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III. Review of Differentiation

A.Basic Definitions Harman Ch6,P297

Approximations for the Derivative The expression for the derivative of
a function f(t) is a fundamental formula in calculus. The definition is

f ′(t) = lim
h→0

f(t + h)− f(t)
h

, (1)

where

f ′(t) ≡ df(t)
dt

≡ Dtf

is the exact derivative at the point t. For computer calculation, h will be a finite
value that cannot be taken as zero. Also, roundoff error limits the accuracy of
the calculation, even if h is chosen to be very small. This error will be ignored
in the following discussion.

Some derivative results are given in Table 1. Here the independent variable
is x but any variable x, t, u, v, . . . can be used. Also, assume that the functions
discussed are differentiable functions at the points of interest. This requires
that the function be continuous at the point the derivative is taken. However,
a continuous function does not necessarily have a derivative everywhere- think
of f(x) = x on an interval containing the origin.
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Function Derivative Name

xn nxn−1 Power

f(x)g(x) f(x)g′(x) + g(x)f ′(x) Product

f(x)/g(x)
g(x)f ′(x)− f(x)g′(x)

g2(x)
Quotient

f [g(x)] f ′[g(x)] g′(x) Chain Rule

ex ex Exponential
loge x 1/x ln = loge

sinx cos x Sinusoids
cos x − sinx

tanx
1

cos2 x
Trig

sin−1 x
1√

1− x2

ax ln a · ax Base a

Table 1: Table of Derivatives

DIFF Differentiate.
DIFF(S) differentiates a symbolic expression S with respect to its
free variable as determined by SYMVAR.
DIFF(S,’v’) or DIFF(S,sym(’v’)) differentiates S with respect to v.
DIFF(S,n), for a positive integer n, differentiates S n times.
DIFF(S,’v’,n) and DIFF(S,n,’v’) are also acceptable.

Examples;
x = sym(’x’);
t = sym(’t’);
diff(sin(x^2)) is 2*x*cos(x^2)
diff(t^6,6) is 720.

Reference page in Help browser doc sym/diff

>> diff(tan(x))

ans = tan(x)^2 + 1 [Also sec(x)^(2)]
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1. EXAMPLE We can prove the quotient rule by substituting in the basic
definition Equation 1.

Dx

[
f(x)
g(x)

]
= lim

h→0

f(x+h)
g(x+h) −

f(x)
g(x)

h

Figure 1: A simpler Proof
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A useful application of the Chain Rule involves the case where we associate

u(x) = f(x) and y = g(u)

Then
Dx[y] =

dy

du

du

dx

3. EXAMPLE Chain Rule to relate variables that are changing
Let’s consider a balloon that is being inflated at a known rate and find the rate
at which the balloon volume is increasing.

Figure 2: Blow up My Baloon
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B. Maximum and Minimum

If f ′(a) exists, the tangent line to f(x) at a in the x− y plane is

y − f(a) = f ′(a)(x− a).

This is a line y = mx+b with the slope given by f ′(a). There are many examples
of the use of the tangent line to a function but an important theorem states that
the tangent line is horizontal at a point of local maximum or minimum of the
curve f(x). See Harman Page 579 for more details.

For a differentiable function y = f(x) defined in an open interval , a local or
relative minimum or maximum occurs only at a point where the derivative is
zero so that

f ′(x) = 0.

Theorem: If f ′(x0) = 0 and f ′′(x0) > 0, then f(x) has a relative minimum
at x0.
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EXAMPLE Laser Light Path

Figure 3: Angle of Incidence = Angle of Reflection
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C. Approximations to Derivatives and Differential Equations

Numerical methods for differential equations and Taylor expansion of deriva-
tives are introduced in Harman (Section 6.4, P297). Using the approximation
discussed there

f ′(t) =
f(t + h)− f(t)

h
− h

2!
f ′′(t1), (2)

where t ≤ t1 ≤ t + h in the remainder term, differential equations of the form

dy(t)
dt

= f [t, y(t)], a ≤ t ≤ b,

with initial condition y(a) = c using the Taylor series approximation to the
derivative derived in Equation 2.

Letting the approximate values be designated yi(ti) = yi, and using the
approximation for the derivative, the differential equation becomes a difference
equation

yn+1 − yn

h
= f(tn, yn). (3)

Solving for yn+1 yields the recursion formula

yn+1 = yn + hf(tn, yn), (4)

subject to y0 = c, a constant. This formulation is sometimes called Euler’s
method.

Although no restrictions have been put on f(tn, yn) in Equation 3, we will
solve a very simple example, so that the errors will become evident. The equa-
tion

dy(t)
dt

= y(t), y(0) = 1, (5)

has the exact solution y(t) = et. The approximation of Equation 4 leads to the
relationship

yn+1 = yn + hyn = (1 + h)yn

with y0 = 1.
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5. EXAMPLE Euler’s Method and ex6 7.m

% ex6_7.m Test Euler method on Dy(t)=y(t) t=[0 1].
% Compare exact value with Euler solution
% y(n+1)=y(n)+hy(n)=(1+h)y(n); h=0.1
clear
n=10; % Number of intervals
y(1)=1; % Initial value
T(1)=0; % Initial time
yexact(1)=1;
yerror(1)=0;
h=0.1 % Fixed step size
for I=1:n;
T(I+1)=I*h;
y(I+1)=y(I)*(1+h);
yexact(I+1)=exp(I*h); % Exact value
yerror(I+1)=y(I+1)-yexact(I+1);
end;
format short % Show four places
test=[T’ y’ yexact’ yerror’];
disp(’ t yn exp error’)
disp(’ ’)
disp(test)
pause
clf
plot(T,yexact,’-’,T, y,’x’)
title(’First Order Equation, Euler (-x-) and exact solution’)
xlabel(’Time’)
ylabel(’y(t)’)
legend(’Exp’, ’Euler’)
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Figure 4: Caption for Harman ex6 7
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Figure 5: Caption for Harman F12 4 new

D. Differentials and Linear Approximations (12.3, P560)

The differential of a function f(x) at the point x is defined by the formula

dy = f ′(x) dx, (6)

where dx is an arbitrary increment of the independent variable x. As shown
in Figure 6, dy can be viewed as the change in height of a point that moves
along the tangent line at the point [x, f(x)] rather than along the curve f(x).
If ∆x = dx is an increment in x, then

∆y = f(x + ∆x)− f(x) (7)

according to the definitions of the variables in Figure 6.
Using the definition of the derivative,

f ′(x) = lim
∆x→0

∆y

∆x
= lim

∆x→0

f(x + ∆x)− f(x)
∆x

,
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f(x+∆x)

f(x)
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Figure 6: The estimate of increment ∆y by the differential dy

and the properties of limits, this expression can be written in the form

∆y

∆x
= f ′(x) + ε, (8)

where lim∆x→0 ε = 0. Multiplying by ∆x yields the result

∆y = f ′(x)∆x + ε∆x. (9)

Substituting the expression for dy from Equation 6 with ∆x = dx leads to a
relationship between the increment ∆y and the differential dy,

∆y = dy + ε∆x,

with lim ε = 0 as ∆x → 0. The conclusion is that, for small values of ∆x, the
increment ∆y is a good approximation to the differential dy and ∆y ≈ f ′(x)∆x.
Considering the definition of ∆y in Equation 7, the function f at the point x+∆x
can be approximated as

f(x + ∆x) ≈ f(x) + ∆y = f(x) + f ′(x)∆x. (10)

This is called the linear approximation to f(x + ∆x) because the change in f
depends linearly on ∆x.

The linear approximation to f(x) near a point x0 is usually written by
replacing x with x0 in Equation 10 and letting ∆x = x− x0 so that

f(x) ≈ f(x0) + f ′(x0)(x− x0). (11)
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This linear expression represents the first two terms of the Taylor series expan-
sion of function near the point x0, as treated in Chapter 6. The approximation
will also be discussed in more detail later. First, we wish to define the differential
for a function of many variables.

6. EXAMPLES Use of Differentials A few examples

f(x) =
√

1 + x ≈ 1 +
1
2
x

then √
1.1 =

√
1 + .1 ≈ 1.05,

close to the true value 1.0488 · · ·, but
√

3 ≈ 1+ .5×2 = 2, not too close to value
1.732 · · ·. A little better approximation would be

√
3 =

√
2(1 + 1/2) = 1.41× 1.25 = 1.7625

good to only one decimal place in the fraction assuming you know
√

2.

Another example shows error in measurement. Suppose the length of a cubic
box is measured as 4± .05 inches. The error in the volume is then

dV = 3x2dx = 3(4)2(±.05) = ±2.4in3

so the volume is V = 64± 2.4in3.

12



For a function of two variables, consider the ideal gas law pV = cT , in which
p is pressure, V is the volume, T is temperature, and c is a constant. Then, the
volume can be written in the form

V = V (p, T ) =
cT

p
,

and the differential of V is

dV =
∂V

∂p
dp +

∂V

∂T
dT.

Calculating the partial derivatives yields

dV = −cT

p2
dp +

c

p
dT.

From this formula, we can calculate the change in volume due to “small” changes
in pressure or temperature or both.
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