1 − a cos 2πF + ia sin 2πF
(10.33)

since Ω = 2πF . Writing H in polar form H(e2πiF ) = A(F )eiφ(F ) yields the
amplitude and phase response of the system as

A(F ) =
1− a√

1 + a2 − 2a cos 2πF

φ(F ) = − tan−1 a sin 2πF

1− a cos 2πF
. (10.34)

Notice that the dc gain H(0) = 1 and that H is periodic. Figure 10.2 displays
the amplitude and phase in degrees for three values of a.
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FIGURE 10.2 Amplitude and phase plots

From Figure 10.2, we see that this form of a digital filter acts as a low-pass

filter since it attenuates the higher frequencies in an input signal relative to

the lower frequencies. If a continuous input signal is sampled at time intervals

Ts to form x(n), Equation 10.30 shows that the sample interval Ts as well as

the parameter a determine the frequency characteristic of the discrete system

considered as a digital filter.
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SIGNAL

PROCESSING

TOOLBOX

Digital signal processing (DSP) is the general name of a set of techniques
used to analyze and modify digital signals, especially for the purpose of
spectral analysis and filtering. The DFT and FFT introduced in Chap-
ter 11 are methods used to determine the frequency spectrum of a signal.
Digital filtering can be performed with software algorithms or with hard-
ware using discrete-digital components or DSP microprocessors.

The Signal Processing Toolbox is a collection of M-files that solve
problems in digital signal processing. The toolbox is included with the
Student Edition of MATLAB but must be purchased separately from the
professional version of MATLAB.

10.5 INTRODUCTION TO Z TRANSFORMS

In preceding chapters, we have studied differential equations by direct
solution as well as by using Fourier and Laplace transform techniques. We
now turn to a transform that is called the Z-transform due to the use of
the complex variable z = x+iy = ρeiΩ in the transform. The Z-transform
plays the same role for discrete systems as the Laplace transform does for
continuous systems. Table 10.3 summarizes some of the applications of
the Z-transform.

TABLE 10.3 Applications of Z-transform

Area Application

Definition The Z-transform is defined as a sum that transforms discrete
signals to the complex frequency (Z) domain.

System analysis The Z-transform converts convolutions to a product
and difference equations to algebraic equations.

Stability Stability of a discrete linear system can be determined by analyzing
the transfer function H(z) given by the Z-transform.

Frequency response The transfer function H(z) can be evaluated to determine
the frequency response of a discrete system.

Digital filters Digital filters can be analyzed and designed using
the Z-transform.

Control Digital control systems can be analyzed and designed using
Z-transforms.

In this section, we follow generally the development of Chapter 9 on
Laplace transforms. Indeed, we shall see that there is a close connection
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between the Z and Laplace transforms. The Z-transform is first intro-
duced and its properties defined, after which we discuss the computation
of the transform and inverse transform. MATLAB commands for the
transform are presented. Then, we study applications of the Z-transform
to difference equation and discrete systems. The chapter ends with a
summary of properties of the Z-transform.

LAPLACE AND

Z-TRANSFORMS

In this section, the term sampling refers to replacement of a function f(t)
by the function f(nT ). Here we consider sampled-data systems in which
input and output functions are considered at only discrete values of t,
usually at values nT, n = 0, 1, 2, . . ., where T is a positive constant.

By sampling the continuous function f(t) at every Ts seconds, we
obtain the discrete function fd(t) with values defined at t = 0, Ts, 2Ts, . . ..
This discrete function can be written in terms of the unit impulse function

δ(t − nTs) =

{

1, t = nTs

0, t 6= nTs
(10.35)

where n = 0, 1, . . . in the following manner:

fd(t) =

∞
∑

n=0

f(nTs)δ(t − nTs). (10.36)

The discrete time function fd(t) has as its Laplace transform

L[fd(t)] =

∫

∞

0

∞
∑

n=0

f(nTs)δ(t − nTs)e
−st dt

=

∞
∑

n=0

f(nTs)e
−nTss (10.37)

using the definition of the one-sided Laplace transform and the properties
of the impulse function.

Defining a new complex variable

z = eTss

leads to the definition of the Z-transform as the Laplace transform of the
discrete function f(nTs)

L[f(nTs)] =

∞
∑

n=0

f(nTs)z
−n = F (z). (10.38)

Before presenting applications of the Z-transform, the mathematical
properties of the transform are considered. Also, a number of examples
are presented in this section.
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THE

Z-TRANSFORM

Mathematically, the Z-transform is a rule by which a sequence of numbers
is transformed into a function of the complex variable z = x + iy, which
can be written

z = ρ exp(i2πF ) = ρ exp(iΩ).

If {f(n)} is a sequence, then we write

Z[f(n)] = F (z) and f(n) = Z−1[F (z)]. (10.39)

The Z-transform is defined by the series

Z[f(n)] =

∞
∑

n=0

f(n)z−n

= f(0) +
f(1)

z
+

f(2)

z2
+ · · · . (10.40)

This transform is typically used to analyze sequences for which f(n) = 0
for n < 0 so this transform is called the unilateral , or single-sided Z
transform since the sum begins at zero. .

Region of Convergence The transform of Equation 10.40 may only
converge for a restricted set of values of z called the region of conver-

gence in the complex plane. Thus, for each Z-transform, the region of
convergence should be investigated in certain cases. The ratio test can be
applied to the series of Equation 10.40 to test for convergence as in Prob-
lem 10.8. This book considers convergence of real functions in Chapter 6.
Kaplan’s textbook listed in the Annotated Bibliography for this chapter
treats complex series.

For the one-sided Z-transform, the infinite series will converge exte-
rior to a circle in the z plane that is larger than the largest pole magnitude
of F (z). The cases studied in Example 10.9 illustrate this property.

Finite Sequences For finite sequences, the Z-transform may be writ-
ten as a polynomial in z. Thus, in computer applications, the question
of convergence need not arise except in cases when z = 0 or z = ∞.
Elsewhere in the z-plane, the series in z will converge.

EXAMPLE 10.9 Z-transform Computation

a. Consider the sequence f(n) = an for n = 0, 1, . . . where a is a constant.
The Z transform of f(n) is

F (z) =

∞
∑

n=0

anz−n =

∞
∑

n=0

(az−1)n =

∞
∑

n=0

(

a

z

)n

. (10.41)

This is a geometric series, discussed for the real case in Chapter 6. As
in the real case, the series converges with r = az−1 to 1/(1 − r) since

1 + r + r2 + · · · =

∞
∑

m=0

rm =
1

1 − r
(10.42)
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provided that |r| < 1. Equation 10.41 thus becomes

F (z) = Z [an] =
1

1 − az−1
=

z

z − a
(10.43)

if |az−1| < 1 or |z| > |a|. In the z-plane, the transform is a function
defined for z outside a circle of radius a centered at the origin.

b. The discrete-time unit-step sequence is defined as

u(n) =

{

1, n = 0, 1, 2, . . .
0, n < 0.

The Z-transform of the discrete-time unit-step sequence is

U(z) =

∞
∑

n=0

z−n = 1 + z−1 + · · ·

=
1

1 − z−1
=

z

z − 1
(10.44)

PROPERTIES OF

THE Z
TRANSFORM

As with the Laplace transform, a number of the properties of the Z trans-
form can be used to simplify calculations of the transform or the inverse
transform.

THEOREM 10.1 Linearity of the Z-transform
Assume that Z [f(n)] = F (z) and Z [g(n)] = G(z). Then, with α and β

constant,

Z [αf(n) + βg(n)] = αF (z) + βG(z).

The proof is obtained directly from the defining expression for the Z
transform.

THEOREM 10.2 Right Shifting of f(n)
Suppose that Z [f(n)] = F (z), then

Z [f(n−N)] = z−NF (z)+f(−N)+f(−N+1)z−1+ · · ·+f(−1)z−N+1 (10.45)

The proof is straightforward using the change of variable m = n−N
in the Z-transform with the result

Z[f(n − N)] =

∞
∑

n=0

f(n − N)z−n =

∞
∑

m=−N

f(m)z−(m+N)

= z−N

∞
∑

m=−N

f(m)z−m
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= z−N [f(−N)zN + · · ·+ f(−1)z + f(0) + f(1)z−1 + · · ·]
= f(−N) + f(−N + 1)z−1 + · · ·+ f(−1)z−N+1

+z−N [f(0) + f(1)z−1 + · · ·]

Since the term in brackets is the Z transform of f(n), the theorem is
proved.

If the values of f(n) for negative n are not zero, the values must be
included in the shifted result as described in the theorem. For the Z
transform, a right shift of N samples brings samples for n < 0 into the
range n ≥ 0. For the case that f(n) = 0, n < 0, the right-shift theorem
becomes

Z[f(n − N)] = z−NF (z) f(n) = 0, n < 0. (10.46)

The interpretation of f(n − 1) as a sequence is the sequence f(n)
shifted to the right by one sampling interval, called a delay of one unit.
Thus, If N = 1 in Equation 10.46, the multiplier z−1 for F (z) corresponds
to a unit delay of f(n).

THEOREM 10.3 Left Shifting of f(n)
Suppose that Z [f(n)] = F (z), then

Z [f(n + N)] = zNF (z)− f(0)zN − f(1)zN−1 − · · · − f(N − 1)z−N+1 (10.47)

The right-shift and left-shift properties are useful when using the Z-
transform to solve difference equations.

THEOREM 10.4 Multiplication by n
If Z [f(n)] = F (z),

Z [nf(n)] = −z
dF (z)

dz
. (10.48)

Thus, multiplying f(n) by n results in (negative) differentiation of
the transform.

EXAMPLE 10.10 Examples Using Z Transform Properties

a. The Z transform of

f(n) = cos nω =
1

2
einω +

1

2
e−inω n ≥ 0,

can be computed as

F (z) =
1

2
Z [einω] +

1

2
Z [e−inω]

=
1/2

1 − eiωz−1
+

1/2

1 − e−iωz−1
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=
1 − cos ωz−1

1 − 2 cos ωz−1 + z−2

=
z2 − z cosω

z2 − 2z cos ω + 1
|z| > 1

using the linearity property of the Z transform and the result of Equa-
tion 10.43 with a = e±iω.

b. Consider the discrete pulse of width N points, f(n) = u(n)− u(n−N).
From Example 10.9 and the shifting property

Z [u(n) − u(n − N)] =
z

z − 1
− z−N z

z − 1
=

z(1− z−N )

z − 1
.

Since the Z-transform F (z) = 1 + z−1 + · · · + z−(N−1) is a rational
function, the region of convergence is the entire z-plane except z = 0. If
z = 1, the result is F (z) = N .

Table 10.4 presents a few Z-transforms which can be computed using
the examples and properties presented in this section. The region of
convergence is also indicated for each transform.

TABLE 10.4 Example Z Transforms

f(n) F (z) f(n) F (z)

u(n)
z

z − 1
, |z| > 1 cos(nω)u(n)

z2 − z cos ω

z2 − 2z cos ω + 1
, |z| > 1

anu(n)
z

z − a
, |z| > a sin(nω)u(n)

z sinω

z2 − 2z cos ω + 1
, |z| > 1

nu(n)
z

(z − 1)2
, |z| > 1 nanu(n)

za

(z − a)2
, |z| > a

INVERSE Z
TRANSFORM

For the inverse Z transform, we write

Z−1[F (z)] = f(n)

to designate the inversion of F (z) to obtain the discrete function f(n).
There are many methods to invert a given complex function, assumed to
be the Z-transform of a sequence f(n). Here we present the method of
partial fraction expansion for inverting F (z). As with the method applied
to invert certain Laplace transforms, we write

F (z) = F1(z) + F2(z) + · · ·
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when F (z) can be written in terms of the expansion of simpler functions
whose Z transforms are known.

Note: It is suggested that the reader review the sections of Chapter 9
covering Laplace transforms that deal with the method of partial fraction
expansion to compute the inverse Laplace transform. The techniques
discussed there apply directly to the expansion of a Z-transform that is
a ratio of polynomials in z. In many cases, F (z)/z is a proper rational
fraction that can be expanded into simpler terms. When the expansion
is multiplied by z, terms arise such as those included in Table 10.4.

EXAMPLE 10.11 Inverse Z-transform by Partial Fraction Expansion and Divi-

sion

a. Given

F (z) =
3z2

z2 + z − 2
, (10.49)

we write

F (z) = z
3z

z2 + z − 2
= z

3z

(z − 1)(z + 2)
.

Now F (z)/z is a proper rational fraction in z. The partial fraction
expansion becomes

F (z)

z
=

3z

(z − 1)(z + 2)
=

1

z − 1
+

2

z + 2

so that

F (z) =
z

z − 1
+

2z

z + 2
.

Using Table 10.4, the inverse transform is thus

f(n) = [1 + 2(−2)n]u(n).

b. Since we can write

F (z) = f(0) + f(1)z−1 + f(2)z−2 + · · · ,

one way to determine the coefficients of f(n) is by long division. In the
case of Equation 10.49 , divide z2 +z−2 into 3z2 and use powers of z−1

for terms after the second. The result is

f(0) = 3, f(1) = −3, f(2) = 9, f(3) = −15, · · ·

since the quotient is the series

F (z) = 3 − 3z−1 + 9z−2 − 15z−3 + · · · .

W H A T I F ? When a closed form expression for f(n) cannot be
obtained, F (z) can be expanded in a power series in z−1 to determine
the values f(i), i = 1, 2, . . .n. An alternative is direct long division as
just described in Example 10.11. Verify these results.
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10.6 MATLAB COMMANDS FOR DISCRETE SYSTEMS

MATLAB has commands that can be used to help solve difference equa-
tions and to compute Z-transforms and their inverses. The Symbolic Math

Toolbox and the Signal Processing Toolbox have additional commands for
this purpose.3 Table 10.5 lists commands that are useful for analysis of
discrete systems.

TABLE 10.5 MATLAB commands for Discrete Analysis

Command Result

Numerical operations:

conv Convolution and polynomial
multiplication.

roots Roots of a polynomial.
residue Partial fraction expansion.
Symbolic Math Toolbox operations:

ztrans Z transform.
iztrans Inverse Z transform.
Signal Processing Toolbox operations:

freqz Frequency response of discrete
system.

residuez Partial-fraction expansion.

EXAMPLE 10.12 MATLAB Solution for Inverse Z-transform
Consider the Z-transform

Y (z) =
0.1z2

z2 − 1.9z + 0.9
.

The accompanying MATLAB script uses the command residue to compute
the coefficients in the partial fraction expansion of Y (z)/z. These are given in
the vector K in the program. The vector Z holds the corresponding roots of the
denominator. The fact that p is a null vector indicates that a proper rational
fraction was expanded. The resulting Z-transform for simple factors becomes

Y (z)

z
=

K(1)

z − Z(1)
+

K(2)

z − Z(2)
.

3These toolboxes are included in the student version of MATLAB. They must be purchased separately
from the professional version of MATLAB.
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MATLAB Script

Example 10.12

%EX10_12.M Compute the inverse z-transform by partial fraction

% expansion for Y(z)/z = 0.1z/(z^2-1.9z+0.9)

%

clear

num=[0.1 0] % Numerator 0.1z

den=[1.0 -1.9 0.9] % Denominator z^2-1.9z+0.9

[K,Z,p]=residue(num,den) % K coefficients, Z roots

%

% Results (edited)

%

K = 1.0000

-0.9000

Z = 1.0000

0.9000

p = []

From the MATLAB result for Y (z)/z, we conclude that

Y (z) =
z

z − 1
− 0.9z

z − 0.9
.

Thus, the sequence becomes

y(n) = 1 − (0.9)n+1 n ≥ 0

as determined by choosing the appropriate terms for y(n) from Table 10.4 given

the partial fraction expansion of Y (z).

10.7 Z TRANSFORM SOLUTION OF DIFFERENCE EQUATIONS

Consider the Nth order linear difference equation with constant coeffi-
cients

a0 y(n) + a1 y(n − 1) + · · ·+ aN−1 y(n − N + 1) + aN y(n − N)

= b0 x(n) + b1 x(n − 1) + · · ·+ bM x(n − M) (10.50)

where a0, . . . , aN and b0, . . . , bM are constant with a0 nonzero.
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ZERO INITIAL

CONDITIONS

Assuming that y(n) and x(n) are zero for n < 0, taking the Z transform
of the difference equation of Equation 10.50 yields

a0Y (z) = b0X(z) + b1z
−1X(z) + · · ·+ bMz−MX(z)

−[a1z
−1Y (z) + · · ·+ aNz−NY (z)]. (10.51)

Solving for Y (z) results in the form

Y (z) =
[b0 + b1z

−1 + · · ·+ bMz−M ]X(z)

a0 + a1z−1 + · · ·+ aNz−N
. (10.52)

If X(z) exists and the transform can be inverted, the inverse y(n) is the
solution to the difference equations with zero initial conditions.

EXAMPLE 10.13 Difference Equation

To determine the response of the system described by the difference equa-
tion

y(n) = 0.5y(n − 1) + x(n), y(−1) = 0 (10.53)

to the discrete-time step input x(n) = 4u(n), we take the Z transform with the
result

Y (z)− 0.5[z−1Y (z) + y(−1)] = 4U(z).

With zero initial condition,

Y (z) =
1

1 − 0.5z−1

4z

z − 1

=
4z2

(z − 0.5)(z − 1)
.

Expanding Y (z)/z = by partial fractions yields

Y (z)

z
=

4z

(z − 0.5)(z − 1)
=

8

z − 1
− 4

z − 0.5

with the inverse of Y (z)

y(n) = 8u(n) − 4(0.5)nu(n)

as the solution of the original difference Equation 10.53.
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10.8 APPLICATIONS OF Z-TRANSFORMS TO LINEAR DISCRETE

SYSTEMS

In this section, we present the application of Z-transforms to discrete lin-
ear systems. We generally follow the outline of the application of Laplace
transforms to linear systems in Chapter 9 and we assume the reader is fa-
miliar with that chapter. For linear time-invariant discrete-time systems
with no initial energy, the response to an arbitrary input can be computed
from the unit-pulse response of the system by convolution.

The stability of a discrete system can be determined by examining the
transfer function of the system which is the Z-transform of the system’s
unit pulse response. The position of the poles of this transfer function
determine the characteristics of the system.

CONVOLUTION

AND UNIT

PULSE

RESPONSE

Consider a system with output response h(n) when the input x(n) is the
discrete-time unit pulse defined as

δ(n) =

{

1, n = 0
0, n 6= 0.

(10.54)

The discrete-time unit pulse is a counterpart of the Dirac delta (impulse)
function, although δ(n) should not be considered a sampled version of the
impulse function δ(t).

If we assume the system is causal , the output cannot depend on future
inputs so that h(n) = 0 for n < 0. Otherwise, there could be a response
before an input is applied. Also, it is assumed that there is no initial
energy in the system so that y(i) = 0 for i = −1,−2, . . . ,−N .

For an arbitrary x(n) with x(n) = 0 for n = −1,−2, . . ., x(n) can be
expressed as

x(n) = x(0)δ(n) + x(1)δ(n − 1) + x(2)δ(n − 2) + · · ·

=

∞
∑

i=0

x(i)δ(n − i), n = 0, 1, 2, . . . . (10.55)

To compute y(n) for the input x(n), we note that if the system is
time-invariant, the response to δ(n − i) must be equal to h(n − i). By
the homogeneous property of linear systems with no initial energy, the
response to any input af(t) with scalar a is equal to a times the response
to f(t). Thus, the response to x(i)δ(n − i) is given by

yi(n) = x(i)h(n − i)

associating x(i) with a in the definition of the homogeneous property. Us-
ing the additive property of linear systems allows us to sum the responses
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to each term in Equation 10.55 to yield the result

y(n) =

∞
∑

i=0

x(i)h(n − i), n = 0, 1, 2, . . . . (10.56)

as the response to x(n). Note that since the system is causal, the sum in
Equation 10.56 is finite for each n.

The convolution of two sequences x(n) and h(n) is the sequence de-
fined by the expression

∞
∑

i=0

x(i)h(n − i), n = 0, 1, 2, . . . (10.57)

denoted as x(n) ∗ h(n). Thus, the output y(n) due to input x(n) to a
system with no initial energy with unit pulse response h(n) is given as

y(n) = x(n) ∗ h(n)

according to Equation 10.56. This sum for finite length discrete functions
can be carried out by the MATLAB command conv.

EXAMPLE 10.14 Convolution Solution
Let h(n) = 0.9n be the unit pulse response for a system with unit step

input u(n). Using the convolution sum of Equation 10.56, the response is

y(n) =

∞
∑

i=0

(0.9)i.

For a finite sum,

y(n) =

n
∑

i=0

(0.9)i =
1 − (0.9)n+1

1 − 0.9
= 10(1 − (0.9)n+1).

Problem 10.22 asks you to compute the MATLAB solution using conv and

compare it to this sum for a finite number of terms.

Convolution and Z-transform Products The convolution theorem
relates the product of Z-transforms to the convolution of the correspond-
ing sequences. This theorem is often useful to determine the response of
a discrete system.

THEOREM 10.5 Convolution and Z-transforms
Let F1(z) and F2(z) be, respectively, the Z-transforms of f1(n) and f2(n).

Then, F3(z) = F1(z)F2(z) is the Z-transform of the convolution of f1(n) and

f2(n) given by

f3(n) =

∞
∑

k=0

f1(k)f2(n − k).
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EXAMPLE 10.15 Convolution Theorem Example
For the difference equation

y(n) = ay(n − 1) + (1 − a)x(n)

the unit pulse response is

h(n) = (1 − a)an n ≥ 0

as is easily shown by letting x(0) = δ(0) and computing the terms in h(n) as
h(0) = 1− a, h(1) = a(1 − a), . . . , h(n) = (1 − a)an.

Let x(n) = u(n), the unit step sequence. Then, the step response can be
computed as the convolution

s(n) = h(n) ∗ u(n) =

∞
∑

m=0

h(n − m). (10.58)

Letting k = n − m, yields

s(n) =

n
∑

k=−∞

h(k).

Thus, the step response is the running sum of the unit pulse response. Note
also that s(n) − s(n − 1) = h(n) so the unit pulse response can be determined
by differencing the step response.

In the present case, the step response becomes

s(n) =

n
∑

m=0

h(m) = (1 − a)

n
∑

m=0

am

= (1 − a)(1 + a + a2 + · · · + an)

= 1 + a + a2 + · · · + an − a − a2 − · · · − an − an+1

= 1 − an+1 n ≥ 0.

Taking the Z-transform of h(n) and u(n) yields

H(z) =
(1 − a)z

z − a
and U(z) =

z

z − 1
.

According to the convolution theorem as applied to Equation 10.58, the step
response of the system can be computed as the inverse Z transform of the
product

S(z) = H(z)U(z) =
(1− a)z2

(z − a)(z − 1)
. (10.59)

The partial fraction expansion of S(z)/z leads to the terms

S(z) =
−az

z − a
+

z

z − 1

with the inverse transform

s(n) = (1− aan)u(n) = (1− an+1)u(n)

as previously determined by the convolution sum.
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STABILITY In this section, we consider stability criteria for the Nth order linear
difference equation with constant coefficients

a0 y(n) + a1 y(n − 1) + · · ·+ aN−1 y(n − N + 1) + aN y(n − N)

= b0 x(n) + b1 x(n − 1) + · · ·+ bM x(n − M) (10.60)

where a0, . . . , aN and b0, . . . , bM are constant with a0 nonzero. In ad-
dition, it is assumed that the initial conditions are zero for the system
described by Equation 10.60. Furthermore, the unit pulse response will
be designated as h(n).

The stability criterion called bounded-input bounded-output (BIBO)
will be presented here. This definition of stability is based on the response
to a bounded input sequence. We say that a sequence x(n) is bounded if
its terms do not get arbitrarily large. Thus, for a bounded sequence there
exists a constant M1 such that

|x(n)| ≤ M1 < ∞

for all n ≥ 0. In terms of the output function y(n), BIBO stability
requires that the output y(n) of a linear time-invariant discrete system
with no initial energy is a bounded sequence whenever the input x(n) is
a bounded sequence. It can be shown that this criterion is equivalent to
the statement that the unit pulse response of the system is absolutely
summable.

THEOREM 10.6 Stability in the time-domain
A system with unit pulse response h(n), n = 0, 1, 2, . . . is BIBO stable if

and only if h(n) is absolutely summable, so that

∞
∑

n=0

|h(n)| ≤ M < ∞.

Problem 10.18 asks you to prove this theorem.

POLE-ZERO

ANALYSIS

The transfer function of the system described by Equation 10.60 is found
by taking the Z-transform of the time-domain equation and solving for
H(z) = Y (z)/X(z) to yield

H(z) =
[b0 + b1z

−1 + · · ·+ bMz−M ]

a0 + a1z−1 + · · ·+ aNz−N

= K
(z − z1) · · · (z − zM )

(z − p1) · · · (z − pN )
. (10.61)

Assuming there are no common factors in the numerator and denomina-
tor, the poles, pi, i = 1, . . .N , determine the response h(n) as follows:
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1. if a pole p is real, h(n) contains a term C × pn;

2. if a pole is complex p = ρeiα, h(n) contains a term C × ρneiα;

3. if a pole is repeated m times, h(n) contains terms such as

C × (n)bpn, 0 ≤ b ≤ m − 1,

where C is a constant in all the cases. In each case, for BIBO stability, it
is necessary that

|p| < 1

so that h(n) converges to zero and is thus absolutely summable. This
requirement that all the poles have magnitude strictly less than 1 means
that all the poles must lie within the unit circle in the z-plane. Systems
with simple poles on the unit circle may or may not be stable depending on
the input sequence. Such systems are sometimes called marginally stable.
In conclusion, we state a theorem that characterizes BIBO stability in the
z-domain.

THEOREM 10.7 Stability in the z-domain

A linear time-invariant discrete system with no initial energy is BIBO stable

if and only if every pole of H(z) has a magnitude less than 1. Equivalently, for

stability, every pole must lie within the unit circle of the z-plane.

EXAMPLE 10.16 BIBO Stability Example

a. Consider a system with the unit pulse response h(n) = an with h(0) = 0.
Then, summing h(n) shows that

∞
∑

n=0

|h(n)| =

∞
∑

n=1

|a|n =







∞, if |a| ≥ 1

|a|
1 − |a| , if |a| < 1.

According to Theorem 10.6, the system is stable only if |a| < 1 .

b. The difference equation

y(n) − ay(n − 1) = x(n − 1)

has the unit pulse response solution an, n = 1, 2, . . . and the transfer
function

H(z) =
Y (z)

U(z)
=

a

z − a

has one pole at z = a. Theorem 10.7 implies that the system is BIBO
stable if and only if |a| < 1. This agrees with the previous conclusion
arrived at in Part a by analyzing the unit pulse response.
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As with Laplace transform analysis of continuous systems, stability
can be analyzed in the time domain or in the transform domain for discrete
systems. One method of analysis in the z-domain is to plot the poles of
H(z). This method will be discussed after the frequency response of
discrete systems is considered.

10.9 Z-TRANSFORMS AND FREQUENCY RESPONSE

The frequency response of a first-order discrete system was presented in
Example 10.8 using the time-domain output signal y(n). In this section,
we wish to determine the frequency response from the transfer function
given by the Z-transform of y(n).

If the transfer function H(z) is evaluated for values of

z = exp(i2πF ) = exp(iΩ)

we obtain the frequency response, H(i2πF ), of the system. This is equiv-
alent to evaluating H(z) on the unit circle in the z-plane. Note that the
function H(i2πF ) is periodic with period 1 since exp(i2πF ) is periodic
with period 1. According to Equation 10.30 the digital frequency

F =
f

fs

= fTs,

where Ts is the sampling time or time between samples. The analog
frequency f = 1/Ts corresponds to the digital frequency F = 1 or Ω = 2π.

EXAMPLE 10.17 z-plane and Frequency Response

The accompanying MATLAB script and figures show the pole-zero plot
and frequency response for a system with transfer function

H(z) =
z

z − 0.9
.

After defining the numerator and denominator of H(z), the subplot command
in the script reduces the size of the pole-zero plot but leaves the labels full size.
The command zplane produces the plot of Figure 10.3. Then, the command
freqz plots the magnitude in dB and the phase of the frequency response.
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MATLAB Script

Example 10.17

% ZEX.M Show the Z-plane and frequency response of the function

% H(z)=z/(z-.9)

clear,clf

num=[1 0]; den=[1 -0.9]; % Define numerator and denominator of H(z)

subplot(2,2,1) % Keep plot small

figure(1)

zplane(num,den) % Draw the z-plane

figure(2)

freqz(num,den) % Plot frequency response
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FIGURE 10.3 z-plane plot of H(z) = z/(z − 0.9)
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FIGURE 10.4 Amplitude and phase plots of H(i2πF )
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Notice that the highest frequency plotted is normalized to the Nyquist

frequency which is one half the sampling frequency . Here Ts = 1 so the actual

frequency corresponding to the Nyquist frequency is 0.5 hertz. The command

freqz can produce other types of plots. In the present plots, the normalized or

Nyquist frequency value of 1 in Figure 10.4 corresponds to a digital frequency

of 0.5 cycles/sample (π radians/sample).

10.10 SUMMARY OF Z-TRANSFORM PROPERTIES

Table 10.6 summarizes some of the properties of the Z-transform. In the
table, assume that Z[f(n)] = F (z) and Z[g(n)] = G(z) and α and β
constants.

TABLE 10.6 Properties of the Z-transform

Property f(n) ⇐⇒ F (z)

Linearity αf(n) + βg(n) ⇐⇒ αF (z) + βG(z)

Delay f(n − N) ⇐⇒ z−NF (z) −
−1
∑

n=−N

z−(N+n)f(n)

Times n nf(n) ⇐⇒ −zdF (z)/dz

Difference f(n) − f(n − 1) ⇐⇒ (1 − z−1)F (z)

Convolution f(n)g(n) ⇐⇒ F (z) ∗ G(z)
f(n) ∗ g(n) ⇐⇒ F (z)G(z)

The delay (right-shift) property applied to causal sequences f(n)
(f(n) = 0, n < 0) leads to the result f(n − N) ⇐⇒ z−NF (z).

INITIAL AND

FINAL VALUE

THEOREMS

If the Z-transform of a sequence f(n) exists, there are several theorems
that describe the limiting behavior of f(n) and the transform F (z). The
initial value and final value theorems describe the limiting behavior of
f(n) from the limiting behavior of F (z).
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THEOREM 10.8 Initial value f(0)
If the indicated limits exist, then

f(0) = lim
z→∞

F (z).

For a proof, consider the definition

F (z) = f(0) + f(1)z−1 + f(2)z−2 + · · ·

and take the limit as z → ∞. This theorem also states that a valid
transform F (z) approaches f(0) as z approaches infinity.

Successive values of f(n) can be obtained in a similar way by multi-
plying F (z) by powers of z and rearranging the series before taking the
limit. Specifically,

f(1) = lim
z→∞

z[F (z) − f(0)].

THEOREM 10.9 Final value f(∞)
If the indicated limits exist, then

lim
n→∞

f(n) = lim
z→1

(z − 1)F (z).

Problem 10.20 asks you to prove the assertion of this theorem.

10.11 REINFORCEMENT EXERCISES AND EXPLORATION

PROBLEMS

REINFORCEMENT EXERCISES

P10.1. Properties of discrete systems Determine if the system

y(n) = x(n)/2 + x(n − 1)

is linear.

P10.2. Homogeneous difference equations Find the homogeneous solution to the difference
equations

a. y(n) − y(n − 1) = 2y(n − 2), y(0) = 1, y(1) = 3..

b. y(n + 1) + 2y(n) + 4y(n − 1) = 0.

Write the result in Part b in terms of sinusoids.
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P10.3. Rabbit population Show that the growth of the rabbit population in Example 10.4
can be written as

y(n) =
1√
5

(

1 +
√

5

2

)n

− 1√
5

(

1 −
√

5

2

)n

.

P10.4. Comparison of solution methods Solve the difference equation

y(n) − αy(n − 1) = C, y(−1) = 0

by the following methods:

a. the iterative method as in Example 10.1;

b. by finding the homogeneous and particular solution.

P10.5. General solutions Find the general solution to the difference equations

a. y(n + 2) + 3y(n + 1) + 2y(n) = n2.

b. y(n) − 2ay(n − 1) + y(n − 2) = 3n for a = −1.

P10.6. First-order differential equation Compare the solution to the differential equation
ẏ(t) + ay(t) = 0 of Example 10.6 with the difference equation solution by expanding y(t) in an
appropriate Taylor series. Under what condition is the discrete result a good approximation?

P10.7. Frequency response of second-order system Determine the frequency response for
the second-order system

y(n) + αy(n − 2) = x(n) − x(n − 2)

for values of α = 0.5, 0.75, 63/64.

P10.8. Convergence of Z transforms Determine the conditions for which the series of
Equation 10.40 converges. Apply the result to the Z-transform series for f(n) = an, n > 0.

P10.9. Z-transforms Find the Z-transform of the following functions

a. 2n.

b. eanT .

Express the transform as a fraction in z.

P10.10.Z-transforms Show that the Z-transform of the sequence {A cosβn} is

F (z) =
Az(z − cos β)

z2 − 2z cos β + 1
.

P10.11.Difference equation Find the solution to the difference equation

y(n) + 2y(n − 1) = x(n) − x(n − 1), x(n) = n2, y(0) = 1

in the following ways:

a. Solving directly ;

b. Solve using Z-transforms.

Hint: For Part 2, write the equation in terms of y(n + 1) and use the MATLAB command residue

to help invert the transform using the partial fraction expansion of Y (z)/z.

P10.12.MATLAB comparison Plot the solutions for the difference equation in Problem 10.6
for various values of the sampling interval T and compare the results to the solution of the
continuous differential equation.
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P10.13.MATLAB rabbit population Plot the values the growth of the rabbit population in
Example 10.4 for the first twelve months.

P10.14.MATLAB first-order smoother Plot the frequency spectrum for the input signal and
output signal for the first-order smoother of Example 10.7 defined by the difference equation

y(n) = a y(n − 1) + (1− a) x(n).

Use the input signal and the smoothing value a defined in the MATLAB script for the example.
Hint: Use the MATLAB command fft.

EXPLORATION PROBLEMS

P10.15.Homogeneous solution Given the first-order difference equation with nonconstant
coefficients

y(n + 1) − a(n)y(n) = 0, y(0) = y0,

show that the solution can be written

y(n) =

[

n−1
∏

i=0

a(i)

]

y0.

Suppose that a(n) = a, a constant. Show that the assertion of Equation 10.8 is correct.

P10.16.Relation to differential equations There is an interesting relationship between
homogeneous differential and difference equations with constant coefficients. If the solution to the
Nth order differential equation is differentiated N times and the independent variable is set equal
to zero, the solution to the equivalent difference equation results! The equivalent difference
equation is considered the differential equation with the Nth derivative replaced by the discrete
y(n + N). Show this result for the equations

d2y(t)

dt2
− 3

dy(t)

dt
(t) + 2y(t) = 0

and
y(n + 2) − 3y(n + 1) + 2y(n) = 0.

P10.17. Frequency spectrum For the signal

f(n) = (0.9)n cosnπ, n = 0, 1, 2, . . .

a. Find the Z-transform;

b. Plot the frequency spectrum (amplitude and phase) for the frequency range ω = [0, 2π];

c. Compare the results in Part 2 with the result using the MATLAB command freqz.

Hint: For Part 2, the frequency response can be computed by replacing z = eiω in the Z-transform
of the signal.

P10.18. Stability of a discrete system Prove the propositions of Theorem 10.6.

P10.19. Stability of discrete systems Discuss the stability of the systems with the transfer
functions H(z) = Y (z)/X(z) as follows:

a. H(z) = z/(z − 3);

b. H(z) = 1/[z(z − 1)2];
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c. H(z) = z/(z − 3) if X(z) contains a pole at z = 1;

P10.20. Final value of f(n) Prove the assertion of Theorem 10.9.

P10.21. f(n) from initial values Given

F (z) =
z

z + 1
,

find f(n) using the initial value theorem.

P10.22.MATLAB convolution solution Given the system of Example 10.14 with
h(n) = 0.9n the unit pulse response and unit step input u(n), use MATLAB to determine the
response by convolution. Also, compute the result using the closed-form solution for N = 10 terms
and compare with the solution determined by the command conv.

P10.23.MATLAB frequency response In a sampled data system, let ts = 10−4 seconds so
the Nyquist frequency is 5000 Hz. Compute and plot the amplitude response of the system

H(z) =
z

z − 0.9

for f = 0 to f = 5000 Hz in steps of 100 Hz.
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10.13 ANSWERS

10.1 Properties of discrete systems Considering the system

y(n) = x(n)/2 + x(n − 1)

let

y1(n) = x1(n)/2 + x1(n − 1)

y2(n) = x2(n)/2 + x2(n − 1).

If the input is αx1 + βx2, the result is

y(n) = [αx1(n) + βx2(n)]/2 + αx1(n − 1) + βx2(n − 1)

= α[x1(n)/2 + x1(n − 1)] + β[x2(n)/2 + x2(n − 1)]

= αy1(n) + βy2(n)

so the system is linear.

10.3 Rabbit population Using the initial conditions for the rabbit population model

y(0) = 0 = C1 + C2

y(1) = 1 = c1 r1 + c2 r2.

where

r1 =

(

1 +
√

5

2

)

r2 =

(

1 −
√

5

2

)

.

Solving the system of linear equations without substituting the numerical value of
√

5 yields the
result as

y(n) =
1√
5

(

1 +
√

5

2

)n

− 1√
5

(

1 −
√

5

2

)n

.

10.5 General solutions Find the general solution to the difference equations

a. For the equation y(n + 2) + 3y(n + 1) + 2y(n) = n2, the assumed solution is

y(n) = c1(−1)n + c2(−2)n + an2 + bn + c

where a, b, and c determine the particular solution. Equating these coefficients to the
equivalent coefficients of the forcing function yields the system of equations

(

6 0 0
10 6 0
7 5 6

)(

a
b
c

)

=

(

1
0
0

)

Solving for the coefficients leads to the solution

y(n) = c1(−1)n + c2(−2)n +
1

6
n2 − 5

18
n +

1

27
.
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b. The equation y(n) − 2ay(n − 1) + y(n − 2) = 3n for a = −1 has the characteristic
equation

r2 + 2r + 1 = 0

with repeated roots −1. This leads to a complementary solution

yc(n) = (c1 + c2n)(−1)n.

The particular solution is of the form C3n, so substituting in the difference equation
yields

C3n + 2C3n−1 + C3n−2 = 3n

with the result C = 9/16. The general solution is thus

y(n) = (c1 + c2n)(−1)n +
9

16
3n.

10.7 Frequency response of second-order system The frequency response for the
second-order system

y(n) + αy(n − 2) = x(n) − x(n − 2)

is

H2 =
1− e−i2Ω

1 + αe−i2Ω
. (10.62)

10.9 Z-transforms The Z-transform of the functions

a. Z [2n] =
z

z − 2
, |z| > 2.

b. Z [eanT ] =
z

z − eaT
, |z| > |eaT | .

10.11 Difference equation

a. For the equation y(n) + 2y(n − 1) = x(n) − x(n − 1) = 2n − 1, with initial conditions
y(0) = 1, the characteristic equation is

1 + 2r−1 = 0

with solution r = −2. Thus, the homogeneous solution is

yh(n) = C(−2)n.

The particular solution is assumed to be yp(n) = C1n + C2 so that

C1n + C2 + 2[C1(n − 1) + C2] = 2n − 1

with the result C1 = 2/3 and C2 = 1/9. Thus,

y(n) =
2

3
n +

1

9
+ C(−2)n.

Using this result at n = 0 with y(0) = 1 yields C = 8/9 for the arbitrary constant. The
complete solution is thus

y(n) =
8

9
(−2)n +

2

3
n +

1

9
.
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b. To apply the Z-transform method, write

y(n + 1) + 2y(n) = 2n + 1.

Taking the transform yields

zY (z) − zy(0) + 2Y (z) =
2z

(z − 1)2
+

z

z − 1

or

Y (z) =
2z

(z + 2)(z − 1)2
+

z

(z + 2)(z − 1)
+

z

z + 2
.

Analytically, y(z)/z could be written in terms of a partial fraction expansion and the
resulting terms inverted to yield y(n). The equation is

Y (z)/z =
z2 − z + 2

(z + 2)(z − 1)2
.

506 Chapter 10 DISCRETE SYSTEMS


