H atmoan
15.3.3 Interrupts and Latency LBR332L Boe

In this textbook, the designation real-time system refers to a system or product thay
must respond and generate some timely action in response to external events. Typi-
cally, areal-time system performs data acquisition and control under strict timing cop.
straints. One of the primary parameters defining a real-time system is the time-rejateq
performance. The performance with respect to time is determined by the system re-
sponse time to external events and other factors such as its data transfer rate. In thjs
subsection, one key parameter that affects the system response time is taken to be the
interrupt latency. The interrupt latency time is the time lag necessary to respond to an
interrupt and pass control to the interrupt handling routine. The total interrupt re.
sponse time for the product to recognize and service an interrupt is another parameter
that determines system performance.”

Interrupt latency. The minimum interrupt latency time for the CPU32 is cal-
culated by adding the times of the following contributions:
(a) completion of current instruction;
(b) acknowledgement and vector acquisition;
(c) stacking of format word, PC and SR,;
(d) read of vector address from CPU vector table;
(e) fetch of first instruction and prefetch of next instruction.
This list of contributions to the latency follows from the discussion of interrupt han-
dling in Section 11.7. Items (b) through (e) represent the interrupt processing by the
CPU as the term is defined in Section 11.7. The entire interrupt cycle including in-
terrupt processing, executing the interrupt routine, and restoring control to the inter-
rupted program is usually called interrupt handling or interrupt servicing. Figure 15.5
shows the complete interrupt cycle and defines the various parameters of interest.

For a single interrupt source, the total execution time of the interrupt routir.
the sum of the time for interrupt acknowledgement, the time for context switching, the
time of execution of the instructions in the interrupt routine, and the time to restore
the original context and return to the interrupted program. The context switching time
can be defined as the time for interrupt processing by the CPU. In MC68332-based
products, the interrupt processing includes the stacking of the format word, Program
Counter and Status Register values and the time to fetch the interrupt vector address
and pass control to the interrupt handling routine. The first instructions of the inter-
rupt routine typically save register values and other data that must be restored after
the interrupt routine completes.® After executing the instructions that perform the

7 A number of other factors determine the overall response time of the system or product. The oper-
ating speed of the CPU and access time to external memory are two items that affect the response. Also.
other characteristics than response time may be important in determining the system performance. Re-
liability, fault tolerance and similar factors are critical specifications for certain real-time systems. Such
factors are not considered in this textbook.

8 The context switching time is sometimes.defined toinclude both the time for interrupt processing and
the time taken to save registers and other data. In M68000 family processors, the saving of the contents of
general-purpose registers is not automatic. Thus, instructions such as Move Multiple Registers (MOVEM)
are required in the interrupt routine to save (and restore) general-purpose register contents.

658 Product Design and Real-time Considerations ~ Chap- 15

Interrupt
Request
T(RESPONSE) —
Current
Instruction
le———— T(DELAY) ————
1 —!
SF;U ¢ : N(DELAY) Continue
rogram Execution
Execution), ! Cycles i
TiNTR
Interrupt
Routine tcs Nr cycles tcr
T(LATENCY)]|
——

time

Figure 15.5 Interrupt timing parameters.

required action to service the interrupt, general-purpose register contents must be re-
stored by program instructions. The context switch back to the interrupted program is
accomplished with the Return From Exception (RTE) instruction described in detail
in Section 10.2.

The parameters in Figure 15.5 are defined as follows:

T(pELAY) : time between interrupt request and processing
tcs @ time for interrupt processing (context switch)
T(LaTENCY) : time between interrupt request and
: execution of the interrupt routine
TinTr : time for interrupt handling and context switching
tcr : time to restore context
T(responsg) : total time for interrupt servicing.

The time for interrupt servicing, TinTr, includes both the context switch time (tcg)
and the time tcg to return control to the CPU program.

Neglecting instruction overlap and special instructions such as RESET and RTE,
the CPU instructions take from 2 to 64 clock cycles (DIVS.L) to execute. To this
time must be added the number of cycles to compute the effective addresses of any
operands. Depending on the number of clock cycles to read and write memory, the
interrupt processing may be delayed from 2 clock cycles to more than 70 cycles plus
any wait states (1 clock cycle each) added because of slow memory. The additional
delay before the interrupt routine executes depends on the memory access time as the
CPU performs stacking, fetching of the vector address from the CPU vector table and
fetching of the first instruction. Section 14.5 defines the number of system clock cycles
for various types of CPU memory accesses. CPU accesses to the on-chip RAM or
external accesses using fast termination take two clock cycles. Most external memories

Sec. 15.3 Real-time Programming Considerations 659

require at least three clock cycles for a CPU read or write cycle if no wait States ay
necessary. ¢

Example 15.4

Figure 15.5 shows the complete interrupt cycle. Assume that the present instruction lakes
N(pEeLay) clock cycles to complete before interrupt processing begins. The Iatenq time
until the first instruction of the interrupt routine begins execution is

TLaTtency) = T(DELAY) T tCs (15.1).
For a system clock frequency of f(s,siem) Hertz, the clock cycle time is
tcyc = 1/ f(system) s€conds.

Since T(perLay) = N X tcyc for the current instruction to complete, the latency time
from Equation 15.1 is thus

TLatency) = NEeLAY) X tcye + tes (15.2).

For the MC68332, timing estimates for the interrupt latency can be obtained from
the instruction timings given in the MC68332 User’s Manuals. For this example, 70 cycles
will be assumed as the worst case delay for the current instruction to complete. The inter-
rupt processing time tcs includes 4 memory read cycles for interrupt acknowledgement
(1 cycle), reading the vector address from the CPU vector table (2 cycles) and fetching
the first instruction from memory. This requires 39 clock cycles if each memory access
requires 3 clock cycles. Substituting these example number of cycles in Equation 15.2 for
a clock period of 59.6ns (16.78 MHz) yields the result

TiLatency) = (70 + 39) x 59.6ns

or 6.5us.

According to Motorola’s data for instruction timing, the RTE instruction takes
30 clock cycles to restore control to the interrupted program. Thus, the time the CPU
program is interrupted would be

Tintr = (39 + Ng + 30) x tcyc seconds

where Ng is the number of clock cycles required by the interrupt routine. The calcula-
tion of the number of cycles required by the RTE instruction is based on the four read
cycles required to restore the 4 words of information placed on the stack during context
switching and two additional read cycles to fetch the first two words from the interrupted
program. It is assumed here that each read cycle requires 3 clock cycles. The other clock
cycles taken by the RTE are for internal processing.

Interrupt priorities. When multiple interrupt sources are present, interrupt
priority must be established. The purpose is to assure that the most important inter-
rupts are serviced within a predefined time regardless of other events including lower
priority interrupt requests. In many products, interrupt servicing for one interrupt
may be interrupted by another, higher priority interrupt. To determine whether the

660 Product Design and Real-time Considerations Chap. 15

4

T ————————

product’s timing specifications can be met, the product designer must estimate the
latency and the execution time of the interrupt handler for each interrupt source.
Several factors can delay the execution of an interrupt routine. For example,
the interrupt at the requested CPU level could be disabled when the interrupt request
occurs. Lower level interrupt requests are disabled when a higher priority interrupt
routine is executing. The lower priority interrupt must wait to be recognized until in-
terrupts are enabled at its priority level. An interrupt request can also be delayed if
the interrupt levels are deliberately disabled by a CPU program. The CPU program
may disable all interrupts (except level 7 which is not maskable in M68000 family pro-
cessors) to protect a critical region of code as discussed later. Another possibility is
that a higher priority exception such as a bus error is being processed when the inter-
rupt request occurs. Section 11.8 explains exception priorities. An interrupt is simply
one of the many possible exceptions recognized by the MC68332 CPU.
Example 15.5
Figure 15.6 summarizes the timing involved for an interrupt request and execution of
the interrupt service routine. The worst-case total response time as seen by an external
device is defined as T{rgsponsg)- This response time is the important parameter to use
in determining the overall timing for the system or product. The response time is the sum
of the delay time before interrupt processing begins and the total time required for the
interrupt handling routine. This worst case estimate of response time is used because the
action that actually services the interrupt request may occur anywhere in the interrupt
routine, including during the execution of the last instruction.

Interrupt
Request

Tiresponse) = 25.5 us

l—— TipeLay) = 6.5 us —

CcPU 4 : ——

Program | NioeLay)
Cycles

Execution L

TINTR —
Interrupt 1!
nterrup
Routine tcs = 2.3 ps Ng = 250 cycles tcr = 1.8 us
)
fe—————TqaTency) = 8.8 ps — o
————
time

Figure 15.6 Interrupt timing.

In Figure 15.6, the latency time T{;aTency) discussed in Example 15.4 includes
the delay time T(pgrLay) until the interrupt is recognized and the context switching time
tcs. If no higher priority interrupt routines are executing, the delay is the time required
for the current instruction to complete execution as described in Example 15.4.

When interrupts are disabled at the requested level by a higher priority interrupt
routine or for any other reason, T{pgLay) represents the time between the interrupt re-
quest and the time that interrupts are reenabled at the requested level. The total time
from the interrupt request until control is returned to the interrupted program is

Tiresponse) = T(peLay) + TINTR. (15.3)

Sec. 15.3 Real-time Programming Considerations 661

This time. includes the time to restore the context, tcr.
As an example, assume the following values have been determined:

T(pELAY) = 6.50u8
tecs = 2.3us
tcr = 1.8us.

If the interrupt routine executes 50 instructions that average 5 clock cycles each, the total
number of cyclesis Nr = 250. The clock frequency, f(system) is assumed to be 16.78M} ;.
The latency until the interrupt routine begins execution is

Tuatency) = T(peLay) (6.5us) + tcs (2.3us)

or 8.8us in this example.
The response time is therefore

T(response) = T(peLAY) *+ tcs + Nr X tcyc + ter
= 6.5us + 2.3us + 250 x 59.5ns + 1.8us
= 25.5us

using where tcyc is the period of the 16.78MHz system clock.

Considering the overall system timing, a CPU program would be interrupted for
Tintr seconds or 19.us in this example. The action to be taken by the interrupt routine to
respond to the interrupt request would not occur until after the interrupt routine begins
executing at least t(LaTency) Seconds after the request. A worse case estimate of the
response time would be ¢, arency) plus the total time of the interrupt routine or 25.5.8
in our example.

Interrupt frequency and density. During normal operation of a product,
some interrupt sources may interrupt randomly in time and other sources may request
interrupts periodically. For example, an interrupt request from the TPU in response
to an input capture might occur at a random time. On the other hand, the SCI may pe-
riodically interrupt when data are being transferred as discussed in Subsection 12.3.2.
For interrupt-controlled input at 9600 Baud, for example, the CPU must respond to
each SCI interrupt and read a character from the SCI receiver register approximately
every millisecond.

The product designer must assure that every interrupt that can occur within a
given time interval is serviced and that no interrupt service is delayed beyond the max-
imum allowable response time for the interrupt. Thus, during the specification of
interrupt timing, the following conditions must be considered:

(a) the worst case interrupt density;
(b) the worst case delay time for any interrupt.

The interrupt density determines the percentage of CPU time taken up by inter-
rupt service routines. The value is the ratio of the sum of the interrupt routine times
divided by an arbitrary time period associated with the product’s operation. For €x-
ample, if a control system performs data acquisition, processing and control actions
periodically, the cycle time, T(cycLE), for the complete sequence could be taken as the

662 Product Design and Real-time Considerations ~ Chap. 15

periodic reference time for the product. If the i‘* interrupt routine requires TiNTR:
seconds to switch context and complete execution, the interrupt density is calculated
as

B "
Tintr1 + TINTR2 + TINTR <10 (15.4)
T(cycCLE)

When the inequality of Equation 15.4 is satisfied, a product designer can be sure that
the interrupt routines do not consume all of the CPU execution time during T(cycLE)-
The time left in the cycle for normal CPU processing is obviously T{cycpLg) minus the
sum of the times taken by the interrupt routines.

Example 15.6

Another calculation based on Equation 15.4 will determine whether the periodic inter-
rupt with the minimum time period can be serviced. Assume that a low priority interrupt
at level 3 interrupts every 500 us. The time T{cycLg) in Equation 15.4 becomes 500s.
Further assume that level 4 and level 5 interrupts occur during the time T{cycLg) and
that the total times taken by the routines are as follows:

TinTr3s = 20us
TinTra = 20pus
TINTRS = 20#8.

According to Equation 15.4, the interrupt density is

20us + 20us + 20us

5005 =12

or 12%. Thus, 86% of the time between the fastest interrupt requests is available for
CPU execution of other programs.

Once assured that all interrupts can be serviced and the CPU can execute its
main program, the designer must calculate the maximum delay time associated with
any interrupt. If an interrupt at level ¢, (1 < : < 7), must be serviced within a time
T'pi, the maximum delay time for this interrupt must satisfy the equality

TipeLaY) < Tpi — TINTR: (15.5)

when the term Tinrr. represents the total time to service the interrupt. As in Exam-
ple 15.4, Tinrr. includes the context switch time, the execution time for the interrupt
routine and the time to restore context and return to the interrupted program. As
expected, the equation states that the maximum allowable delay time is equal to the
minimum time between interrupt requests for this interrupt source minus the time for
the interrupt routine. Even if the interrupt routines are very short and the interrupt
density is low, a low-priority interrupt that interrupts frequently might not be serviced
in time if the delay is excessive.

Sec. 15.3 Real-time Programming Considerations 663

