::: ROS.org

https://vimeo.com/639236696

ROS Introduction 3:12 (captioned) PLAY THIS

Open Robotics

Mountain View, CA, USA

We help make Robot Operating System (ROS) and the Ignition/Gazebo simulator.
iInfo@openrobotics.org

Homepage

http://www.openrobotics.org

http://www.ros.org



https://vimeo.com/639236696
mailto:info@openrobotics.org
https://www.openrobotics.org/
http://www.openrobotics.org/
http://www.ros.org/

An operating system is a software that provides interface between the
applications and the hardware.

It deals with the allocation of resources such as memory, processor time
etc. by using scheduling algorithms and keeps record of the authority of
different users, thus providing a security layer.

The operating systems may include basic applications such as web
browsers, editors, system monitoring applications etc.



Khan Saad Bin Hasan

What is ROS?
Oct 20, 2019
https://towardsdatascience.com/what-why-and-how-of-ros-b2f5ea8be0f3

ROS, an open-source robot operating system. ROS is not an operating system
in the traditional sense of process management and scheduling; rather, it
provides a structured communications layer above the host operating systems
of a heterogeneous compute cluster.[2]

Quigley, Morgan, et al. “ROS: an open-source Robot Operating
System.” ICRA workshop on open source software. Vol. 3. No3.2.
20009.


https://towardsdatascience.com/what-why-and-how-of-ros-b2f5ea8be0f3

Logic — reasoning,
planning and control
- .

‘ Sens;ing ‘ ‘ Actuation |

{ |

Environment

Robotic System



:::ROS

. SENSE SETUP CONTROL

@,

PROCESS

ROS is not an operating system but a meta operating system
meaning, that it assumes there is an underlying operating
system that will assist it in carrying out its tasks.



A GOOD APPROACH TO TEST DIFFERENT ROS DISTRIBUTIONS

§Z Oracle VM VirtualBox Manager

- X
File  Machine Snapshot Help
AU e I\
1 @ By @D
(6 Name Taken
© v @ Snapshot 6/12/20211 6/12/2021 4:14 PM
v @ Snapshot 6_18_2021 6/18/2021 3:46 PM
6<NF™  Ubuntu 20.04 6_21 (Snapshot 10_4_2021 20.04) v @ Snapshot 6/19/2021 6/19/2021 6:14 PM
@ Powered Off

@ Current State (changed)

@. Ubuntu 16.04 8_3_2021 (Snapshot 10_4_20211...)
@ Powered Off




ROS 1 Structure for Packages
ROS2 HAS DIFFERENT SETUP

Metadata
I
1

o @ //
v LE N ?‘%‘ - \'u/'\\

User system Package manager Repository

Packages Package'.?
dependancies

Software in ROS is organized in packages. A package might contain ROS nodes, a
ROS-independent library, a dataset, configuration files, a third-party piece of
software, or anything else that logically constitutes a useful module.


http://wiki.ros.org/Nodes

ROS 1 Structure

Ros

Master 4N
L ~
7 -n.“\:""'*v,h_%~ Information
7~ ™ '~ about publishers
d Subscribe to N
#"  Public to

: NN
t
topic name opicnamse SNON

~
.

. Request for topic message -
Publisher [§ Subscriber
——— 1 —

N'DdE Ros message Ros tﬂplc ' Ros message NGdE

https://trojrobert.github.io/hands-on-introdution-to-robot-operating-system(ros)/



https://trojrobert.github.io/hands-on-introdution-to-robot-operating-system(ros)/

Command Example usage and subcommandexamples

pere e

Runs an executable programand creates nodes $ rosrun [package name][executable name]

ROSZ Com man d S rosnode Shows information about nodes and lists the $ rosnode info [node name]
are a blt d |ffe rent — S $ rosnode<subcommand>
Subcommand: list
HOWEVER, ITEMS ARE
BASCIALLY TH E SAM E Shows information aboutROS topics $ rostopic<subcommand><topicname>
Subcommands: echo, info, and type
— BUT
NO ROSCORE' Shows information about themessage types $ rosmsg<subcommand> [packagename]/ [message type]
Subcommands: show, type, and list
ACTIONS — are now Displays the runtime information about $ rosservice<subcommand>[service name]

variousservices and allows the display of

X . Subcommands: args, call, find,info, list, and type
messages beingsent to a topic

a part of ROS2
— not just an addon

rosparam Used to get and set parameters (data) used $ rosparam<subcommand>[parameter]

bynodes Subcommands: get, set, list, and

delete

The website (http://wiki.ros.org/R0OS/CommandLineTools) describes many ROS commands.



http://wiki.ros.org/ROS/CommandLineTools

Publication

b
/o

s )

Subscription

Node Publication " Node )



ROS 1 SUPPORT & SOFTWARE
(UPDATED FOR ROS2)

 OPEN ROBOTICS

« CANONICAL (UBUNTU)

* GAZEBO RVIZ, OPENCV

 URDF, SDF (Gazebo), Xacro (XML macros)

* PYTHON, C AND C++ (Others for ROS1 — use with care)

* Various graphics and simulation packages
OGRE Graphics Rendering

ODE Open Dynamics engine

Movelt

IK packages, SMACH



Tools: Gazebo Simulator

54.229.67.207 asRe0

Real Time: 00 00:07:27 P Y
S e 300012 DDDEAaaa

.

valkyrie

w General
Name valkyrie
Static @ False

~ Pose
X 0.012m
y 219m
z 0.992m ®
Roll 0.024 raa
Pitch -0.027 raa
Yaw -1.506 rad

» Links

'f
"
da

g
L)
| V) g

} Joints




RVIZ Robot Visualizer Movelt

"y Interact | 8" Move Camera [ Select @ KeyTool b = 5

O pisplays -
» Scene Geomekry
» Scene Robot
¥ Planning Request

Planning Group panda_arm_hand
Show Workspace O
Query Start State -
Query Goal State 7}
Interactive Marker Size 0
Start State Color Eo; 2550
Start State Alpha 1 5
Add
3 MotionPlanning X

Context | Planning | Manipulation Scene Objects Stored Scenes = Stored States = Status

Commands Query Options
Plan Select Start State: Planning Time (s):| 5,00 -
Select Goal State: Planning Attempts:| 10,00
Plan and Execute <random valid> - Velocity Scaling:| 1,00

Acceleration Scaling:| 1,00

Update ] Allow Replanning

[] Allow sensor Positioning

Clear octomap _
Executed [] Allow External Comm.

B use collision-Aware IK

[ Allow Approx IK Solutions
Path Consktrainks

L]

None

Goal Tolerance: 0,00




Support Websites

e https://www.openrobotics.org/

* https://canonical.com/

* https://www.ogre3d.org/

* https://gazebosim.org/home

* https://www.ode.org/

* https://moveit.ros.org/

e http://wiki.ros.org/trac ik Fast IK

14


https://www.ogre3d.org/
https://www.ogre3d.org/
https://www.ogre3d.org/
https://gazebosim.org/home
https://www.ode.org/
https://moveit.ros.org/
http://wiki.ros.org/trac_ik

.‘l. Python 3 in Noetic

https://docs.python.org/3/howto/pyporting.html

Gazebo 11 in Noetic

https://github.com/gazebosim/gazebo-classic/blob/master/Migration.md

https://github.com/gazebosim/gazebo-classic/blob/master/Changelog.md

ALWAYS CHECK THE DISTROS OF ROS AND UBUNTU - BUT ALSO THE COMPATIBLE SUPPORT SOFTWARE

15


https://docs.python.org/3/howto/pyporting.html
https://github.com/gazebosim/gazebo-classic/blob/master/Migration.md
https://github.com/gazebosim/gazebo-classic/blob/master/Changelog.md

Part 2: 7 Simple Steps to Create and Build Your First ROS Package

ROS1 STRUCTURE

catkin
workspace
ﬁ_hh‘—‘_hh‘-_‘—‘_""-‘—-._
src build devel

packagelJ package?2

Ehhke[.ists.txtj packuge.xmlJ scripts msg SI"VJ include srcj 'Luunchj
7 o e
_— / \
*.pyJ *.shJ *.msg *.srvj *.hﬁl *.cpppl *.launchJ
7

To compile our ROS1 workspace, use the catkin_make command to start the build process.

https://medium.com/swlh/7-simple-steps-to-create-and-build-our-first-ros-package-7e3080d36faa

16


https://medium.com/swlh/7-simple-steps-to-create-and-build-our-first-ros-package-7e3080d36faa

catkin Build System

The catkin workspace contains the following spaces

Work here Don't touch
Src build
The source space contains The build space is where
the source code. This is CMake is invoked to build
where you can clone, the packages in the source
create, and edit source space. Cache information
code for the packages you and other intermediate files
want to build. are kept here.

Don’t touch
devel

The development (devel)
space is where built targets
are placed (prior to being
installed).

Slide Credit: Marco Hutter, ETH Zurich

17



Some of the important files/directories inside Packages
are:

1. Nodes: A node is a process that performs computation.

2. CMakelists.txt: It is the input to the CMake build system for building
software packages.

3. Package.xml : It defines properties about the package such as the
package name, version numbers, authors, maintainers, and
dependencies on other catkin packages.

4. .yaml files: To run a rosnode you may require a lot of parameters e.qg,
Kp,Ki,Kd parameters in PID control. We can configure these using YAML
files.

5. launch files: To run multiple nodes at once in ROS we use launch files.

18


http://wiki.ros.org/Nodes
http://wiki.ros.org/catkin/CMakeLists.txt
http://wiki.ros.org/Manifest
https://en.wikipedia.org/wiki/YAML
http://wiki.ros.org/pid
http://wiki.ros.org/roslaunch/Tutorials/Roslaunch%20tips%20for%20larger%20projects

Any code that will be written should be in the form of packages. And
the packages should be inside a workspace*. Catkin is used in ROS1.

A catkin workspace is a folder where you modify, build, and install catkin packages. It can
contain up to four different spaces which each serve a different role in the software
development process.

1. The source space contains the source code of catkin packages. This is where you can
extract/checkout/clone source code for the packages you want to build. Each folder within
the source space contains one or more catkin packages.

2. The build space is where CMake is invoked to build the catkin packages in the source
space. CMake and catkin keep their cache information and other intermediate files here.
3. The development space (or devel space) is where built targets are placed prior to being
installed. The way targets are organized in the devel space is the same as their layout
when they are installed. This provides a useful testing and development environment which
does not require invoking the installation step.

4. Once targets are built, they can be installed into the install space by invoking the install
target, usually with make install.

* Python scripts with rospy can be run without being in a package.

19


http://wiki.ros.org/catkin/workspaces#Catkin_Workspaces
http://wiki.ros.org/catkin/workspaces#Source_Space
http://wiki.ros.org/catkin/workspaces#Source_Space
http://wiki.ros.org/catkin/workspaces#Build_Space
http://wiki.ros.org/catkin/workspaces#Source_Space
http://wiki.ros.org/catkin/workspaces#Development_.28Devel.29_Space
http://wiki.ros.org/catkin/workspaces#Development_.28Devel.29_Space
http://wiki.ros.org/catkin/workspaces#Development_.28Devel.29_Space
http://wiki.ros.org/catkin/workspaces#Install_Space

ROS WORKSPACE AND PACKAGE CREATION

WATCH THE VIDEO Noetic 6:19

https://www.youtube.com/watch?v=mwLslhxUxQc

1,305 views Oct 18, 2022
Ubuntu Version : 20.04
ROS1 Version : NOETIC

20


https://www.youtube.com/watch?v=mwLsIhxUxQc

http://wiki.ros.org/catkin/Tutorials/create_a workspace

* source /opt/ros/noetic/setup.bash
* Make directories catkin_ws and src  (Catkin name is arbitrary)
* S source ~/catkin_ws/devel/setup.bash and S echo SROS_PACKAGE_PATH — See ws and ros

http://wiki.ros.org/ROS/Tutorials/CreatingPackage

http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscri
ber%28python%29

Let’s Go Through These tutorials - Link of ROSPY AND PYTHON

21


http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber%28python%29
http://wiki.ros.org/ROS/Tutorials/CreatingPackage
http://wiki.ros.org/catkin/Tutorials/create_a_workspace

1. Source the ROS Distribution

Alias foxy or noetic
harman@harman-VirtualBox:~S noetic  (This sources noetic via an alias) (not foxy)

harman@harman-VirtualBox:~$ gedit .bashrc (bashrc is hidden!)

#tsource /opt/ros/foxy/setup.bash #6 21 2021 Load Foxy

echo Alias foxy or noetic
alias foxy="'source /opt/ros/foxy/setup.bash' # Load Foxy,7_ 30 2021 or noetic

alias noetic="source /opt/ros/noetic/setup.bash

2. SOURCE THE WORKSPACE TO Execute Code - ros_robotics

harman@harman-VirtualBox:~S$ source ~/catkin_ws/devel/setup.bash

3. Now Check the paths
harman@harman-VirtualBox:~S env | grep ROS_PACKAGE_PATH
ROS_PACKAGE_PATH=/home/harman/catkin_ws/src:/opt/ros/noetic/share



How Does rosrun work? - S roscore running

 harman@harman-VirtualBox:~S noetic

 ROS_DISTRO was set to 'foxy' before. Please make sure that the
environment does not mix paths from different distributions.

* harman@harman-VirtualBox:~S FOSrURN turtlesim turtlesim_node

[ INFO] [1668973275.885955332]: Starting turtlesim with node name
/turtlesim

[ INFO] [1668973275.891606121]: Spawning turtle [turtlel] at
x=[5.544445], y=[5.544445], theta=[0.000000]



https://github.com/ros/ros/blob/0cf372d5225045ecae083ce210e0fla2chebf
8b8/tools/rosbash/scripts/rosrun

#!/usr/bin/env bash VIEW CODE ON GITHUB

function usage() {
echo "Usage: rosrun [--prefix cnd] [--debug] PACKAGE EXECUTABLE [ARGS]"
echo " rosrun will locate PACKAGE and try to find"
echo" an executable named EXECUTABLE in the PACKAGE tree."
echo " Ifitfinds it, it will run it with ARGS."

}

catkin_package_libexec_dirs=(S(catkin_find --without-underlays --libexec --share "Spkg_name" 2> /dev/null))

https://www.theconstructsim.com/ros-5-mins-007-rosrun-works/ Short Video

24


https://github.com/ros/ros/blob/0cf372d5225045ecae083ce210e0f1a2cbe6f8b8/tools/rosbash/scripts/rosrun
https://www.theconstructsim.com/ros-5-mins-007-rosrun-works/

USING A LAUNCH FILE

e Starts roscore

* Launch multiple nodes

e Sets parameters on the
parameter server

http://wiki.ros.org/roslaunch

http://wiki.ros.org/roslaunch/XML/node

https://wiki.ros.org/Parameter%20Server

25


http://wiki.ros.org/roslaunch/XML/node
http://wiki.ros.org/roslaunch
https://wiki.ros.org/Parameter%20Server

Example package Chapter 2 Package Directory for ros_robotics

harman@harman-VirtualBox:~S cd ~/catkin_ws/src
harman@harman-VirtualBox:~/catkin_ws/srcS Is

CMakelists.txt ros_robotics
harman@harman-VirtualBox:~/catkin_ws/srcS cd ros_robotics
harman@harman-VirtualBox:~/catkin_ws/src/ros_roboticsS tree -L 1

urdFf.rviz* - RViz o X

-—— CMakelists.txt f

finteract | **Move Camera [ _JSelect #-Focus Camera ™3 Measure # 2D Pose Estimate .~ 2D Nav Goal @ Publish Point F = @

~— launch e o °
» & Global Options

» v Global Status: Ok

» @ Grid v

S paCkage.me : :i}/ $gbotModel v
Node: /joint_state_p... - 0O X
— urdf _—

joint_right_wheel 0.00

e u rd f. rVi Z joint_left_wheel 0.00
I_ Wo rI d S Randomize

Center

3 directories, 3 files

/home/harman/catkin_ws/src/ros_robotics/launch/ddrobot_rviz.launch http://localhost:11311 2 = = o X

~$ roglauhch ros_robotics ddrobot:rviz.launch model:=dd r

obot2.urdf gui=True
Usage: roslaunch [options] [package] <filename> [arg name:=value...]

NOte = Addltion Of LaunCh File roslaunch [options] <filename> [<filename>...] [arg name:=value...]

26



<launch>
<l-- values passed by command line input The model i.e. dd_robotx.urdf-->
<arg name="model" />
<!-- <arg name="gui" default="False" /> 7/30/21 Put gui:=True on Command Line-->

<l-- set these parameters on Parameter Server -->
<param name="robot_description" textfile="S(find ros_robotics)/urdf/S(arg model)" />
<param name="use_gui" value="S$(arg gui)"/>

<I-- Start 3 nodes: joint_state_publisher_gui, robot_state_publisher and rviz -->
<node name="joint_state_publisher_gui" pkg="joint_state_publisher_gui" type="joint_state_ publisher_gui" />

<node name="robot_state_publisher" pkg="robot_state publisher"
type="robot_state_publisher" />
<l-- state_publisher changed to robot_state publisher -->

<node name="rviz" pkg="rviz" type="rviz" args="-d $(find ros_robotics)/urdf.rviz" required="true" />
<l-- (required = "true") if rviz dies, entire roslaunch will be killed -->
</launch>



Launch file was modified from ROS Kinetic to ROS noetic. Note gui=True

File Panels Help

f™interact | <>*Move Camera [ _jSelect

J pisplays
» & Global Options
» v Global Status: Ok

» & Grid v
» s, RobotModel v
» ) TF

Node: /joint_state_p...

joint_right_wheel

———

joint_left_wheel

CEE—————

Randomize

Center

urdFf.rviz* - RViz - o @&
-
HS
%> Focus Camera o Measure # 2D Pose Estimate /2D Nav Goal @ Publish Point F = @
()
=
0.00

/home/harman/catkin_ws/src/ros_robotics/launch/ddrobot_rviz.launch http://localhost:11311 Bl = = m] X

obot2.urdf gui=True

$ roslaunch ros robotics ddrobot:rviz.launch model:=dd r

Usage: roslaunch [options] [package] <filename> [arg name:=value...]
roslaunch [options] <filename> [<filename>...] [arg name:=value...]

28



Joint State Publisher GUI  Migration to Noetic
In previous versions of ROS, the joint_state publisher package
had a parameter called use gui that would launch a GUI when

joint_state publisher was started.

In early 2020 this package was split into a joint_state_publisher
and joint_state publisher gui package. In Noetic, the use_gui
parameter has been removed completely, and instead users
should explicitly invoke joint_state publisher _gui when they
wish to use the GUI.

http://wiki.ros.org/noetic/Migration



http://wiki.ros.org/noetic/Migration

CLIENT LIBRARIES

PYTHON AND C

e Python is VERY sensitive to spacing - normally indent 4 spaces

* When copying code from a file IF an error —

SyntaxError: invalid character in identifier
IndentationError: expected an indented block
* RETYPE THE LINE AND WATCH SPACING



I. TALK ABOUT ROSPY AND RCLPY Python

API
An API, or Application Programming Interface, is an interface that is provided by an “application”, which in this

case is usually a shared library or other language appropriate shared resource. APIs are made up of files that
define a contract between the software using the interface and the software providing the interface. These
files typically manifest as header files in C and C++ and as Python files in Python. In either case it is important
that APIs are grouped and described in documentation and that they are declared as either public or private.
Public interfaces are subject to change rules and changes to the public interfaces prompt a new version
number of the software that provides them.

client_library
A client library is an API that provides access to the ROS graph using primitive middleware

concepts like Topics, Services, and Actions.

31



F1/10

Autonomous Racing

Madhur Behl

Experimental

ROS Client Libraries

Client Library Language

Comments

ospy | Pyhen | Soodfermpldprotoyping an
roslisp LISP Used for planning libraries
rosjava Java Android support

roslua Lua Light-weight scripting

roscs Mono/.Net Any Mono/.Net language
roseus EusLisp
PhaROS Pharo Smalltalk

rosR R Statistical programming




Client APl Commonly Used Features

Object / Feature

API root

Description
Objects and methods for

roscpp

ros::NodeHandle

rospy

interacting with ROS
.getParam
Parameter server | Query and set parameter server .param s;%‘:tc—tfar::gm
client dictionary entries .searchParam " et ~a‘:am
.setParam aelp
Subscriber Receive messages from a topic .subscribe .Subscriber
Publisher Send messages to a topic .advertise .Publisher
Sandice Serve and call remote .advertiseService .Service
procedures .serviceClient .ServiceProxy
Timer Periodic interrupt .createTimer .Timer
ROS_DEBUG, .logdebug, .loginfo,
Logging Output strings to rosconsole ROS_INFO, Jogwarn, .logerr,
ROS_WARN, etc. Jogfatal
Initialization & Set node name, contact Master, ros::init .init_node
Event Loop enter main event loop .Spin .Spin
Create and extract data from Specifics depends on message l
Messages

ROS messages

std_msgs::String

std_msgs.msg.String I




O 0O J O U1 & W N -

rospy client library: Example

import rospy
from std msgs.msg import String

pub = rospy.Publisher('topic name', String, queue size=10)
rospy.init node( 'node name')
r = rospy.Rate(10) # 10hz
while not rospy.is shutdown():
pub.publish("hello world")
r.sleep()



rospy client library: Initializing your ROS Node

rospy.init_node('my_node_name’) You can only have one node in

a rospy process,
and
SO you can only

rospy.init node('my node name', anonymous=True) call rospy.init_node()once.

Names have important properties in ROS.
Most importantly, they must be unique.

In cases where you don't care about unique names for a particular node, you may wish to initialize the node with
an anonymous name.



rospy client library: Testing for shutdown

while not rospy.is shutdown(): _
do some work The spin() code simply

sleeps until

and the is_shutdown() flag

is True.
. setup callbacks

rospy.spin()

There are multiple ways in which a node can receive a shutdown request, so it is important
that you use one of the two methods above for ensuring your program terminates properly.



rospy client library: Message generation

* package _name/msg/Foo.msg — package name.msg.Foo

* rospy takes msg files and generates Python source code for
them.

n your code you would use

import std msgs.msg
msg = std msgs.msg.String()

or

from std msgs.msg import String
msg = String()



2. ROS Message Types

ROS Message Types

Bool

rospy client library: std_msgs o

ByteMultiArray

Char
ColorRGBA
Duration
Empty
Float32

. Float32MultiArray
std_msgs/String Message
Float64MultiArray
Header
: " Int16
File: |std_msgs/String.msg Int16MultiArray

Int32

Int32MultiArray
Int64
Int64MultiArray
Int8
Int8MultiArray
MultiArrayDimension

IHHI ArrayLayout

Uint16

. Uint16MultiArray
string data Ulnt32

Ulnt32MultiArray

Raw Message Definition

string data

Compact Message Definition

Uint64
UInt64MultiArray
Uint8
UInt8MultiArray



rospy client library: Publishing to a topic

Create a handle to publish messages to a topic using the rospy.Publisher class

pub = rospy.Publisher('topic name', std msgs.msg.String, queue size=10)
pub.publish(std msgs.msg.String("foo"))

You can then call publish() on that handle to publish a message



Toggle line numbers

1 #!/usr/bin/env python

2 # license removed for brevity

3 import rospy makes sure ygrt S1pLJSGXeeHinshASiS FVIRaPWwE 8dn reuse

4 from std msgs.msg import String the std_msgs/String message type

5
6 def talker(): publishing to the chatter topic
7 pub = rospy.Publisher('chatter', String, queue size=10) using the message type String
8 rospy.init node('talker', anonymous=True) tells rospy the name of your node
9 rate = rospy.Rate(10) # 10hz creates a Rate object rate.
10 while not rospy.is shutdown(): checking the rospy.is_shutdown() flag
i1 1 hello_str = "hello world %s" % rospy.get_time() Create the message
12 rospy.loginfo(hello_str) the messages get printed to screen, it gets written to the Node's
13 pub.publish(hello str) log file, and it gets written to rosout
14 rate.sleep() publishes a string to our chatter topic
15 sleeps just long enough to maintain the desired rate through the loop.
16 if _name == '_ main__ ': python __main__check
o S E This catches a rospy.ROSInterruptException exception,
LS talker() which can be thrown
19 except rospy.ROSInterruptException: py rospy.sleep() and rospy.Rate.sleep() methods when Ctrl-
20 pass C is pressed



#!/usr/bin/env python # The first line makes sure your script is executed as a Python script (python3).
import rospy

from std_msgs.msg import String # The output will be a string

def talker():
pub = rospy.Publisher('chatter’, String, queue_size=10) # Chatter Topic

rospy.init_node('talker', anonymous=True) # This tells rospy the name of your node
rate =rospy.Rate(10) # 10hz

while not rospy.is_shutdown():
hello_str = "hello world %s" % rospy.get_time()

rospy.loginfo(hello_str) # printed to screen, written to the Node's log file, and written to rosout
pub.publish(hello_str) #
rate.sleep()
if _name___=='_ main__"
try:
talker()
except rospy.ROSInterruptException: # CNTL + C to end

pass



RUN ROSCORE
Alias foxy or noetic
harman@harman-VirtualBox:~S noetic
harman@harman-VirtualBox:~S roscore

TERMINAL 2
harman@harman-VirtualBox:~/Desktop$S python3 publishHello.py

harman@harman-VirtualBox:~/Desktop$ python3 publishHello.py
[INFO] [1668979420.500695]: hello world 1668979420.5006263
[INFO] [1668979420.603913]: hello world 1668979420.603789
[INFO] [1668979420.701357]: hello world 1668979420.7012498
[INFO] [1668979420.804461]: hello world 1668979420.804322
[INFO] [1668979420.900951]: hello world 1668979420.9008462
[INFO] [1668979421.001503]: hello world 1668979421.0013928
[INFO] [1668979421.10




turtlesim_py 1 gotogoal 10 13 2022.pdf

TurtleSim

(Go over this code)

Turtlesim Noetic gotogoal 1 10 13 2022

gotogoal 1 Python3 P control 10_13 2022 Corrected

#!/usr/bin/env python gotogoal 1.py Python3
turtlesim_cleaner/src/gotogoal.py GitHub

# Added float - float(input("Set your x goal:"))
import rospy
from geometry_msgs.msg import Twist
from turtlesim.msg import Pose
from math import pow,atan2,sqrt




OOP Object Oriented

class turtlebot():

def _init_ (self):
#Creating our node,publisher and subscriber
rospy.init_node('turtlebot_controller', anonymous=True)
self.velocity publisher = rospy.Publisher('/turtlel/cmd_vel', Twist, queue_size=10)
self.pose subscriber = rospy.Subscriber('/turtlel/pose’, Pose, self.callback)
self.pose = Pose()
self.rate = rospy.Rate(10)




ROS1T COMMUNICATION

hokuyo
XML/RPC: foo:1234
TCP data: f00:2345

\\//

http://wiki.ros.org/ROS/Technical%200verview

o
'\(Ln)b‘ 6“90,.
) \00;,..,-'-' /%o' %, .
S e & S
37 = XMLRPC 4 %%,
& |
8\@ J
v 4
- -
TCP server: f00:2345
viewer
connect(foo:2345)
‘. _— — — — —— P —
.
LaserScan data messages
A e
TCP

45


http://wiki.ros.org/ROS/Technical%20Overview

OREILLY

) S

Programming *%;

Robots
with ROS

Morgan Quigley, Brian Gerkey
& William D. Smart

447 Pages - 2015 - 32.43 MB - 18,725 Downloads:

English

!
CAUTIO

From the Horses’ Mouths

INDIGO

46



Carol Fairchild, Dr. Thomas L. Harman

ROS Robotics
By Example

Learning to control wheeled, limbed, and flying robots
using ROS Kinetic Kame

L1 Packt

Kinetic Version

47



