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1 Z TRANSFORMS

S-PLANE

1.1 THE Z-PLANE AND THE S-PLANE

From the relationship

z = esTs = e(σ+iω)Ts = eσTseiωTs (1.1)

we map the s-plane into the z-plane. The iω axis maps into the unit circle

z = eıωTs

which has magniude |z| = 1. The values of iωTs determine the position
on the circle. As the argument increases in the positive direction , points
on the circle wrap around starting at z = 1 when ωTs = 0 corresponding
to ω = 0 in the s-plane. At the angle ωTs = π, z = −1. The region of
the jω in the s-plane axis from ω = 0 to −ωTs = −π map to the lower
half of the unit circle and again z = −1 when −ωTs = −π.

In terms of sampling theory, the limits used to preserve the uniqueness
of the mapping correspond to the Nyquist frequencies ωs = ±π/Ts.
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DAMPING AND

THE Z-PLANE

The left-hand side of the s-plane, for values s = σ + iω with σ < 0 and
|ω| < π/Ts maps into the interior of the unit circle in the z-plane. Since
poles in the left-hand s-plane correspond to a BIBO stable continuous
system, the corresponding poles for stable discrete systems must lie within
the unit circle in the z-plane. Note that the negative real axis in the s-
plane maps into the real axis from 0 to 1 in the z-plane. Thus, a digital
system with a pole at −0.5, for example, has no corresponding continuous
system. (Shahian p 263).

If σ > 0, the points in the right-hand s-plane map to the exterior of
the unit circle in the z-plane.

Vertical lines in the s-plane such that π/Ts ≤ ω ≤ π/Ts and σ < 0,
map into a circle in the z-plane centered at z = 0 with radius r = exp σTs.

EXAMPLE 1.1 Mapping the s-plane to the z-plane

Consider the s-domain function

G(s) =
1

(s + 1)(s + 2)(s2 + 1)

with poles at s = −1,−2,±i. For Ts = 1, the poles in the z-plane given by
exp(sTs) appear at

z = 0.3679, 0.1353, 0.5403 + 0.8415i, 0.5403 − 0.8415i

as computed by the MATLAB script below and shown in Figure 1.1.

The inverse Laplace transform of G(s) leads to time functions such as
e−t,e−2t and e±it or cos t and sin t. Thus, the oscillations have frequency f =
1/2π Hertz or 1 rad/sec. With Ts = 1, ωs = 2π and the maximum digital
frequencies are F = .5 or Ω = π radians according to Equation ??.

In the z-plane, the pole at 0.5403 + 0.8415i has magnitude 1 since it lies
on the unit circle and angle

θz = tan−1 0.8415

0.5403
= 1 radian.

With Ts = 1, the maximum digital frequency Ω = π rad occurs at the point
z = −1.

If Ts = 0.1, the poles in the z plane are changed as indicated in the results
of the MATLAB calculation. The maximum digital frequency is F = 5 or
Ω = 10π radians. The angle of the pole z = 0.9950 + 0.0998i is θz = 0.1000
radians as expected.
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MATLAB Script

Example 1.1

%s2zplane.m

% Plot z-plane poles for G(s)=1/[(s+1)(s+2)(s^2+1)

% See Taylor p252

%

% Let Ts=1.0

Ts=1.0

poless=[-1 -2 +i -i]

polesz=exp(poless*Ts)

%

% Define zeros and poles as column vectors

zplane(polesz’) % There are no zeros

title(’Z-plane for s-plane poles -1,-2,+1=-i’)

grid

%

% Results

%

%Ts = 1

%poless =-1.0000 -2.0000 0 + 1.0000i 0 - 1.0000i

%polesz =0.3679 0.1353 0.5403 + 0.8415i 0.5403 - 0.8415i

%

% Change sampling time

%

%Ts1 = 0.1000

Ts1=0.1

poless1=[-1 -2 +i -i]

polesz1=exp(poless1*Ts1)

% poless1 =-1.0000 -2.0000 0 + 1.0000i 0 - 1.0000i

% polesz1 = 0.9048 0.8187 0.9950 + 0.0998i 0.9950 - 0.0998i
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FIGURE 1.1 z-plane poles from s-plane

Second-order systems Consider the second-order system

G(s) =
ω2

n

s2 + 2ζωns + ω2
n

with poles at

s1 = −ζωn + iωn

√

1 − ζ2 s2 = −ζωn − iωn

√

1 − ζ2.

The term σ = −ζωn is the real part of a pole in the s-domain that
corresponds to damping of the time response of the system G(s). The
pole in the z-plane lies on a circle centered at z = 0 with radius

|z| = exp(−ζωnTs).
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