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ITI. Review of Differentiation

A .Basic Definitions Harman Ch6,P297

Approximations for the Derivative The expression for the derivative of
a function f(t) is a fundamental formula in calculus. The definition is

1) = im TEE 2T, (1)
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where ar(t)
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1= =p
is the exact derivative at the point ¢t. For computer calculation, i will be a finite
value that cannot be taken as zero. Also, roundoff error limits the accuracy of
the calculation, even if h is chosen to be very small. This error will be ignored
in the following discussion.

Some derivative results are given in Table 1. Here the independent variable
is  but any variable x,t,u,v,... can be used. Also, assume that the functions
discussed are differentiable functions at the points of interest. This requires
that the function be continuous at the point the derivative is taken. However,
a continuous function does not necessarily have a derivative everywhere- think
of f(x) = x on an interval containing the origin.



Function Derivative Name

T ne Power
f(x)g(z)  f(z)g'(x) + g(z)f'(x) Product

9(@)f'(z) — f(z)g'(x .

T x Quotient
£(@)/9(a) e
flo()] Flg(x)] ¢'(x) Chain Rule
e’ e’ Exponential
log, = 1/x In = log,
sin x Ccos T Sinusoids
cos T —sinz
1 .

tanx 5 Trig

cos? x
sin~!z ———jégg

V1—z2
a® Ina-a® Base a

Table 1: Table of Derivatives

DIFF Differentiate.
DIFF(S) differentiates a symbolic expression S with respect to its
free variable as determined by SYMVAR.
DIFF(S,’v’) or DIFF(S,sym(’v’)) differentiates S with respect to v.
DIFF(S,n), for a positive integer n, differentiates S n times.
DIFF(S,’v’,n) and DIFF(S,n,’v’) are also acceptable.

Examples;
x = sym(C’x’);
t = sym(C’t?);
diff(sin(x"2)) is 2*x*cos(x"2)
diff(t~6,6) is 720.
Reference page in Help browser doc sym/diff

>> diff(tan(x))

ans = tan(x)"2 + 1 [Also sec(x)"(2)]



1. EXAMPLE We can prove the quotient rule by substituting in the basic
definition Equation 1.
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Figure 1: A simpler Proof



A useful application of the Chain Rule involves the case where we associate
u(z) = f(x) and y = g(u)

Then dv d
y du
D == —
=[] du dx

3. EXAMPLE Chain Rule to relate variables that are changing
Let’s consider a balloon that is being inflated at a known rate and find the rate
at which the balloon volume is increasing.
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Figure 2: Blow up My Baloon



B. Maximum and Minimum

If f/(a) exists, the tangent line to f(x) at a in the x — y plane is

y = f(a) = f'(a)(x - a).

This is a line y = mx+b with the slope given by f’(a). There are many examples
of the use of the tangent line to a function but an important theorem states that
the tangent line is horizontal at a point of local maximum or minimum of the
curve f(z). See Harman Page 579 for more details.

For a differentiable function y = f(x) defined in an open interval, a local or
relative minimum or maximum occurs only at a point where the derivative is
zero so that

f(x)=0.

Theorem: If f'(zg) = 0 and f"(x¢) > 0, then f(x) has a relative minimum
at xg.



EXAMPLE Laser Light Path

EXAMPLE 6 We consider the refiection of a ray of light by a mirror M as
in Fig. 3.6.13, which shows a ray traveling from point A to point B via
reflection off M at the point P. We assume that the location of the point of
reflection is such that the total distance d; + d; traveled by the light ray will
be minimized. This is an application of Fermat’s principle of least time for the
propagation of light. The problem is to find P.

Solution  Drop perpendiculars from A and B to the plane of the mirror M.
Denote the feet of these perpendiculars by A" and B’ (Fig. 3.6.13). Let a, b,
¢, and x denote the lengths of the segments AA’, BB', A’B’, and A’P, respec-

Fig. 3.6.13 Reflection at P
of a light ray by a mirror M

(Example 6) tively. Then ¢ — x is the length of the segment PB’. By the Pythagorean
theorem, the distance to be minimized is then
di+do = f(x) = Va® + 22+ Vb2 + (c — x)°. (10)

We may choose as the domain of f the interval [0, c], because the
minimum of f must occur somewhere within that interval. (To see why,
examine the picture you get if x is not in that interval.)

Then
X (c — x)(—1)
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we find that any horizontal tangent to the graph of f must occur over the point
x determined by the equation

X ey
- = : (13
(1| dz )
' At such a point, cos e = cos 3, where « is the angle of the incident light ray
and S s the angle of the reflected ray (Fig. 3.6.13). Both o and 3 lie between
0 and 7/2, and thus we find that « = 3. In other words, the angle of
incidence is equal to the angle of reflection, a familiar principle from physics.

Figure 3: Angle of Incidence = Angle of Reflection




C. Approximations to Derivatives and Differential Equations

Numerical methods for differential equations and Taylor expansion of deriva-
tives are introduced in Harman (Section 6.4, P297). Using the approximation

discussed there
fE+h) —ft) h

"ty =+~ 2 7 ¢ 2
7' ) o0, )
where t < t; < t+ h in the remainder term, differential equations of the form
dy(t
YO ol as<i<h

with initial condition y(a) = ¢ using the Taylor series approximation to the
derivative derived in Equation 2.

Letting the approximate values be designated y;(¢;) = y;, and using the
approximation for the derivative, the differential equation becomes a difference
equation

w = f(tnayn)' (3)

Solving for y,,41 yields the recursion formula

Yn+1 = Yn + hf(tn; yn)a (4)

subject to yg = ¢, a constant. This formulation is sometimes called Fuler’s
method.

Although no restrictions have been put on f(t,,y,) in Equation 3, we will
solve a very simple example, so that the errors will become evident. The equa-

tion
dy(t)

e TORS 5)

has the exact solution y(t) = e’. The approximation of Equation 4 leads to the
relationship

Ynt1 = Yn + hyn = (1 + h)yn
with yo = 1.



5. EXAMPLE Euler’s Method and ex6_7.m

% ex6_7.m Test Euler method on Dy(t)=y(t) t=[0 1].
% Compare exact value with Euler solution
% y@+1)=y(@)+hy(n)=(1+h)y(n); h=0.1

clear

n=10; % Number of intervals
y(1)=1; % Initial value
T(1)=0; % Initial time

yexact(1)=1;
yerror(1)=0;
h=0.1 % Fixed step size
for I=1:n;
T(I+1)=I%h;
y(I+1)=y(I)*(1+h);
yexact (I+1)=exp(I*h); 7% Exact value
yerror (I+1)=y(I+1)-yexact (I+1);
end;
format short % Show four places
test=[T’ y’ yexact’ yerror’];
disp(’ t yn exp error’)
disp(’ ?)
disp(test)
pause
clf
plot(T,yexact,’-’,T, y,’x’)
title(’First Order Equation, Euler (-x-) and exact solution’)
xlabel (’Time’)
ylabel Cy(t)?)
legend (’Exp’, ’Euler’)



First Order Equation, Euler i-x-) and exact solution
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Figure 4: Caption for Harman ex6_7
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Figure 5: Caption for Harman F12_4 new
D. Differentials and Linear Approximations (12.3, P560)

The differential of a function f(x) at the point z is defined by the formula
dy = f'(z) dz, (6)

where dx is an arbitrary increment of the independent variable x. As shown
in Figure 6, dy can be viewed as the change in height of a point that moves

along the tangent line at the point [z, f(z)] rather than along the curve f(x).
If Az = dz is an increment in x, then

Ay = f(z + Az) - f(x) (7)

according to the definitions of the variables in Figure 6.
Using the definition of the derivative,

f'(z) = lim %: i flx+ Az) — f(x)

11m
Az—0 Az Az—0 Ax ’
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Figure 6: The estimate of increment Ay by the differential dy

and the properties of limits, this expression can be written in the form

Ay

o= @)+ ®

where lima, g€ = 0. Multiplying by Ax yields the result
Ay = f'(z)Az + eAx. (9)

Substituting the expression for dy from Equation 6 with Az = dx leads to a
relationship between the increment Ay and the differential dy,

Ay = dy + eAx,

with lime = 0 as Az — 0. The conclusion is that, for small values of Az, the
increment Ay is a good approximation to the differential dy and Ay ~ f'(x)Aw.
Considering the definition of Ay in Equation 7, the function f at the point x+Ax
can be approximated as

fla+ Ax) & f(z) + Ay = f(z) + f'(x) Az (10)

This is called the linear approzimation to f(x + Ax) because the change in f
depends linearly on Ax.

The linear approximation to f(z) near a point zo is usually written by
replacing z with z in Equation 10 and letting Az = x — xg so that

f(@) = f(wo) + f'(zo)(x — x0). (11)

11



This linear expression represents the first two terms of the Taylor series expan-
sion of function near the point zg, as treated in Chapter 6. The approximation
will also be discussed in more detail later. First, we wish to define the differential
for a function of many variables.

6. EXAMPLES Use of Differentials A few examples
1
flr)=V1+zx 1+§x

then

VI1i=+v1+.1~1.05,

close to the true value 1.0488 - - -, but v/3 ~ 1+.5 x 2 = 2, not too close to value
1.732- ... A little better approximation would be

V3 =1/2(1+1/2) =141 x 1.25 = 1.7625

good to only one decimal place in the fraction assuming you know V2.

Another example shows error in measurement. Suppose the length of a cubic
box is measured as 4 + .05 inches. The error in the volume is then

dV = 3z%dx = 3(4)*(4.05) = £2.4in>

so the volume is V = 64 + 2.4in3>.

12



For a function of two variables, consider the ideal gas law pV = ¢T', in which
p is pressure, V is the volume, T is temperature, and c is a constant. Then, the
volume can be written in the form

T
V=vpT) =",
p
and the differential of V is
ov oV

av =2 4+ Y oar
V=3, %+ 51

Calculating the partial derivatives yields
T
AV = —dp+ SdT.
p p

From this formula, we can calculate the change in volume due to “small” changes
in pressure or temperature or both.
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