
1

Baxter_2022

Contents
Baxter, The Bionic Robot | The Edge 3:23 316,000 views Rodney 1

Baxter the Robot Making Coffee - Alexa Interface 1

Baxter Controlled through EEG 3:13 2

Using a state machine to perform YMCA 2

PYTHON Baxter YMCA Be Careful because of spacing – see the code. 3

See Baxter YMCA Code 4

BAXTER PLAYS GOLF 5

Baxter, The Bionic Robot | The Edge 3:23 316,000 views Rodney

https://www.youtube.com/watch?v=JWBqXLHlqjE

Baxter the Robot Making Coffee - Alexa Interface

https://www.youtube.com/watch?v=kO5B5dSil9A

https://www.youtube.com/watch?v=JWBqXLHlqjE
https://www.youtube.com/watch?v=kO5B5dSil9A

2

Baxter Controlled through EEG 3:13

https://www.youtube.com/watch?v=RSYHQQoSIR8

See Our Textbook Pages 303 -308 State Machine YMCA

Using a state machine to perform YMCA
Finite-state machines are powerful mechanisms for controlling the behavior of a system,
especially robotic systems. ROS has implemented a state machine structure and
behaviors in a Python-based library called SMACH. The SMACH library is independent
of ROS and can be used with any Python project. SMACH provides an architecture for
implementing hierarchical tasks and mechanisms to define transitions between these
tasks. The advantages of using SMACH for a system include the following:

• Rapid prototyping of a state machine for testing and use

• Defining complex behaviors using a clear, straightforward method for
design, maintenance, and debugging

• Introspection of the state machine, its transitions, and data flow using
SMACH tools

For a complete set of documentation and tutorials on SMACH, examine these
websites:

https://www.youtube.com/watch?v=RSYHQQoSIR8

3

• http://wiki.ros.org/smach

• http://wiki.ros.org/smach/Tutorials

Some basic rules for implementing state machines on a robot are as follows:

• A robot can be in one—and only one—state at a time.

• A finite number of states must be identified.

• The state that a robot transitions to, will depend on the state that just
completed. These behaviors are encapsulated in the states to which they
correspond.

• Transitions between states are specified by the structure of the state machine.

• All possible outcomes of a state should be identified and corresponding
behaviors should address those outcomes.

• States that only have one transition condition cannot fail and only have one
outcome.

To underscore the usefulness of the SMACH package, we devised a simple and fun
example for Baxter, which has been implemented by Mikal Cristen, a recent UHCL
graduate. Because the UHCL Baxter is such a main attraction on our campus, this project
was to endow the robot with an entertainment skill, specifically, dancing to YMCA.

This state machine has five states corresponding to Baxter's arm poses for each letter: Y, M,
C, A, and a fifth state for a neutral pose. When one pose of the arms completes, the state
will successfully complete and the next state will begin. The code for this state machine is
implemented in the YMCAStateMach.py code that follows and will be described in
subsequent paragraphs.

The code for YMCAStateMach.py and MoveControl.py can be found
in the Chapter 6 folder of the Packt GitHub website for this book or at
the website https://github.com/ FairchildC/ROS-
Robotics-By-Example-2nd-Edition

SMACH compels state machines to be implemented using Python procedures to provide flexibility in

their implementation. Notice in the following code, the ROS convention for state machines is that the

state names are identified in ALL_CAPS and the transition names are in lowercase.

PYTHON Baxter YMCA Be Careful because of spacing – see the code.

https://github.com/FairchildC/ROS-Robotics-By-Example-2nd-Edition/tree/master/Chapter6_code

http://wiki.ros.org/smach
http://wiki.ros.org/smach/Tutorials
https://github.com/FairchildC/ROS-Robotics-By-Example-2nd-Edition
https://github.com/FairchildC/ROS-Robotics-By-Example-2nd-Edition
https://github.com/FairchildC/ROS-Robotics-By-Example-2nd-Edition
https://github.com/FairchildC/ROS-Robotics-By-Example-2nd-Edition/tree/master/Chapter6_code

4

See Baxter YMCA Code

https://github.com/FairchildC/ROS-Robotics-By-Example-2nd-

Edition/tree/master/Chapter6_code

https://github.com/FairchildC/ROS-Robotics-By-Example-2nd-Edition/tree/master/Chapter6_code
https://github.com/FairchildC/ROS-Robotics-By-Example-2nd-Edition/tree/master/Chapter6_code

5

BAXTER PLAYS GOLF

https://sdk.rethinkrobotics.com/wiki/Worked_Example_Visual_Servoing#Code

Baxter Research Robot Visual Servoing Pick & Place Demonstration 3:55

https://www.youtube.com/watch?v=d-a82DYlaIE

https://sdk.rethinkrobotics.com/wiki/Worked_Example_Visual_Servoing#Code
https://www.youtube.com/watch?v=d-a82DYlaIE

