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First Order Differential Equations Examples
First-order equations with an initial condition in the form

dy(t)
dt

= ky(t) with y(0) = Y0 (1)

can be written as
dy

y
= k or

∫
dy

y
=

∫
k dt.

and have solutions of the form ln y = kt+c if a is constant. Taking the exponent
and rewriting this, the result is

y(t) = exp (at + c) = ecekt = Y0e
kt. (2)

Always check the result to see that the solution solves the equation and
satisfies the initial condition. Although t = 0 was used as the time in the
example, the initial condition could be given at any time such as the value
y(t0).

In Equation 1 if y(t) represents the amount of a substance, the rate of change
of y(t) is proportional to the amount of substance y at time t. If k is positive,
the equation represents growth. If k is negative, the equations solution gives
the time rate of decay in the quantity of the substance. For example, for decay
of Radium, k = −1.4× 10−11 sec−1.

The integration method just shown is called Separation of Variables and will
work if k = k(t). The integrating factor method described later as in Equation 7
will also work for such equations with nonconstant coefficients (Harman p. 212).
Solution for Homogeneous Linear Equation with Constant Coeffi-
cients

When the coefficients of a first-order linear differential equation are constant,
the solution to the homogeneous equation (right-hand side equal to zero)

dy(t)
dt

+ ay(t) = 0 with y(0) = Y0

is of a standard form

yc(t) = Ceλt with C = Y0.

This solution called the complementary or homogeneous solution obviously sat-
isfies the equation and the initial condition as shown be substuting yc into the
differential equation. The exponent λ is found by assuming the solution is of
the form Ceλt and realizing that the exponental term cannot be zero for all t
and cancelling it so that

λCeλt + aCeλt = 0 or λ + a = 0

The equation λ + a = 0 is the characteristic equation and determines the expo-
nent since the solution requires λ = −a and y(t) = Y0 e−at.
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First Order Differential Equations with a Forcing Function

A first-order differential equation of the form

dT (t)
dt

= k(T (t)− TA) (3)

might represent the cooling of a body if k < 0 according to Newton’s Law
of Cooling. Suppose the initial temperature of the body is T1 and the final
temperature is the ambient temperature TA. The equation can be solved by
separation of variables as described before or by a method called Undetermined
coefficients. The latter is the better method as long as k is constant. Rewriting
the equation,

dT (t)
dt

− kT (t) = −kTA, k < 0

the complementary (homogeneous) solution is Tc(t) = Cekt or

Tc(t) = Ce−|k|t

to emphasize that the temperature would be decreasing from the initial tem-
perature. However, there is another solution to the differential equation that
is caused by the constant function −kTA which can be viewed as an input to
the system described by the differential equation. This solution is called the
particular solution.

Sometimes good sense can lead to solutions without excessive mathematical
effort. Note that as t goes to infinity, the final temperature should be stable at
TA. This means dy/dt = 0 in Equation 3 and

Tfinal = TA.

We should expect a solution of the form

T (t) = Ce−|k|t + K.

since the complementary solution goes to zero eventually. Thus, the undeter-
mined constant K is determined by assuming that the particular solution is also
a constant. Substituting K as the solution of Equation 3 yields the value of
K = TA.

Applying the initial condition T (0) = C + K = T1 yields the result that the
constant C = T1 − TA and thus

T (t) = (T1 − TA)e−|k|t + T0 with T1 > TA.

If T1 = 66◦ F and TA = 32◦ F, the solution is

T (t) = 34e−|k|t + 32 ◦F.

If the temperature drops 3 degrees in 2 hours to 63◦ F , solving the equation
yields k = −0.046. This is a slow cooling off that might occur in a house with
the heat turned off and outside temperature of 32◦ F.
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Generalize Thus, we can generalize and say that all equations of the form

dy(t)
dt

+ ay(t) = k with y(0) = Y0 (4)

have the solution
y(t) = Ce−at + K

where C is determined by initial conditions and K is called the particular solu-
tion. We have only to find the undetermined coefficient K which is independent
of initial conditions and then apply the initial conditions to find C. Thus,

yp(t) = K so that 0 + aK = k or K =
k

a
.

Thus, applying the initial condition y(0) = Y0 = C +
k

a
, the solution is

y(t) =
(

Y0 −
k

a

)
e−at +

k

a
.

Considering the equation

dy(t)
dt

+ ay(t) = f(t) with y(0) = Y0,

the solution of this ordinary differential equation with constant coefficient con-
sists of the sum of a complementary solution and a particular solution as

y(t) = yc(t) + yp(t)

where the particular solution is determined by f(t) and the complementary
solution is of the form Ceλt with λ = a the solution of the characteristic equation
and C determined by the initial condition.

Two examples in Class

1. RC circuit discharging

2. RC circuit with applied potential

The first case represents energy decay with the resistor and capacitor in series.
Current flows to discharge the capacitor. The form of the current will be

i(t) = I(0)e−t/RC .

The second case, represents a constant voltage applied to the circuit at t = 0.
The capacitor with no inital charge storage (voltage) will charge up to the imput
voltage Vin as

Vc = Vin(1− e−t/RC).

This is called the step response of the RC circuit.
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For the passive circuits, the homogeneous solution represent the current or
voltage decay as current flows throuch the resistor and energy is dissipated
as heat. This solution must go to zero as time increases and is often called
the transient solution. The ”forcing function” f(t) determines the particular
solution and hence the time response of the system over time after the transient
solution reaches zero for all practical purposes. The particular solution is also
called the steady state solution. The two solutions are independent but the
complete solution y(t) represents the sum of the two solutions.

Exponential Inputs to Differential Equations We know that the particular
solution to a differential equation with constant coefficients that has a constant
forcing function f(t) = K as in Equation 4, has a particular solution that is
also a constant, yp(t) = K/a.

The other important case in which the solution is of the same form as the
forcing function is if the forcing function is an exponential input of the form
f(t) = eβt as long as the exponent is not equal to −a in the equation

dy(t)
dt

+ ay(t) = eβt with y(0) = Y0.

The solution to this equation is then

y(t) = Ce−at + Deβt with D =
1

β + a
; β 6= −a.

Examples in Class

1. RC circuit f(t) = eiωt

2. RC circuit with sinωt input.

Special Case for Exponential Inputs
Suppose the solution to the characteristic equation λ = a is also the negative

of the exponent of the forcing function as

dy(t)
dt

+ ay(t) = ke−at with y(0) = Y0. (5)

The equation has the normal homogeneous solution but the particular solution
must be changed to yield the complete solution

y(t) = Ce−at + K te−at

with K determined with the particular solution and then C found from the
initial condition. In electrical or mechanical terms, the forcing function has
the same form as the natural behavior of the system and a phenomenon called
resonance appears.
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Convolution or Integrating Factor Solution Consider the first-order
differential equation with a a scalar,

dy(t)
dt

+ ay(t) = f(t). (6)

Assuming that the equation is defined on the interval t ≥ 0, the integrating
factor for the equation is

e

∫ t

0
adτ = eat,

where the variable of integration has been changed to τ to emphasize that the
integral is a function of t, the upper limit of integration, not the “dummy”
variable τ .

The complete solution then takes the form

y(t) =
∫ t

0

f(τ)e−a(t−τ)dτ + ce−at = e−at

∫ t

0

f(τ)eaτdτ + ce−at. (7)

This solution also works with equations of the form

dy(t)
dt

+ a(t)y(t) = f(t).

for which the coefficients are not constant.
Applications The first-order differential equation is used to model a number

of phenomena in mathematical terms. Some of the problems treated with first-
order equations include

1. Growth and decay,

2. Radioactive half life,

3. Carbon dating,

4. Cooling of a body,

5. Series electrical circuits.

In these applications, the mathematical model is formulated as a first-order
differential equation since it has been observed that the rate of change of some
variable (e.g., population, mass, temperature, etc.) is proportional to the value
of the variable. See Harman P208-215 for more details.

Considering Equation 7 in the first form, it is a convolution of the input
function f(t) and the function e−at. Thus, the non-homogeneous differential
equation

ẏ(t) + ay(t) = f(t), y(0) = 0 (8)

where a is a constant has the solution

y(t) =
∫ t

0

f(τ)e−a(t−τ) dτ. (9)
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Assume that f(t) = δ(t) so that using the sifting property of δ(t) we find

y(t) =
∫ t

0

δ(τ)e−a(t−τ) dτ = e−at t ≥ 0

as the impulse response of the system. Using this result shows that Equation 9 is
the convolution with f(t) and the impulse response of the system. We associate
the impulse response of this system with h(t). More details are given in Harman
P 445-448.

Higher Order Differential Equations The nth-order differential equa-
tion with constant coefficients is treated in this section. The general solution to
the homogeneous equation is easily found in principle. This problem of finding
n functions to satisfy the homogeneous equation is reduced to finding the n
roots of an algebraic equation.

Consider the nth-order, linear differential equation

dny(t)
dtn

+ an−1
dn−1y(t)
dtn−1

+ · · ·+ a1
dy(t)
dt

+ a0y(t) = f(t), (10)

where the ai are constants. This equation occasionally will be written in oper-
ator form as Ln[y(t)] = f(t) to simplify the notation.

Homogeneous Solution First, we find the general solution to the homo-
geneous equation. As discussed in Chapter 4, the function y(t) = eλt is an
eigenfunction of each derivative term in Equation 10. Then, substitution of
eλt in the equation Ln[eλt] = 0, where Ln is the nth-order linear differential
operator previously defined, yields

eλt(λn + · · ·+ a0) = g(λ)eλt = 0.

Accordingly, eλt will be a solution provided that λ satisfies the algebraic equa-
tion of order n, g(λ) = 0. The equation g(λ) = 0 is called the characteristic
equation associated with Equation 10. The roots of the equation

g(λ) = (λn + an−1λ
n−1 + · · ·+ a1λ + a0) = 0 (11)

define the valid values of λ for which eλt satisfies the homogeneous equation.
There are n solutions to this polynomial equation.

Distinct Roots Consider first the case where the roots of the characteristic
Equation 11 are distinct; that is, no root is repeated. In this case, the gen-
eral solution of the homogeneous equation with constant coefficients is simply
written down as the superposition of exponential terms with the roots of the
characteristic equation as the constant in the exponents. The result can be
stated as the following theorem.

6



Theorem (5.3) Solution of Ln[y(t)] = 0 . If the n roots of the characteristic
equation are all distinct and the roots are λ1, λ2, . . . , λn, then the solution of
the nth-order homogeneous differential equation defined by Equation 10 with
f(t) = 0 is

yc(t) = c1e
λ1t + c2e

λ2t + · · ·+ cneλnt, (12)

where the designation yc(t) is used for this complementary solution.

Repeated Roots Suppose it is not possible to find n distinct roots of the
characteristic Equation 11. In this case, it can be shown that the solutions of
the differential equations for a root λk of multiplicity m are of the form

eλkt, teλkt, t2eλkt, · · · tm−1eλkt.

To show the result for a root of multiplicity two, we first assume that two
roots of the characteristic equation are distinct and then let the roots approach
each other to become one root of multiplicity two. Let λ1 and λ2 be two distinct
real roots of the characteristic equation. Then, the function

eλ1t − eλ2t

λ1 − λ2
(13)

is a solution of the homogeneous differential equations with constant coefficients.
Now assume that the coefficients of the characteristic equation change so that
λ2 tends to λ1. Equation 13 can be written

lim
λ2→λ1

eλ1t − eλ2t

λ1 − λ2
. (14)

Remembering the definition of the derivative from calculus, this limit is the
derivative of eλ1t with respect to λ1. Therefore, one of the solutions of the
differential equation is

d

dλ1
eλ1t = teλ1t

when the characteristic equation yields repeated roots.
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Summary of Homogeneous Solutions The Table lists the various solu-
tions according to the type of roots of the characteristic equation as real or com-
plex numbers. In any case, there will be a total of n functions y1(t), y2(t), . . . , yn(t)
thus obtained. The general solution of L[yc(t)] = 0 will be

yc(t) = c1y1(t) + c2y2(t) + · · ·+ cnyn(t). (15)

Roots for Homogeneous Solutions yi(t)

Simple real root λ eλt

Simple complex root a± ib eat cos bt, eat sin bt

Real root λk of multiplicity k eλkt, teλkt, . . . , tk−1eλkt

Complex root of multiplicity k eat cos bt, eat sin bt, . . .

tk−1eat cos bt, tk−1eat sin bt

Examples:
1. Suppose we have the growth (k > 0) or decay (k < 0) equation given as

Q′(t) = kQ(t) with Q(0) = Q0.

This homogeneous differential equation can be solved in the form

Q′(t)− kQ(t) = 0 with Q(0) = Q0.

Since the characteristic equation has a simple real root, the homogeneous solu-
tion is given by Q(t) = Aeλt where λ− k = 0 or λ = k. Thus

Q(0) = Q0 with the result Q(t) = Q0e
λt.

2. The solution of the equation

d2y(t)
dt2

+ 6
dy(t)
dt

+ 9y(t) = 0 (16)

with initial conditions y(0) = 2 and dy(0)/dt = 0 is y(t) = 2(1 + 3t)e−3t.
To show this, assume solutions of the form Aeλt and form the characteristic
equation

λ2 + 6λ + 9 = 0 which has roots − 3,−3.

Since the roots are repeated with multiplicity 2, the solution becomes

y(t) = (C1 + C2t)e−3t with y(0) = C1 = 2,
dy(0)

dt
= −3C1 + C2 = 0,

with the result
y(t) = 2(1 + 3t)e−3t.

You should check the result by plugging in the original equation to see this is
the solution and also check the initial conditions.
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Second-Order Example
Consider the second-order homogeneous differential equation

d2y

dt2
+ b

dy

dt
+ cy = 0, (17)

where b and c are real constants. Forming the characteristic equation

λ2 + bλ + c = 0 (18)

leads to the solutions

λ1 = −1
2
b +

1
2

√
b2 − 4c,

λ2 = −1
2
b− 1

2

√
b2 − 4c. (19)

The type of solution can be described in terms of the value of the discriminant,
b2−4c. If the discriminant is zero, the roots are real and equal with value −b/2.
If the discriminant is positive, the roots are real and distinct. Otherwise, the
roots are complex conjugate pairs.

The complete solution to the homogeneous differential equation with con-
stant coefficients can be written

y(t) = c1e
− b

2 t × exp(+
1
2

√
b2 − 4c t)

+ c2e
− b

2 t × exp(−1
2

√
b2 − 4c t). (20)

Equation 20 shows that the form of the homogeneous solution to the second-
order differential equation with constant coefficients is determined by the rela-
tionship between the coefficients b and c when the initial conditions are nonzero.

We will assume that b > 0 and c > 0 corresponding to a physical system
with passive elements.1 There are three cases to consider based on the ratio of
b2/c, as follows:

b2 > 4c overdamped;
b2 = 4c critically damped;
b2 < 4c underdamped. (21)

The terms overdamped, critically damped and underdamped refer to the motion
of an object modeled by the differential equation of motion previously discussed
as Equation ??.

When b2 > 4c, the solution decays from any initial value to zero with the
form

y(t) = c1e
λ1t + c2e

λ2t

1It is possible to design physical systems with negative values of the coefficients. An
example is an oscillator using positive feedback.
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since λ1 < 0 and λ2 < 0 because the coefficients of the equation are positive.
This solution is called the overdamped solution, compared to the solution that
occurs when b2 = 4c. Physically, all oscillations in the solution are damped out,
so only exponential decay is exhibited.

When the coefficients of the equation are such that b2 = 4c, the solution
represents a critically damped solution, and the graph of y(t) represents eventual
exponential decay. The characteristic equation then has two real equal roots
leading to a solution of the form

y(t) = (c1 + c2t)e−bt/2.

If the coefficient b is reduced at all, the solution will contain oscillations.
The term underdamped is applied to the solution that allows an oscillatory

solution, but the solution is eventually “damped” and approaches zero. The
solution to the second-order homogeneous equation in the underdamped case
can be written

y(t) = Ce−bt/2 sin(ωt + φ),

where ω =
√

4c− b2/2 and the constants C and φ are determined by the initial
conditions. In the extreme case that b = 0, the system is said to be undamped,
and the solution is pure sinusoidal oscillation called harmonic oscillation. This
will be studied in a later example.

In summary, the second-order homogeneous differential equation with posi-
tive coefficients and nonzero initial conditions has two distinct types of solution
depending on the relationship between the coefficients b and c. If b2 < 4c,
an underdamped solution results and the solution displays damped sinusoidal
oscillation. If b2 > 4c, the solution exhibits exponential decay. The critically
damped solution that divides the two types of solutions occurs when b2 = 4c.

Special Case With No Damping Consider the second-order equation
with b = 0

d2y

dt2
+ cy = 0, (22)

where c is a real constant. Forming the characteristic equation

λ2 + c = 0 (23)

leads to the solutions

λ1 = +i
√

c,

λ2 = −i
√

c. (24)

so that yc(t) = C1e
iωnt + C2e

−iωnt with the substution of ωn =
√

c. The
complementary solution is

Yc(t) = A cos ωnt + B sinωnt = y(0) cos ωnt + y′(0) sinωnt

in which ωn is called the natural radian frequency of oscillation.
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MATLAB Solutions to Differential Equations In solving a differential
equation and indeed any type of equation, MATLAB gives us the advantage of
being able to vary the parameters in the equation and solve the equation repeat-
edly with different parameters. The changes in the solutions as the parameters
are varied are often best shown by plotting the results.

MATLAB Symbolic Differential Equation Solution
Consider the second-order differential equation

d2y(t)
dy2

+ b
dy(t)
dt

+ y(t) = 0

subject to the conditions

y(0) = 1 and ẏ(0) = 0.

For this equation, b = 2 is the critical damping value since c = 1 in Equation 17.
The accompanying MATLAB script solves the general differential equation

and plots the solutions for different values of b with c = 1. When b = 3, the
solution in the figure represents overdamped behavior. The underdamped case
with b = 1 is also shown.

% EX5_4.M Harman Page 224 Solve symbolically the second order equation
% D2y+b*Dy+c*y=0 and plot for b=1, b=3 with c=1.
%
sym(’b’)
y = dsolve(’D2y+b*Dy+1*y=0’,’y(0)=1’,’Dy(0)=0’,’t’);
y=simple(y) % Simplify the solution
% Substitute values b=1 and b=3
clf % Clear any figures and
hold on % plot multiple graphs
ezplot(subs(y,’b’,3.0),[0,10])
gtext(’b=3’) % Annotate text with mouse
ezplot(subs(y,’b’,1.0),[0,10])
gtext(’b=1’)
title(’Solution to D2y+b*Dy+y=0, y(0)=1,Dy(0)=0’)
ylabel(’y(t)’)
grid
hold off % Default setting

The symbolic MATLAB command dsolve is used to solve the differential
equation subject to the given initial condition. Notice the use of the subs
command to substitute various values for b. The command gtext is used to
annotate the graph at points designated by the mouse cursor position.
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Figure 1: Response of Homogeneous 2nd order System

Particular Solutions of Differential Equations Various techniques are
used to find particular solutions to ordinary differential equations. In this sec-
tion, the techniques of solution described are the following:

1. Undetermined coefficients,

2. Variation of parameters,

3. MATLAB solution.

Method of Undetermined Coefficients A particular solution to the nth-
order linear differential equation

Ln[yp(t)] = f(t)

can be found in principle using a number of techniques. When the equation has
constant coefficients, as in Equation 10, the simplest approach is the method of
undetermined coefficients. This amounts to making an educated “guess” as to
the form of yp from the form of the forcing function f(t). This method is appro-
priate when f(t) is a constant, a polynomial in t, exponential or trigonometric
functions of t, or finite sums or products of these functions.

The Table lists the form of f(t) in the left column and the assumed undeter-
mined coefficient solutions in the right column. The solution method consists
of substituting the assumed solution in the equation and finding the unknown
constants.
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f(t) Choice for yp

Keαt ceαt

Ktn, (n = 0, 1, . . .) cntn + cn−1t
n−1 + · · ·+ c1t + c0

K sinωt or K cos ωt c1 cos ωt + c2 sinωt
Keαt cos ωt or Keαt sinωt eαt(c1 cos ωt + c2 sinωt)

In the table, it is assumed that eαt, sin ωt, or cos ωt are not solutions of the
homogeneous equation, as described in Equation 15 and the Table of Homoge-
neous solutions. If the chosen particular solution happens to be a solution of
the homogeneous equation Ln[y(t)] = 0, multiply the trial particular solution
by t or powers of t if the homogeneous solution results from multiple roots of
the characteristic equation.

Summary The solution approach using undetermined coefficients can be
made more rigorous by stating explicitly the conditions under which a partic-
ular solution can be found by this method. The following theorem defines the
solutions to Equation 10,

Ln[yp(t)] = f(t),

when f(t) has the form of a polynomial times an exponential function.
Theorem for Particular solutions Consider the nth-order, linear, non-

homogeneous equation with constant coefficients

Ln[yp(t)] = p(t)eγt, (25)

in which p(t) is a polynomial of degree r in t and γ is a complex number. In the
following, let k = 0 if γ is not a root of the characteristic equation (g(γ) 6= 0),
and let k be the multiplicity of the root γ if g(γ) = 0. Then, there exists a
particular solution of Equation 25 of the form

yp(t) = tkh(t)eγt, (26)

where h(t) is an rth-degree polynomial. The coefficients of h(t) can be found by
the method of undetermined coefficients.

The theorem covers all the cases just shown in the Table of Undetermined
Coefficients for particular solutions and also the case that f(t) would solve the
homogeneous equation. The notation g(λ) means the characteristic equation

g(λ) = λn + an−1λ
n−1 + · · ·+ a1λ + a0,

as in Equation 11.
To interpret Theorem , we consider the cases involving the solutions to the

homogeneous equation by the exponential term in the forcing function as follows:

1. eγt does not solve Ln[eγt] = 0, so k = 0.

2. eγt solves Ln[eγt] = 0 and k is the multiplicity of the root γ in the char-
acteristic equation.
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Examples of repeated roots with a solution to the complementary
equation as a forcing function.

For example, consider the equation with repeated roots and a forcing func-
tion with the same exponent

L2[y(t)] = ÿ(t) + 2ẏ(t) + y(t) = e−t. (27)

Since the characteristic equation is (λ + 1)2 = 0, a root is λ = −1, but with
multiplicity two. The complementary solution is thus

yc(t) = (c1 + c2t)e−t.

The exponential forcing term e−t is a solution of L2[y](t) = 0, k = 2 in the
theorem, and a solution is sought in the form

yp(t) = t2h(t)e−t.

Suppose that the polynomial in the forcing function of Equation 25 is of the
form

p(t) = antn + an−1t
n−1 + · · ·+ a0.

Then, we search for a polynomial h(t) in the form

h(t) = bntn + bn−1t
n−1 + · · ·+ b0.

It is now possible to substitute the solution of Equation 26 into the differential
Equation 25 and solve for the coefficients of h(t), treating them as unknowns.
The result will be a system of linear equations by equating coefficients of like
powers on each side of Equation 25. In Equation 27, p(t) = 1 so the degree is
r = 0. In this case, h(t) = C in the particular solution, where C is a constant
to be determined. Thus, the particular solution to the equation

ÿ(t) + 2ẏ(t) + y(t) = e−t

is yp(t) = Ct2e−t. You should substitute yp(t) in the differential equation and
show that the undetermined coefficient is C = 1/2. The complete solution is
thus

y(t) = yc(t) + yp(t) = (c1 + c2t)e−t +
1
2
t2e−t.

Now apply initial conditions to determine c1 and c2. (Harman Page 228).
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Figure 2: Second Order System

General form of second order equation. Writing

ÿ(t) + 2ζωn ẏ(t) + ω2
n y(t) = αf(t). (28)

allows the equation to be a model for any second-order differential equation
with constant coefficients if the coefficients are interpreted properly. The char-
acteristic equation

λ2 + 2ζωnλ + ω2
n = 0

has the roots
λ1,2 = −ζωn ± ωn

√
ζ2 − 1. (29)

The Greek letter ζ (zeta) is used to designate the damping ratio.
An example would be Newton’s law for a mass, spring, dashpot system

mÿ(t) + βẏ(t) + ky(t) = f(t) (30)

which dividing both sides by m yields ω2
n = k/m and

ζ = damping ratio =
β

2
√

km
,

which has the interpretation of the actual damping β coefficient divided by the
critical damping value.

In a series RLC circuit, resistance plays the role of damping and inductance
is analogous to mass. For this circuit, the electrical analog of Equation 33 takes
the form

Lq̈(t) + Rq̇(t) +
1
C

q(t) = v(t). (31)

In this equation, q(t) is the electrical charge and the current in the circuit is
i(t) = x1(t) = dq(t)/dt. If the output voltage v0(t) = x2(t) is the voltage across
the capacitor, then

i(t) = C
dvo

dt
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and the series equation becomes

L
di(t)
dt

+ Ri(t) + vo(t) = Vin(t).

Substituting for i(t) as defined by the change in capacitor voltage and dividing
by LC yields the equation

v̈o +
R

L
v̇o +

1
LC

vo =
1

LC
vin(t) (32)

Second-order parameters. The parameters listed in the Table relate mechan-
ical and electrical systems in terms of damping for a second-order differential
equation model in which mass and inductance are analogs. The parameters
apply for the mechanical system of Equation 33 and the series (RLC) electrical
circuit of Equation 32 that is analogous.

Parameter Mechanical Electrical

ωn

√
k

m

√
1

LC

ζ
β

2
√

km

R

2

√
C

L

Critical damping β2 = 4km R2 = 4
L

C
Analog m, mass L, inductance

Between the low-damping condition for a system and the overdamped condi-
tion, critical damping occurs for the values given in the table. In the mechanical
circuit, β = 2

√
km. For a series electrical circuit, the critical value of the resis-

tance must be R = 2
√

L/C.
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Figure 3: Second Order System

Example with complex roots and step forcing function - Harman
P 256

Solutions of Second-Order Equations
In this example, a second-order differential equation will be solved in several

ways. It is good practice to study an equation to be solved before applying
numerical techniques. If an analytical solution can be found, this serves as a
check on the results of the computer solution. The computer solution then might
be used to solve the problem with the variables changed to simulate changes in
a physical system or to determine the optimum design for a specified purpose.
For example, it may be necessary to assure that oscillations do not occur in
response to a step disturbance. By selecting the proper amount of damping, a
nonoscillatory response can be achieved.

The figure 3 shows a simple physical system consisting of a massless beam
supported by a spring and a damper. This system can be modeled by the
equation

mÿ(t) + βẏ(t) + ky(t) = f(t). (33)

The system is assumed to be at rest before t = 0, but a mass is placed on the
beam at t = 0. The problem is to find the motion of the system measured as
the motion of the beam and mass y(t) and the final position of the beam after
any oscillations have died out.

The response of a system to a forcing function can be divided into a transient
solution and a steady-state solution. Mathematically, the steady-state position
is defined by the solution y(t) as t approaches infinity. The transient response of
a mechanical system will generally exhibit damped vibrations before the system
reaches a steady state. In this example, we search for values of damping β that
will eliminate the vibrations as the system responds to a step function input.

As a preliminary design, let the physical components have the following
properties

m = 1 kilogram,

β = 4 newton-seconds/meter,
k = 40 newtons/meter,
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where the International System of Units (SI) is used to define the mass m
in kilograms, the viscous friction β in newton-seconds/meter, and the spring
constant k in newtons/meter. The forcing function is f(t) = mg, where g is
the force of gravity (9.81 meters per second2). The solution will be given as
displacement measured in meters.

First, we will solve the equation by the traditional methods described in
previous sections of this chapter. Dividing the equation by the value of m yields

ÿ(t) + 4ẏ(t) + 40y(t) = 9.81, t ≥ 0. (34)

The characteristic equation is λ2 + 4λ + 40 = 0, with solutions λ = −2 ± 6i.
Since the real part of the eigenvalues are negative, the complementary solution
exhibits damped sinusoidal oscillation (vibration) decaying to zero with time.
Such a system is said to be stable. Since there is an imaginary part to the
eigenvalues, vibration of the beam will occur with this damping constant.

Since the forcing function is constant, assume a particular solution

yp(t) = K.

Because the derivatives of yp are zero, substituting yp(t) = K in the equation
gives the simple result 40K = 9.81, or K = 0.2453 meters. Thus, the complete
solution to Equation 34 has the form

y(t) = 0.2453 + e−2t [c1 sin(6t) + c2 cos(6t)] , t ≥ 0.

Forming y(0) = ẏ(0) = 0 and solving for the constants gives the final result

y(t) = 0.2453
[
1− 1

3
e−2t sin(6t)− e−2t cos(6t)

]
. (35)

Notice that the particular solution provides a check on the overall solution. It
is required that

lim
t→∞

y(t) = 0.2453

as the steady-state solution. The nonconstant part of the solution in Equation 35
is the transient solution that decays to zero with time as it must in any real
system with damping.
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>> help symbolic
Symbolic Math Toolbox
Version 5.10 (R2013a) 13-Feb-2013

Calculus.
diff - Differentiate.
int - Integrate.
limit - Limit.
poles - Poles of a function.
taylor - Taylor series.
symsum - Summation of series.
symprod - Product of series.

Simplification.
simplify - Simplify.
expand - Expand.
factor - Factor.
collect - Collect.
simple - Search for shortest form.

dsolve - Symbolic solution of differential equations.

odeToVectorField - Convert higher-order ODEs to systems of first-order ODEs.

Integral Transforms.
fourier - Fourier transform.
laplace - Laplace transform.
ztrans - Z transform.
ifourier - Inverse Fourier transform.
ilaplace - Inverse Laplace transform.
iztrans - Inverse Z transform.

sym - Create symbolic object.
syms - Short-cut for constructing symbolic objects.
findsym - Determine symbolic variables.
pretty - Pretty print a symbolic expression.
latex - LaTeX representation of a symbolic expression.

heaviside - Step function.
dirac - Delta function.

rectangularPulse - Rectangular pulse function.
triangularPulse - Triangular pulse function.
sign - Sign function.
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Trigonometric Functions.
sin - Sine function.
cos - Cosine function. Etc.

ezplot - Easy to use function, implicit, and parametric curve plotter.

symcalcdemo - Calculus demonstration.

Examples:
>> dsolve(’Dx = -a*x’)

ans = C2*exp(-a*t)

>> x = dsolve(’Dx = -a*x’,’x(0) = 1’,’s’)

x = exp(-a*s) (Note x(0)=1)
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