::: ROS.org

https://vimeo.com/639236696

ROS Introduction 3:12 (captioned)

Open Robotics

Mountain View, CA, USA

We help make Robot Operating System (ROS) and the Ignition/Gazebo simulator.
iInfo@openrobotics.org

Homepage

http://www.openrobotics.org

http://www.ros.org

https://vimeo.com/639236696
mailto:info@openrobotics.org
https://www.openrobotics.org/
http://www.openrobotics.org/
http://www.ros.org/

An operating system is a software that provides interface between the
applications and the hardware.

It deals with the allocation of resources such as memory, processor time
etc. by using scheduling algorithms and keeps record of the authority of
different users, thus providing a security layer.

The operating systems may include basic applications such as web
browsers, editors, system monitoring applications etc.

Khan Saad Bin Hasan

What is ROS?
Oct 20, 2019
https://towardsdatascience.com/what-why-and-how-of-ros-b2f5ea8be0f3

ROS, an open-source robot operating system. ROS is not an operating system
in the traditional sense of process management and scheduling; rather, it
provides a structured communications layer above the host operating systems
of a heterogeneous compute cluster.[2]

Quigley, Morgan, et al. “ROS: an open-source Robot Operating
System.” ICRA workshop on open source software. Vol. 3. Ne3.2.
2009.

https://towardsdatascience.com/what-why-and-how-of-ros-b2f5ea8be0f3

Logic — reasoning,
planning and control
- .

‘ Sens;ing ‘ ‘ Actuation |

{ |

Environment

Robotic System

:::ROS

. SENSE | SETUP CONTROL

)/

PROCESS

ROS is not an operating system but a meta operating system
meaning, that it assumes there is an underlying operating
system that will assist it in carrying out its tasks.

ROS depends on the underlying Operating System. ROS
demands a lot of functionality from the operating system.

Hence, most people prefer to run ROS on Linux particularly Debian
and Ubuntu since ROS has a very good support with Debian based
operating systems especially Ubuntu.

That doesn’t mean that ROS can’t be run with Mac OS X or
Windows 10 for that matter. But the support is limited and people
may find themselves in tough situation with little help from the

community.

An alternative is to use Virtual Box

§% Oracle VM VirtualBox Manager

- X
File Machine Snapshot Help
AW an I\
] e BBy e b
Name Taken
v @ Snapshot 6/12/20211 6/12/2021 4:14 PM
v @ Snapshot 6_18_2021 6/18/2021 3:46 PM
6 NP Ubuntu 20.04 6_21 (Snapshot 10_4_2021 20.04) v @ snapshot 6/19/2021 6/19/2021 6:14 PM
@ Powered Off

@ Current State (changed)

58P Ubuntu 16.04 8_3_2021 (Snapshot 10_4_2021 1...)
@ Powered Off

1 T 12:59 PM
0O Type here to search @ 2r ~P®mzD 8/15/2022 B

ROS 1 Structure for Packages

Metadata
L
°8 W — % 3
| - i >
User system Package manager Repository RPM,

Packages

Software in ROS is organized in packages. A package might contain ROS nodes, a
ROS-independent library, a dataset, configuration files, a third-party piece of
software, or anything else that logically constitutes a useful module.

Packages
dependancies

http://wiki.ros.org/Nodes

ROS 1 Structure

Ros

Master 4N
al ~
~ \:"‘ ~ Information
~ 4 ™ =, about publishers
Subscribe to ™ »
< Public to

: AN
topic name
topic name P NSO

™~
"
. Request for topic message]
Publisher R Subscriber
— 1 —
NDdE Ros message Ros tﬂplc ' Ros message NDdE

https://trojrobert.github.io/hands-on-introdution-to-robot-operating-system(ros)/

https://trojrobert.github.io/hands-on-introdution-to-robot-operating-system(ros)/

Command Example usage and subcommandexamples

suremense

Runs an executable programand creates nodes $ rosrun [package name][executable name]

rosnode Shows information about nodes and lists the $ rosnode info [node name]
activenodes
W $ rosnode<subcommand>

Subcommand: list

Shows information aboutROS topics $ rostopic<subcommand><topicname>
Subcommands: echo, info, and type

Shows information about themessage types $ rosmsg<subcommand> [packagename]/ [message type]
Subcommands: show, type, and list

Displays the runtime information about S rosservice<subcommand>[service name]

variousservices and allows the display of

Subcommands: args, call, find,info, list, and type
messages beingsent to a topic UL LR o

rosparam Used to get and set parameters (data) used S rosparam<subcommand>[parameter]

bynodes Subcommands: get, set, list, and

delete

The website (http://wiki.ros.org/ROS/CommandLineTools) describes many ROS commands.

http://wiki.ros.org/ROS/CommandLineTools

Node

Publication

L
/o

s)

Subscription

Node Publication Node ’

Some of the important files/directories inside Packages are:

1. Nodes: A node is a process that performs computation.

2. CMakelists.txt: It is the input to the CMake build system for
building software packages.

3. Package.xml : It defines properties about the package such as
the package name, version numbers, authors, maintainers, and
dependencies on other catkin packages.

4. .yaml files: To run a rosnode you may require a lot of
parameters e.qg, Kp,Ki,Kd parameters in PID control. We can
configure these using YAML files.

5. launch files: To run multiple nodes at once in ROS we use
launch files.

12

http://wiki.ros.org/Nodes
http://wiki.ros.org/catkin/CMakeLists.txt
http://wiki.ros.org/Manifest
https://en.wikipedia.org/wiki/YAML
http://wiki.ros.org/pid
http://wiki.ros.org/roslaunch/Tutorials/Roslaunch%20tips%20for%20larger%20projects

Any code that will be written should be in the form of packages. And
the packages should be inside a workspace. Catkin is used in ROS1.

A catkin workspace is a folder where you modify, build, and install catkin packages. It can
contain up to four different spaces which each serve a different role in the software
development process.

1. The source space contains the source code of catkin packages. This is where you can
extract/checkout/clone source code for the packages you want to build. Each folder within
the source space contains one or more catkin packages.

2. The build space is where CMake is invoked to build the catkin packages in the source
space. CMake and catkin keep their cache information and other intermediate files here.
3. The development space (or devel space) is where built targets are placed prior to being
installed. The way targets are organized in the devel space is the same as their layout
when they are installed. This provides a useful testing and development environment which
does not require invoking the installation step.

4. Once targets are built, they can be installed into the install space by invoking the install
target, usually with make install.

13

http://wiki.ros.org/catkin/workspaces#Catkin_Workspaces
http://wiki.ros.org/catkin/workspaces#Source_Space
http://wiki.ros.org/catkin/workspaces#Source_Space
http://wiki.ros.org/catkin/workspaces#Build_Space
http://wiki.ros.org/catkin/workspaces#Source_Space
http://wiki.ros.org/catkin/workspaces#Development_.28Devel.29_Space
http://wiki.ros.org/catkin/workspaces#Development_.28Devel.29_Space
http://wiki.ros.org/catkin/workspaces#Development_.28Devel.29_Space
http://wiki.ros.org/catkin/workspaces#Install_Space

catkin
workspace

ﬁa

src J build J devel J
packagel J package?2

CMakeLists.txtJ puckuge.xmlj scripts || msg erJFnclude SFEJ 1uunchj

7 F =

- [\

*.pyJ *.shJ * .msg *.SWJ *.hJ *.cppJ *.launchJ
[

To compile our ROS1 workspace, use the catkin_make command to start the build
process.

Tools: Gazebo Simulator

(54.229.67.207 a2 eV

Real Time: 00 00:07:27 P 7
Doooaa

valkyrie

w General
Name valkyrie
Static @ False

~ Pose
X 0.012m
y 219m
z 0.992m °
Roll 0.024 raa
Pitch -0.027 rad
Yaw -1.506 rad

» Links

t
"
U

da

mmnn
)
) Vg

} Joints

RVIZ Robot Visualizer

moveit.rviz* - RViz

O pisplays 8
> Scene Geometry =
> Scene Robot
¥ Planning Request

Planning Group panda_arm_hand
show Workspace O
Query Start State B
Query Goal State &
Interactive Marker Size 0
Start State Color [0; 255; 0
Start State Alpha 1 5
Add
3 MotionPlanning u

Context | Planning | Manipulation | Scene Objects = Stored Scenes = Stored States = Status

Commands Query Options
Plan Select start State: Planning Time (s):| 5,00 '
Select Goal State: Planning Attempts:| 10,00
Plan and Execute <random valid> . Velocity Scaling:| 1,00

Acceleration Scaling:| 1,00

Lipdake [] Allow Replanning

[] Allow Sensor Positioning

Executed Clear octomap

[Allow External Comm.
& use collision-Aware IK

[] Allow Approx IK Solutions
Path Constraints

L]

MNone

Goal Tolerance: 0,00

OREILLY

o

Programming %

Robots
with ROS

Morgan Quigley, Brian Gerkey
& William D. Smart

447 Pages - 2015 - 32.43 MB - 18,725 Downloads:
English

17

Carol Fairchild, Dr. Thomas L. Harman

ROS Robotics
By Example

Learning to control wheeled, limbed, and flying robots
using ROS Kinetic Kame

L1 Packt>

18

