
https://vimeo.com/639236696

ROS Introduction 3:12 (captioned) PLAY THIS

Open Robotics
Mountain View, CA, USA
We help make Robot Operating System (ROS) and the Ignition/Gazebo simulator.

info@openrobotics.org

Homepage

http://www.openrobotics.org

http://www.ros.org

1

https://vimeo.com/639236696
mailto:info@openrobotics.org
https://www.openrobotics.org/
http://www.openrobotics.org/
http://www.ros.org/

An operating system is a software that provides interface between the
applications and the hardware.

It deals with the allocation of resources such as memory, processor time
etc. by using scheduling algorithms and keeps record of the authority of
different users, thus providing a security layer.

The operating systems may include basic applications such as web
browsers, editors, system monitoring applications etc.

2

Khan Saad Bin Hasan
What is ROS? llow

Oct 20, 2019
https://towardsdatascience.com/what-why-and-how-of-ros-b2f5ea8be0f3

ROS, an open-source robot operating system. ROS is not an operating system
in the traditional sense of process management and scheduling; rather, it
provides a structured communications layer above the host operating systems
of a heterogeneous compute cluster.[2]

Quigley, Morgan, et al. “ROS: an open-source Robot Operating
System.” ICRA workshop on open source software. Vol. 3. №3.2.
2009.

3

https://towardsdatascience.com/what-why-and-how-of-ros-b2f5ea8be0f3

Robotic System
4

ROS is not an operating system but a meta operating system
meaning, that it assumes there is an underlying operating
system that will assist it in carrying out its tasks.

5

6

A GOOD APPROACH TO TEST DIFFERENT ROS DISTRIBUTIONS

ROS 1 Structure for Packages

Software in ROS is organized in packages. A package might contain ROS nodes, a
ROS-independent library, a dataset, configuration files, a third-party piece of
software, or anything else that logically constitutes a useful module.

7

ROS2 HAS DIFFERENT SETUP

http://wiki.ros.org/Nodes

ROS 1 Structure

https://trojrobert.github.io/hands-on-introdution-to-robot-operating-system(ros)/

8

https://trojrobert.github.io/hands-on-introdution-to-robot-operating-system(ros)/

9

Command Action Example usage and subcommandexamples

roscore Starts the Master $ roscore

rosrun Runs an executable programand creates nodes $ rosrun [package name][executable name]

rosnode Shows information about nodes and lists the
activenodes

$ rosnode info [node name]

$ rosnode<subcommand>

Subcommand: list

rostopic Shows information aboutROS topics $ rostopic<subcommand><topicname>

Subcommands: echo, info, and type

rosmsg Shows information about themessage types $ rosmsg<subcommand> [packagename]/ [message type]

Subcommands: show, type, and list

rosservice Displays the runtime information about
variousservices and allows the display of
messages beingsent to a topic

$ rosservice<subcommand>[service name]

Subcommands: args, call, find,info, list, and type

rosparam Used to get and set parameters (data) used
bynodes

$ rosparam<subcommand>[parameter]

Subcommands: get, set, list, and

delete

The website (http://wiki.ros.org/ROS/CommandLineTools) describes many ROS commands.

ROS2 Commands
are a bit different –
HOWEVER, ITEMS ARE
BASCIALLY THE SAME

– BUT
NO ROSCORE.

ACTIONS – are now
a part of ROS2

– not just an addon

http://wiki.ros.org/ROS/CommandLineTools

10

ROS 1 SUPPORT & SOFTWARE
(UPDATED FOR ROS2)

• OPEN ROBOTICS

• CANONICAL (UBUNTU)

• GAZEBO RVIZ, OPENCV

• URDF, SDF (Gazebo), Xacro (XML macros)

• PYTHON, C AND C++ (Others for ROS1 – use with care)

• Various graphics and simulation packages
• OGRE Graphics Rendering
• ODE Open Dynamics engine
• MoveIt
• IK packages, SMACH

11

Tools: Gazebo Simulator

12

RVIZ Robot Visualizer MoveIt

13

Support Websites

• https://www.openrobotics.org/

• https://canonical.com/

• https://www.ogre3d.org/

• https://gazebosim.org/home

• https://www.ode.org/

• https://moveit.ros.org/

• http://wiki.ros.org/trac_ik Fast IK

14

https://www.ogre3d.org/
https://www.ogre3d.org/
https://www.ogre3d.org/
https://gazebosim.org/home
https://www.ode.org/
https://moveit.ros.org/
http://wiki.ros.org/trac_ik

15

Python 3 in Noetic

https://docs.python.org/3/howto/pyporting.html

Gazebo 11 in Noetic

https://github.com/gazebosim/gazebo-classic/blob/master/Migration.md

https://github.com/gazebosim/gazebo-classic/blob/master/Changelog.md

ALWAYS CHECK THE DISTROS OF ROS AND UBUNTU - BUT ALSO THE COMPATIBLE SUPPORT SOFTWARE

https://docs.python.org/3/howto/pyporting.html
https://github.com/gazebosim/gazebo-classic/blob/master/Migration.md
https://github.com/gazebosim/gazebo-classic/blob/master/Changelog.md

16

To compile our ROS1 workspace, use the catkin_make command to start the build process.

ROS1 STRUCTURE

Part 2: 7 Simple Steps to Create and Build Your First ROS Package

https://medium.com/swlh/7-simple-steps-to-create-and-build-our-first-ros-package-7e3080d36faa

https://medium.com/swlh/7-simple-steps-to-create-and-build-our-first-ros-package-7e3080d36faa

17

Some of the important files/directories inside Packages
are:

1. Nodes: A node is a process that performs computation.
2. CMakeLists.txt: It is the input to the CMake build system for building
software packages.
3. Package.xml : It defines properties about the package such as the
package name, version numbers, authors, maintainers, and
dependencies on other catkin packages.
4. .yaml files: To run a rosnode you may require a lot of parameters e.g,
Kp,Ki,Kd parameters in PID control. We can configure these using YAML
files.
5. launch files: To run multiple nodes at once in ROS we use launch files.

18

http://wiki.ros.org/Nodes
http://wiki.ros.org/catkin/CMakeLists.txt
http://wiki.ros.org/Manifest
https://en.wikipedia.org/wiki/YAML
http://wiki.ros.org/pid
http://wiki.ros.org/roslaunch/Tutorials/Roslaunch%20tips%20for%20larger%20projects

Any code that will be written should be in the form of packages. And
the packages should be inside a workspace*. Catkin is used in ROS1.

A catkin workspace is a folder where you modify, build, and install catkin packages. It can
contain up to four different spaces which each serve a different role in the software
development process.

1. The source space contains the source code of catkin packages. This is where you can
extract/checkout/clone source code for the packages you want to build. Each folder within
the source space contains one or more catkin packages.
2. The build space is where CMake is invoked to build the catkin packages in the source
space. CMake and catkin keep their cache information and other intermediate files here.
3. The development space (or devel space) is where built targets are placed prior to being
installed. The way targets are organized in the devel space is the same as their layout
when they are installed. This provides a useful testing and development environment which
does not require invoking the installation step.
4. Once targets are built, they can be installed into the install space by invoking the install
target, usually with make install.

19

* Python scripts with rospy can be run without being in a package.

http://wiki.ros.org/catkin/workspaces#Catkin_Workspaces
http://wiki.ros.org/catkin/workspaces#Source_Space
http://wiki.ros.org/catkin/workspaces#Source_Space
http://wiki.ros.org/catkin/workspaces#Build_Space
http://wiki.ros.org/catkin/workspaces#Source_Space
http://wiki.ros.org/catkin/workspaces#Development_.28Devel.29_Space
http://wiki.ros.org/catkin/workspaces#Development_.28Devel.29_Space
http://wiki.ros.org/catkin/workspaces#Development_.28Devel.29_Space
http://wiki.ros.org/catkin/workspaces#Install_Space

20

:20

https://www.youtube.com/watch?v=mwLsIhxUxQc

ROS WORKSPACE AND PACKAGE CREATION

WATCH THE VIDEO Noetic 6:19

1,305 views Oct 18, 2022
Ubuntu Version : 20.04
ROS1 Version : NOETIC

https://www.youtube.com/watch?v=mwLsIhxUxQc

21

http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscri
ber%28python%29

Let’s Go Through These tutorials - Link of ROSPY AND PYTHON

http://wiki.ros.org/ROS/Tutorials/CreatingPackage

http://wiki.ros.org/catkin/Tutorials/create_a_workspace

• source /opt/ros/noetic/setup.bash
• Make directories catkin_ws and src (Catkin name is arbitrary)
• $ source ~/catkin_ws/devel/setup.bash and $ echo $ROS_PACKAGE_PATH – See ws and ros

http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber%28python%29
http://wiki.ros.org/ROS/Tutorials/CreatingPackage
http://wiki.ros.org/catkin/Tutorials/create_a_workspace

22

1. Source the ROS Distribution
Alias foxy or noetic
harman@harman-VirtualBox:~$ noetic (This sources noetic via an alias) (not foxy)

harman@harman-VirtualBox:~$ source ~/catkin_ws/devel/setup.bash

harman@harman-VirtualBox:~$ gedit .bashrc (bashrc is hidden!)
…
#source /opt/ros/foxy/setup.bash # 6_21_2021 Load Foxy
echo Alias foxy or noetic
alias foxy='source /opt/ros/foxy/setup.bash' # Load Foxy,7_30_2021 or noetic
alias noetic='source /opt/ros/noetic/setup.bash

2. SOURCE THE WORKSPACE TO Execute Code - ros_robotics

3. Now Check the paths
harman@harman-VirtualBox:~$ env | grep ROS_PACKAGE_PATH

ROS_PACKAGE_PATH=/home/harman/catkin_ws/src:/opt/ros/noetic/share

How Does rosrun work? - $ roscore running

• harman@harman-VirtualBox:~$ noetic

• ROS_DISTRO was set to 'foxy' before. Please make sure that the
environment does not mix paths from different distributions.

• harman@harman-VirtualBox:~$ rosrun turtlesim turtlesim_node

• [INFO] [1668973275.885955332]: Starting turtlesim with node name
/turtlesim

• [INFO] [1668973275.891606121]: Spawning turtle [turtle1] at
x=[5.544445], y=[5.544445], theta=[0.000000]

23

24

https://github.com/ros/ros/blob/0cf372d5225045ecae083ce210e0f1a2cbe6f
8b8/tools/rosbash/scripts/rosrun

#!/usr/bin/env bash

function usage() {
echo "Usage: rosrun [--prefix cmd] [--debug] PACKAGE EXECUTABLE [ARGS]"
echo " rosrun will locate PACKAGE and try to find"
echo " an executable named EXECUTABLE in the PACKAGE tree."
echo " If it finds it, it will run it with ARGS."

}

VIEW CODE ON GITHUB

catkin_package_libexec_dirs=($(catkin_find --without-underlays --libexec --share "$pkg_name" 2> /dev/null))

https://www.theconstructsim.com/ros-5-mins-007-rosrun-works/ Short Video

https://github.com/ros/ros/blob/0cf372d5225045ecae083ce210e0f1a2cbe6f8b8/tools/rosbash/scripts/rosrun
https://www.theconstructsim.com/ros-5-mins-007-rosrun-works/

25

USING A LAUNCH FILE

• Starts roscore
• Launch multiple nodes
• Sets parameters on the

parameter server

http://wiki.ros.org/roslaunch/XML/node

http://wiki.ros.org/roslaunch

https://wiki.ros.org/Parameter%20Server

http://wiki.ros.org/roslaunch/XML/node
http://wiki.ros.org/roslaunch
https://wiki.ros.org/Parameter%20Server

26

harman@harman-VirtualBox:~$ cd ~/catkin_ws/src
harman@harman-VirtualBox:~/catkin_ws/src$ ls

CMakeLists.txt ros_robotics
harman@harman-VirtualBox:~/catkin_ws/src$ cd ros_robotics
harman@harman-VirtualBox:~/catkin_ws/src/ros_robotics$ tree -L 1
.

├── CMakeLists.txt
├── launch
├── package.xml
├── urdf
├── urdf.rviz
└── worlds

3 directories, 3 files

Example package Chapter 2 Package Directory for ros_robotics

Note – Addition of Launch File

27

<launch>
<!-- values passed by command line input The model i.e. dd_robotx.urdf-->
<arg name="model" />

<!-- <arg name="gui" default="False" /> 7/30/21 Put gui:=True on Command Line-->

<!-- set these parameters on Parameter Server -->
<param name="robot_description" textfile="$(find ros_robotics)/urdf/$(arg model)" />
<param name="use_gui" value="$(arg gui)"/>

<!-- Start 3 nodes: joint_state_publisher_gui, robot_state_publisher and rviz -->
<node name="joint_state_publisher_gui" pkg="joint_state_publisher_gui" type="joint_state_publisher_gui" />

<node name="robot_state_publisher" pkg="robot_state_publisher"
type="robot_state_publisher" />

<!-- state_publisher changed to robot_state_publisher -->

<node name="rviz" pkg="rviz" type="rviz" args="-d $(find ros_robotics)/urdf.rviz" required="true" />
<!-- (required = "true") if rviz dies, entire roslaunch will be killed -->

</launch>

28

Launch file was modified from ROS Kinetic to ROS noetic. Note gui=True

29

Joint State Publisher GUI Migration to Noetic
In previous versions of ROS, the joint_state_publisher package
had a parameter called use_gui that would launch a GUI when
joint_state_publisher was started.

In early 2020 this package was split into a joint_state_publisher
and joint_state_publisher_gui package. In Noetic, the use_gui
parameter has been removed completely, and instead users
should explicitly invoke joint_state_publisher_gui when they
wish to use the GUI.

http://wiki.ros.org/noetic/Migration

http://wiki.ros.org/noetic/Migration

CLIENT LIBRARIES
PYTHON AND C

30

• Python is VERY sensitive to spacing - normally indent 4 spaces

• When copying code from a file IF an error –
• SyntaxError: invalid character in identifier
• IndentationError: expected an indented block
• RETYPE THE LINE AND WATCH SPACING

31

I. TALK ABOUT ROSPY AND RCLPY Python

API

An API, or Application Programming Interface, is an interface that is provided by an “application”, which in this

case is usually a shared library or other language appropriate shared resource. APIs are made up of files that

define a contract between the software using the interface and the software providing the interface. These

files typically manifest as header files in C and C++ and as Python files in Python. In either case it is important

that APIs are grouped and described in documentation and that they are declared as either public or private.

Public interfaces are subject to change rules and changes to the public interfaces prompt a new version

number of the software that provides them.

client_library

A client library is an API that provides access to the ROS graph using primitive middleware

concepts like Topics, Services, and Actions.

F1/10

Autonomous Racing

Madhur Behl

rospy client library: Example

rospy client library: Initializing your ROS Node

You can only have one node in

a rospy process,

so you can only

call rospy.init_node()once.

Names have important properties in ROS.
Most importantly, they must be unique.

In cases where you don't care about unique names for a particular node, you may wish to initialize the node with
an anonymous name.

rospy client library: Testing for shutdown

The spin() code simply

sleeps until

the is_shutdown() flag

is True.

There are multiple ways in which a node can receive a shutdown request, so it is important
that you use one of the two methods above for ensuring your program terminates properly.

rospy client library: Message generation

• package_name/msg/Foo.msg → package_name.msg.Foo

• rospy takes msg files and generates Python source code for

them.

• To use the std_msgs/String message in your code you would use
one of the following import statements:

rospy client library: std_msgs

rospy client library: Publishing to a topic

Create a handle to publish messages to a topic using the rospy.Publisher class

You can then call publish() on that handle to publish a message

makes sure your script is executed as a Python script.The std_msgs.msg import is so that we can reuse

the std_msgs/String message type

publishing to the chatter topic

using the message type String

tells rospy the name of your node

creates a Rate object rate.
checking the rospy.is_shutdown() flag

Create the message

the messages get printed to screen, it gets written to the Node's
log file, and it gets written to rosout

publishes a string to our chatter topic

sleeps just long enough to maintain the desired rate through the loop.

Python main check

This catches a rospy.ROSInterruptException exception,

which can be thrown

by rospy.sleep() and rospy.Rate.sleep() methods when Ctrl-
C is pressed

41

#!/usr/bin/env python # The first line makes sure your script is executed as a Python script (python3).

import rospy

from std_msgs.msg import String # The output will be a string

def talker():

pub = rospy.Publisher('chatter', String, queue_size=10) # Chatter Topic

rospy.init_node('talker', anonymous=True) # This tells rospy the name of your node
rate =rospy.Rate(10) # 10hz

while not rospy.is_shutdown():

hello_str = "hello world %s" % rospy.get_time()

rospy.loginfo(hello_str) # printed to screen, written to the Node's log file, and written to rosout

pub.publish(hello_str) #

rate.sleep()

if __name__ == '__main__':

try:

talker()

except rospy.ROSInterruptException: # CNTL + C to end

pass

42

harman@harman-VirtualBox:~/Desktop$ python3 publishHello.py
[INFO] [1668979420.500695]: hello world 1668979420.5006263
[INFO] [1668979420.603913]: hello world 1668979420.603789
[INFO] [1668979420.701357]: hello world 1668979420.7012498
[INFO] [1668979420.804461]: hello world 1668979420.804322
[INFO] [1668979420.900951]: hello world 1668979420.9008462
[INFO] [1668979421.001503]: hello world 1668979421.0013928
[INFO] [1668979421.10

harman@harman-VirtualBox:~/Desktop$ python3 publishHello.py

Alias foxy or noetic
harman@harman-VirtualBox:~$ noetic
harman@harman-VirtualBox:~$ roscore

RUN ROSCORE

TERMINAL 2

43

Turtlesim Noetic gotogoal_1 10_13_2022

gotogoal_1 Python3 P control 10_13_2022 Corrected

#!/usr/bin/env python gotogoal_1.py Python3
turtlesim_cleaner/src/gotogoal.py GitHub

Added float - float(input("Set your x goal:"))
import rospy
from geometry_msgs.msg import Twist
from turtlesim.msg import Pose
from math import pow,atan2,sqrt

turtlesim_py_1 gotogoal 10_13_2022.pdf

(Go over this code)

44

class turtlebot():

def __init__(self):
#Creating our node,publisher and subscriber
rospy.init_node('turtlebot_controller', anonymous=True)
self.velocity_publisher = rospy.Publisher('/turtle1/cmd_vel', Twist, queue_size=10)
self.pose_subscriber = rospy.Subscriber('/turtle1/pose', Pose, self.callback)
self.pose = Pose()
self.rate = rospy.Rate(10)

OOP Object Oriented

ROS1 COMMUNICATION

http://wiki.ros.org/ROS/Technical%20Overview

45

http://wiki.ros.org/ROS/Technical%20Overview

447 Pages · 2015 · 32.43 MB · 18,725 Downloads·

English

46

From the Horses’ Mouths

INDIGO

47

Kinetic Version

