
PIC24FV32KA304 FAMILY

Memory :::!! s: II)

CLI
3: j@ ~ .9 ~

~~ c..- ~PIC24F II) E~ J9~ ~- _ ::::s

'" C ~ o
:::!!Iil CLlIn ::::s ::::s ~ c. 1-<1: a:: •... :« oc s: C'a II) C'a II) - c. U C'a :::l

Device a:: II) ~ CLI <I:~ c~ Eel> c.c [~ a:c II'J ':i.. - c. :::!! I-
C'a 0)- i=or- C'a_ <I:..!::: E a:

u:: o >. a: >. w~ o EO :::l i:ii I-~.o 1I'J,e. 0 Uc..- w- 0 N oo .•....

PIC24FV16KA301 20 16K 2K 512 5 3 3 2 2 2 12 3 12 Y
IPIC24F16KA301

PIC24FV32KA301 20 32K 2K 512 5 3 3 2 2 2 12 3 12 Y
IPIC24F32KA301

PIC24FV16KA302 28 16K 2K 512 5 3 3 2 2 2 13 3 13 Y
IPIC24F16KA302

PIC24FV32KA302 28 32K 2K 512 5 3 3 2 2 2 13 3 13 Y
IPIC24F32KA302

PIC24FV16KA304 44 16K 2K 512 5 3 3 2 2 2 16 3 16 Y
IPIC24F16KA304

PIC24FV32KA304 44 32K 2K 512 5 3 3 2 2 2 16 3 16 Y
IPIC24F32KA304

t tf
SE't..JAL-

DS39995B-page 4 © 2011 Microchip Technology Inc.

~
MICROCHIP

5C~!Av
PIC24FV32KA304 FAMILY

20/28/44/48-Pin, General Purpose, 16-Bit Flash
Microcontrollers with XLP Technology

Power Management Modes:
Run - CPU, Flash, SRAM and Peripherals On
Doze - CPU Clock Runs Slower than Peripherals
Idle - CPU Off, Flash, SRAM and Peripherals On
Sleep - CPU, Flash and Peripherals Off and SRAM on
Deep Sleep - CPU, Flash, SRAM and Most Peripherals
Off; Multiple Autonomous Wake-up Sources
Low-Power Consumption:
- Run mode currents down to 8 IJA, typical
- Idle mode currents down to 2.2 IJA, typical
- Deep Sleep mode currents down to 20 nA, typical
- Real-Time Clock/Calendar currents down to

700 nA, 32 kHz, 1.8V
- Watchdog Timer 500 nA, 1.8V typical

High-Performance CPU:
Modified Harvard Architecture
Up to 16 MIPS Operation @ 32 MHz
8 MHz Internal Oscillator with 4x PLL Option and
Multiple Divide Options

• 17-Bit by 17-Bit Single-Cycle Hardware Multiplier
32-Bit by 16-Bit Hardware Divider 16-Bit x 16-Bit
Working Register Array
C Compiler Optimized Instruction Set Architecture

Peripheral Features:
Hardware Real-Time Clock and Calendar (RTCC):
- Provides clock, calendar and alarm functions
- Can run in Deep Sleep mode
- Can use 50/60 Hz power line input as clock source
Programmable 32-bit Cyclic Redundancy Check

<
~u~t~leSerial Communication modules:

- Two 3-/4-wire SPI modules
- Two 12CTM modules with multi-master/slave support
- Two UART modules supporting RS-48S, RS-232,

LlN/J2602, IrDA®
Five 16-Bit Timers/Counters with Programmable
Prescaler:
- Can be paired as 32-bit timers/counters
Three 16-Bit Capture Inputs with Dedicated Timers
Three 16-Bit Compare/PWM Output with Dedicated
Timers
Configurable Open-Drain Outputs on Digital I/O Pins
Up to Three External Interrupt Sources

Analog Features:
12-Bit, up to 16-Channel Analog-to-Digital Converter:
- 100 ksps conversion rate
- Conversion available during Sleep and Idle
- Auto-sampling timer-based option for Sleep and

Idle modes
- Wake on auto-compare option

• Dual Rail-to-Rail Analog Comparators with
Programmable Input/Output Configuration

• On-Chip Voltage Reference
Internal Temperature Sensor
Charge Time Measurement Unit (CTMU):

Used for capacitance sensing, 16 channels
Time measurement, down to 200 ps resolution
Delay/pulse generation, down to 1 ns resolution

Special Microcontroller Features:
Wide Operating Voltage Range:
- 1.8V to 3.6V (PIC24F devices)
- 2.0V to S.SV (PIC24FV devices)
Low Power Wake-up Sources and Supervisors:

Ultra-Low Power Wake-up (ULPWU) for
Sleep/Deep Sleep
Low-Power Watchdog Timer (DSWDT) for
Deep Sleep

- Extreme Low-Power Brown-out Reset (DSBOR)
for Deep Sleep, LPBOR for all other modes

• System Frequency Range Declaration bits:
- Declaring the frequency range optimizes the

current consumption.
Standard Watchdog Timer (WDT) with On-Chip,
Low-Power RC Oscillator for Reliable Operation
Programmable High/Low-Voltage Detect (HLVD)
Standard Brown-out Reset (BOR) with 3 Programmable
Trip Points that can be Disabled in Sleep
High-Current Sink/Source (18 mAl18 mAl on All I/O Pins
Flash Program Memory:
- Erase/write cycles: 10,000 minimum
- 40 years' data retention minimum
Data EEPROM:
- Erase/write cycles: 100,000 minimum
- 40 years' data retention minimum
Fail-Safe Clock Monitor

• Programmable Reference Clock Output
Self-Programmable under Software Control
In-Circuit Serial Proqramrninq" (lCSPTM) and
In-Circuit Debug (ICD) via 2 Pins

© 2011 Microchip Technology Inc. DS39995B-page 3

Clock
or
Baud Rate
Generator

Serial
Input

Serial
Output

Transmitter
Output
Buffer

'Parallel Bus

Figure 12.7 Serial data communication circuitry.

Asynchronous and synchronous communication. In asynchronous com-
munication, information is transmitted as individual data items bracketed by a start
bit and either one or two stop bits. A typical example is shown in Figure 12.8(a) for
the transmission of 8 data bits bracketed by one start bit and one stop bit. This for-
mat could be used to transmit an ASCII character plus a parity bit. 3 The complete
sequence of bits is called a frame.

Some interfaces, such as the SCI of the Queued Serial Module, allow a ninth bit
to be added to the data frame. The format for each frame with the added bit is shown
in Figure 12.8(b). The extra bit is used for communication between master and slave
devices as will be described in Section 12.3.

The time between frames is called the idle time and it may vary from frame to
frame. Figure 12.8(a) shows three idle bits after the nth frame. No idle bits between
frames are shown in Figure 12.8(b). A frame is detected by the receiving device when
the signal voltage drops from HIGH (logic {I}) to LOW (logic {O}) as the start bit is
recognized. This synchronizes the frame between receiver and transmitter. However,
the transmission method is called asynchronous because the receiver and transmitter
have separate clocks which are not synchronized in time. As described in Example 12.2
and Example 12.3, the clocks determine the bit transmission rate (baud rate).

After the start bit is recognized, the receiver must determine the location of each
bit boundary and sample the value. The receiver does this by measuring the voltage
of the input signal a fixed number of times during the period of each bit. The bit is
stored as a {O} or a {I} according to the results of the measurement. Subsection 12.3.1

3 Section 8.3 presented a program example to add a parity bit to an ASCII character.

434 The Queued Serial Module Chap. 12

r
~

1

s
1

2

(n + 11st
1---- Chara cter

Frame
i---------nth Frame --------i

Start Bit
of Next
Character

Parity
or Stop
Data Bit

Stop Start
Bit Bit Idling Bits8 Data Bits

·11 a I0/1 I all I 0/1

~1 ';;Ti::
all I all I all I all I all I 1- "....

i 1 i 1 I a @D.

(a) Asynchronous, 8-bit format

(n + list
nth Frame Character

Frame
Stop Start Stop Start
Bit Bit 8 Data Bits Bit bit

~ a I all I all I all I all I all I 0/1 I 0/1 I 011 all I 1 a I 0/1 I 0/1 I

t
Programmable 9th Data Bit

(b) Asynchronous, 9-bit format

f---- Data Bits -+Sync Character+- Data Bits---l

~pa:~e I
(c) Synchronous

Figure 12.8 Asynchronous and synchronous frame formats.

explains the relationship between the receiver clock frequency and the baud rate for
the scr.

The asynchronous method is often used for data transmission between a com-
puter and a low-speed peripheral device such as an operator's terminal or printer.
Since start and stop bits are needed in every frame, the method is not generally as
efficient for the transfer of information as synchronous transfers.

In synchronous communication information is transmitted in blocks. A possible
format is shown in Figure 12.8(c). The receiver and transmitter clocks are synchro-
nized in time because a clock signal is transmitted along with the data. The clock
signal can be sent on a separate conductor or it may be encoded with the data in a
self-clocking scheme. In either case, the start and stop bits of asynchronous transfer
are eliminated. There is no idle time between blocks, but when no data are being
sent a "sync" (synchronizing) character is transmitted. The receiver's clock is thus al-
ways synchronized with the transmitter's clock. Very high transmission rates can be
achieved reliably as compared to asynchronous transfer.

Signaling Characteristics. Once the type of format for serial data trans-
missions is selected, the signaling characteristics must be defined.' Two important

4 Encoding techniques and other characteristics of the signal are discussed in several of the references
cited in the Further Reading section of this chapter. One common encoding technique for asynchronous
communication is termed non-return-to-zero (NRZ).

Sec. 12.2 Data Transfer Techniques and Serial Communication 435

parameters are the bit rate measured in bits per second and the digital encoding tech-
nique.

Since the bit is the smallest unit of information for serial communications, the
signaling speed is defined in terms of bits per second transmitted. This is frequently
called the baud rate when only two-level signaling is used." The baud rate is the recip-
rocal of the length (in seconds) of the shortest element in the signaling code. If more
than two voltage levels are used in transmission, the bit rate is higher than the baud
rate.
Example 12.2 ~ l-E' \J e J....

The baud rate for two-level signaling is the reciprocal of the time duration of a bit. The
- -frequency of the transmitter and receiver clocks determine the baud rate for an asyn-

chronous communications channel. The clocks must not differ in frequency by more
than several percent or transmission errors may result. At 9600 baud for example, each
bit has a duration of 1/9600 seconds or about 0.104 millise~ A frame of 10 bits thus
requires about a millisecond to be received or transmitted .. This rate would allow the
transmission of 1000 ASCII characters per second.

In applications using the SCI for interrupt controlled transfers, the CPU would be
interrupted after each character is received. The interrupt handling routine would read
the character from the SCI receiver's input register and store it in memory. For transmis-
sion, the CPU is interrupted each time the transmitter is ready for a new character. The
interrupt handling routine must transfer each character from one of the CPU registers
.or memory to the transmitter's output register for transmission.

Since the parallel registers of the SCI hold only one character, the CPU is involved
in each transfer. However, at the transfer rates typically used by the SCI, only a small
percentage of the CPU's time is spent servicing the interrupts. The QSPI can provide
even more efficient operation since it has a buffer area in the form of a queue that stores

~~3)"2- up to 16 data values for transmission and reception. It is straightforward to calculate
the percentage ofti'me used by the CPU for transfers when the transfer rate and the
duration of the interrupt handling routine is known. Several of the exercises at the end
of Section 12.2 require this calculation.

The baud rate for the SCI and QSPI is derived from the system clock. The rate is
programmable for the SCTbetween 64 baud and 524,000 baud with a 16.78MHz system
clock. A signaling rate of between 33kHz and 4.19MHz is p~ssible for the QSPI. The
baud rate of the SCI and the signaling rate of the QSPI correspond to the number of bits
per second that are transmitted or received.

aSM electrical haracteristics. e input and output pins of the SCI and
QSPI operate with a log HIGH of +5 volts nd a logic LOW of a volts when the
power supply voltage is + volts. These voltage vels are appropriate for data trans-
mission between microcontr lers. Signal lines fro one SCI serial port, for example,
can be connected directly to a other SCI port with t any intervening circuitry. The
connection is described in Secti 12.3.

When the MC68332 SCI is u ed as a UART (Univ sal Asynchronous Receiver
Transmitter) port, the voltage levels rom the SCI must be ranslated to those of the

5 Baud is a contraction of the surname of J. .F Baudot according to the ncyclopedia of Computer
Science, Van Nostrand Reinhold Company, 1976. Baudot invented a French tel ph code adopted in
1877.

436 The Queued Serial Module Chap. 12

270 Chapter 12 I Serial 1/0

Table 12-4 Summary of RS-232-C, RS-423, RS-422, and RS-485 Standards

Specification RS-232-C RS-423 RS-422 RS-485

Receiver input voltage ±3 to ±15 V ±200 mV to ±12 V ±200 mV to ±7 V ±200 m V to -7 to +12 V

Driver output signal ±5 to ±15 V ±3.6 to ±6V ±2 to ±5V ±1.5 to ±5 V

Maximum data rate 20 Kbitfs 100 Kbitfs 10 Mbitfs 10 Mbitfs

Maximum cable length 50 feet iOOO feet 4000 feet 4000 feet

Driver source impedance 3-7 kO 4500 min 1000 540

Receiver input resistance 3 kO 4kO 4 kO min 12kO

Mode Single-ended Single-ended Differential Differential

Number of drivers and receivers 1 driver 1 driver 1 driver 32 drivers
allowed on one line 1 receiver 10 receivers 10 receivers 32 receivers

CMOS
Logic
Levels

RS-423
Logic
Levels , CMOS

Logic
Levels

•••
Up to Ten
Receivers

CMOS
Logic
Levels

Figure 12-11 RS-423 interface.

RS-422 Standard

A problem experienced with the single-ended drivers and receivers ofRS-232-C and RS-423 is
that for long line lengths, noise and ground shifts can cause errors in the received data. Noise
and ground shifts appear as common-mode signals; that is, they affect each line equally. The
RS-422 line drivers and receivers operate with differential amplifiers as shown in Figure 12-12.
These drivers eliminate much of the common-mode noise experienced with long transmis- "
sion lines. Their source and load impedances match twisted-pair transmission lines"; the line
lengths and data rates that can be achieved will be shown in Table 12-4, along with the RS-422
electrical specifications.

5 Approximately 100 O.

274 Chapter 12 / Serial I/O

Table 12-5 ASCII 7-bit Codes for Alphanumeric Characters

MS Digit

LS Digit 0 2 3 4 5 6 7

0 NUL DLE SP 0 @ P P
I SOH DCI r:J) Q a q

2 STX DC2 I 2 B R b r

3 ETX DC3 # ~ __ C S c s

4 EOT DC4 $ 4 D T d

5 ENQ NAK % 5 E U e u

6 ACK SYN & 6 F V f v

7 ~BEL ETB 7 G W g w

8 BS CAN 8 H X h x
9 HT EM 9 I Y Y
A LIt" SUB * J Z j z
B VT § + K [k

C FF FS < L \ 1
D CRJ GS M 1 m
E SO RS > N A n

F SI US ? 0 0 DEL

Example 12-1 Finding the ASCII Code for a Character

Use Table 12-5 to find the hexadecimal ASCII codes for the characters A, a, and].

Solution

A = Ox41, a = Ox61,] = Ox5D

Example 12-2 Finding the ASCII Code for a Character

Use Table 12-5 to find the hexadecimal ASCII codes for the control characters CR, BEL,
and LF.

Solution

CR = OxOD,BEL = Ox07, LF = OxOA

PIC24FV32KA304 FAMILY

18.0 UNIVERSAL ASYNCHRONOUS
RECEIVER TRANSMITTER
(UART)

Note: This data sheet summarizes the features
of this group of PIC24F devices. It is not
intended to be a comprehensive
reference source. For more information
on the Universal Asynchronous Receiver
Transmitter, refer to the "PIC24F Family
Reference Manual", Section 21. "UART"
(DS39708).

The Universal Asynchronous Receiver Transmitter
(UART) module is one of the serial I/O modules
available in this PIC24F device family. The UART is a
full-duplex asynchronous system that can communicate
wfth peripheral devices, such as personal computers,
LlN/J2602, RS-232 and RS-485 interfaces. This module
also supports a hardware flow control option with the
UxCTS and UxRTS pins, and also includes an IrDA®
encoder and decoder.

The primary features of the UART module are:

Full-Duplex, 8-Bit or 9-Bit Data Transmission
through the UxTX and UxRX Pins
Even, Odd or No Parity Options (for 8-bit data)
One or Two Stop bits
Hardware Flow Control Option with UxCTS and
UxRTS pins

FIGURE 18-1:

• Fully Integrated Baud Rate Generator (IBRG) with
16-bit Prescaler
Baud Rates Ranging from 1 Mbps to 15 bps at
16 MIPS

• 4-Deep, First-In-First-Out (FIFO) Transmit Data
Buffer
4-Deep FIFO Receive Data Buffer

• Parity, Framing and Buffer Overrun Error
Detection ""

• Support for 9-bit mode with Address Detect
(9th bit = 1) #=

• Transmit and Receive Interrupts
• Loopback mode for Diagnostic Support
• Support for Sync and Break Characters

Supports Automatic Baud Rate Detection
• IrDA® Encoder and Decoder Logic
• 16x Baud Clock Output for IrDA Support

A simplified block diagram of the UART is shown in
Figure 18-1. The UART module consists of these
important hardware elements:

• Baud Rate Generator
Asynchronous Transmitter

• Asynchronous Receiver

lS SblUE .,..,ME3
TME" ~cr!

UART SIMPLIFIED BLOCK DIAGRAM

UxBCLK

r- Baud Rate Generator

~ IrDA® ~

~ Hardware Flow Control r<:7I
~
r:g]

~ UARTx Receiver ••• ~

~ UARTx Transmitter

UxRX

UxTX

© 2011 Microchip Technology Inc. DS39995B-page 181

PIC24FV32KA304 FAMILY

18.1 UART Baud Rate Generator (BRG)

The UART module includes a dedicated 16-bit Baud
Rate Generator (BRG). The UxBRG register controls
the period of a free-running, 16-bit timer. Equation 18-1
provides the formula for computation of the baud rate
with BRGH = o.

EQUATION 18-1: UART BAUD RATE WITH
BRGH = 0(1)

The maximum baud rate (BRGH = 0) possible is
Fcy/16 (for UxBRG = 0) and the minimum baud rate
possible is FcY/(16 * 65536).

Equation 18-2 shows the formula for computation of
the baud rate with BRGH = 1.

EQUATION 18-2: UART BAUD RATE WITH
BRGH = 1(1)

Baud Rate = F_C_Y__
16· (UxBRG + 1)

UxBRG= __ ..:.F..:::c-,-Y 1
16 • Baud Rate

Fcy
Baud Rate = ------

4· (UxBRG + I)

UxBRG =
Fcy

--:--=----c:-=-- - 1
4· Baud Rate

Note 1: Based on Fcv = Fosc/2; Doze' mode
and PLL are disabled.

Note 1: Based on Fcy = Fosc/2; Doze mode
and PLL are disabled.

Example 18-1 provides the calculation of the baud rate
error for the following conditions:

• Fcv = 4 MHz
• Desired Baud Rate = 9600

The maximum baud rate (BRGH = 1) possible is FCY/4
(for UxBRG = 0) and the minimum baud rate possible
is FcY/(4 * 65536).

Writing a new value to the UxBRG register causes the
BRG timer to be reset (cleared). This ensures the BRG
does not wait for a timer overflow before generating the
new baud rate.

EXAMPLE 18-1: BAUD RATE ERROR CALCULATION (BRGH = 0)(1)

Desired Baud Rate = FCY/(16 (UxBRG + I»
Solving for UxBRG value:

UxBRG «FCYlDesired Baud Rate)/16) - I
UxBRG «4000000/9600)/16) - I
UxBRG 25

Calculated Baud Rate 4000000/(16 (25 + I»
9615

Error (Calculated Baud Rate - Desired Baud Rate)
Desired Baud Rate
(9615 - 9600)/9600
0.16%

Note 1: Based on Fcv = Fosc/2; Doze mode and PLL are disabled.

DS39995B-page 182 © 2011 Microchip Technology Inc.

PIC24FV32KA304 FAMILY

18.2 Transmitting in 8-Bit Data Mode

1. Set up the UART:
a) Write appropriate values for data, parity and

Stop bits.
b) Write appropriate baud rate value to the

UxBRG register.
c) Set up transmit and receive interrupt enable

and priority bits.
2. Enable the UART.
3. Set the UTXEN bit (causes a transmit interrupt

two cycles after being set).
4. Write data byte to lower byte of UxTXREG word.

The value will be immediately transferred to the
Transmit Shift Register (TSR), and the serial bit
stream will start shifting out with the next rising
edge of the baud clock.

5. Alternately, the data byte may be transferred
while UTXEN = 0, and then, the user may set
UTXEN. This will cause the serial bit stream to
begin immediately, because the baud clock will
start from a cleared state.

6. A transmit interrupt will be generated as per
interrupt control bit, UTXISELx.

18.3 Transmitting in 9-Bit Data Mode

1. Set up the UART (as described in Section 18.2
"Transmitting in 8-Bit Data Mode").

2. Enable the UART.
3. Set the UTXEN bit (causes a transmit interrupt,

two cycles after being set).
4. Write UxTXREG as a 16-bit value only.
5. A word write to UxTXREG triggers the transfer

of the 9-bit data to the TSR. The serial bit stream
will start shifting out with the first rising edge of
the baud clock.

6. A transmit interrupt will be generated as per the
setting of control bit, UTXISELx.

18.4 Break and Sync Transmit
Sequence

The following sequence will send a message frame
header made up of a Break, followed by an auto-baud
Sync byte.

1. Configure the UART for the desired mode.
2. Set UTXEN and UTXBRK - sets up the Break

character.
3. Load the UxTXREG with a dummy character to

initiate transmission (value is ignored).
4. Write '55h' to UxTXREG - loads the Sync

character into the transmit FIFO.
5. After the Break has been sent, the UTXBRK bit

is reset by hardware. The Sync character now
transmits.

18.5 Receiving in 8-Bit or 9-Bit Data
Mode

1. Set up the UART (as described in Section 18.2
"Transmitting in 8-Bit Data Mode").

2. Enable the UART.
3. A receive interrupt will be generated when one

or more data characters have been received as
per interrupt control bit, URXISELx.

4. Read the OERR bit to determine if an overrun
error has occurred. The OERR bit must be reset
in software.

5. Read UxRXREG.

The act of reading the UxRXREG character will move
the next character to the top of the receive FIFO,
including a new set of PERR and FERR values.

18.6 Operation of UxCTSand UxRTS
Control Pins

UARTx Clear to Send (UxCTS) and Request to Send
(UxRTS) are the two hardware-controlled pins that are
associated with the UART module. These two pins
allow the UART to operate in Simplex and Flow Control
modes. They are implemented to control the
transmission and reception between the Data Terminal
Equipment (DTE). The UEN<1 :0> bits in the UxMODE
register configure these pins.

18.7 Infrared Support
The UART module provides two types of infrared UART
support: one is the IrDA clock output to support an
external IrDA encoder and decoder device (legacy
module support), and the other is the full
implementation of the IrDA encoder and decoder.

As the IrDA modes require a 16x baud clock, they will
only work when the BRGH bit (UxMODE<3» is '0'.

18.7.1 EXTERNAL IrDA SUPPORT - IrDA
CLOCK OUTPUT

To support externallrDA encoder and decoder devices,
the UxBCLK pin (same as the UxRTS pin) can be
configured to generate the 16x baud clock. When
UEN<1 :0> = 11, the UxBCLK pin will output the 16x
baud clock if the UART module is enabled; it can be
used to support the IrDA codec chip.

18.7.2 BUILT-IN IrDA ENCODER AND
DECODER

The UART has full implementation of the IrDA encoder
and decoder as part of the UART module. The built-in
IrDA encoder and decoder functionality is enabled
using the IREN bit (UxMODE<12». When enabled
(lREN = I), the receive pin (UxRX) acts as the input
from the infrared receiver. The transmit pin (UxTX) acts
as the output to the infrared transmitter.

© 2011 Microchip Technology Inc. DS39995B-page 183

Section 21. UART

21.3.2 Baud Rate Tables
UART baud rates are provided in Table 21-1 and Table 21-2 for common device instruction cycle
frequencies (Fey). The minimum and maximum baud rates for each frequency are also shown.

Table 21-1· UART Baud Rates (BRGH = 0)
Fcy = 16 MHz Fcy = 12 MHz

BAUD RATE Actual Baud BRG Value Actual Baud BRGValue
Rate % Error (Decimal) Rate

% Error (Decimal)

110 110.0 0.00 9090 110.0 0.00 6817

300 300.0 0.01 3332 300.0 0.00 2499

1200 1200.5 0.04 832 1200.0 0.00 624

2400 2398.1 -0.08 416 2403.8 0.16 311

9600 9615.4 0.16 103 9615.3 0.16 77

19.2K 19230.8 0.16 51 19230.7 0.15 38

38.4K 38461.5 0.16 25 37500.0 -2.34 19

56K 55555.6 -0.79 17 57692.3 -302 12

115K 111111.1 -3.38 8

250K 250000.0 0.00 3

300K

500K 500000.0 0.00 1

Min. 15.0 0.00 65535 11.0 0.00 65535

Max. 1000000.0 0.00 0 480000.0 0.00 0

Fcy = 8 MHz Fcy = 4 MHz Fcy = 1 MHz

BAUD RATE Actual BRG Value Actual BRG Value Actual BRGValue
Baud Rate % Error

(Decimal) Baud Rate % Error
(Decimal) Baud Rate

% Error
(Decimal)

110 917.4 0.00 4544 110.0 0.00 2272 110.0 0.00 567

300 299.9 0.00 1666 300.1 0.00 832 300.4 0.10 207

1200 1199.0 0.00 416 1201.9 0.16 207 1201.9 0.16 51

2400 2403.8 0.16 207 2403.8 0.15 103 2403.8 0.15 25

9600 9615.4 0.16 51 9615.4 0.20 25

19.2K 19230.8 0.16 25 19230.8 0.20 12

38.4K 38461.5 0.16 12

56K 55555.6 -0.79 8

115K

250K

300K

500K

Min. 8.0 0.00 65535 4.0 0.00 65535 0.95 0.00 65535

Max. 500000.0 0.00 0 250000.0 0.00 0 62500.0 0.00 0

© 2007 Microchip Technology Inc. Advance Information DS3970BB-page 21-11

PIC24FV32KA304 FAMILY

16.0 SERIAL PERIPHERAL
INTERFACE (SPI)

Note: This data sheet summarizes the features of
this group of PIC24F devices. It is not
intended to be a comprehensive reference
source. For more information on the Serial
Peripheral Interface, refer to the "P/C24F
Family Reference Manual", Section 23.
"Serial Peripheral Interface (SPI)"
(DS39699).

The Serial Peripheral Interface (SPI) module is a
synchronous serial interface useful for communicating
with other peripheral or microcontroller devices. These
peripheral devices may be serial data EEPROMs, shift
registers, display drivers, AID Converters, etc. The SPI
module is compatible with Motorola® SPI and SlOP
interfaces.

The module supports operation in two buffer modes. In
Standard mode, data is shifted through a single serial
buffer. In Enhanced Buffer mode, data is shifted
through an 8-level FIFO buffer.

Note: Do not perform read-modify-write
operations (such as bit-oriented
instructions) on the SPI1BUF register in
either Standard or Enhanced Buffer mode.

The module also supports a basic framed SPI protocol
while operating in either Master or Slave mode. A total
of four framed SPI configurations are supported.

The SPI serial interface consists of four pins:

• SDI1: Serial Data Input
• SD01: Serial Data Output
• SCK1: Shift Clock Input or Output
• SS1: Active-Low Slave Select or Frame

Synchronization 1/0 Pulse

The SPI module can be configured to operate using 2,
3 or 4 pins. In the 3-pin mode, SS1 is not used. In the
2-pin mode, both SD01 and SS1 are not used.

Block diagrams of the module in Standard and
Enhanced Buffer modes are shown in Figure 16-1 and
Figure 16-2.

The devices of the PIC24FV32KA304 family offer two
SPI modules on a device.

Note: In this section, the SPI modules are
referred to as SPlx. Special Function
Registers (SFRs) will follow a similar
notation. For example, SPI1CON1 or
SPI1 CON2 refers to the control register
for the SPI1 module.

To set up the SPI1 module for the Standard Master
mode of operation:

1. If using interrupts:
a) Clear the respective SPI11F bit in the IFSO

register.
b) Set the respective SPI11E bit in the IECO

register.
c) Write the respective SPI11Px bits in the

IPC2 register to set the interrupt priority.
2. Write the desired settings to the SPI1 CON 1 and

SPI1 CON2 registers with the MSTEN bit
(SPI1CON1<5» = 1.

3. Clear the SPIROV bit (SPI1 STAT<6».
4. Enable SPI operation by setting the SPIEN bit

(SPI1STAT<15».
5. Write the data to be transmitted to the SPI1 BUF

register. Transmission (and reception) will start
as soon as data is written to the SPI1BUF
register.

To set up the SPI module for the Standard Slave mode
of operation:

1. Clear the SPI1BUF register.
2. If using interrupts:

a) Clear the respective SPI11F bit in the IFSO
register.

b) Set the respective SPI11E bit in the IECO
register.

c) Write the respective SPI11P bits in the IPC2
register to set the interrupt priority.

3. Write the desired settings to the SPI1CON1
and SPI1 CON2 registers with the MSTEN bit
(SPI1CON1<5» = o.

4. Clear the SMP bit.
5. If the CKE bit is set, then the SSEN bit

(SPI1CON1<7» must be set to enable the SS1
pin.

6. Clear the SPIROV bit (SPI1 STAT<6».
7. Enable SPI operation by setting the SPIEN bit

(SPI1STAT<15».

© 2011 Microchip Technology Inc. DS39995B-page 165

ever, the received data represent the latest values input. For example, if a number of
ND converters are supplying values to the queue entries, the CPU program can read
the latest values at any time. In effect, the peripheral devices with serial interfaces
connected to the QSPI appear to transfer parallel data to the CPU program. The
CPU program simply reads the appropriate queue entry to acquire a data value. No
conflict will occur between serial data acquisition and the CPU reads because of the
dual-access capability of the receiver RAM.

12.4.3 I/O Expansion with the aSPI and Chip Selects

In many applications, the most limited resource of a microcontroller is the number
of I/O signal-lines available. One approach to I/O expansion is to use serial transfers
rather than parallel I/O ports. The QSPI, with very few additional circuit chips, can
control up to sixteen external devices using synchronous, serial transfers. A block
diagram of a possible system is shown in Figure 12.26. The signal lines MOSI and
MISO are used for data transfers. Selection of a specific peripheral unit and the timing
of the transfers is controlled by the peripheral chip select and the serial clock SCK
signal.

QSPI
MOSI

MISO

SCK

MC68HC11 SERIAL PERIPHER

pcso ~ MOSI ..•. Data In
PCS1 -- - MISO '--- Data Out

PCS2 - CLK CLK

PCS3 - SS -
, CS

t PCS1

AL

Figure 12.26 Block diagram of a serial interface system.

As drawn, the system of Figure 12.26 would allow up to four peripheral units to
be attached to the QSPI. Sixteen peripherals could be attached by decoding the 4 pe-
ripheral chip select signals properly. In the figure, the MC68HCll attaches directly
to the QSPI since it has a compatible interface. Other peripheral units with serial
interfaces including another MC68332 could be connected to the system. The elec-
trical and timing requirements of the peripheral unit can be accommodated without
additional circuitry in most cases since the QSPI signal characteristics can be selected
by programming. In Figure 12.26, the Slave Select signal (SS) of the MC68HCll is
connected to a peripheral select signal to enable the MC68HC11.

Sec. 12.4 The Queued Serial Peripheral Interface (QSPI) 477

MASTER. CPHA 0

PCS3-PCSO
OUTPUT

SCK
CPOL 0
OUTPUT

SCK
CPOL 1
OUTPUT

MISO
INPUT

MOSI
OUTPUT

Num Function Min Max Unit

Operating Frequency
Master-SCK DC 1/4 Svstern Clock Frequency
Slave DC 1/4 System Clock Frequency

1 Cycle Time
Master-SCK 4 510 System Clocks

2 Enable Lead Time
Master-DSCKL 2 128 System Clocks
Slave

3 Enable Lag Time
Master 1/2 1/2 SCK
Slave -

4 Clock (SCKI High or Low Time
Master 2 255 System Clocks
Slave 2 - System Clocks

5 Transfer Delay
Master-DTL 17 8192 System Clocks
Slave (Does Not Require Deselectl 13 - System Clocks

Figure 12.27 QSPI timing as a master (CPHA={O}).

The minimum delay PCSx to SCK is two system clock periods or 0.12p.s usin
16.78MHz system clock. A value of $00 for DSCKL causes a delay of 128 system do
periods or 7.6 us.

480 The Queued Serial Module

aSPI data transfers and chip selects. In the master mode, the QSPI be-
gins execution of queue commands as soon as the QSPI is enabled. The chip select
signal for a particular transfer is asserted and enables the receiving device. The SCK
signal begins after the Enable Lead Time in Figure 12.27 elapses. Then, the transfer
of the data bits begins on the MOSI line from the QSPI and on the MISO line to the
QSPI. The external device reads the data bits on the selected edge of the SCK signal.
When all the bits are transferred and received, the chip select signal is negated unless,
the Continue (CONT) bit is set in the command byte. The remaining commands in
the queue are then executed in turn in a similar manner.

The continue (CONT) bit of the queue command byte determines the use ot
the peripheral chip select signals between transfers. If CONT = {1}, the peripheral
select signals do not change between transfers. Thus, an external device could-be' ,,;~~,'
continuously selected for several transfers. If CONT is set to {O}, the state of the
peripheral chip select signals is determined by the value in QPDR. This register should
be initialized with an appropriate value before the QSPI is enabled if the continuous
mode for the peripheral chip select signals is not chosen.

The reader is referred to the MC68332 User's Manuals for a complete description
of the electrical characteristics of the QSPI signal lines. The exact timing, drive capa-
bility, voltage range and other details are defined in the manuals. The User's Manuals .
for the M68HCll family of 8-bit microcontrollers also contain detailed descriptions
of the compatible Serial Peripheral Interface (SPI) for various applications.

AID converter example. The Motorola MC145050 ND converter is a se-
rial output device that is used here to illustrate the selection of the parameters just.
discussed. The CPU program controlling the ND converter must follow the timing'
constraints and protocol published in the ND converter data sheet. Figure 12.28 de-
fines the circuit connections between the QSPI and the ND converter used in tl:i~'
examples to follow. The necessary power and grounding connections are not shown:
in the figure.

AID
CONVERTER

SIGNAL 1

SIGNAL 2

CRYSTAL

ANO

AN1

AID CLK

SCLK f--.---~ SCK

DIN MOSI

DOUT MISO

CS PCS1

VREF

aSPI
MODULE

VOLTAGE
REFERENCE

Figure 12.28 ND converter to QSPI connection.

The MC145050 is a lO-bit ND converter with eleven analog input channels, ~~~'..'

482 The Queued Serial Module

and three internal calibration channels. Figure 12.28 shows only the two channels
used in examples in this section. The serial input (DIN) and output (DOUT) pins in
Figure 12.28 allow simultaneous transfers between the QSPI and the NO converter.
When the NO converter is selected by the QSPI, a setup time delay must occur before
a particular NO channel is addressed. A converted value is obtained by sending the
address of the next channel to be converted while simultaneously reading the value
converted on the previously addressed channel. However, the QSPI must not request
a new conversion until the previous conversion is completed.

The NO channels are addressed by the four most significant bits of the serial
input to the NO converter signal line DIN. The fourteen channels are thus addressed
as

$0)[XJ(,$1)[XJ(, ... ,$D)[XJ(

where the hexadecimal digits indicated as X are ignored. Each transfer can be from
10 bits to 16 bits. However, the NO converter ignores the bits after the 10th. The
conversion for a channel begins after the 10th bit is received.

Channels 0 through 10 can be connected to analog input signals. Three internal
channels are available to calibrate the system. Reading channel 11 ($B) results in a
half-scale lO-bit value of $200. Channel 12 yields a zero value. Channel 13 outputs
the full-scale value of $3FF. The full-scale value corresponds to a voltage input equal
to VREF shown in Figure 12.28. The resulting reading is right justified in the QSPI
receiver queue entry if 10 bit transfers are used. If 16 bit transfers are used, the result
is left justified in the RAM.

Using 16-bit transfers, the received values for half-scale and full-scale would
be $8000 and $FFCO, respectively. In this case, the result read into the QSPI receiver
queue should be shifted right by 6-bit positions if the purpose is to measure the voltage
range from $0000 to $03FF since each transfer is 16 bits but the NO converter has
only 10 bit precision. The corresponding true analog voltage is defined by the voltage
reference in Figure 12.28.

Figure 12.28 also shows a separate NO clock oscillator that is crystal controlled.
The maximum NO clock (NOCLK) frequency is 2.1MHz. The maximum indepen-
dent serial clock (SCK) frequency is also 2.1MHz.

Example 12.10

This example first shows how to calculate the minimum NO converter setup time. Then,
the necessary delay time between transfers is calculated. The example assumes 16 bit
transfers between the NO converter and the QSPI.

For this particular example, the following clock frequencies are used:
(a) 864kHz crystal oscillator for NOCLK;
(b) 1.05MHz SCK selected in QSPI register SPCRO;
(c) 16.78MHz system clock (f(system)).

The periods for the clocks are thus

tSCK = 1/(1.05 X 106) = 0.95/-Ls

and
t(A/DCLK) = 1/(864 x 103

) = 1.16/-Ls.

Sec. 12.4 The Queued Serial Peripheral Interface (QSPI) 483

The AID setup time Tsu is defined in the AID converter specifications as the min-
imum delay between the assertion of chip select (CS) and the first rising edge of SCK
This is the Enable Lead Time in Figure 12.27 which is defined by DSCKL in SPCRl[14:8]
when the DSCK bit is {1} in the command byte of a queue entry. The published setup
time is

Tsu 2': 2 x tCA/OCLK)+ 0.425J.1,s.

The 864kHz AlDCLK with a 1.16J.1,s period yields a minimum setup time of approximately
2.74J.1,s. Equation 12.3 is used to determine the minimum DSCKL value as

~ DSCKL = Tsu x f(system)

where the setup time Tsu was substituted for the PCSx to SCK delay time. For this
example, the result for the minimum value of DSCKL is

DSCKL = 2.74 x 1O-6sec x (16.78 x 106Hz) = 46 ($2E).

which is the value to be written in SPCR1[14:8].
Next, the Transfer Delay in Figure 12.27 is calculated. The conversion time for this

AID converter is 44 AlDCLK cycles after the 10th bit is received. Thus, the delay time
between conversion commands to select the channel to be read must be at least

44
TCA/Odelay) = 864 x 103Hz = .50.9J.1,s.

T(A/O delay) will determine the value of the DTL parameter in SPCR1[7:0]. However,
the Transfer Delay time in Figure 12.27 is not necessarily the same as TCA/Odelay) since
the AID converter begins conversion after the 10th bit is received.

If the transfer length between the QSPI and the AID converter is longer than 10
bits, the transfer time of the bits 11,12, ... ,N can be counted as part of the necessary
Transfer Delay time. In this example, the QSPI is programmed to transfer 16 bits with
an SCK frequency of 1.05MHz. Since the time required to transmit each bit is tSCK =
0.95J.1,s, the transmission of the first 10 bits takes 9.5J.1,s. The last 6 bits which are ignored
by the AID converter require 6 x .95J.1,s=5.7J.1,s to transmit. Thus, the required Transfer
Delay time is calculated as the difference between the AID converter conversion time
and the time taken to transmit the last 6 bits. This time is

tOTL = TCA/Odelay) - 5.7J.1,S = 50.9J.1,S - 5.7J.1,S = 45.2J.1,S

with the clock frequencies selected for this example. Using Equation 12.4, DTL is se-
lected as

16.78 x 106Hz _
DTL = 32 x (45.2 x 10 6 seconds) = 23.7

assuming a system clock frequency of 16.78MHz. As an integer, DTL is chosen to be 24
($18) in SPCRl[7:0]. Using the value $18, the actual delay is then 45.8J.1,s. Exercise 12.4.7
considers cases in which other values are necessary for the time delay between transfers.

The MC145050 data sheet indicates that the AID channel address is clocked in on
the first four rising edges of SCK Thus, the parameters

CPOL = {O}and CPHA = {O}

484 The Queued Serial Module

T•••CSTOset FOR2HDOSI'ITTWCSffil

o ISPLAT : T If: UlG DIAGRAI: = laob : s e r e t i ======1
M.a", Oi.pl.,.4: :I
Fill' t r a e e Displa,.d: .1
Tim t 10 i , : Curso r A

HSW 1 IitJII
H SW 1-HSW 1 IlJII
HSW1"

F 1

S e I rcit
S",ch

(a) PCS1 to SCK for transfer

DEUl AflER1STOSI'ITTWCSffil

""2.74000 "

FI
S pi i I

o i IP Ilf

======= (lob: $cl,11D ISPLAT :

c. '" r :1 I I I I • ,I
.CIIIOI 2 : pi

H .I2UII pi

M•• ." Di.p 11,.4: :I
Filii TIIC. Oi.pllYI': I

T i•• /0 i , : C. flO r A

HSM I ••
HSM 1-HSMI IlIlJII
HSM I ••

F2

Chang'
CUll 0 r s

F 1

S",ch
Sit ,cb

(b) AID conversion timing

Figure 12.29 Timing diagram for Example 12.10 and Example 12.11.

Sec. 12.4 The Queued Serial Peripheral Interface (QSPI) 465

PIC24FV32KA304 FAMILY

17.0 INTER-INTEGRATED
CIRCUITTM (12CTM)

Note: This data sheet summarizes the features
of this group of PIC24F devices. It is not
intended to be a comprehensive
reference source. For more information
on the Inter-Integrated Circuit, refer to the
"P/C24F Family Reference Manual",
Section 24. "Inter-Integrated ctrcult"
(12CTM)"(DS39702).

The Inter-Integrated Circuit (12CTM)module is a serial
interface useful for communicating with other
peripheral or microcontroller devices. These peripheral
devices may be serial data EEPROMs, display drivers,
AID Converters, etc.

The 12C module supports these features:

• Independent master and slave logic
• 7-bit and 1O-bit device addresses
• General call address, as defined in the 12Cprotocol
• Clock stretching to provide delays for the

processor to respond to a slave data request
• Both 100 kHz and 400 kHz bus specifications
• Configurable address masking
• Multi-Master modes to prevent loss of messages

in arbitration
• Bus Repeater mode, allowing the acceptance of

all messages as a slave, regardless of the
address

• Automatic SCL

A block diagram of the module is shown in Figure 17-1.

17.1 Pin Remapping Options
The 12Cmodule is tied to a fixed pin. To allow flexibility
with peripheral multiplexing, the 12C1module, in 28-pin
devices, can be reassigned to the alternate pins. These
alternate pins are designated as SCL 1 and SDA 1
during device configuration.

Pin assignment is controlled by the 12C1SEL
Configuration bit. Programming this bit (= 0) multiplexes
the module to the SCL 1 and SDA1 pins.

17.2 Communicating as a Master in a
Single Master Environment

The details of sending a message in Master mode
depends on the communications protocol for the device
being communicated with. Typically, the sequence of
events is as follows:

1. Assert a Start condition on SDA 1 and SCL 1.
2. Send the 12C device address byte to the slave

with a write indication.
3. Wait for and verify an Acknowledge from the

slave.
4. Send the first data byte (sometimes known as

the command) to the slave.
5. Wait for and verify an Acknowledge from the

slave.
6. Send the serial memory address low byte to the

slave.
7. Repeat Steps 4 and 5 until all data bytes are

sent.

8. Assert a Repeated Start condition on SDA1 and
SCL 1.

9. Send the device address byte to the slave with
a read indication.

10. Wait for and verify an Acknowledge from the
slave.

11. Enable master reception to receive serial
memory data.

12. Generate an ACK or NACK condition at the end
of a received byte of data.

13. Generate a Stop condition on SDA 1 and SCL 1.

© 2011 Microchip Technology Inc. DS39995B-page 173

