

ROS Robotics By Example
Second Edition

Learning to control wheeled, limbed, and flying robots
using ROS Kinetic Kame

Carol Fairchild

Dr. Thomas L. Harman

BIRMINGHAM - MUMBAI

ROS Robotics By Example
Second Edition

Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: June 2016

Second edition: November 2017

Production reference: 1301117

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78847-959-2

www.packtpub.com

www.packtpub.com

Credits

Authors
Carol Fairchild

Dr. Thomas L. Harman

Reviewer
Lentin Joseph

Acquisition Editor
Frank Pohlmann

Project Editor
Alish Firasta

Content Development Editor
Venugopal Commuri

Technical Editor
Bhagyashree Rai

Copy Editor
Safis Editing

Proofreader
Safis Editing

Indexer
Aishwarya Gangawane

Graphics
Kirk D'Penha

Production Coordinator
Nilesh Mohite

About the Authors

Carol Fairchild is the owner and principal engineer of Fairchild Robotics, a
robotics development and integration company. She is a researcher at Baxter's Lab at
the University of Houston–Clear Lake (UHCL) and a member of the adjunct faculty.
Her research involves the use of Baxter for expanded applications. Ms. Fairchild has
been involved in many aspects of robotics from her earliest days of building her first
robot, a Heathkit Hero. She has an MS in computer engineering from UHCL and a
BS in engineering technology from Texas A&M. Ms. Fairchild has taught middle-
school robotics, coached FLL, and volunteered for FIRST Robotics in Houston.

Dr. Thomas L. Harman is the chair of the engineering division at UHCL.
His research interests are control systems and applications of robotics and
microprocessors. Several of his research papers with colleagues involve robotic and
laser applications in medicine. In 2005, he was selected as the UHCL Distinguished
Professor. He has been a judge and safety advisor for the FIRST robotic contests in
Houston. Dr. Harman has authored or coauthored 18 books on subjects including
microprocessors, MATLAB and Simulink applications, and the National Electrical
Code. His laboratory at UHCL has a Baxter two-armed robot and several TurtleBots
as well as other robots.

About the Reviewer

Lentin Joseph is an author, entrepreneur, electronics engineer, robotics enthusiast,
machine vision expert, embedded programmer, and the founder and CEO of Qbotics
Labs from India.

Lentin completed his bachelor's degree in electronics and communication
engineering at the Federal Institute of Science and Technology (FISAT), Kerala.
For his final year engineering project, he made a social robot that can interact with
people. The project was a huge success and was mentioned in many forms of visual
and print media. The main features of this robot were that it could communicate
with people and reply intelligently, and it had some image processing capabilities
such as face, motion, and color detection. The entire project was implemented using
the Python programming language. His interest in robotics, image processing, and
Python started with that project.

After his graduation, Lentin worked for 3 years at a start-up company focusing on
robotics and image processing. In the meantime, he learned to work with famous
robotics software platforms, such as Robot Operating System (ROS), V-REP,
and Actin (a robotic simulation tool), and image processing libraries such as
OpenCV, OpenNI, and PCL. He also knows about 3D robot design and embedded
programming on Arduino and Tiva Launchpad.

After 3 years of work experience, Lentin started a new company called Qbotics Labs,
which mainly focuses on research into building some great products in domains such
as robotics and machine vision. He maintains a personal website and a technology
blog called TechnoLabsz. Lentin publishes his works on his tech blog. He was also a
speaker at PyCon2013, India, on the topic Learning Robotics Using Python.

Lentin is the author of the books Learning Robotics Using Python (learn-robotics.
com), Mastering ROS for Robotics Programming (mastering-ros.com), and ROS
Robotics Project (http://rosrobots.com)—all books were published by Packt
Publishing. The first book was about building an autonomous mobile robot using
ROS and OpenCV. This book was launched at ICRA 2015 and was featured on
the ROS blog, Robohub, OpenCV, the Python website, and various other such
forums. The second book is on mastering Robot Operating System, which was also
launched at ICRA 2016, and is one of the bestselling books on ROS. The third book
is ROS Robotics Project, which was launched in ICRA 2017 and it is also one of the
bestselling books on ROS. Along with writing, he reviewed books such as Effective
Robotics Programming using ROS, Raspberry Pi Image Processing Programming,
and Raspberry Pi Supercomputing and Scientific Programming. He started a new
platform called Robocademy.com exclusively for learning robotics using ROS.

Lentin and his team were also winners of the HRATC 2016 challenge conducted as a
part of ICRA 2016. He was also a finalist in the ICRA 2015 challenge, HRATC.

learn-robotics.com
learn-robotics.com
mastering-ros.com
http://rosrobots.com

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all
Packt books and video courses, as well as industry-leading tools to help you plan
your personal development and advance your career.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www.packtpub.com/mapt

Customer Feedback

Thanks for purchasing this Packt book. At Packt, quality is at the heart of our
editorial process. To help us improve, please leave us an honest review on this
book's Amazon page at https://www.amazon.com/dp/1788479599.

If you'd like to join our team of regular reviewers, you can email us at
customerreviews@packtpub.com. We award our regular reviewers with free
eBooks and videos in exchange for their valuable feedback. Help us be relentless
in improving our products!

https://www.amazon.com/dp/1788479599

[i]

Table of Contents
Preface	 xi
Chapter 1: Getting Started with ROS	 1

What does ROS do and what are the benefits of learning ROS?	 2
Who controls ROS?	 3

Which robots are using ROS?	 3
Installing and launching ROS	 5

Configuring your Ubuntu repositories	 6
Setting up your sources.list file	 6
Setting up your keys	 7
Installing ROS Kinetic	 7
Initialize rosdep	 7
Environment setup	 8
Getting rosinstall	 8
Troubleshooting – examining your ROS environment	 8

Creating a catkin workspace	 9
ROS packages and manifest	 10

ROS manifest	 11
Exploring the ROS packages	 11

rospack find packages	 12
rospack list	 12

ROS nodes, topics, and messages	 13
ROS nodes	 14
ROS topics	 14
ROS messages	 15
ROS Master	 15

Invoking the ROS Master using roscore	 16
ROS commands to determine the nodes and topics	 17

Table of Contents

[ii]

Turtlesim – the first ROS robot simulation	 19
Starting turtlesim nodes	 19

rosrun command	 20
Turtlesim nodes	 21
Turtlesim topics and messages	 23

rostopic list	 24
rostopic type	 24
rosmsg list	 24
rosmsg show	 25
rostopic echo	 25

Move the turtle by publishing /turtle1/cmd_vel	 26
Move the turtle using the keyboard or joystick	 28
Parameter Server of Turtlesim	 28

rosparam help	 28
rosparam list for the /turtlesim node	 29
Change parameters for the color of the turtle's background	 29

ROS services to move turtle	 30
rosservice call	 31

ROS commands summary	 32
Summary	 33

Chapter 2: Creating Your First Two-Wheeled ROS Robot
(in Simulation)	 35

Introducing rviz	 36
Installing and launching rviz	 36
Getting familiar with rviz	 38

Displays panel	 38
Views and Time panels	 39
Toolbar	 40
Main window menu bar	 41

Creating and building a ROS package	 41
Building a differential drive robot URDF	 42

Creating a robot chassis	 43
Using roslaunch	 44
Adding wheels	 48
Adding a caster	 51
Adding color	 52
Adding collisions	 54
Moving the wheels	 55
A word about tf and robot_state_publisher	 57
Adding physical properties	 57
Trying URDF tools	 59

check_urdf	 59
urdf_to_graphiz	 59

Table of Contents

[iii]

Gazebo	 60
Installing and launching Gazebo	 61
Using roslaunch with Gazebo	 62
Getting familiar with Gazebo	 63

Environment toolbar	 64
World, Insert and Layers panels	 66
Joints panel	 67
Main window menu bar	 68
Simulation panel	 68

Modifications to the robot URDF	 68
Adding the Gazebo tag	 69
Specifying color in Gazebo	 69
A word about the <visual> and <collision> elements in Gazebo	 69

Verifying a Gazebo model	 70
Viewing the URDF in Gazebo	 70
Tweaking your model	 72
Moving your model around	 73
Other ROS simulation environments	 74

Summary	 75
Chapter 3: Driving Around with TurtleBot	 77

Introducing TurtleBot 2	 78
Loading TurtleBot 2 simulator software	 80
Launching TurtleBot 2 simulator in Gazebo	 81

Problems and troubleshooting	 83
ROS commands and Gazebo	 84
Keyboard teleoperation of TurtleBot 2 in simulation	 86

Setting up to control a real TurtleBot 2	 87
TurtleBot 2 standalone test	 88

Networking the netbook and remote computer	 90
Types of networks	 90
Network addresses	 91
Remote computer network setup	 92
Netbook network setup	 92
Secure Shell (SSH) connection	 93
Summary of network setup	 93
Troubleshooting your network connection	 94
Testing the TurtleBot 2 system	 94

TurtleBot 2 hardware specifications	 96
TurtleBot 2 dashboard	 96

Moving the real TurtleBot 2	 98
Using keyboard teleoperation to move TurtleBot 2	 98
Using ROS commands to move TurtleBot 2 around	 100

Table of Contents

[iv]

Writing your first Python script to control TurtleBot 2	 101
Introducing rqt tools	 104

rqt_graph	 105
rqt message publisher and topic monitor	 107

TurtleBot's odometry	 110
Odom for the simulated TurtleBot 2	 114
Real TurtleBot 2's odometry display in rviz	 117

TurtleBot 2 automatic docking	 118
Introducing TurtleBot 3	 120
Loading TurtleBot 3 simulation software	 122
Launching TurtleBot 3 simulation in rviz	 123
Launching TurtleBot 3 simulation in Gazebo	 125
Hardware assembly and testing	 129
Loading TurtleBot 3 software	 129

Installing remote computer software	 129
Installing SBC software	 130

Loading Ubuntu MATE	 131
Loading ROS packages	 133
Loading TurtleBot 3 packages	 134
Setting up udev rules for TurtleBot 3	 135

Networking TurtleBot 3 and the remote computer	 135
Remote computer network setup	 136
TurtleBot 3 network setup	 137

SSH connection	 138
Testing the SSH communication	 139
Troubleshooting your network connection	 139

Moving the real TurtleBot 3	 140
Using keyboard teleoperation to move TurtleBot 3	 141

Summary	 143
Chapter 4: Navigating the World with TurtleBot	 145

3D vision systems for TurtleBot	 146
How these 3D vision sensors work	 146
Comparison of 3D sensors	 147

Microsoft Kinect	 147
ASUS	 149
PrimeSense Carmine	 152
Intel RealSense	 153
Hitachi-LG LDS	 157
Obstacle avoidance drawbacks	 158

Configuring TurtleBot and installing the 3D sensor software	 158
Kinect	 159
ASUS and PrimeSense	 159

Table of Contents

[v]

Intel RealSense	 160
Camera software structure	 161
Defining terms	 161

Testing the 3D sensor in standalone mode	 162
Running ROS nodes for visualization	 163

Visual data using Image Viewer	 163
Visual data using rviz	 165

Navigating with TurtleBot	 169
Mapping a room with TurtleBot 2	 170

Defining terms	 170
Building a map	 170
How does TurtleBot accomplish this mapping task?	 174

Autonomous navigation with TurtleBot 2	 175
Defining terms	 176
Driving without steering TurtleBot 2	 176
rviz control	 178
How does TurtleBot accomplish this navigation task?	 181

Navigating to a designated location	 183
Navigating to waypoints with a Python script using a map	 185

Defining TurtleBot's position on a map	 187
Defining waypoints on a map	 188
Using Python code to move TurtleBot	 189
TurtleBot at final goal point	 191

SLAM for TurtleBot 3	 193
Autonomous navigation with TurtleBot 3	 195
rqt_reconfigure	 197
Exploring ROS navigation further	 199

Summary	 200
Chapter 5: Creating Your First Robot Arm (in Simulation)	 201

Features of Xacro	 202
Building an articulated robot arm URDF using Xacro	 203

Specifying a namespace	 203
Using the Xacro property tag	 204
Expanding Xacro	 207

Using roslaunch for rrbot	 208
Using the Xacro include and macro tags	 211
Adding mesh to the robot arm	 214

Controlling an articulated robot arm in Gazebo	 220
Adding Gazebo-specific elements	 221
Fixing the robot arm to the world	 222
Viewing the robot arm in Gazebo	 223
Adding controls to Xacro	 225

Defining transmission elements for joints	 225

Table of Contents

[vi]

Adding a Gazebo ROS control plugin	 226
Creating a YAML configuration file	 227
Creating a control launch file	 228

Controlling your robot arm with the ROS command line	 229
Controlling your robot arm with rqt	 232

Trying more things in rqt	 234
Summary	 235

Chapter 6: Wobbling Robot Arms Using Joint Control	 237
Introducing Baxter	 238

Baxter, the research robot	 241
Baxter Simulator	 242

Baxter's arms	 243
Baxter's bend joints	 244
Baxter's twist joints	 245
Baxter's coordinate frame	 246
Control modes for Baxter's arms	 247
Baxter's grippers	 248
Baxter's arm sensors	 249

Loading Baxter software	 250
Installing Baxter SDK software	 250
Installing Baxter Simulator	 252
Configuring the Baxter shell	 253
Installing MoveIt!	 254

Launching Baxter Simulator in Gazebo	 255
Bringing Baxter Simulator to life	 256
Warm-up exercises	 261
Flexing Baxter's arms	 263

Untucking Baxter's arms	 263
Wobbling arms	 265
Controlling arms and grippers with a keyboard	 266
Controlling arms and grippers with a joystick	 267
Controlling arms with a Python script	 270
Recording and replaying arm movements	 272

Baxter's arms and forward kinematics	 273
Joints and joint state publisher	 273
Understanding tf	 278

A program to move Baxter's arms to a zero angle position	 279
Commanding the joint angles directly	 281
rviz tf frames	 282
Viewing a tf tree of robot elements	 283

Introducing MoveIt!	 284
Planning a move of Baxter's arms with MoveIt!	 286

Table of Contents

[vii]

Adding objects to a scene	 288
Position of objects	 290

Planning a move to avoid obstacles with MoveIt!	 290
Configuring a real Baxter setup	 292
Controlling a real Baxter	 294

Commanding joint position waypoints	 295
Commanding joint torque springs	 295
Demonstrating joint velocity	 297
Additional examples	 297
Visual servoing and grasping	 297

Inverse kinematics	 298
Moving Baxter's arms with IK	 299

Using a state machine to perform YMCA	 303
Summary	 308

Chapter 7: Making a Robot Fly	 311
Introducing quadrotors	 312

Why are quadrotors so popular?	 313
Defining roll, pitch, and yaw	 313
How do quadrotors fly?	 314
Components of a quadrotor	 316
Adding sensors	 317
Quadrotor communications	 317

Understanding quadrotor sensors	 318
Inertial measurement unit	 318
Quadrotor condition sensors	 318

Preparing to fly your quadrotor	 319
Testing your quadrotor	 319
Pre-flight checklist	 320
Precautions when flying your quadrotor	 320
Following the rules and regulations	 321

Using ROS with UAVs	 321
Introducing Hector Quadrotor	 322

Loading Hector Quadrotor	 323
Launching Hector Quadrotor in Gazebo	 325

Flying Hector outdoors	 325
Flying Hector indoors	 330

Introducing Crazyflie 2.0	 334
Controlling Crazyflie without ROS	 336
Communicating using Crazyradio PA	 337
Loading Crazyflie ROS software	 338

Setting up udev rules for Crazyradio	 340

Table of Contents

[viii]

Pre-flight check	 341
Flying Crazyflie with teleop	 342

Details of teleop_xbox360.launch	 344
Flying with a motion capture system	 346
Flying multiple Crazyflies	 346

Introducing Bebop	 347
Loading bebop_autonomy software	 349

Testing Bebop communications	 351
Flying Bebop using commands	 352

Take off	 352
Landing	 353

Summary	 353
Chapter 8: Controlling Your Robots with External Devices	 355

Creating a custom ROS game controller interface	 356
Testing a game controller	 357

Alternative test of a game controller	 358
Using the ROS joy package	 360
Controlling Turtlesim with a custom game controller interface	 360

Creating a custom ROS Android device interface	 366
Installing Android Studio and tools	 367
Installing a ROS–Android development environment	 368
Defining terms	 370
Introducing ROS–Android development	 370

Creating ROS nodes on Arduino or Raspberry Pi	 371
Using Arduino	 372

Installing Arduino IDE software	 372
Installing ROS–Arduino software	 373
Ultrasonic sensor control using ROS and Arduino	 378
Other applications using ROS and Arduino	 386

Using Raspberry Pi	 387
Installing ROS on the Raspberry Pi	 387

Summary	 388
Chapter 9: Flying a Mission with Crazyflie	 389

Mission components	 391
Kinect for Windows v2	 391
Crazyflie operation	 392
Mission software structure	 392
OpenCV and ROS	 394

Loading software for the mission	 395
Installing libfreenect2	 396
Installing iai_kinect2	 399

Table of Contents

[ix]

Using the iai_kinect2 metapackage	 402
kinect2_bridge and kinect2_viewer	 402
kinect2_calibration	 403

Setting up the mission	 408
Detecting Crazyflie and a target	 409

Identifying markers in a color image	 409
Detecting and viewing markers with OpenCV	 412

Using Kinect and OpenCV	 414
How to track Crazyflie	 417

How to control Crazyflie	 420
Crazyflie control states	 420

Using ROS services to control takeoff and land	 421
Using PID control for hover and flight	 423
Using an observer node	 425

Flying Crazyflie	 426
Hovering in place	 426

What makes hover work?	 427
Flying to a stationary target	 428

What makes target detection work?	 430
Learned lessons	 431

Logging messages with rosout and rospy	 431
Summary	 432

Chapter 10: Controlling Baxter with MATLAB©	 433
Installing the MATLAB Robotics System Toolbox	 434

Check the MATLAB and Robotics System Toolbox versions	 434
View the Robotics System Toolbox commands for ROS	 434

Using MATLAB Robotics System Toolbox and Baxter Simulator	 435
Installing Baxter messages in MATLAB	 435
Running Baxter Simulator and MATLAB	 437
Making Baxter move	 440

Summary	 444
Index	 445

[xi]

Preface
Being excited about learning ROS and working with ROS robots such as Baxter and
TurtleBot is the beginning of a big adventure. The features and benefits of ROS are
substantial, but the learning curve is steep. Through trial and error, we have foraged
a path through many of the ROS applications trying everything. In this book, we
hope to present to you the best of our knowledge of ROS and provide you with
detailed step-by-step instructions for your journey. Our approach centers on using
the ROS robots that are featured, namely TurtleBot, Baxter, Crazyflie, and Bebop, as
well as simulated robots—Turtlesim and Hector.

This book provides introductory information as well as advanced applications
featuring these ROS robots. The chapters begin with the basics of setting up
your computer and loading ROS and the packages for ROS robots and tools.
Straightforward instructions are provided with troubleshooting steps for when the
desired results are not achieved. The building blocks of ROS are described first in
the simulation Turtlesim, then on each of the featured robots. Starting with basic
ROS commands, the ROS packages, nodes, topics, and messages are explored to gain
an overall knowledge of these ROS robotic systems. Technical information on these
example robots is provided to describe the robot's full capabilities.

ROS encompasses a full spectrum of software concepts, implementation, and
tools that attempt to provide a homogeneous view of the complex systems and
software integration required in robotics. Extensive libraries of sensor and actuator
drivers and interfaces are already in place, as well as the latest and most efficient
algorithms. What ROS doesn't provide directly is imported from other prevailing
open source projects such as OpenCV. ROS also possesses a spectrum of time-saving
tools to control, monitor, and debug robot applications: rqt, rviz, Gazebo, dynamic
reconfigure, and MoveIt, to name a few.

Preface

[xii]

In the pages that follow, each of these areas will be incrementally introduced to the
reader as part of the robot examples. With TurtleBot, the subjects of navigation and
mapping are explored. Using Baxter, joint control and path planning are described
for your understanding. Simple Python scripts are included to provide examples of
implementing ROS elements for many of these robots. These robots are all available
in simulation to accomplish the exercises in this book. Furthermore, instructions are
provided for you to build and control your own robot models in simulation.

The power of ROS, the variety of robots using ROS, and the diversity and support of
the widespread ROS community make this adventure worthwhile. Extensive online
tutorials, wiki instructions, forums, and tips and tricks are available for ROS. So dive
into the pages of this book to begin your adventure with ROS robotics!

What this book covers
Chapter 1, Getting Started with ROS, explains to you the advantages of learning ROS
and highlights the spectrum of robots currently using ROS. Instructions for installing
and launching ROS on a computer running an Ubuntu operating system are provided.
An overview of the ROS architecture is given and its components are described. The
Turtlesim simulation is introduced, and used to provide a deeper understanding of
how the components of ROS work and a familiarity with ROS commands.

Chapter 2, Creating Your First Two-Wheeled ROS Robot (in Simulation), introduces you
to the ROS simulation environment of Gazebo. We will lead you through the steps to
create your first robot simulation (a two-wheeled differential-drive base) and teach
the structure of the Universal Robotic Description Format. The use of the ROS tool
rviz and Gazebo are detailed to enable you to display your robot and interact with it.

Chapter 3, Driving Around with TurtleBot, introduces you to real ROS robots,
TurtleBot2 and the recently available TurtleBot 3. These mobile base robots can
be used in the simulation environment of Gazebo if you do not own one. ROS
commands and Python scripts are used to control TurtleBot through a variety of
methods. The ROS tool rqt is introduced, and subsets of its plugins are used to
control TurtleBot and monitor its sensor data.

Chapter 4, Navigating the World with TurtleBot, explores visual sensors and the ability
for a robot to map its environment. The 3D sensor options for TurtleBot's vision
system are described and their setup and operation using ROS enables TurtleBot
to navigate autonomously. The knowledge of the Simultaneous Localization and
Mapping techniques is applied in combination with TurtleBot's navigation stack to
move about in the mapped environment.

Preface

[xiii]

Chapter 5, Creating Your First Robot Arm (in Simulation), provides a gentle introduction
into the complexity of robotic arms. A simulated robot arm is designed and built
using the macro language of Xacro. Controllers for the arm are created to operate the
arm in Gazebo. Through developing the controllers for this arm, an insight into the
mechanics and physics of a simple robot arm is offered.

Chapter 6, Wobbling Robot Arms Using Joint Control, takes a deeper look at the
intricacies of controlling robotic arms. Baxter has two 7 degree-of-freedom arms and
a number of other sensors. Baxter Simulator is available as open source software to
use for the instructions in this chapter. Examples are provided for control of Baxter's
arms using position, velocity, and torque modes with control for both forward
and inverse kinematics. The ROS tool MoveIt is introduced for motion planning in
simulation and execution on either a real or simulated Baxter.

Chapter 7, Making a Robot Fly, describes a growing area of ROS robotics—unmanned
air vehicles. This chapter focuses on quadrotors, and an understanding of quadrotor
hardware and flight control is provided. Instructions for downloading and
controlling the simulated quadrotor Hector are supplied. With skills from flying a
simulated quadrotor, you can move on to control a real Bitcraze Crazyflie or Parrot
Bebop. Quadrotor control is via teleoperation or ROS topic/message commands.

Chapter 8, Controlling Your Robots with External Devices, presents a number of
peripheral devices you can use for controlling a ROS robot. Joystick controllers,
controller boards (Arduino and Raspberry Pi), and mobile devices have ROS
interfaces that can be integrated with your robot to provide external control.

Chapter 9, Flying a Mission with Crazyflie, incorporates many of the ROS components
and concepts presented in this book into a challenging mission of autonomous flight.
The mission involves the Crazyflie quadrotor flying to a "remote" target all mapped
through a Kinect 3D sensor. This mission uses ROS message communication and
co-ordinate transforms to employ the Kinect's view of the quadrotor and target
to orchestrate the flight. Flight control software for Crazyflie using PID control is
described and provided as part of the mission software.

Chapter 10, Controlling Baxter with MATLAB©, delves into a new realm of
communicating with and controlling ROS robots through MATLAB and its Robotics
System Toolbox. Baxter, the two-armed robot introduced in Chapter 6, Wobbling Robot
Arms Using Joint Control, will be used to show how to set up a ROS robot in MATLAB
by adding custom messages into the Robotics System Toolbox. Communication and
control of Baxter and his arms will be accomplished using MATLAB scripts and ROS
commands.

Preface

[xiv]

What you need for this book
The format of this book is intended for the reader to follow along and perform
the instructions as the information is provided. The reader will need a computer
ideally with Ubuntu 16.04 (Xenial Xerus) installed. Other Ubuntu versions and
Linux distributions may work, as well as macOS, Android, and Windows, but
documentation for those versions will need to reference the ROS wiki
(http://wiki.ros.org/kinetic/Installation).

The version of ROS that this book was written around is Kinetic Kame, which is the
current release recommended for stability. Its end of life is targeted for April 2021.

All software used in this book is open source and freely available for download and
use. Instructions for downloading the software are found in the chapter where the
software is introduced. In Chapter 1, Getting Started with ROS, instructions are given
for downloading and setting up the ROS software environment.

Our preferred method to download software is the use of Debian packages. Where
no Debian packages exist, we refer to downloading the software from repositories
such as GitHub.

Gazebo simulation performs intensive graphics processing, and the use of a
dedicated graphics card is advised but not required.

Peripheral devices, such as 3D sensors, Xbox or PS3 controllers, Arduino or
Raspberry Pi controller boards, and Android mobile devices are optional equipment.

Who this book is for
If you are a robotics developer, whether a hobbyist, researcher, or professional, and
are interested in learning about ROS through a hands-on approach, then this book is
for you. You are encouraged to have a working knowledge of GNU/Linux systems
and Python.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

http://wiki.ros.org/kinetic/Installation

Preface

[xv]

Code words in text, directory names, filenames, file extensions, and pathnames are
shown as follows: "The Terminal commands rostopic and rosnode have a number
of options…"

A block of code is set as follows:

<?xml version='1.0'?>
<robot name="dd_robot">
 <!-- Base Link -->
 <link name="base_link">
 <visual>
 <origin xyz="0 0 0" rpy="0 0 0" />
 <geometry>
 <box size="0.5 0.5 0.25"/>
 </geometry>
 </visual>
 </link>
</robot>

To avoid repeating previous code blocks, but provide with placement of new code
blocks, previous code left for reference is abbreviated and grayed-out as follows:

<?xml version='1.0'?>
<robot name="dd_robot">
 <!-- Base Link -->
 <link name="base_link">
 …
 </link>

 <!-- Right Wheel -->
 <link name="right_wheel">

Any command-line input is written as follows:

$ rosrun rqt_reconfigure rqt_reconfigure

Output from command is written as:

[INFO] [1427212356.117628994]: Starting turtlesim with node name /turtlesim

New terms and key words are shown in bold.

Words that you see on the screen, for example, in menus or dialog boxes, appear in
the text like this: "By clicking on the Add button on the Displays panel..."

Preface

[xvi]

URL references are shown as: http://www.ros.org/about-ros/

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really find useful and enjoyable.

To send us general feedback, simply email feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files emailed directly
to you.

You can download the code files by following these steps:

1.	 Log in or register to our website using your e-mail address and password.
2.	 Hover the mouse pointer on the SUPPORT tab at the top.
3.	 Click on Code Downloads & Errata.
4.	 Enter the name of the book in the Search box.

http://www.ros.org/about-ros/
www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[xvii]

5.	 Select the book for which you're looking to download the code files.
6.	 Choose from the drop-down menu where you purchased this book from.
7.	 Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

•	 WinRAR / 7-Zip for Windows
•	 Zipeg / iZip / UnRarX for Mac
•	 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/ROS-Robotics-By-Example-Second-Edition. We also have
other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from http://www.packtpub.
com/sites/default/files/downloads/ROSRoboticsByExampleSecondEdition_
ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

https://github.com/PacktPublishing/ROS-Robotics-By-Example-Second-Edition
https://github.com/PacktPublishing/ROS-Robotics-By-Example-Second-Edition
https://github.com/PacktPublishing/
http://www.packtpub.com/sites/default/files/downloads/ROSRoboticsByExampleSecondEdition_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ROSRoboticsByExampleSecondEdition_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/ROSRoboticsByExampleSecondEdition_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[xviii]

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Getting Started with ROS
In this chapter, we will introduce the Robot Operating System (ROS), which is
a collection of software packages to aid researchers and developers using robotic
systems. After we discuss the instructions to install ROS on your computer
system using the Ubuntu operating system, the ROS architecture and many of its
components are discussed. This will aid you in understanding the use of ROS to
develop software for robotic applications.

ROS will be introduced in terms of its elements and their functions. An
understanding of the ROS vocabulary is necessary to become proficient in using ROS
to create programs for the control of real or simulated robots as well as devices, such
as cameras.

To make the discussion more concrete, the turtlesim simulator will be presented
with various examples of the ROS command usage. This simulator is part of ROS
and it provides an excellent introduction to the capabilities of ROS.

In this chapter, we will cover the following topics:

•	 What ROS is and which robots use ROS
•	 How to install and launch ROS on your computer
•	 How to navigate the ROS directories
•	 An introduction to ROS packages, nodes, and topics
•	 Examples of useful ROS commands
•	 How to use ROS commands with the turtlesim simulator

Getting Started with ROS

[2]

What does ROS do and what are the
benefits of learning ROS?
ROS is sometimes called a meta operating system because it performs many
functions of an operating system, but it requires a computer's operating system such
as Linux. One of its main purposes is to provide communication between the user,
the computer's operating system, and equipment external to the computer. This
equipment can include sensors, cameras, as well as robots. As with any operating
system, the benefit of ROS is the hardware abstraction and its ability to control a
robot without the user having to know all of the details of the robot.

For example, to move a robot's arms, a ROS command is issued or scripts in Python
or C++ written by the robot designers cause the robot to respond as commanded.
The scripts can, in turn, call various control programs that cause the actual motion
of the robot's arms. It is also possible to design and simulate your own robot using
ROS. These subjects and many others will be considered in this book.

In this book, you will learn a set of concepts, software, and tools that apply to an
ever-increasing and diverse army of robots. For example, the navigation software of
one mobile robot can be used, with a few changes, to work in another mobile robot.
The flight navigation of an aerial robot is similar to that of the ground robot and so
on. All across the broad spectrum of robotics, system interfaces are standardized or
upgraded to support increased complexity. There are readily available libraries for
commonly used robotics functions. ROS not only applies to the central processing
of robotics but also to sensors and other subsystems. ROS hardware abstraction
combined with low-level device control speeds the upgrade toward the latest
technology.

ROS is an open source robotic software system that can be used without licensing
fees by universities, government agencies, and commercial companies. The
advantages of open source software are that the source code for the system is
available and can be modified according to a user's needs. More importantly
for some users, the software can be used in a commercial product as long as the
appropriate licenses are cited. The software can be improved and modules can be
added by users and companies.

Chapter 1

[3]

ROS is used by many thousands of users worldwide and knowledge can be
shared between users. The users range from hobbyists to professional developers
of commercial robots. In addition to the large group of ROS researchers, there
is a ROS-Industrial group dedicated to applying ROS software to robots for
manufacturing. Other versions of ROS currently under development include:

•	 ROS-M for military robotic systems
•	 H-ROS is Hardware ROS for interoperable robot components
•	 ROS 2.0 to upgrade ROS with the latest technology and software

Who controls ROS?
A ROS distribution is a set of ROS software packages that can be downloaded
to your computer. These packages are supported by the Open Source Robotics
Foundation (OSRF), a nonprofit organization. The distributions are updated
periodically and given different names by the ROS organization. More details
about the ROS organization are available at: http://www.ros.org/about-ros/

Which robots are using ROS?
There is a long list of robots on the ROS wiki website, http://wiki.ros.org/
Robots, which use ROS. For example, we are using four different robots in this book
to provide you with an experience of a wide range of ROS capabilities. These robots
are as follows:

•	 TurtleBot, a mobile robot
•	 Baxter, a friendly two-armed robot
•	 Crazyflie and Bebop, flying robots

http://www.ros.org/about-ros/
http://wiki.ros.org/Robots
http://wiki.ros.org/Robots

Getting Started with ROS

[4]

The images of these robots are in the following figures:

TurtleBot 2 and 3

Of course, not everyone has the opportunity to use real robots such as Baxter (shown
in the following image):

Baxter in the authors' laboratory

Chapter 1

[5]

However, there is good news! Using the ROS Gazebo software, you can simulate
Baxter as well as many other robots whose models are provided for Gazebo. We will
simulate TurtleBot using Gazebo and actually design our own mobile robot in the
upcoming chapters of this book.

Bebop and Crazyflie

Installing and launching ROS
For this book, we assume the reader has a computer with Ubuntu Wily 15.10 or
Xenial 16.04 installed. The examples in this book have been developed using ROS
Kinetic and this version of ROS is only supported by these two versions of Ubuntu.
The instructions for ROS installation provided in this section are for installing
Debian (binary) packages. This is the most efficient and preferred way to install ROS.

If you wish to install the ROS Kinetic source code and build the software, refer to
the instructions at http://wiki.ros.org/kinetic/Installation/Source. The
instructions presented here to install ROS Kinetic with Debian packages can also be
found at http://wiki.ros.org/kinetic/Installation/Ubuntu.

If you have any problems while installing ROS, refer to this site and the ROS forum
at http://answers.ros.org.

This book is written using Ubuntu16.04 as the operating system
and ROS Kinetic Kame as the version of the ROS distribution.
Always make sure that you check for any updates for the
Ubuntu or ROS versions you are using.

http://wiki.ros.org/kinetic/Installation/Source
http://wiki.ros.org/kinetic/Installation/Ubuntu
http://answers.ros.org

Getting Started with ROS

[6]

Configuring your Ubuntu repositories
To configure your Ubuntu repositories to allow restricted, universe and multiverse,
perform the following steps:

1.	 Click on the Ubuntu System Settings icon in the menu on the left side of
your desktop.

2.	 Click on the Software & Updates icon. On the Software & Updates screen,
select the appropriate checkboxes to match the following screenshot:

Ubuntu Software & Updates screen

Setting up your sources.list file
Open a terminal window to set up the sources.list file on your computer to accept
software from the ROS software repository at http://packages.ros.org which is
the authorized site for the ROS software.

At the $ command prompt, type the following command as one long command:

$ sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu

$(lsb_release -sc) main" > /etc/apt/sources.list.d/ros-latest.list'

In copying such two line commands from the electronic
version of this book, be sure to delete the Carriage
Return at the end of the first line.

http://packages.ros.org

Chapter 1

[7]

This step allows the operating system to know where to download programs that
need to be installed on your system. When updates are made to ROS Kinetic, your
operating system will be made aware of these updates.

Setting up your keys
Keys confirm the origin of the code and verify that unauthorized modifications to the
code have not been made without the knowledge of the owner. A repository and the
keys of that repository are added to the operating system's trusted software list. Type
the following command:

$ sudo apt-key adv --keyserver hkp://ha.pool.sks-keyservers.net:80
--recv-key 421C365BD9FF1F717815A3895523BAEEB01FA116

Installing ROS Kinetic
Before you begin with the installation, the current system software must be up to
date to avoid problems with libraries and wrong versions of software. To make sure
your Debian package index is up-to-date, type the following command:

$ sudo apt-get update

Install the desktop-full configuration of ROS. Desktop-full includes ROS, rqt, rviz,
robot-generic libraries, 2D/3D simulators, navigation, and 2D/3D perception. In
this book, we will be using rqt and rviz for visualization and also the Gazebo 3D
simulator, as well as the ROS navigation and perception packages. To install, type
the following command:

$ sudo apt-get install ros-kinetic-desktop-full

ROS Kinetic is installed on your computer system when the installation process is
complete!

Initialize rosdep
The ROS system may depend on software packages that are not loaded initially.
These software packages external to ROS are provided by the operating system. The
ROS environment command rosdep is used to download and install these external
packages. Type the following commands:

$ sudo rosdep init

$ rosdep update

Getting Started with ROS

[8]

Environment setup
Your terminal session must now be made aware of these ROS files so that it knows
what to do when you attempt to execute ROS command-line commands. Running
this script will set up the ROS environment variables:

$ source /opt/ros/kinetic/setup.bash

Alternatively, it is convenient if the ROS environment variables are automatically
added to your terminal session every time a new shell is launched. If you are using
bash for your terminal shell, do this by typing the following commands:

$ echo "source /opt/ros/kinetic/setup.bash" >> ~/.bashrc

$ source ~/.bashrc

Now when a new terminal session is launched, the bash shell is automatically aware
of the ROS environment variables.

Getting rosinstall
The rosinstall command is a command-line tool in ROS that allows you to
download ROS packages with one command.

To install this tool on Ubuntu, type the following command:

$ sudo apt-get install python-rosinstall

Troubleshooting – examining your ROS
environment
The ROS environment is set up through a number of variables that tell the system
where to find ROS packages. Two main variables are ROS_ROOT and ROS_PACKAGE_
PATH that enable ROS to locate packages in the filesystem.

To check whether the ROS environment variables are set correctly, use the env
command in the following form that lists the ROS environment variables:

$ env | grep ROS

Chapter 1

[9]

The output of the preceding command is as follows:

ROS_ROOT=/opt/ros/kinetic/share/ros

ROS_PACKAGE_PATH=/opt/ros/kinetic/share

ROS_MASTER_URI=http://localhost:11311

ROSLISP_PACKAGE_DIRECTORIES=

ROS_DISTRO=kinetic

ROS_ETC_DIR=/opt/ros/kinetic/etc/ros

If the variables are not set correctly, you will need to source your setup.bash file,
as described in the Environment setup section of this chapter. Check whether the
ROS_DISTRO= "kinetic" and ROS_PACKAGE_PATH variables are correct, as shown
previously.

The tutorial that discusses the ROS environment can be found at: http://wiki.ros.
org/ROS/Tutorials/InstallingandConfiguringROSEnvironment

Creating a catkin workspace
The next step is to create a catkin workspace. A catkin workspace is a directory
(folder) in which you can create or modify existing catkin packages. The catkin
structure simplifies the build and installation process for your ROS packages.
The ROS wiki website is http://wiki.ros.org/catkin/Tutorials/create_a_
workspace.

A catkin workspace can contain up to three or more different subdirectories (/build,
/devel, and /src), each of which serve a different role in the software development
process.

We will label our catkin workspace catkin_ws. To create the catkin workspace, type
the following commands:

$ mkdir -p ~/catkin_ws/src

$ cd ~/catkin_ws/src

$ catkin_init_workspace

Even though the workspace is empty (there are no packages in the src folder, just
a single CMakeLists.txt link), you can still build the workspace by typing the
following commands:

$ cd ~/catkin_ws/

$ catkin_make

http://wiki.ros.org/ROS/Tutorials/InstallingandConfiguringROSEnvironment
http://wiki.ros.org/ROS/Tutorials/InstallingandConfiguringROSEnvironment
http://wiki.ros.org/catkin/Tutorials/create_a_workspace
http://wiki.ros.org/catkin/Tutorials/create_a_workspace

Getting Started with ROS

[10]

The catkin_make command creates the catkin workspace. If you view your current
directory contents, you should now have the build and devel folders. Inside the
devel folder there are now several setup.*sh files. We will source the setup.bash
file to overlay this workspace on top of your ROS environment:

$ source ~/catkin_ws/devel/setup.bash

Remember to add this source command to your .bashrc file by typing the following
command:

$ echo "source ~/catkin_ws/devel/setup.bash" >> ~/.bashrc

To make sure your workspace is properly overlaid by the setup script, make sure the
ROS_PACKAGE_PATH environment variable includes the directory you're in by typing
the following command:

$ echo $ROS_PACKAGE_PATH

The output of the preceding command should be as follows:

 /home/<username>/catkin_ws/src:/opt/ros/kinetic/share

Here, <username> is the name you chose for the user when Ubuntu was installed.

ROS packages and manifest
The ROS software is divided into packages that can contain various types of
programs, images, data, and even tutorials. The specific contents depend on the
application for the package. The site http://wiki.ros.org/Packages discusses
ROS packages.

A package can contain programs written in Python or C++ to control a robot or
another device. For the turtlesim simulator package, for example, the package
contains the executable code used to change the background color or move a turtle
around on the screen. This package also contains images of a turtle for display and
files used to create the simulator.

There is another class of packages in ROS called metapackages that are specialized
packages that only contain a package.xml manifest. Their purpose is to reference
one or more related packages, which are loosely grouped together.

http://wiki.ros.org/Packages

Chapter 1

[11]

ROS manifest
Each package contains a manifest named package.xml that describes the package in
the Extensible Markup Language (XML) format. In addition to providing a minimal
specification describing the package, the manifest defines properties about the
package such as the package name, version numbers, authors, maintainers, and any
dependencies on other packages.

Exploring the ROS packages
Occasionally, we would like to find packages that we wish to use and display the
files involved. This section introduces several useful ROS commands:

•	 rospack used for information about a package
•	 roscd used to navigate the ROS directories
•	 rosls used to list directories and files in a package directory

The rospack command can be used to list ROS packages, locate packages by name,
and determine if a package depends on another package, among other uses. For
more information use the following command with the help or -h option in the
form:

$ rospack help | less

We will use the turtlesim package for the examples here. To change directories to
the location of turtlesim, use the following command:

$ roscd turtlesim

This changes the location on one of the author's workstations as follows:

linux@D158-45929:/opt/ros/kinetic/share/turtlesim$

On your computer, the $ command prompt will be preceded by the information
about your computer. Generally, that information for our computers will be deleted
in our examples using ROS commands. Once you are in the turtlesim directory,
the standard Linux commands can be used with the subdirectories or files, or the
ROS commands can be used. To determine the directories and files in the turtlesim
directory but without changing to the turtlesim directory, use the following
command:

$ rosls turtlesim

Getting Started with ROS

[12]

Here is the result from the home directory of the author's workstation with ROS
installed:

cmake images msg package.xml srv

To see the filenames of the images loaded with turtlesim, specify the images
directory in the package as follows:

$ rosls turtlesim/images

The output of the preceding command is as follows:

box-turtle.png groovy.png indigo.svg palette.png

diamondback.png hydro.png jade.png robot-turtle.png

electric.png hydro.svg kinetic.png sea-turtle.png

fuerte.png indigo.png kinetic.svg turtle.png

There are various turtle images that can be used. The rosls turtlesim command
will also work to show the contents of the turtlesim subdirectories: /msg for
messages and /srv for services. These files will be discussed later. To see the
manifest, type the following commands:

$ roscd turtlesim

$ cat package.xml

This will also show the dependencies, such as roscpp for C++ programs.

rospack find packages
The rospack find <package name> command returns the path to the package
named <package name>. For example, type the following command:

$ rospack find turtlesim

The preceding command displays the path to the turtlesim directory.

rospack list
Execute the following command:

$ rospack list

This lists the ROS package names and their directories on the computer. In the case
of the workstation mentioned earlier, there are 195 ROS packages listed!

Chapter 1

[13]

If you really want to see all the ROS packages and their locations,
use the following command form:
$ rospack list | less

This form allows paging of the long list of names and directories
for the packages. Press Q to quit.
Alternatively, this is the form of the rospack command:
$ rospack list-names

This lists only the names of the packages without the directories.
After such a long list, it is a good idea to open a new terminal
window or clear the window with the clear command.
This is the form of the rospack command:
$ rospack list-names | grep turtle

This lists the packages with turtle in the name.

More information on commands that are useful to navigate the ROS filesystem
is available at the ROS website http://wiki.ros.org/ROS/Tutorials/
NavigatingTheFilesystem

ROS nodes, topics, and messages
Here we will explore some of the main components of ROS. One of the primary
purposes of ROS is to facilitate communication between the ROS nodes. These nodes
represent the executable code. The code can reside entirely on one computer, or
nodes can be distributed between computers or between computers and robots. The
advantage of this distributed structure is that each node can control one aspect of a
system.

For example, one node can capture the images from a camera and send the images to
another node for processing. After processing the image, the second node can send a
control signal to a third node for controlling a robotic manipulator in response to the
camera view.

The main mechanism used by ROS nodes to communicate is by sending and
receiving messages. The messages are organized into specific categories called
topics. Nodes may publish messages on a particular topic or subscribe to a topic to
receive information.

http://wiki.ros.org/ROS/Tutorials/NavigatingTheFilesystem
http://wiki.ros.org/ROS/Tutorials/NavigatingTheFilesystem

Getting Started with ROS

[14]

ROS nodes
Basically, nodes are processes that perform some computation or task. The nodes
themselves are really software processes but with the capability to register with the
ROS Master node and communicate with other nodes in the system. The ROS design
idea is that each node is independent and interacts with other nodes using the ROS
communication capability. The Master node is described in the ROS Master section to
follow.

One of the strengths of ROS is that a particular task, such as controlling a wheeled
mobile robot, can be separated into a series of simpler tasks. The tasks can include
the perception of the environment using a camera or laser scanner, map making,
planning a route, monitoring the battery level of the robot's battery, and controlling
the motors driving the wheels of the robot. Each of these actions might consist of a
ROS node or a series of nodes to accomplish the specific tasks.

A node can independently execute code to perform its task but can also communicate
with other nodes by sending or receiving messages. The messages can consist of
data, commands, or other information necessary for the application.

ROS topics
Some nodes provide information for other nodes, as a camera feed would do,
for example. Such a node is said to publish information that can be received by
other nodes. The information in ROS is called a topic. A topic defines the types of
messages that will be sent concerning that topic.

The nodes that transmit data publish the topic name and the type of message to be
sent. The actual data is published by the node. A node can subscribe to a topic and
transmitted messages on that topic are received by the node subscribing.

Continuing with the camera example, the camera node can publish the image on the
camera/image_raw topic.
Image data from the camera/image_raw topic can be used by a node that shows
the image on the computer screen. The node that receives the information is said to
subscribe to the topic being published, in this case camera/image_raw.
In some cases, a node can both publish and subscribe to one or more topics.

Chapter 1

[15]

ROS messages
ROS messages are defined by the type of message and the data format. The ROS
package named std_msgs, for example, has messages of type String which consist
of a string of characters. Other message packages for ROS have messages used
for robot navigation or robotic sensors. The turtlesim package has its own set of
messages that pertain to the simulation.

We will see in the section, Turtlesim – the first ROS robot simulation that the turtlesim
simulator has two nodes that are created when turtlesim is executed. Turtlesim has
relatively few topics and messages so it is ideal for the initial study of ROS.

The ROS site http://www.ros.org/core-components/ describes the
communication and robot-specific features of ROS. Here, we will explore some of
the main components of a ROS system including ROS nodes and the ROS Master. It
is important for you to understand the ROS nodes, topics, and messages as they are
involved in almost every ROS activity.

ROS Master
The ROS nodes are typically independent programs that can run concurrently
on several systems. The ROS Master provides naming and registration services
to the nodes in the ROS system. It tracks publishers and subscribers to the topics.
Communication is established between the nodes by the ROS Master.

The role of the Master is to enable individual ROS nodes to locate one another.
The most often used protocol for connection is the standard Transmission Control
Protocol/Internet Protocol (TCP/IP) or Internet Protocol called TCPROS in ROS.
Once these nodes are able to locate one another, they can communicate with each
other peer-to-peer.

One responsibility of the Master is to keep track of nodes when new nodes are
executed and come into the system. Thus, the Master provides a dynamic allocation
of connections. The nodes cannot communicate however until the Master notifies the
nodes of each other's existence. A simple example is shown at http://wiki.ros.
org/Master.

http://www.ros.org/core-components/
http://wiki.ros.org/Master
http://wiki.ros.org/Master

Getting Started with ROS

[16]

Invoking the ROS Master using roscore
roscore starts processes that you must have running in order for ROS nodes to
communicate. When it executes, roscore will start the following:

•	 A ROS Master
•	 A ROS Parameter Server
•	 A rosout logging node

The roscore command creates the Master so that nodes can register with the Master.
You can view the ROS tutorial for roscore at http://wiki.ros.org/roscore.

Issue the following command to start the Master in a new terminal window and
observe the output:

$ roscore

The output of the preceding command is as follows:

... logging to /home/linux/.ros/log/9c3776b4-09cd-11e7-bb39-1866da2351d7/
roslaunch-D158-45929-29790.log

Checking log directory for disk usage. This may take a while.

Press Ctrl-C to interrupt

Done checking log file disk usage. Usage is <1GB.

started roslaunch server http://D158-45929:34807/

ros_comm version 1.12.7

SUMMARY

========

PARAMETERS

 * /rosdistro: kinetic

 * /rosversion: 1.12.7

NODES

auto-starting new master

http://wiki.ros.org/roscore

Chapter 1

[17]

process[master]: started with pid [29802]

ROS_MASTER_URI=http://D158-45929:11311/

setting /run_id to 9c3776b4-09cd-11e7-bb39-1866da2351d7

process[rosout-1]: started with pid [29815]

started core service [/rosout]

In the preceding screen output, you will see information about the computer,
parameters that list the name (kinetic) and version number of the ROS distribution,
and other information. The Master is defined by its Uniform Resource Identifier
(URI). This identifies the location of the Master; in this case, it is running on the
workstation used to execute the roscore command.

Parameter Server
The Parameter Server is a shared dictionary of parameters that nodes store and
retrieve at runtime. The Parameter Server runs inside the Master and parameters are
globally viewable so that nodes can access the parameters.

In the preceding screen output from the roscore command, the parameters
associated with the Master are as follows:

* /rosdistro: kinetic

* /rosversion: 1.12.7

Kinetic is the ROS distribution release that we are using. As Kinetic is changed or
packages are added, numbered versions such as 1.12.7 are released. Issuing the
roscore command is a way to determining the version of ROS running on your
computer.

Whenever ROS is executing, it is possible to list the nodes that are active and the
topics that are used for communication. We will explore the information in the
roscore output in more detail by invoking useful ROS terminal commands.

ROS commands to determine the nodes and
topics
Three commands used extensively in ROS are as follows:

•	 roscore to start the Master and allow nodes to communicate
•	 rosnode list to list the active nodes
•	 rostopic list to list the topics associated with active ROS nodes

Getting Started with ROS

[18]

After the roscore command is executed, the terminal window used to execute
roscore must remain active, but it can be minimized. In another terminal window,
the rosnode list command will cause a list of the ROS nodes that are active to be
displayed on the screen. After the command for roscore is executed, only one node
rosout will be listed as an active node if you type the following command:

$ rosnode list

The output of the preceding command is as follows:

/rosout

In the second terminal window, list the active topics by typing:

$ rostopic list

The output of the preceding command is as follows:

/rosout

/rosout_agg

Notice that the /rosout node and the /rosout topic have the same designation. In
ROS terms, the rosout node subscribes to the /rosout topic. All the active nodes
publish their debug messages to the /rosout topic. We will not be concerned
with these messages here; however, they can be useful to debug a program. For an
explanation refer to the ROS wiki at http://wiki.ros.org/rosout.

The rosout node is connected to every other active node in the system. The
/rosout_agg topic receives messages also, but just from the rosout node so it
does not have to connect to all of the nodes and thus saves time at system startup.

The rostopic and rosnode terminal commands have a number of options that will
be demonstrated by various examples in this book.

Most of the ROS commands have help screens that are usually
helpful. Type the following command for the command options:
$ rosnode -h

For more detailed usage, use the subcommand name, for example:
$ rosnode list –h

This will list the subcommands and the options for the rosnode
command.

There are a number of other important ROS terminal commands that you should
know. They are introduced and explained using the turtlesim simulator in the
upcoming section.

http://wiki.ros.org/rosout

Chapter 1

[19]

Turtlesim – the first ROS robot simulation
A simple way to learn the basics of ROS is to use the turtlesim simulator that is part
of the ROS installation. The simulation consists of a graphical window that shows
a turtle-shaped robot. The background color for the turtle's world can be changed
using the Parameter Server. The turtle can be moved around on the screen by ROS
commands or using the keyboard.

Turtlesim is a ROS package, and the basic concepts of package management were
presented in the Exploring the ROS packages section, as discussed earlier. We suggest
that you refer to this section before continuing.

We will illustrate a number of ROS commands that explore the nodes, topics,
messages, and services used by the turtle simulator. We have already covered the
roscore, rosnode, and rostopic commands. These commands will be used with
turtlesim also.

Other important ROS terminal commands that will be covered in this section are as
follows:

•	 rosrun: Finds and starts a requested node in a package
•	 rosmsg: Shows information about messages
•	 rosservice: Displays runtime information about nodes and can pass data

between nodes in a request/response mode
•	 rosparam: Used to get and set parameters (data) used by nodes

Starting turtlesim nodes
To start turtlesim with ROS commands, we need to open two separate terminal
windows. First, issue the following command in the first window if the Master is not
already running:

$ roscore

Wait for the Master to complete startup. You can minimize this window but do not
close it because the Master must run to allow the nodes to communicate.

The result on your screen will resemble the output discussed previously in the
Invoking the ROS Master using roscore section, where roscore was described.

Getting Started with ROS

[20]

rosrun command
To display the turtle on the screen, use the rosrun command. It takes the arguments
[package name][executable name], and in this case, turtlesim as the package
and turtlesim_node as the executable program.

In the second terminal window, issue the following command:

$ rosrun turtlesim turtlesim_node

You will see an output similar to this:

[INFO] [1489616730.714683337]: Starting turtlesim with node name /
turtlesim

[INFO] [1489616730.727083554]: Spawning turtle [turtle1] at
x=[5.544445], y=[5.544445], theta=[0.000000]

Wait for the display screen to appear with the image of a turtle at the center, as
shown in the turtlesim screen in the following screenshot. The terminal window can
be minimized, but keep the turtle display screen in view. The turtle is called turtle1
since this is the first and only turtle in our display.

After you have started turtlesim by executing the rosrun command, you will see
information about the turtle's position on the screen. The /turtlesim node creates
the screen image and the turtle. Here, the turtle is in the center at about x = 5.5, y
= 5.5 with no rotation since angle theta is zero. The origin (0, 0) is at the lower-left
corner of the screen:

Turtlesim screen

Chapter 1

[21]

Let's study the properties of the nodes, topics, services, and messages available with
the turtlesim package in another terminal window. Thus, at this point, you will
have three windows active but the first two can be minimized or dragged off to the
side or the bottom. They should not be closed.

Turtlesim nodes
In the third window, issue the rosnode command to determine information about
any node. First, list the active nodes, using the following command:

$ rosnode list

The output is as follows:

/rosout

/turtlesim

We will concentrate on the /turtlesim node. Note the difference in notation
between the /turtlesim node and the turtlesim package.

To see the publications, subscriptions, and services of the turtlesim node, type the
following command:

$ rosnode info /turtlesim

The output of the preceding command is as follows:

Node [/turtlesim]

Publications:

 * /turtle1/color_sensor [turtlesim/Color]

 * /rosout [rosgraph_msgs/Log]

 * /turtle1/pose [turtlesim/Pose]

Subscriptions:

 * /turtle1/cmd_vel [unknown type]

Services:

 * /turtle1/teleport_absolute

 * /turtlesim/get_loggers

 * /turtlesim/set_logger_level

 * /reset

 * /spawn

Getting Started with ROS

[22]

 * /clear

 * /turtle1/set_pen

 * /turtle1/teleport_relative

 * /kill

contacting node http://D158-45929:38895/ ...

Pid: 29981

Connections:

 * topic: /rosout

 * to: /rosout

 * direction: outbound

 * transport: TCPROS

The following diagram represents a graphical illustration of the relationship of the
turtlesim node in elliptical shapes and topics in the rectangular boxes:

/turtlesim node

The graph was created using the rqt_graph command as described in the
Introducing RQT tools section in Chapter 3, Driving Around with TurtleBot.

Chapter 1

[23]

We read the output of the rosnode info command and the graph of the turtlesim
node and topics in the preceding diagram as follows (ignoring the logging services
and the /rosout and /rosout_agg nodes):

•	 The /turtlesim node publishes to two topics. These topics control the
color of the turtle's screen and the position of the turtle on the screen when
messages are sent from /turtlesim:

°° /turtle1/color_sensor with the message type [turtlesim/
Color]

°° /turtle1/pose with the message type [turtlesim/Pose]

•	 The /turtlesim node subscribes to the turtle1/cmd_vel topic. The /
turtlesim node is waiting for another node to publish on the turtle1/
cmd_vel topic.

•	 There are a number of services associated with the /turtlesim node. The
services can be used to move the turtle around (teleport), clear the screen, kill
the nodes, and perform other functions. The services will be explained later
in the section ROS services to move turtle.

Turtlesim topics and messages
A ROS message is a strictly typed data structure. In fact, the message type is not
associated with the message contents. For example, one message type is string,
which is just text. Another type of message is uint8, which means that it is an
unsigned 8-bit integer. These are part of the std_msg package or standard messages.
The command form rosmsg list lists the type of messages on your system; it is a
long list! There are packages for messages of the type control, type geometry, and
type navigation, among others to control robot actions. There are sensor message
types used with laser scanners, cameras, and joysticks to name just a few of the
sensors or input devices possible with ROS. Turtlesim uses several of the message
types to control its simulated robot—the turtle.

For these exercises, keep the roscore and /turtlesim windows active. Open other
terminal windows as needed. We will concentrate on the turtle1/color_sensor
topic first. You will be typing in the third window.

If the screen gets too cluttered, remember the $ clear command.
Use the $ history command to see the commands you have used.

Getting Started with ROS

[24]

rostopic list
For the /turtlesim node, the topics are listed using the following command:

$ rostopic list

The output of the preceding command is as follows:

/rosout

/rosout_agg

/statistics

/turtle1/cmd_vel

/turtle1/color_sensor

/turtle1/pose

rostopic type
The topic type can be determined for each topic by typing the following command:

$ rostopic type /turtle1/color_sensor

turtlesim/Color

The message type in the case of the /turtle1/color_sensor topic is turtlesim/
Color. This is the format of ROS message type names:

[package name]/[message type]

If a node publishes a message, we can determine the message type and read the
message.

rosmsg list
The turtlesim package has two message types that are found with the following
command:

$ rosmsg list | grep turtlesim

The output is as follows:

turtlesim/Color

turtlesim/Pose

The rosmsg list command displays all of the messages. Adding | grep
turtlesim shows all messages of the turtlesim package. There are only two in the
turtlesim package. From the message type, we can find the format of the message.
Make sure that you note that Color in the message type starts with a capital letter.

Chapter 1

[25]

rosmsg show
The rosmsg show <message type> command displays the fields in a ROS message
type. For the turtlesim/Color type, the fields are integers:

$ rosmsg show turtlesim/Color

Output of the preceding command is as follows:

uint8 r

uint8 g

uint8 b

The format of values designating colors red (r), green (g), and blue (b) is unsigned,
8-bit integer.

To understand the message, it is necessary to find the message type. For example,
turtlesim/Color is a message type for turtlesim that has three elements that define
the color of the background. For example, the red color in the background is defined
by uint8 r. This indicates that if we wish to modify the red value, an 8-bit unsigned
integer is needed. The amount of red in the background is in the range of 0–255.

In general, the formats of numerical data include integers of 8, 16, 32, or 64 bits,
floating point numbers, and other formats.

rostopic echo
To determine the color mixture of red, green, and blue in the background of our
turtle, use the rostopic echo [topic name] command in the form, as follows:

$ rostopic echo /turtle1/color_sensor

Output of the preceding command is as follows:

r: 69

g: 86

b: 255

Press Ctrl + C to stop the output.

The website describing the RGB Color Codes Chart and the meaning of the numerical
color values can be found at http://www.rapidtables.com/web/color/RGB_
Color.htm.

The chart explains how to mix the red, green, and blue (rgb) color values to achieve
any desired color. The color values are parameters that can be changed.

http://www.rapidtables.com/web/color/RGB_Color.htm
http://www.rapidtables.com/web/color/RGB_Color.htm

Getting Started with ROS

[26]

A simple table can clarify the relationship between the topics and the messages for
the /turtlesim node:

Topics and messages for the /turtlesim node
Topic name Topic type Message format Message
$ rostopic
list

$ rostopic type

[topic name]

$ rosmsg show

[topic type]

$ rostopic echo

[topic name]

/turtle1

/color_sensor

turtlesim/Color uint8 r

uint8 g

uint8 b

r: 69

g: 86

b: 255

/turtle1/pose turtlesim/Pose float32 x

float32 y

float32 theta

float32 linear_
velocity

float32 angular_
velocity

x: 5.54444456

y: 5.54444456

theta: 0.0

linear_velocity:
0.0

angular_
velocity: 0.0

The table of Topics and messages shows the topics, types, message formats, and data
values for the two topics of the /turtlesim node that we explored. The commands
to determine the information are also shown in the table.

Move the turtle by publishing /turtle1/cmd_vel
Start the Master and execute the turtlesim_node by typing:

$ roscore

In a second terminal window, issue the following command:

$ rosrun turtlesim turtlesim_node

Once the turtle screen is visible, there are a number of ways to move the turtle
around.

The turtlesim_node subscribes to the /turtle1/cmd_vel topic, so the turtle can be
commanded to move by sending messages on this topic. First, determine the type of
messages for the topic by typing:

$ rostopic type /turtle1/cmd_vel

Chapter 1

[27]

which displays the message type as the Twist message from the geometry_msgs
package:

geometry_msgs/Twist

Next, the format of the message can be determined with the command:

$ rosmsg show geometry_msgs/Twist

The output shows that the message format allows six floating-point values which
determine the linear and angular velocity of the turtle:

geometry_msgs/Vector3 linear

 float64 x

 float64 y

 float64 z

geometry_msgs/Vector3 angular

 float64 x

 float64 y

 float64 z

For the turtle in turtlesim that moves in a 2D space, the only motion allowed is
forward motion in the turtle's x direction or rotation about the turtle's z axis that
would extend out from the screen.

To move the turtle in a circle, the command

$ rostopic pub /turtle1/cmd_vel geometry_msgs/Twist -r 1 -- '[2.0, 0.0,
0.0]' '[0.0, 0.0, 1.8]'

causes motion forward at 2.0 meters/second as well as rotation at 1.8 radians/
second. The command specifies the topic, type of message, the repeat option (-r)
and the data values of the velocities. The data arguments are actually in YAML
syntax, which is described in the YAML Command Line documentation at
http://wiki.ros.org/ROS/YAMLCommandLine.

The ROS and Ubuntu command-line commands have tab-completion
capability. For the previous rostopic pub command for example, much
typing can be avoided by typing part of the command and hitting the
Tab key. In particular, typing out the command up to the data values and
hitting the Tab key will yield the format of the data that can be filled in by
backspacing and entering the appropriate values.

http://wiki.ros.org/ROS/YAMLCommandLine

Getting Started with ROS

[28]

Move the turtle using the keyboard or joystick
After the turtle screen is visible, type the command:

$ rosrun turtlesim turtle_teleop_key

activates the keyboard control of the turtle with this output:

Reading from keyboard

Use arrow keys to move the turtle.

Up arrow Turtle up

Down arrow Turtle down

Right arrow Rotate CW

Left arrow Rotate CCW

In Chapter 8, Controlling Your Robots with External Devices in the section Controlling
Turtlesim with a custom game controller interface, code is given to allow control of the
turtle with a game controller (joystick).

Parameter Server of Turtlesim
The Parameter Server maintains a dictionary of the parameters. Thus, the
/turtlesim node can read and write parameters held by the Parameter Server.

rosparam help
Use the help option to determine the form of the rosparam command:

$ rosparam help

Output of the preceding command is as follows:

rosparam is a command-line tool for getting, setting, and deleting
parameters from the ROS Parameter Server. Commands:

rosparam set set parameter

rosparam get get parameter

rosparam list list parameter names

<Edited>

Chapter 1

[29]

rosparam list for the /turtlesim node
To list the parameters for the /turtlesim node, we will use the following command:

$ rosparam list

Output of the preceding command is as follows:

/background_b

/background_g

/background_r

/rosdistro

/roslaunch/uris/host_d158_45929__34807

/rosversion

/run_id

Note that the last four parameters were created by invoking the Master with the
roscore command, as discussed previously. Also, the list defines the characteristics
of the parameter but not the data value.

Change parameters for the color of the turtle's
background
To change the background color parameters for turtlesim, let's change the turtle's
background to red. To do this, make the blue and green data values equal to zero
and saturate red = 255 using the rosparam set command. Note that the clear option
from rosservice must be executed before the screen changes color.

rosparam get
The default turtle screen is blue. You can use rosparam get / to show the data
contents of the entire Parameter Server:

$ rosparam get /

Output of the preceding command is as follows:

background_b: 255

background_g: 86

background_r: 69

rosdistro: 'kinetic

 '

roslaunch:

Getting Started with ROS

[30]

uris: {host_d158_45929__34807: 'http://D158-45929:34807/'}

rosversion: '1.12.7

 '

run_id: 9c3776b4-09cd-11e7-bb39-1866da2351d7

rosparam set
You can change the colors of the turtle's screen to a full red background using the
rosparam set commands:

$ rosparam set background_b 0

$ rosparam set background_g 0

$ rosparam set background_r 255

$ rosservice call /clear

You will see a red background on the turtle screen. To check the numerical results,
use the rosparam get / command.

ROS services to move turtle
Another capability of nodes is to provide what in ROS terms is called a service. This
feature is used when a node requests information from another node. Thus, there is a
two-way communication between the nodes.

You can check the turtle's pose using the /turtle1/pose topic and the message
type, /turtlesim/Pose. Carefully note the different notations and meanings. To
determine the message type, run the following command:

$ rostopic type /turtle1/pose

The output is as follows:

turtlesim/Pose

To determine the format and meaning of the fields in the message, type:

$ rosmsg show turtlesim/Pose

The output is as follows:

float32 x

float32 y

float32 theta

float32 linear_velocity

float32 angular_velocity

Chapter 1

[31]

We can find the turtle's position, orientation in angle (theta), and its velocity using
the rostopic echo command:

$ rostopic echo /turtle1/pose

The output is as follows:

x: 5.544444561

y: 5.544444561

theta: 0.0

linear_velocity: 0.0

angular_velocity: 0.0

This command outputs the result continuously and is stopped by pressing the Ctrl
+ C keys. The result will show that the turtle is at the center of its screen with no
rotation at angle zero and no movement since the velocities are zero.

rosservice call
The turtle can be moved using the rosservice teleport option. The format of the
command is rosservice call <service name><service arguments>. The
arguments here will be the turtle's position and orientation as x, y, and theta. The
turtle is moved to position [1, 1] with theta = 0 by running the following command:

$ rosservice call /turtle1/teleport_absolute 1 1 0

The result can be seen in the following screenshot:

turtle after an absolute move

Getting Started with ROS

[32]

The relative teleport option moves the turtle with respect to its present position. The
arguments are [linear distance, angle]. Here, the rotation angle is zero. The command
for relative movement is as follows:

$ rosservice call /turtle1/teleport_relative 1 0

Your turtle should now move to x=2 and y=1.

ROS commands summary
If you are communicating with ROS via the terminal window, it is possible to issue
commands to ROS to explore or control nodes in a package from the command
prompt, as listed in the following table:

Command Action Example usage and subcommand
examples

roscore Starts the Master $ roscore

rosrun Runs an executable program
and creates nodes

$ rosrun [package name]
[executable name]

rosnode Shows information about
nodes and lists the active
nodes

$ rosnode info [node name]

$ rosnode<subcommand>

Subcommand: list
rostopic Shows information about

ROS topics
$ rostopic<subcommand><topic
name>

Subcommands: echo, info, and type
rosmsg Shows information about the

message types
$ rosmsg<subcommand> [package
name]/ [message type]

Subcommands: show, type, and list
rosservice Displays the runtime

information about various
services and allows the
display of messages being
sent to a topic

$ rosservice<subcommand>
[service name]

Subcommands: args, call, find,
info, list, and type

rosparam Used to get and set
parameters (data) used by
nodes

$ rosparam<subcommand>
[parameter]

Subcommands: get, set, list, and
delete

The website (http://wiki.ros.org/ROS/CommandLineTools) describes many ROS
commands. The table lists some important ones. However, these examples only
cover a few of the possible variations of the commands.

http://wiki.ros.org/ROS/CommandLineTools

Chapter 1

[33]

Summary
In this chapter, you first learned how to install and launch ROS. We discussed the
ROS architecture and ROS packages, nodes, topics, messages, and services. To apply
the knowledge, we used the turtlesim simulator was used to illustrate many ROS
commands. For additional control of the turtlesim turtle, see Chapter 8, Controlling
Your Robots with External Devices. There the turtle is controlled with a custom game
controller.

In Chapter 2, Creating Your First Two-Wheeled ROS Robot (in Simulation), we will show
you how to build a robot model that ROS uses to display the robot and allows you
to control it in a simulation. The chapter introduces the visualization tool called rviz
to display the robot and the simulation tool Gazebo that includes the physics of the
robot as you move it around in a simulated environment.

[35]

Creating Your First
Two-Wheeled ROS Robot

(in Simulation)
Your first robot will be created in simulation so that even if you do not have a
physical robot to learn ROS on, you will be able to follow along and do the exercises
in this book. We will build a simple two-wheeled robot named dd_robot (dd is short
for differential drive). We will build a Unified Robot Description Format (URDF)
file for the robot that will describe the main components of our robot and enable
it to be visualized and controlled by ROS tools, such as rviz and Gazebo. Rviz is a
visualization tool in which we will view our dd_robot URDF file as we build it in
increments. When the visual model is complete, we will modify the URDF file for use
in the Gazebo simulator. In Gazebo, we can view the effects of physics on our model
as we move our model around the 3D environment.

In this chapter, we will cover the following topics:

•	 An introduction to rviz, installation instructions, and instructions for use
•	 How to create and build a ROS package
•	 An incremental approach to develop a URDF file and visualizing it in rviz
•	 ROS tools to verify the URDF file
•	 An introduction to Gazebo, installation instructions, and instructions for use
•	 Modifications necessary to visualize the URDF file in Gazebo
•	 Tools to verify your Gazebo URDF/Simulation Description Format (SDF) file
•	 A simple way to control a robot in Gazebo

We begin by learning about rviz.

Creating Your First Two-Wheeled ROS Robot (in Simulation)

[36]

Introducing rviz
Rviz, abbreviation for ROS visualization, is a powerful 3D visualization tool
for ROS. It allows the user to view the robot model, display and/or log sensor
information from the robot's sensors, and replay the logged sensor information. By
visualizing what the robot is seeing, thinking, and doing, the user can debug a robot
application from sensor inputs to planned (or unplanned) actions.

Rviz displays 3D sensor data from stereo cameras, lasers, Kinects, and other 3D
devices in the form of point clouds or depth images. 2D sensor data from webcams,
RGB cameras, and 2D laser rangefinders can be viewed in rviz as image data.

If an actual robot is communicating with a workstation that is running rviz, rviz will
display the robot's current configuration on the virtual robot model. For example,
if a real two-armed robot like Baxter has his arms in a certain pose, then the robot
model will display that pose in rviz. The ROS topic containing arm configuration
information as well as any ROS topic published to move the arm joints can be
displayed in the information on the rviz screen. ROS topics can also display live
representations, based on the sensor data published by any cameras, infrared
sensors, and laser scanners that are part of the robot's system. This can be useful
to develop and debug robot systems and controllers. Rviz provides a configurable
Graphical User Interface (GUI) to allow the user to display only information that is
pertinent to the present task.

In this chapter, we will use rviz to visualize our progress in creating a two-wheeled
robot model. Rviz will use the URDF file that we create for our robot and display the
visual representation.

We will begin by checking whether rviz has been downloaded and installed on
your system.

Installing and launching rviz
To run rviz, you require a powerful graphics card, and the appropriate drivers need
to be installed on your computer.

If you have trouble with running rviz, refer to http://wiki.
ros.org/rviz/Troubleshooting or search the ROS forum
at http://answers.ros.org/questions/.

http://wiki.ros.org/rviz/Troubleshooting
http://wiki.ros.org/rviz/Troubleshooting
http://answers.ros.org/questions/

Chapter 2

[37]

1.	 Follow these steps to install and run Rviz:
2.	 Rviz tool should have been installed on your computer as part of the

ros-kinetic-desktop-full installation, as described in the Installing
and launching ROS section in Chapter 1, Getting Started with ROS.
To test whether rviz has been installed correctly, open a terminal window
and start the ROS Master by typing the following command:
$ roscore

Next, open a second terminal window and type the following command:
$ rosrun rviz rviz

This will display an environment similar to the following screenshot:

rviz main screen

If the $ rosrun rviz rviz command generates a warning message, make
sure that you have source ~/catkin_ws/devel/setup.bash in your
.bashrc file, or this command is entered at the terminal window prompt.
The .bashrc file resides in your home directory but cannot be seen unless
you use the $ ls –la command option to list the directory and files. This
option shows the hidden files that are preceded by a dot (.).

Creating Your First Two-Wheeled ROS Robot (in Simulation)

[38]

3.	 If rviz has not been installed, then install it from the Debian repository using
the following command:
$ sudo apt-get install ros-kinetic-rviz

If you wish to install rviz from source, refer to the rviz user
guide at http://wiki.ros.org/rviz/UserGuide. This
guide is also a good reference to learn additional features of
rviz that are not covered in this book.

Getting familiar with rviz
The central window on the rviz main screen provides the world view of a 3D
environment. Typically, only the grid is displayed in the center window or the
window is blank.

The main screen is divided into four main display areas: the central window, the
Displays panel to the left, the Views panel to the right, and the Time panel at the
bottom. Across the top of these display areas are the toolbar and the main screen
menu bar. Each of these areas of the rviz main screen is described in the following
sections. This overview is provided so that you can gain familiarity with the rviz GUI.

Displays panel
On the left panel of the rviz main screen is the Displays panel, where the user can
add, duplicate, remove, or rename the visualization elements in the 3D environment.

By clicking on the Add button on the Displays panel, the Add menu appears, as
shown in the following screenshot. This menu displays the visualization elements
that can be added to the environment, such as a camera image, point cloud, robot
model, and so on. A brief description of each item is provided at the bottom of the
window when that item is highlighted. A unique display name can be entered for
the item to be added to the environment. For further details on the display types,
go to http://wiki.ros.org/rviz/DisplayTypes. This site also identifies the ROS
messages that provide the data for the display.

http://wiki.ros.org/rviz/UserGuide
http://wiki.ros.org/rviz/DisplayTypes

Chapter 2

[39]

rviz Add display menu

Clicking on the triangle symbol on the left side of a panel item will expand or hide
the details of the item.

The Displays panel also shows access to Global Options, such as Background Color
and Frame Rate. The options under the Grid element allow the user to tailor the grid
lines by changing the number of grid cells, line width, line color, and so on.

Views and Time panels
The Views panel on the right side of the rviz main screen and the Time panel at the
bottom are not important at this point and so we have removed them from the rest of
the screenshots in this chapter. We will work in the orbit view, which is the default
camera view for rviz. In this view, the orbital camera will rotate around a focal point
visualized as a small yellow disc in the 3D world view.

Creating Your First Two-Wheeled ROS Robot (in Simulation)

[40]

Mouse control
To move around the 3D world in the orbit view, use the mouse and keyboard as
follows:

•	 Left mouse button: Click and drag to rotate the scene around the focal point.
Shift key + Left mouse button: pan scene right-left-up-down.

•	 Middle mouse button (if available): Click and drag to move the focal point
in the plane formed by the camera's up and right vectors. (The Shift key and
left mouse button combination also invokes this mode.)

•	 Right mouse button: Click and drag to zoom in/out of the focal point.
Dragging up zooms in and down zooms out.

•	 Scroll wheel: Rotate to zoom in/out of the focal point. Press to pan
right-left-up-down.

Toolbar
The toolbar at the top of the rviz main screen is shown in this screenshot and
provides the corresponding functionalities described below:

rviz toolbar

•	 Interact: This shows interactive markers when present.
•	 Move Camera (default mode): This is a 3D view that responds to the

mouse/keyboard, as described for the Views panel.
•	 Select: This allows items to be selected by a mouse click or drag box

selection. The selected item will have a wireframe box placed around it.
•	 Focus Camera: A mouse click on a specific spot in the 3D view becomes the

focal point of the camera.
•	 Measure: Mouse click on a start point then an end point. The distance

between these two points will be shown at the bottom left of the rviz
window.

•	 2D Nav Goal and 2D Pose Estimate: These selections will be discussed in
Chapter 4, Navigating the World with TurtleBot.

•	 Publish Point: A mouse click on a single point causes the coordinates of that
point to be published to topic /clicked_point.

Chapter 2

[41]

Main window menu bar
The top-most main window menu bar provides options under the basic File, Panels,
and Help headings, as shown here:

•	 File: Options are Open Config, Save Config, Save Config As, Recent
Configs, Save Image, and Quit

•	 Panels: Options are Add Panel and Delete Panel
Other options for panels are: Tools, Displays, Selection, Tool Properties,
Views, and Time

•	 Help: Options are Show Help panel, Open rviz wiki in browser, and About

These selections allow the user to customize the panels to be displayed for rviz. This
custom configuration of rviz can be saved and reused.

In this chapter, we will use rviz to visualize the construction of our two-wheeled
robot model in 3D. We will show you how to use rviz to visualize odometry data for
navigation purposes in Chapter 3, Driving Around with TurtleBot.

For more in-depth tutorials on rviz, go to http://wiki.ros.org/rviz/Tutorials.

At this point, rviz can be exited by navigating to File | Quit. In the next section, we
will create and build a ROS package to hold our URDF code and launch files.

Creating and building a ROS package
Before we begin to design and build our robot model in simulation, we should create
our first ROS package. In Chapter 1, Getting Started with ROS, we created a ROS
catkin workspace under /home/<username>/catkin_ws. The structure of a catkin
workspace looks like this:

catkin_ws/ -- WORKSPACE
build/ -- BUILD SPACE
devel/ -- DEVEL SPACE
src/ -- SOURCE SPACE
CMakeLists.txt -- 'Toplevel' CMake file, provided by catkin

Make sure that you have source ~/catkin_ws/devel/
setup.bash in your .bashrc file, or this command is
entered at the terminal window prompt.

http://wiki.ros.org/rviz/Tutorials

Creating Your First Two-Wheeled ROS Robot (in Simulation)

[42]

We begin by moving to your catkin workspace source directory:

$ cd ~/catkin_ws/src

Now, let's create our first ROS package, ros_robotics:

$ catkin_create_pkg ros_robotics

This command will create a /ros_robotics directory under the ~/catkin_ws/
src directory. The /ros_robotics directory will contain a package.xml file and a
CMakeLists.txt file. These files contain information generated from the $ catkin_
create_pkg command execution.

The catkin_create_pkg syntax
catkin_create_pkg requires a unique package name and, optionally,
a list of dependencies for the package. The command format to create it is
as follows:
$ catkin_create_pkg <package_name> [depend1] [depend2]
[depend3]

[depend1], [depend2], and [depend3] specify software packages
that are required to be present for this software package to be made.

We will not identify any dependencies for our ros_robotics package at this point.

Next, build the packages in the catkin workspace:

$ cd ~/catkin_ws

$ catkin_make

After the workspace has been built to include the ros_robotics package, the
~/catkin_ws/devel subdirectory will have a structure similar to the structure
under the /opt/ros/kinetic directory.

Building a differential drive robot URDF
URDF is an XML format specifically defined to represent robot models down to their
component level. These URDF files can become long and cumbersome on complex
robot systems. XML Macros (Xacro) is an XML macro language created to make
these robot description files easier to read and maintain. Xacro helps you reduce the
duplication of information within the file.

Chapter 2

[43]

For our first robot model, we will build a URDF file for a two-wheeled differential
drive robot. The model will be created incrementally, and we will view the results
at each step in rviz. When our simple two-wheeled robot is complete, we will add
Gazebo formatting and view the model in Gazebo. In Chapter 5, Creating Your First
Robot Arm (in Simulation), we will expand our knowledge of URDF files and build a
simple robot arm model using the Xacro notation.

Downloading the ros_robotics code
You can download the example code files and other support material for
this book from the Packt Publishing website, http://www.PacktPub.
com, or from https://github.com/FairchildC/ROS-Robotics-
By-Example-2nd-Edition.

If you download the ros_robotics package from the website, replace the entire ~/
catkin_ws/src/ros_robotics directory with the downloaded package. Instead, if
you plan to enter the code from this book, begin by creating a /urdf directory under
your ros_robotics package directory:

$ cd ~/catkin_ws/src/ros_robotics

$ mkdir urdf

$ cd urdf

Creating a robot chassis
Two basic URDF components are used to define a tree structure that describes a
robot model. The link component describes a rigid body by its physical properties
(dimensions, position of its origin, color, and so on). Links are connected together by
joint components. Joint components describe the kinematic and dynamic properties
of the connection (that is, links connected, types of joint, axis of rotation, amount
of friction and damping, and so on). The URDF description is a set of these link
elements and a set of the joint elements connecting the links together.

The first component of our robot is a simple chassis box. The downloaded dd_
robot.urdf file contains the code for this exercise. Alternately, you can enter the
code portion using your favorite editor and save the file as dd_robot.urdf to your
~/catkin_ws/src/ros_robotics/urdf directory:

<?xml version='1.0'?>
<robot name="dd_robot">

 <!-- Base Link -->
 <link name="base_link">

http://www.PacktPub.com
http://www.PacktPub.com
https://github.com/FairchildC/ROS-Robotics-By-Example-2nd-Edition
https://github.com/FairchildC/ROS-Robotics-By-Example-2nd-Edition

Creating Your First Two-Wheeled ROS Robot (in Simulation)

[44]

 <visual>
 <origin xyz="0 0 0" rpy="0 0 0" />
 <geometry>
 <box size="0.5 0.5 0.25"/>
 </geometry>
 </visual>
 </link>

</robot>

XML comments are bracketed by <!-- and -->.

This XML code defines a robot labeled dd_robot that has one link (also known as
part) whose visual component is a box 0.5 meters long, 0.5 meters wide, and 0.25
meters tall. The box is centered at the origin (0, 0, 0) of the environment with no
rotation in the roll, pitch, or yaw (rpy) axes. The link has been labeled base_link,
and our model will use this box as the link on which our other links are defined.

(A base_link link should be identified as the URDF root link to create the beginning
of the robot's kinematic chain.)

Using roslaunch
Roslaunch is a ROS tool that makes it easy to launch multiple ROS nodes as well as
set parameters on the ROS Parameter Server. By using a roslaunch file, there is no
need to start the ROS Master with the roscore command. The ROS Master starts
automatically if it is not already running. Roslaunch configuration files are written
in XML and typically end in a .launch extension. In a distributed environment, the
.launch files also indicate the processor the nodes should run on.

The roslaunch syntax is as follows:
$ roslaunch <package_name> <file.launch>

Chapter 2

[45]

To use roslaunch for our URDF file, you will need to use one of the following ways:

•	 Download the ddrobot_rviz.launch file from the ros_robotics/launch
directory from this book's website

•	 Create a launch directory under the ros_robotics package and create the
ddrobot_rviz.launch file from the following XML code:
<launch>
 <!-- values passed by command line input -->
 <arg name="model" />
 <arg name="gui" default="False" />

 <!-- set these parameters on Parameter Server -->
 <param name="robot_description"
 textfile="$(find ros_robotics)/urdf/$(arg model)"
 />
 <param name="use_gui" value="$(arg gui)"/>

 <!-- Start 3 nodes: joint_state_publisher,
 robot_state_publisher and rviz -->

 <node name="joint_state_publisher"
 pkg="joint_state_publisher"
 type="joint_state_publisher" />

 <node name="robot_state_publisher"
 pkg="robot_state_publisher"
 type="state_publisher" />

 <node name="rviz" pkg="rviz" type="rviz"
 args="-d $(find ros_robotics)/urdf.rviz"
 required="true" />
</launch>

This roslaunch file performs the following:

•	 Loads the model specified in the command line into the Parameter Server.
•	 Starts nodes that publish the JointState and transforms (discussed later in

this chapter).
•	 Starts rviz with a configuration file (urdf.rviz). It is important to use the

urdf.rviz file that came with the book example code or save your own
urdf.rviz file from rviz to be used with this launch file.

Creating Your First Two-Wheeled ROS Robot (in Simulation)

[46]

Type the following command to see the robot model in rviz:

$ roslaunch ros_robotics ddrobot_rviz.launch model:=dd_robot.urdf

At this point, your rviz screen should resemble one of the following two screenshots.
Look carefully for a visual representation of your dd_robot box in the main screen
and examine it under the Displays panel to decide how to proceed. Does your rviz
screen look like the following screenshot?

Rviz screen without the urdf.rviz file

If your rviz screen looks like the preceding screenshot with no box on the main
screen and no RobotModel or TF under the Displays panel, then perform the
following three steps in any order:

•	 Select the Add button under the Displays panel and add RobotModel
•	 Select the Add button under the Displays panel and add TF
•	 Select the field next to Fixed Frame (under Global Options), which in the

preceding screenshot says map, and type in base_link

(The preceding screenshot shows the Add menu with the RobotModel selection
highlighted.) When all the three steps are completed, your rviz screen will look
similar to the following screenshot.

Chapter 2

[47]

When you go to File | Quit to close your rviz session, you will be
asked whether you want to save the configuration to a urdf.rviz
file and it is recommended that you do. If you do not, you will have to
perform the previous three steps each time to see your RobotModel
and TF frames.

For the users who copied the urdf.rviz file from the book example code, the rviz
screen will come up and look like the following:

dd_robot.urdf in rviz

Things to note:

•	 The fixed frame is a transform frame where the center (origin) of the grid is
located.

•	 In URDF, the <origin> tag defines the reference frame of the visual element
with respect to the reference frame of the link. In dd_robot.urdf, the visual
element (the box) has its origin at the center of its geometry by default. Half
of the box is above the grid plane and half is below.

Creating Your First Two-Wheeled ROS Robot (in Simulation)

[48]

•	 The rviz display configuration has been changed to remove the View and
Time displays. This configuration is defined in the urdf.rviz file that comes
with the book's example code (refer to the .launch file commands).

•	 The RobotModel and TF displays have been added under the Displays
panel. Under RobotModel, notice the following:

°° Robot description: robot_description is the name of the ROS
parameter where the URDF file is stored on the Parameter Server.
The description of the links and joints and how they are connected
is stored here.

Adding wheels
Now, let's add shapes and links for wheels on our robot. When we add link elements
to the URDF file, we must add joints to describe the relationship between the links.
Joint elements define whether the joint is flexible (movable) or inflexible (fixed). For
flexible joints, the URDF describes the kinematics and dynamics of the joint as well
as its safety limits. In URDF, there are six possible joint types, which are as follows:

•	 Fixed: This is not really a joint because it cannot move. All degrees of
freedom are locked. This type of joint does not require the axis, calibration,
dynamics, limits, or safety controller.

•	 Revolute: This joint rotates around one axis and has a range specified by the
upper and lower limits.

•	 Continuous: This is a continuous hinge joint that rotates around the axis and
has no upper and lower limits.

•	 Prismatic: This is a sliding joint that slides along the axis and has a limited
range specified by the upper and lower limits.

•	 Floating: This joint allows motion for all six degrees of freedom.
•	 Planar: This joint allows motion in a plane perpendicular to the axis.

For our robot wheels, we require continuous joints, which mean that they can
respond to any rotation angle from negative infinity to positive infinity. They are
modeled like this so that they can rotate in both directions forever.

The downloaded dd_robot2.urdf file contains the XML code for this exercise.
Alternately, you can enter the new code portion to your previous URDF file to create
the two wheels (lines from the previous code have been left in or omitted and new
code are highlighted):

<?xml version='1.0'?>
<robot name="dd_robot">

Chapter 2

[49]

 <!-- Base Link -->
 <link name="base_link">
 ...
 </link>

 <!-- Right Wheel -->
 <link name="right_wheel">
 <visual>
 <origin xyz="0 0 0" rpy="1.570795 0 0" />
 <geometry>
 <cylinder length="0.1" radius="0.2" />
 </geometry>
 </visual>
 </link>
 <joint name="joint_right_wheel" type="continuous">
 <parent link="base_link"/>
 <child link="right_wheel"/>
 <origin xyz="0 -0.30 0" rpy="0 0 0" />
 <axis xyz="0 1 0" />
 </joint>

 <!-- Left Wheel -->
 <link name="left_wheel">
 <visual>
 <origin xyz="0 0 0" rpy="1.570795 0 0" />
 <geometry>
 <cylinder length="0.1" radius="0.2" />
 </geometry>
 </visual>
 </link>

 <joint name="joint_left_wheel" type="continuous">
 <parent link="base_link"/>
 <child link="left_wheel"/>
 <origin xyz="0 0.30 0" rpy="0 0 0" />
 <axis xyz="0 1 0" />
 </joint>

</robot>

Run your rviz roslaunch command:

$ roslaunch ros_robotics ddrobot_rviz.launch model:=dd_robot2.urdf

Creating Your First Two-Wheeled ROS Robot (in Simulation)

[50]

Rviz should come up and look like this:

dd_robot2.urdf in rviz

Things to note in the URDF:

•	 Each wheel is defined visually as a cylinder of radius 0.2 meters and length
of 0.1 meters. The wheel's visual origin defines where the center of the visual
element should be, relative to its origin. Each wheel's origin is at (0, 0, 0) and
is rotated by 1.560795 radians (= pi/2 = 90 degrees) about the x axis.

•	 The joint is defined in terms of a parent and a child. The URDF file is
ultimately a tree structure with one root link. The base_link link is our
robot's root link with the wheel's position dependent on position of the
base_link.

•	 The wheel joint is defined in terms of the parent's reference frame. Therefore,
the wheel's joint origin is 0.30 meters in the x direction is for the left wheel
and -0.30 meters for the right wheel.

•	 The axis of rotation is specified by a xyz triplet, indicating that the wheel's
joint axis of rotation is around the y axis.

•	 These <joint> elements define the complete kinematic model of our robot.

Chapter 2

[51]

Adding a caster
In the next step, we will add a caster to the front of our robot in order to keep the
robot chassis balanced. The caster will only be a visual element added to the chassis
and not a joint. The caster will slide along the ground plane as the robot's wheels
move.

The downloaded dd_robot3.urdf file contains the XML code for this exercise.
Alternately, you can enter the new code portion to your previous URDF file (new
code has been highlighted):

<?xml version='1.0'?>
<robot name="dd_robot">

 <!-- Base Link -->
 ...
 <!-- Caster -->
 <visual name="caster">
 <origin xyz="0.2 0 -0.125" rpy="0 0 0" />
 <geometry>
 <sphere radius="0.05" />
 </geometry>
 </visual>

 </link>
 <!-- Right Wheel -->
 ...
 <!-- Left Wheel -->
 ...
</robot>

Run your rviz roslaunch command:

$ roslaunch ros_robotics ddrobot_rviz.launch model:=dd_robot3.urdf

Creating Your First Two-Wheeled ROS Robot (in Simulation)

[52]

Rviz should come up and look like this:

dd_robot3.urdf in rviz

Things to note in the URDF file:

•	 The caster is defined visually as a sphere with a radius of 0.05 meters. The
center of the caster is 0.2 meters in the x direction and -0.125 meters in the z
direction with respect to the origin of the base_link.

Adding color
A completely red robot has parts that are not distinctive enough; we will add some
color to our model.

The downloaded dd_robot4.urdf file contains the XML code for this exercise.
Alternately, you can enter the new code portions to your previous URDF file (new
code has been highlighted):

<?xml version='1.0'?>
<robot name="dd_robot">

 <!-- Base Link -->
 ...

Chapter 2

[53]

 <material name="blue">
 <color rgba="0 0.5 1 1"/>
 </material>
 </visual>

 <!-- Caster -->
 ...
 <!-- Right Wheel -->
 ...
 <material name="black">
 <color rgba="0.05 0.05 0.05 1"/>
 </material>
 </visual>
 ...
 <!-- Left Wheel -->
 ...
 <material name="black"/>
 </visual>
 ...
</robot>

Run your rviz roslaunch command:

$ roslaunch ros_robotics ddrobot_rviz.launch model:=dd_robot4.urdf

Rviz should look like the following screenshot:

dd_robot4.urdf in rviz

Creating Your First Two-Wheeled ROS Robot (in Simulation)

[54]

Things to note in the URDF file:

•	 The <material> tag can define <color> in terms of red/green/blue/alpha,
each in the range of [0, 1]. Alpha is the transparency level of the color. An
alpha value of 1 is opaque and 0 is transparent. Once specified and labeled
with a name, the material name can be reused without specifying the color
values. (For example, note that the left wheel does not have a <color rgba>
tag because it has been defined in the right wheel visual link.)

•	 Although the book may show this picture in shades of gray, the chassis of the
robot is now blue and the wheels are black.

Adding collisions
Next, we will add the <collision> properties to each of our <link> elements. Even
though we have defined the visual properties of the elements, Gazebo's collision
detection engine uses the collision property to identify the boundaries of the object.
If an object has complex visual properties (such as a mesh), a simplified collision
property should be defined in order to improve the collision detection performance.

The downloaded dd_robot5.urdf file contains the XML code for this exercise.
Alternately, you can enter the new code portions to your previous URDF file (new
code has been highlighted):

<?xml version='1.0'?>
<robot name="dd_robot">

 <!-- Base Link -->
 ...
 <!-- Base collision -->
 <collision>
 <origin xyz="0 0 0" rpy="0 0 0" />
 <geometry>
 <box size="0.5 0.5 0.25"/>
 </geometry>
 </collision>

 <!-- Caster -->
 ...
 <!-- Caster collision -->
 <collision>
 <origin xyz="0.2 0 -0.125" rpy="0 0 0" />
 <geometry>
 <sphere radius="0.05" />

Chapter 2

[55]

 </geometry>
 </collision>
 </link>

 <!-- Right Wheel -->
 ...
 <!-- Right Wheel collision -->
 <collision>
 <origin xyz="0 0 0" rpy="1.570795 0 0" />
 <geometry>
 <cylinder length="0.1" radius="0.2" />
 </geometry>
 </collision>
 ...

 <!-- Left Wheel -->
 ...
 <!-- Left Wheel collision -->
 <collision>
 <origin xyz="0 0 0" rpy="1.570795 0 0" />
 <geometry>
 <cylinder length="0.1" radius="0.2" />
 </geometry>
 </collision>
</robot>

Adding the <collision> property does not change the visual model of the robot,
and the rviz display will look the same as in the previous screenshot.

Moving the wheels
Now that we have the right and left wheel joints defined and we can see them
clearly, we will bring up the GUI pop-up screen to control these joints. In the
ddrobot_rviz.launch file, we start three ROS nodes: joint_state_publisher,
robot_state_publisher, and rviz. The joint_state_publisher node finds all
of the non-fixed joints and publishes a JointState message with all those joints
defined. So far, the values in the JointState message have been constant, keeping
the wheels from rotating. We bring up a GUI interface in rviz to change the value of
each JointState and watch the wheels rotate.

Add the gui field to the rviz roslaunch command:

$ roslaunch ros_robotics ddrobot_rviz.launch model:=dd_robot5.urdf
gui:=True

Creating Your First Two-Wheeled ROS Robot (in Simulation)

[56]

Rviz should look like the following screenshot:

dd_robot5.urdf in rviz

Things to note:

•	 The joint positions in the window are sliders. The wheel joints are defined as
continuous but this GUI limits each slider's value from –Pi to +Pi. Play with
the sliders and see how the wheels move.

•	 The Randomize button will select a random value for both the joints.
•	 The Center button will move both the joints to the zero position. (Visually,

the blue dot on both the wheels should be at the top.)
•	 The bottom selection allows the user to select the configuration of the slider

display, either listed one below the other, or side-by-side.

Chapter 2

[57]

A word about tf and robot_state_publisher
A robotic system is made up of a collection of 3D coordinate frames for every
component in the system. In our dd_robot model, there is a base coordinate frame
and a frame for each wheel that relates back to the base coordinate frame. The
model's coordinate frames are also related to the world coordinate frame of the
3D environment. The tf package is the central ROS package used to relate the
coordinate frames of our robot to the 3D simulated environment (or a real robot to its
real environment).

The robot_state_publisher node subscribes to the JointState message and
publishes the state of the robot to the tf transform library. The tf transform library
maintains the relationships between the coordinate frames of each component
in the system over time. The robot_state_publisher node receives the robot's
joint angles as inputs and computes and publishes the 3D poses of the robot links.
Internally, the robot_state_publisher node uses a kinematic tree model of the
robot built from its URDF. Once the robot's state gets published, it is available to all
components in the system that also use tf.

Adding physical properties
With the additional physical properties of mass and inertia, our robot will be ready
to be launched in the Gazebo simulator. These properties are needed by Gazebo's
physics engine. Specifically, every <link> element that is being simulated needs an
<inertial> tag.

The two sub-elements of the inertial element we will use are as follows:

•	 <mass>: This is the weight defined in kilograms.
•	 <inertia>: This frame is a 3 x 3 rotational inertia matrix. Because this

matrix is symmetrical, it can be represented by only six elements. The six
highlighted elements are the six element <inertia> values. The other three
values are not used:

ixx ixy Ixz
ixy iyy Iyz
ixz iyz Izz

Wikipedia's list of moment of inertia tensors (https://en.wikipedia.org/wiki/
List_of_moments_of_inertia) provides the equations for the inertia of simple
geometric primitives, such as a cylinder, box, and sphere. We use these equations to
compute the inertia values for the model's chassis, caster, and wheels.

https://en.wikipedia.org/wiki/List_of_moments_of_inertia
https://en.wikipedia.org/wiki/List_of_moments_of_inertia

Creating Your First Two-Wheeled ROS Robot (in Simulation)

[58]

Do not use inertia elements of zero (or almost zero) because real-time controllers can
cause the robot model to collapse without warning, and all links will appear with
their origins coinciding with the world origin.

The downloaded dd_robot6.urdf file contains the XML code for this exercise.
Alternately, you can enter the new code portions in your previous URDF file (new
code has been highlighted):

<?xml version='1.0'?>
<robot name="dd_robot">

 <!-- Base Link -->
 ...
 <inertial>
 <mass value="5"/>
 <inertia ixx="0.13" ixy="0.0" ixz="0.0"
 iyy="0.21" iyz="0.0" izz="0.13"/>
 </inertial>

 <!-- Caster -->
 ...
 <inertial>
 <mass value="0.5"/>
 <inertia ixx="0.0001" ixy="0.0" ixz="0.0"
 iyy="0.0001" iyz="0.0" izz="0.0001"/>
 </inertial>
 </link>

 <!-- Right Wheel -->
 ...
 <inertial>
 <mass value="0.5"/>
 <inertia ixx="0.01" ixy="0.0" ixz="0.0"
 iyy="0.005" iyz="0.0" izz="0.005"/>
 </inertial>
 ...
 <!-- Left Wheel -->
 ...
 <inertial>
 <mass value="0.5"/>
 <inertia ixx="0.01" ixy="0.0" ixz="0.0"
 iyy="0.005" iyz="0.0" izz="0.005"/>
 </inertial>
 ...
</robot>

Chapter 2

[59]

Adding the <inertial> property does not change the visual model of the robot and
the rviz display will look the same as the preceding screenshot.

Trying URDF tools
ROS provides command-line tools that can help verify and visualize information
about your URDF. We will try out these tools on our robot URDF but first you will
need to check whether the tools have been installed on your computer system. Type
the following command:

$ sudo apt-get install liburdfdom-tools

check_urdf
check_urdf attempts to parse a URDF file description and either prints a description
of the resulting kinematic chain or an error message. (Be sure to run this command
from the directory containing the dd_robot6.urdf file.)

$ check_urdf dd_robot6.urdf

The output of the preceding command is as follows:

robot name is: dd_robot

---------- Successfully Parsed XML ---------------

root Link: base_link has 2 child(ren)

child(1): left_wheel

child(2): right_wheel

urdf_to_graphiz
The urdf_to_graphiz tool creates a graphviz diagram of a URDF file and a diagram
in the .pdf format. Graphviz is open-source graph visualization software.

To execute urdf_to_graphiz, type:

$ urdf_to_graphiz dd_robot6.urdf

The output is as follows:

Created file dd_robot.gv

Created file dd_robot.pdf

Open the .pdf file with the following command:

$ evince dd_robot.pdf

Creating Your First Two-Wheeled ROS Robot (in Simulation)

[60]

The dd_robot.pdf file should appear as follows:

dd_robot.pdf

Now that we have a working URDF model of our two-wheeled robot, we are ready to
launch it into Gazebo and move it around. First, we must make some modifications
to our URDF file to add simulation-specific tags so that it properly works in
Gazebo. Gazebo uses SDF, which is similar to URDF, but by adding specific Gazebo
information, we can convert our dd_robot model file into an SDF-type format.

Gazebo
Gazebo is a free and open source robot simulation environment developed by
Willow Garage. As a multifunctional tool for ROS robot developers, Gazebo supports
the following:

•	 Designing of robot models
•	 Rapid prototyping and testing of algorithms
•	 Regression testing using realistic scenarios
•	 Simulation of indoor and outdoor environments
•	 Simulation of sensor data for laser range finders, 2D/3D cameras, kinect-

style sensors, contact sensors, force-torque, and more
•	 Advanced 3D objects and environments utilizing Object-Oriented Graphics

Rendering Engine (OGRE)
•	 Several high-performance physics engines (Open Dynamics Engine (ODE),

Bullet, Simbody, and Dynamic Animation and Robotics Toolkit (DART)) to
model the real-world dynamics

Chapter 2

[61]

In this section, we will load our two-wheeled robot URDF into Gazebo to visualize
it in a 3D environment. Gazebo allows you to take control of some aspects of our
model without an external control program. In the later chapters, we will be using
simulated versions of robots in Gazebo to control joints, visualize sensor data, and
test control algorithms.

Installing and launching Gazebo
To run Gazebo requires a powerful graphics card and the appropriate drivers be
installed on your computer.

If you have trouble with running Gazebo, refer to http://answers.
gazebosim.org/questions/ or search the ROS forum at http://
answers.ros.org/questions/.

Gazebo should have been installed on your computer as part of the ros-kinetic-
desktop-full installation, as described in the Installing and launching ROS section in
Chapter 1, Getting Started with ROS. Gazebo 7.x is the default version of Gazebo for ROS-
Kinetic/Ubuntu-Xenial and is the version recommended for the exercises in this book.

To test whether Gazebo has been installed correctly, open a terminal window and
type the following command:

$ gazebo

This should display an environment similar to the following screenshot:

Gazebo main screen

http://answers.gazebosim.org/questions/
http://answers.gazebosim.org/questions/
http://answers.ros.org/questions/
http://answers.ros.org/questions/

Creating Your First Two-Wheeled ROS Robot (in Simulation)

[62]

If Gazebo has not been installed, refer to the ROS-Kinetic installation instructions
at http://wiki.ros.org/kinetic/Installation/Ubuntu or the general Gazebo
installation instructions at http://gazebosim.org/tutorials?cat=install. Make
sure that you install the Gazebo 7 version.

The $ gazebo command runs two different executables: the Gazebo server and the
Gazebo client. The Gazebo server gzserver will execute the simulation process,
including the physics update loop and sensor data generation. This process is the
core of Gazebo and can be used independently of any graphical interface. The
Gazebo client gzclient command runs the Gazebo GUI. This GUI provides a nice
visualization of simulation and handy controls for an assortment of simulation
properties.

Tutorials for Gazebo can be found at http://gazebosim.org/tutorials.

To shut down Gazebo
Use the Ctrl + C keys to kill the terminal window process after you
have closed the Gazebo window.
Important commands: If at any time, your command generates a
warning or error command, type $ rosnode list to determine
whether there are any active nodes still lingering after you have
attempted to shut down Gazebo. If any nodes are still active, use the
$ rosnode kill command to list them. Next, select the number of
the ROS nodes that you wish to kill. Or you can use the $ rosnode
kill –a command to kill all the active nodes.

Using roslaunch with Gazebo
Roslaunch is a standard method used to start Gazebo with world files and robot
URDF models. To perform a basic test of Gazebo, an empty Gazebo world can be
brought up with the following command:

$ roslaunch gazebo_ros empty_world.launch

This test will verify that Gazebo has been installed properly. If you wish to try
other demo worlds, including the gazebo_ros package, try substituting one of the
following with empty_world.launch in the previous command:

•	 willowgarage_world.launch

•	 mud_world.launch

•	 shapes_world.launch

•	 rubble_world.launch

http://wiki.ros.org/kinetic/Installation/Ubuntu
http://gazebosim.org/tutorials?cat=install
http://gazebosim.org/tutorials

Chapter 2

[63]

For the exercises in this chapter, we created our own world, ddrobot.world. This
world consists of a ground plane and two construction cones for you to drive the
robot around. You will find this file in the ros_robotics package under ros_
robotics/worlds. We will launch our dd_robot model into this world using the
ddrobot_gazebo.launch launch file found in the ros_robotics/launch directory.

Getting familiar with Gazebo
The Gazebo GUI is similar to rviz in many ways. The central window provides the
view for Gazebo's 3D world environment. The grid is typically configured to be the
ground plane of the environment on which all the models are held due to gravity in
the environment. A red-green-blue axis is provided at the origin of the 3D Cartesian
co-ordinate system. The red axis represents the x axis, green is y and blue is z.

Gazebo also has mouse controls to navigate the scene as shown in the following image:

Gazebo mouse control

For Gazebo keyboard shortcuts, visit http://gazebosim.org/hotkeys.

Double-clicking on a spot in the environment will cause the display to be zoomed in
to that spot.

For Gazebo, the standard units of measurement are in terms of
meters and kilograms (like rviz).

http://gazebosim.org/hotkeys

Creating Your First Two-Wheeled ROS Robot (in Simulation)

[64]

The main screen of Gazebo is divided into four main display areas: the central
window, the World, Insert and Layers panels to the left, the Joints panel to the right,
and the Simulation panel at the bottom. Across the top of these display areas are
the Environment toolbar and the main screen menu bar. Each of the display areas
of Gazebo will be described in the following sections. This overview should provide
basic familiarity with the Gazebo GUI.

Environment toolbar
The toolbar at the top of the Gazebo environment display provides options for
interacting with the simulation models and environment as shown in the following
screenshot:

Gazebo environment toolbar

Each option represented by an icon has a label that is revealed when the cursor
hovers over the icon. Keyboard shortcuts are also displayed in parentheses. The
following labels appear on the toolbar icons (from left to right) and offer the
following functionalities:

•	 Selection Mode (Esc): This selects a model in the environment when the
cursor is clicked on it or a drag box is wrapped around it. The World panel
displays the model's properties. When selected, a white outline 3D box is
drawn around the model. A yellow disc is placed where the cursor is clicked
and becomes the focal point when the mouse controls are used to move
around the scene. (Hitting the Esc key will also activate this mode.)

•	 Translation Mode (T): This selects a model in the environment when the
cursor is clicked on it or a drag box is wrapped around it. A 3D axis (red-
green-blue) is drawn and centered on the model. Use the cursor and left
mouse button to move the model anywhere in the x, y, and z planes. (Hitting
the T key will also activate this mode.)

•	 Rotation Mode (R): This selects a model in the environment when the cursor
is clicked on it or a drag box is wrapped around it. A 3D sphere (red-green-
blue) is drawn and centered around the model. Use the cursor and left mouse
button to rotate the model in the roll, pitch, or yaw directions using one of
the rings. (Hitting the R key will also activate this mode.)

•	 Scale Mode (S): This selects a model in the environment when the cursor is
clicked on it or a drag box is wrapped around it. A 3D axis (red-green-blue)
with square endpoints is drawn and centered on the model. Scaling of a
model is currently limited to only simple shapes. (A warning message will be
displayed in the terminal window if the user attempts to scale other models.)

Chapter 2

[65]

•	 Undo (Ctrl + Z): This reverses the last action.
•	 Redo (Shift + Ctrl + Z): This reverses the last undo.
•	 The next set of icons is used to create simple shapes in Gazebo: Box,

Sphere, and Cylinder. Click on the icon and place the image shape anywhere
in the 3D environment. The scale mode can then be used to resize the object.

•	 The next set of icons is used for lighting: Point Light, Spot Light, and
Directional Light. Explore these if you wish to change the lighting and
shadows in your environment.

•	 Copy (Ctrl + C): This copies the selected item to the clipboard.
•	 Paste (Ctrl + V): This pastes the item from the clipboard.
•	 In Selection mode, hold Ctrl and select 2 objects to align: Click on this icon

when the objects are selected to align their axis in x, y or z and aligning to
the minimum, center or maximum of the first or last object selected. (Lots of
options here.)

•	 Snap Mode (N): In this mode, you can select the locations of two objects that
you want to join.

•	 Change the View Angle: This changes the perspective view of the scene
from various predefined angles.

•	 Screenshot: The camera icon will take a picture of the simulation scene and
save it to your ~/gazebo/pictures directory.

•	 Log Data (Ctrl + D): This will record the simulation to reproduce it later. A
compressed .log file is produced which contains the initial full description
of the whole world, then a series of world states. By default, the .log file is
saved to the ~/.gazebo/log directory. The following screenshot shows the
window that allows you to start the recording and select where the log file is
stored:

Gazebo Data Logger screen

Creating Your First Two-Wheeled ROS Robot (in Simulation)

[66]

World, Insert and Layers panels
The World, Insert and Layers panels are shown in the following screenshot:

Gazebo World, Insert and Layers panel

The World panel to the left of the 3D environment provides access to all of the
environment elements. These environment elements are GUI, Scene, Spherical
Coordinates, Physics, Models, and Lights. By clicking on any of these labels, a
properties panel will appear below the World panel with a properties list specific for
that element.

The GUI element displays the camera name and pose in x, y, z, roll, pitch and
yaw. The Scene selections allow the user to alter the ambient environment, the
background and the shadows. The Spherical Coordinates displays the Surface
Model in use and the Latitude, Longitude, Elevation and Heading. The Physics
selections check whether the physics engine is enabled. If the physics engine is
enabled, the user can control the real-time update rate, gravity, and constraints
under the Physics tab as well as other properties. The Models list will display all
models active in the environment. When the $ gazebo command is used, the only
active model will be the ground_plane model. By clicking on the ground_plane
label, the properties displayed will be the model name, a checkbox to make the
model static, the model's pose (x, y, z, roll, pitch, and yaw) in the environment, and
its link information.

These details are lengthy so you can explore them at your leisure. The last
element, Lights, displays all the light sources for the environment. For our default
environment, the sun is the only source. The properties of the sun are its pose,
diffuse, specular, range, and attenuation. Our primary interest for this book will be
the Models.

Chapter 2

[67]

The Insert tab is behind the World panel. The Insert panel accesses two locations
to allow the user to select from a number of predefined models to be added to
the environment. The first location, /home/<username>/.gazebo/models, is the
user's repository of Gazebo models that they have selected from the main Gazebo
repository. This repository is the second selection available at http://gazebosim.
org/models/.

The Layers tab behind the Insert panel will initially be empty. Visualization layers
are defined in a model's SDF file to create the capability to toggle visual parts of the
model on and off through the Gazebo GUI. A layer may contain one or more models.
Toggling a layer on or off will display or hide the model(s) in that layer.

Joints panel
The panels to the right and left of the center display can be revealed or hidden
using the three tiny rectangles in the black vertical strip. On the right side, the user
can click and drag these three tiny rectangles to reveal the Joints panel. (Widen the
window if the panel is not responding.) Under the Joints panel, there are three tabs
labeled: Force, Position, and Velocity. There is also a Reset button to return your
model to its original state (if possible):

Gazebo Joints panel

To use these controls, the model must be selected to reveal the available model joints.
For the joint control, we have the following values:

•	 Force values are in Newton meters
•	 Position values are in radians or degrees (make a selection from the

drop-down window), P Gain (for proportional gain), I Gain (for integral
gain), and D Gain (for derivative gain) (Scroll the window using the
horizontal bar at the bottom of the panel to see all of these fields.)

•	 Velocity values are in m/s (for meters per second), P Gain (for proportional
gain), I Gain (for integral gain), and D Gain (for derivative gain)

http://gazebosim.org/models/
http://gazebosim.org/models/

Creating Your First Two-Wheeled ROS Robot (in Simulation)

[68]

The slider bar at the bottom of the Joints panel will help you
see the information to the right of the display.

Main window menu bar
The top-most main window menu bar provides options under the basic File, Edit,
Camera, View, Window, and Help headings as shown here:

•	 File: Save World, Save World As, Save Configuration, Clone World, and
Quit

•	 Edit: Reset Model Poses, Reset World, Building Editor, and Model Editor
•	 Camera: Orthographic, Perspective, FPS View Control, Orbit View Control,

and Reset View Angle
•	 View: Grid, Origin, Transparent, Wireframe, Collisions, Joints, Center of

Mass, Inertias, Contacts, Link Frames
•	 Window: Topic Visualization, Oculus Rift, Show GUI Overlays, Show

Toolbars, and Full Screen
•	 Help: Hot Key Chart and About

These selections can be very useful. For example, if you wish to check the center
of mass for your URDF in Gazebo, click on the View heading and select both the
Wireframe and the Center of Mass options.

Simulation panel
At the bottom of the environment display is a handy tool used to run simulation
scripts. It is useful when recording and playing back simulation runs.

Before we can load our dd_robot model into Gazebo, we must make a few
modifications to the URDF file.

Modifications to the robot URDF
Gazebo expects the robot model file to be in SDF format. SDF is similar to the URDF,
using some of the same XML descriptive tags. With the following modifications,
Gazebo will automatically convert the URDF code into an SDF robot description. The
following sections will describe the steps to be taken.

Chapter 2

[69]

Adding the Gazebo tag
The <gazebo> tag must be added to the URDF to specify additional elements needed
for simulation in Gazebo. This tag allows for identifying elements found in the SDF
format that are not found in the URDF format. If a <gazebo> tag is used without a
reference="" property, it is assumed that the <gazebo> elements refer to the whole
robot model. The reference parameter usually refers to a specific robot link.

Other <gazebo> elements for both the links and joints can be applied to your robot
but are not described in this book because of the extensive list and explanations of
how they applied to the physics of Gazebo.

Refer to the Gazebo tutorial at http://gazebosim.org/
tutorials/?tut=ros_urdf for a list of these elements and
their usage (Elements for Links and Elements for Joints).

Specifying color in Gazebo
The method of specifying link colors in rviz does not work in Gazebo since Gazebo
has adopted OGRE's material scripts for coloring and texturing links. Therefore, a
Gazebo <material> tag must be specified for each link. These tags can be placed in
the model file just before the ending </robot> tag:

<gazebo reference="base_link">
 <material>Gazebo/Blue</material>
</gazebo>

<gazebo reference="right_wheel">
 <material>Gazebo/Black</material>
</gazebo>

<gazebo reference="left_wheel">
 <material>Gazebo/Black</material>
</gazebo>

A word about the <visual> and <collision> elements
in Gazebo
Gazebo will not use the <visual> elements the same as the <collision> elements if
you do not explicitly specify them for each link. Instead, Gazebo will treat your link
as invisible to laser scanners and collision checking. If your model ends up partially
embedded in Gazebo's ground plane, you should check your <collision> elements.

http://gazebosim.org/tutorials/?tut=ros_urdf
http://gazebosim.org/tutorials/?tut=ros_urdf

Creating Your First Two-Wheeled ROS Robot (in Simulation)

[70]

Verifying a Gazebo model
The dd_robot URDF has been updated with the <gazebo> tags and the <material>
elements, as described earlier, and is stored in the downloaded file, dd_robot.gazebo.
The .gazebo extension is used by the author to signify that this file is ready for use in
Gazebo. An easy tool exists to check whether your URDF can be properly converted
into an SDF. Simply run the following command:

$ gzsdf –p dd_robot.gazebo

or

$ gzsdf -p $(rospack find ros_robotics)/urdf/dd_robot.gazebo

This command outputs the entire SDF to the screen so you may wish to redirect the
output to a file. The output will show you the SDF that has been generated from
your input URDF as well as any warnings about the missing information required to
generate the SDF.

Viewing the URDF in Gazebo
Viewing the dd_robot model in Gazebo requires a launch file obtained or created by
one of the following ways:

•	 Using the downloaded ddrobot_gazebo.launch file from the ros_
robotics/launch directory from the book's website

•	 Creating the ddrobot_gazebo.launch file from the following XML code:
<launch>
 <!-- We resume the logic in gazebo_ros package
 empty_world.launch,
 changing only the name of the
 world to be launched -->
 <include file="$(find
 gazebo_ros)/launch/empty_world.launch">
 <arg name="world_name"
 value="$(find ros_robotics)/worlds/ddrobot.world"/>

 <arg name="paused" default="false"/>
 <arg name="use_sim_time" default="true"/>
 <arg name="gui" default="true"/>
 <arg name="headless" default="false"/>
 <arg name="debug" default="false"/>
 </include>

 <!-- Spawn dd_robot into Gazebo -->

Chapter 2

[71]

 <node name="spawn_urdf" pkg="gazebo_ros"
 type="spawn_model" output="screen"
 args="-file
 $(find ros_robotics)/urdf/dd_robot.gazebo
 -urdf -model ddrobot" />

</launch>

This launch file inherits most of the necessary functionality from empty_world.
launch from the gazebo_ros package. The only parameter that is changed is the
world_name parameter by substituting the ddrobot.world world file. In addition
to this, our URDF-based dd_robot model is launched into Gazebo using the ROS
spawn_model service from the gazebo_ros ROS node. If you plan to reuse this code
or share it, it is recommended that you add the dependency to your package.xml
file for the ros_robotics package. The following statement should be added under
dependencies:

<exec_depend>gazebo_ros</exec_depend>

The ddrobot.world world file contains a ground plane and two construction cones.
This file can be found in the ros_robotics/worlds directory on the book's website,
or you can create the ddrobot.world file from the following code:

<?xml version="1.0" ?>
<sdf version="1.4">
 <world name="default">
 <include>
 <uri>model://ground_plane</uri>
 </include>
 <include>
 <uri>model://sun</uri>
 </include>
 <include>
 <uri>model://construction_cone</uri>
 <name>construction_cone</name>
 <pose>-3.0 0 0 0 0 0</pose>
 </include>
 <include>
 <uri>model://construction_cone</uri>
 <name>construction_cone</name>
 <pose>3.0 0 0 0 0 0</pose>
 </include>
 </world>
</sdf>

Creating Your First Two-Wheeled ROS Robot (in Simulation)

[72]

The ddrobot_gazebo.launch file should be found in the /launch
directory and ddrobot.world should be found in the /worlds
directory of the ros_robotics ROS package.

Now we are ready to launch our dd_robot model in Gazebo by typing the following
command:

$ roslaunch ros_robotics ddrobot_gazebo.launch

This command will launch both the Gazebo server and GUI client with the dd_robot
model and world automatically launched inside the Gazebo environment. Gazebo
will look similar to the following screenshot:

dd_robot.gazebo in Gazebo

Tweaking your model
If your robot model behaves unexpectedly within Gazebo, it is likely because your
model URDF needs further tuning to accurately represent its physics in Gazebo.
Refer to the SDF user guide at http://sdformat.org/spec for more information on
various properties available in Gazebo, which are also available in the URDF via the
<gazebo> tag.

http://sdformat.org/spec

Chapter 2

[73]

Moving your model around
To understand the physics of Gazebo, it is important to play with your model in
Gazebo. Use the Selection, Translation, and Rotation modes on the Environment
toolbar to move your model to different positions, and then watch how the gravity
model works. If you are brave, you can even manipulate the environment to
experiment with the relationship of the elements. For example, remove the ground
plane and see what happens.

Simple joint control of our dd_robot model is possible by using the Joints panel,
which is to the right of the center environment. In selection mode, click on the
ddrobot model and the model will be highlighted with a white outline box. The
joint_left_wheel and joint_right_wheel joints will appear under the tabbed
sections with a value of 0.000 for each of the input windows. We will experiment
by changing the values of the left and right wheel joints to see the dd_robot model
move around on the ground plane. Play with the values for Force, Position and
Velocity to move your dd_robot. The following screenshot shows our dd_robot
ready to be controlled via the Joints panel:

dd_robot.gazebo in Gazebo with the Joints panel

Creating Your First Two-Wheeled ROS Robot (in Simulation)

[74]

A greater control of our model can be achieved by adding transmission blocks to the
URDF for the model joints. Gazebo plugins are also needed to simulate controllers
that publish ROS messages for motor commands. A discussion of these advanced
topics will be delayed until Chapter 5, Creating Your First Robot Arm (in Simulation),
when the reader has a better understanding of ROS messages for control of mobile
robots. Chapter 5, Creating Your First Robot Arm (in Simulation) will walk you through
the construction of a URDF/SDF for a robot arm with a joint control implemented
via Gazebo plugins. The implementation of transmission blocks and plugins for our
dd_robot model is left as an exercise on completion of Chapter 5, Creating Your First
Robot Arm (in Simulation).

Other ROS simulation environments
Gazebo is only one simulator that can interface to ROS and ROS models. A list of
other simulators, both open source and commercial, is provided along with a website
reference:

•	 MATLAB with Simulink is a commercially available, multi-domain
simulation and modeling design package for dynamic systems. It provides
support for ROS through its Robotics System Toolbox (http://www.
mathworks.com/hardware-support/robot-operating-system.html).
MATLAB ROS examples are available at the website https://www.
mathworks.com/help/robotics/examples/get-started-with-ros.html.
An introduction of the MATLAB ROS interface is presented in Chapter 10,
Controlling Baxter with MATLAB©.

•	 Stage is an open source 2D simulator for mobile robots and sensors
(http://playerstage.sourceforge.net/index.php?src=stage/).

•	 Virtual Robot Experimentation Platform (V-REP) is a commercially
available robot simulator with an integrated development environment.
Developed by Coppelia Robotics, V-REP lends itself to many robotic
applications (http://www.coppeliarobotics.com/).

http://www.mathworks.com/hardware-support/robot-operating-system.html
http://www.mathworks.com/hardware-support/robot-operating-system.html
https://www.mathworks.com/help/robotics/examples/get-started-with-ros.html
https://www.mathworks.com/help/robotics/examples/get-started-with-ros.html
http://playerstage.sourceforge.net/index.php?src=stage/
http://www.coppeliarobotics.com/

Chapter 2

[75]

Summary
Your first robot design has been a simple two-wheeled differential drive model
defined in URDF. There are many other properties that can be defined in the URDF
file, and you are free to extend the dd_robot model. This introductory exercise was
provided so that the elements of simulation can be understood by the reader. In an
upcoming chapter, we will extend our understanding of URDF by learning about
Xacro. We will build a Xacro file to define a robot model for a robot arm.

In Chapter 3, Driving Around with TurtleBot, we will use a simulated and a real
TurtleBot to explore a variety of ROS control methods for mobile robot navigation.
The rqt toolset will be introduced and used to monitor and control the TurtleBot's
movements.

[77]

Driving Around with TurtleBot
It is time for a real ROS robot! A robot called TurtleBot will be discussed and
described both in simulation and as the real robot. In this chapter, you will learn how
to move TurtleBot as a simulated robot and as the real robot. Even if you do not have
a real TurtleBot, the examples in this chapter will teach you the techniques to control
a mobile robot.

After introducing TurtleBot 2, we will cover the following topics:

•	 Loading the TurtleBot simulation software and using Gazebo with TurtleBot
•	 Setting up your system to control a real TurtleBot from its own netbook

computer or wirelessly from a remote computer
•	 Controlling the movement of the TurtleBot with ROS terminal commands or

using the keyboard for control in teleoperation
•	 Creating a Python script which, when executed, moves TurtleBot
•	 Using rqt tools to provide a GUI that aids the user in analyzing robot

programs and also monitoring and controlling the robot
•	 Exploring an environment using TurtleBot's odometry data
•	 Executing the automatic docking program of TurtleBot
•	 Introducing a newer version of TurtleBot, called TurtleBot 3, and describing

the simulation and keyboard control of a real TurtleBot 3

Driving Around with TurtleBot

[78]

Introducing TurtleBot 2
TurtleBot is a mobile robot that can be purchased as a kit or fully assembled. Several
companies in North America and around the world sell TurtleBots. The TurtleBot 2
model is shown in the following image:

Turtlebot 2

A list of manufacturers can be found at http://www.turtlebot.com/
manufacturers/.

http://www.turtlebot.com/manufacturers/
http://www.turtlebot.com/manufacturers/

Chapter 3

[79]

The main items that comprise the TurtleBot 2 model, from bottom to top in the
preceding image, are as follows:

•	 A mobile base that also serves as support for the upper stages of the robot
•	 A netbook resting on a module plate
•	 Another module plate used to hold items
•	 A vision sensor with a color camera and 3D depth sensor
•	 The top most module plate used to hold items

We will discuss the main items briefly here and provide more details for the base and
the netbook later in this chapter. Overall, the TurtleBot model stands about 420 mm
(16.5 inches) high and the base is approximately 355 mm (14 inches) in diameter.

The particular base in the authors' TurtleBot is a Kobuki mobile platform produced by
the Yujin Robot company. TurtleBot rests on the floor on two wheels and a caster. The
base is configured as a differential drive base, which means that when the TurtleBot
is moving, the rotational velocity of the wheels can be controlled independently. So,
for example, TurtleBot can move back and forth in a straight line when the wheels are
driven in the same direction, clockwise (CW) or counterclockwise (CCW), with the
same rotational velocity. If the wheels turn at different rotational velocities, TurtleBot
can make turns as the velocity of the wheels is controlled. More details are available at
http://kobuki.yujinrobot.com/about2/.

A model of a differential drive robot was built in the Building a differential drive robot
URDF section in Chapter 2, Creating Your First Two-Wheeled ROS Robot (in Simulation).
The base has a battery pack and various power connections for accessories, including
a USB connection and power plug for the netbook. TurtleBot also comes with a
separate docking station for charging the Kobuki base.

The netbook is essentially a laptop computer but is lightweight with a small screen
compared to many laptops. The netbook purchased with TurtleBot has Ubuntu and
ROS packages installed. For remote control, the netbook is connected via Wi-Fi to
a network and a remote computer. There are USB ports used to plug in the vision
sensor or other accessories. The setup of the network is described in the Networking
the netbook and remote computer section of this chapter.

The vision sensor, as shown in the preceding image of TurtleBot 2, is an Xbox 360
Kinect sensor manufactured by Microsoft. Originally designed for video games, the
Kinect sensor is a popular vision and depth sensor for robotics.

http://kobuki.yujinrobot.com/about2/

Driving Around with TurtleBot

[80]

The ROS wiki has a series of tutorials that cover TurtleBots 1, 2,
and 3, including the Gazebo simulator, at the following link:
http://wiki.ros.org/Robots/TurtleBot

Loading TurtleBot 2 simulator software
This section deals with loading software packages for the TurtleBot simulator. The
physical TurtleBot is not involved because these software packages are loaded on
your laptop or desktop computer. It is assumed that Ubuntu 16.04 and ROS Kinetic
software are installed on the computer that you will use for the simulation. This
installation is described in the Installing and launching ROS section in Chapter 1,
Getting Started with ROS.

Note that TurtleBot 2 software has not been completely upgraded
to Kinetic as of this writing. On the ROS wiki, the latest supported
release of TurtleBot 2 documentation is Indigo.

In a terminal window, type the following command:

$ sudo apt-get install ros-kinetic-turtlebot ros-kinetic-turtlebot-apps
ros-kinetic-turtlebot-interactions ros-kinetic-turtlebot-simulator
ros-kinetic-kobuki-ftdi ros-kinetic-turtlebot-gazebo

A large number of ROS packages are loaded by the sudo apt-get command. The
groups are as follows:

•	 The TurtleBot software has ROS packages to simulate TurtleBot and
control the real TurtleBot. The TurtleBot simulator download includes the
turtlebot_gazebo package.

•	 The Kobuki software consists of ROS packages used to drive or simulate the
mobile base.

To view the TurtleBot packages downloaded in each category, type the following
command:

$ rospack list | grep turtlebot

To see the packages that apply to the base, type the following command:

$ rospack list | grep kobuki

The other software can be viewed in a similar way.

http://wiki.ros.org/Robots/TurtleBot

Chapter 3

[81]

Launching TurtleBot 2 simulator
in Gazebo
The simulator package Gazebo was introduced in Chapter 2, Creating Your First
Two-Wheeled ROS Robot (in Simulation). If you run the examples there using the
differential drive robot, dd_robot, you should have a good understanding of
Gazebo, including how to load models and worlds and manipulate the environment.

To run the simulator, you need to install the TurtleBot software, as described in the
previous section.

To start the simulation, open a new terminal window and type the following
command:

$ roslaunch turtlebot_gazebo turtlebot_world.launch

If all goes well, you will see a screenshot similar to this one:

TurtleBot simulated in Gazebo

If you do not see Gazebo start, refer to the following Problems and troubleshooting
section. If that is the case, there are a few issues that may help you if you are having
problems with the simulation and the use of Gazebo.

Driving Around with TurtleBot

[82]

TurtleBot is in the approximate center of the world view, as seen from an overhead
camera. The initial position of TurtleBot in the Gazebo world is at the origin. To
determine the pose of TurtleBot, choose World in the Gazebo left panel. Click on
Models, click on mobile_base, and view the Property and Value window. Click on
the arrowhead at pose and read the values. These values should be close to (0, 0, 0).
The squares on the Gazebo ground-plane grid are 1 meter square.

Change the viewing angle to a side view and select the Translation-Mode on the
environment toolbar and click on TurtleBot. A white outline box should appear
around TurtleBot. If you move TurtleBot away from Gazebo's origin, you should see
two coordinate axes, as in the following screenshot. One is for Gazebo showing the
origin of the world coordinates and another coordinate system is attached to TurtleBot.
In both cases, the x, y, and z axes are colored red, green, and blue respectively.

The Gazebo positions are absolute with respect to the Gazebo origin. In the
screenshot shown, TurtleBot is moved ahead by 2 meters, as shown by the pose data
for the mobile_base in the left panel. The other values are approximately zero:

TurtleBot simulated with axes shown

The pose of any object in the Gazebo world can be found by selecting it in the left
pane and viewing its pose. The bookcase is at approximately (0, 1.5) meters in (x, y).

If you have modified the scene, you can take a picture of it by left-clicking on the
camera icon on the toolbar. This picture will be saved in
/home/<user_name>/.gazebo/pictures.

Chapter 3

[83]

Roll the cursor over the symbols on the Gazebo toolbar to
obtain their meaning.

Problems and troubleshooting
The authors have tried their best to present the material in a clear manner so that you
can follow along and achieve the same results. However, computers may differ in
their abilities to run simulations that rely heavily on graphics, as Gazebo does.

We have run the code on relatively new laptops, older laptops, and on a powerful
workstation. On a laptop, the response to commands from the keyboard may be
slow, sometimes painfully so! Be patient: if the software is working, TurtleBot will
respond if commanded to move.

Some serious problems that may occur are as follows:

•	 On some older laptops, the hardware accelerator will not allow Gazebo to
run, but this can be fixed by adding the following statement to the .bashrc
file, which disables the hardware accelerator:
export LIBGL_ALWAYS_SOFTWARE=1

•	 Sometimes, it is necessary to close all the windows and start over if the
system does not respond.

•	 If you execute the roscore or roslaunch command, and you have changed
your ROS Master address using an export command to be linked to the
TurtleBot network, as described later in this chapter, you may receive an
error message similar to this:
ERROR: unable to contact ROS master at [http://<IP Address>:11311]

The traceback for the exception was written to the log file

It probably means that the ROS addresses are incorrect for your local machine.
Usually, the problem can be fixed by issuing the following commands:
$ export ROS_MASTER_URI=http://localhost:11311

$ export ROS_HOSTNAME=localhost

This returns the ROS control to your local computer to run the simulator.
You must run these export commands in each new terminal window that is
opened or create a script file with these commands.
Check the results for these environment variables with the following command:
$ env | grep ROS

Make sure that the ROS_MASTER_URI variable points to the proper location.

Driving Around with TurtleBot

[84]

For more information on computer and network addresses, refer to the Networking
the netbook and remote computer section in this chapter.

ROS commands and Gazebo
In the left side pane of the Gazebo window, the list of models will appear when
you click on Models. Notice, particularly, the mobile_base link. You can find
the position and orientation of the base with the rosservice command. In a new
terminal window, type the following command:

$ rosservice call gazebo/get_model_state '{model_name: mobile_base}'

The output of the preceding command is similar to the following if TurtleBot is
at the origin:

pose:

 position:

 x: 0.00161336508139

 y: 0.0091790167961

 z: -0.00113098620237

 orientation:

 x: -5.20108036968e-05

 y: -0.00399736084462

 z: -0.0191615228716

 w: 0.999808408868

 twist:

 linear:

 x: 9.00012388429e-06

 y: 6.54279879125e-05

 z: -1.4365465304e-05

 angular:

 x: -0.000449167550145

 y: 0.000197996689198

 z: -0.000470014447946

success: True

status_message: GetModelState: got properties

Chapter 3

[85]

Looking at the position and orientation, we can see that the TurtleBot base is
approximately at the center (x=0, y=0, z=0) of the grid, as you can see by zooming
out in the world view. Since so many decimal places are shown, it appears that
TurtleBot is off center.

However, if you notice, the first two decimal places in the position are zeros, and you
can see that the values are very small, near zero. The orientation is also near zero and
is represented in a special notation called a quaternion.

To see the complete list of services, type the following command:

$ rosservice list

You can also use the rosnode list or rosmsg list ROS commands, as was shown
in Chapter 1, Getting Started with ROS, to list the nodes or messages.

With ROS commands, you can move the TurtleBot, as we did with the turtle in
Turtlesim in Chapter 1, Getting Started with ROS. First, find the topic that will control
the mobile_base link since that is the name given in Gazebo's left panel:

$ rostopic list | grep mobile_base

The output is as follows:

/mobile_base/commands/motor_power

/mobile_base/commands/reset_odometry

/mobile_base/commands/velocity

/mobile_base/events/bumper

/mobile_base/events/cliff

/mobile_base/sensors/bumper_pointcloud

/mobile_base/sensors/core

/mobile_base/sensors/imu_data

/mobile_base_nodelet_manager/bond

Now you can find the message type published by the rostopic /mobile_base/
commands/velocity that moves the base by typing the following command:

$ rostopic type /mobile_base/commands/velocity

The output is as follows:

geometry_msgs/Twist

Driving Around with TurtleBot

[86]

From the previously shown screen printout of the rosservice command to call
gazebo/get_model_state, you can see that the twist is a six-dimensional value
although all six need not be specified. The values represent velocities, which in the case
of the TurtleBot represent the linear velocity along its forward x axis and the angular
velocity about the vertical z axis. A reference is available at the following website:

https://en.wikipedia.org/wiki/Screw_theory

If you drive the TurtleBot with a command, the possible motions are linear along its
x direction and angular rotation about the z axis since the TurtleBot moves on the xy
plane and cannot fly. To drive it forward, run the following command:

$ rostopic pub -r 10 mobile_base/commands/velocity \geometry_msgs/Twist
'{linear: {x: 0.2}}'

Notice that the TurtleBot moves forward slowly until you stop it or it drives off the
screen or it hits one of the objects in the environment. To stop its motion, press Ctrl
+ C. To bring the TurtleBot back, change the value of x to x: -0.2 in the rostopic
command and execute it.

There are many other features of Gazebo that can be explored, and you are
encouraged to try various selections on the menu bar (File, Edit, Camera, View,
Window, and Help). Also, you can open the rightmost third panel and change the
values of Force, Position, or Velocity for the TurtleBot simulator.

Keyboard teleoperation of TurtleBot 2 in
simulation
A command to launch the teleop mode using the keyboard keys to move TurtleBot
on the screen is as follows:

$ roslaunch turtlebot_teleop keyboard_teleop.launch

This command allows keyboard keys to maneuver the TurtleBot on the screen. The
keys to command the motion are as follows:

Control Your Turtlebot!

Moving around:

u i o

j k l

m , .

q/z : increase/decrease max speeds by 10%

https://en.wikipedia.org/wiki/Screw_theory

Chapter 3

[87]

w/x : increase/decrease only linear speed by 10%

e/c : increase/decrease only angular speed by 10%

space key, k : force stop

anything else : stop smoothly

CTRL-C to quit

currently: speed 0.2 turn 1

Think of the letter k as the center of TurtleBot looking down on it. Start with the
letter i to move the TurtleBot straight ahead along its x axis and try the other keys.

Remember to click on the window in which you executed the roslaunch command
to move TurtleBot. This is termed focusing on the window.

For now, we leave Gazebo and concentrate on installing software to control the real
TurtleBot. However, even if you do not have access to a real TurtleBot, many of the
commands and scripts that will be presented can also be used with the simulated
TurtleBot. In fact, ideally, the Gazebo simulation should reflect the motion of the real
TurtleBot in its environment.

For example, we later present a Python script that moves the real TurtleBot forward.
You can use the command to run the script with Gazebo also.

Setting up to control a real TurtleBot 2
The TurtleBot 2 system consists of the TurtleBot base and its netbook that rides along
with the TurtleBot and a separate remote computer that is used to control the robot.
The netbook and computer communicate wirelessly once a network connection is
established. This section describes the setup of the system, including the network.

A brief overview of the steps to set up and test the TurtleBot is as follows:

1.	 Set up the netbook with Ubuntu 16.04 and ROS Kinetic, and then load the
TurtleBot software packages.

2.	 Set up the remote computer with similar software.
3.	 Test the TurtleBot in the standalone mode to assure proper operation.
4.	 Create the network of computers, being careful to define the TurtleBot

netbook as the ROS Master to the remote computer.
5.	 Test the TurtleBot by communicating with commands wirelessly from the

remote computer to the netbook of the TurtleBot.

Driving Around with TurtleBot

[88]

With Ubuntu and the ros-kinetic-desktop-full installed, the packages for the
TurtleBot are installed with the following command:

$ sudo apt-get install ros-kinetic-turtlebot ros-kinetic-turtlebot-apps
ros-kinetic-turtlebot-interactions ros-kinetic-turtlebot-simulator ros-
kinetic-kobuki-ftdi

To link the Kobuki base to the device folder of Ubuntu, find
instructions at the following link:
http://wiki.ros.org/kobuki_ftdi

To set up your netbook battery monitor for the TurtleBot, visit:
http://wiki.ros.org/turtlebot/Tutorials/indigo/
Netbook%20Battery%20Setup.
There are many tutorials that cover TurtleBot. There is a website
devoted to the TurtleBot at http://learn.turtlebot.com/
with many interesting tutorials that cover the various aspects of
the TurtleBot with details of setup, testing, and applications. This
documentation is for Ubuntu 14.04 and ROS Indigo.

TurtleBot 2 standalone test
Before we make an attempt to network the TurtleBot to a remote computer, it is wise
to test the TurtleBot in the standalone mode to determine whether the software has
been installed properly. Now disconnect the netbook from any networks. Once the
TurtleBot and its netbook are powered up, you can test software by opening a new
terminal window on the netbook and executing the following command:

$ roscore

This should respond with a screen output that ends with the following message:

started core service [/rosout]

If there are no errors indicated in the screen output, the netbook is set up correctly
with ROS.

After this, press Ctrl + C and close this terminal window. Open a new one to move
the TurtleBot around, as was done previously in simulation. On the netbook,
initialize the TurtleBot by typing the roslaunch command in the new window:

$ roslaunch turtlebot_bringup minimal.launch

http://wiki.ros.org/kobuki_ftdi
http://wiki.ros.org/turtlebot/Tutorials/indigo/Netbook%20Battery%20Setup
http://wiki.ros.org/turtlebot/Tutorials/indigo/Netbook%20Battery%20Setup
http://learn.turtlebot.com/

Chapter 3

[89]

Quite a bit of information is shown on the screen as the minimal launch proceeds,
but most of this output is not of any concern for now. The ROS Master is the netbook
indicated by the following lines:

auto-starting new master

ROS_MASTER_URI=http://localhost:11311

This will launch roscore and initialize the TurtleBot for control when the movement
commands are issued. The importance of the ROS_MASTER_URI variable will be
explained when networking the TurtleBot is discussed.

When the minimal launch is successful, you will hear TurtleBot play a jingle to
indicate that it is ready.

To move the TurtleBot, open a new terminal window, and launch teleoperation by
typing the following command:

$ roslaunch turtlebot_teleop keyboard_teleop.launch

Among other things, you will see a diagram of the control keys used to control the
robot on the screen:

Control Your Turtlebot!

Moving around:

u i o

j k l

m , .

These are the same keys as discussed previously for the TurtleBot simulator. If all
goes well, the TurtleBot will move forward, backward, or turn according to the key
pressed on the netbook.

Of course, controlling the TurtleBot from its netbook is not very satisfying. It is
done only to see that the TurtleBot software is set up correctly. In the next section,
we describe the setup of a network so that the robot can be controlled by a remote
computer.

In particular, as discussed in the Using keyboard teleoperation to move TurtleBot section
of this chapter, the keyboard keys of a remote computer are used to move TurtleBot
after it is connected to a network.

Driving Around with TurtleBot

[90]

Networking the netbook and remote
computer
ROS has the ability to allow multiple computers to communicate and share nodes,
topics, and services. In the case of TurtleBot, the netbook has limited capabilities for
graphics applications, such as rviz. It is better to run rviz and other visualization
software on a desktop computer or a powerful laptop, both of which will be called
a remote computer here to distinguish it from the netbook that rides along with the
TurtleBot.

The approach is to designate one computer in the network to run the ROS Master
identified by the ROS_MASTER_URI variable and launch the roscore process from
that computer. The choice is to set up TurtleBot's netbook as the Master since many
applications of the TurtleBot require autonomous motion without the intervention of
the remote computer.

Any other remote computer on the network will have its own IP address as the
ROS_IP address but its ROS_MASTER_URI variable will be TurtletBot 2's netbook
IP address.

Types of networks
Networks between computers can be set up in various ways. To link to the TurtleBot
from a remote computer, there are several common ways to network wirelessly:

•	 Use a network with a server computer that allows access to the internet
with Wi-Fi access, as might be found in a university or any other large
organization.

•	 Use a router that allows local communication via Wi-Fi between the netbook
and the remote computer. This is commonly used when setting up a private
network to connect devices to each other wirelessly and to the internet.

The network system in an organization may have security limitations that cover
computers that can access their network. It is best to check any such requirements.
Also, many such networks have network addresses assigned by a server using
Dynamic Host Configuration Protocol (DHCP), which means that the IP address of
a computer connected to a network can change if the computer is disconnected from
the network and then reconnected. If the IP address changes, it is important to assign
the ROS Master address as the new IP address of the TurtleBot's netbook connected
to the wireless network.

Chapter 3

[91]

Network addresses
A network identifies each computer on the network in one of several ways, but
each computer connected to the network has a unique identity. If the computers
communicate through the internet, you can refer to any internet-connected machine
by its Internet Protocol (IP) address, which is a four-part number string (such as
192.168.11.xxx), in which the first part identifies the specific network to which the
machine is connected. Another way to refer to the computer is by its hostname, which
is usually a text string that consists of the machine name and the domain name.

You can determine the hostname of your computer with the hostname command
and the username using the whoami command in the following forms:

$ hostname

$ whoami

In a ROS network, the Master is designated by a URI used to identify the name of the
Master on a network. For example, the ROS_MASTER_URI variable for the TurtleBot in
the authors' laboratory has the following address:

ROS_MASTER_URI=http://192.168.11.123:11311

The IP address in this case is 192.168.11.123. The IP address of a computer on the
network can be determined by the following Ubuntu command:

$ ifconfig

This command will list the communication properties of the computer. The screen
output will typically show an Ethernet connection (eth0) if any, a local loopback
address (lo), and the wireless IP address (wlan), which is designated as inetaddr.
The digits 11311 represent the port used by the ROS Master for communication on
the computer.

The description of the ROS networking requirements can be viewed at the following
websites:

•	 http://wiki.ros.org/ROS/NetworkSetup

•	 http://wiki.ros.org/ROS/Tutorials/MultipleMachines

There must be a network connection between the machines. Using the IP addresses
of the machines to identify the machines is sufficient. Only one machine in the
network can be the Master.

ROS_IP and ROS_HOSTNAME are environment variables that set the declared network
address of a ROS node. The convention is to use ROS_IP if you are specifying an IP
address, and ROS_HOSTNAME if you are specifying a hostname. The ROS_HOSTNAME
variable takes precedence over the ROS_IP variable.

http://wiki.ros.org/ROS/NetworkSetup
http://wiki.ros.org/ROS/Tutorials/MultipleMachines

Driving Around with TurtleBot

[92]

The ROS_MASTER_URI, ROS_IP, and ROS_HOSTNAME variables are described in the
tutorial at: http://wiki.ros.org/ROS/EnvironmentVariables.

In the case of TurtleBot, the ROS Master resides on the netbook and the netbook's
IP address must be indicated to the remote computer. On the remote computer, the
ROS_MASTER_URI variable must be set to the address of the netbook so that its nodes
can register with the Master. Once that is done, the nodes can communicate with the
Master and other nodes wirelessly.

Remote computer network setup
To link the remote computer and the TurtleBot's netbook, make sure that both the
computers communicate on the same network. This may involve changing the
network choice of the computers if there are several networks available.

For your setup of the remote computer, determine the IP addresses of the netbook
and your remote computer using the ifconfig command. Your commands will use
your specific addresses, and you will use the following commands:

$ export ROS_MASTER_URI=http://<IP address of TurtleBot>:11311

$ export ROS_IP=<IP address of remote computer>

We recommend that you add these commands to the .bashrc file so that the
TurtleBot is the ROS Master every time you open a new window.

To be more specific, on our remote computer, we edited our .bashrc file and added
the following commands to create these environment variables for the TurtleBot:

export ROS_MASTER_URI=http://192.168.11.123:11311

export ROS_IP=192.168.11.139

The ROS Master address points to the TurtleBot netbook, and the ROS_IP variable
is the IP address of our laptop used in this example. The examples just shown using
the network addresses were taken from the actual computers used in the authors'
laboratory to run TurtleBot. Of course, your addresses will be different.

To check the variables on the remote computer, type the following command to
check the IP addresses of the ROS Master and the remote computer:

$ env | grep ROS

Netbook network setup
The netbook setup instructions can be found at the ROS wiki location at: http://
wiki.ros.org/turtlebot/Tutorials/indigo/Network%20Configuration.

http://wiki.ros.org/ROS/EnvironmentVariables
http://wiki.ros.org/turtlebot/Tutorials/indigo/Network%20Configuration
http://wiki.ros.org/turtlebot/Tutorials/indigo/Network%20Configuration

Chapter 3

[93]

To set up the netbook addresses, you can type the following command at the
netbook terminal window:

$ echo export ROS_MASTER_URI=http://<IP address of TurtleBot>:11311 >>
~/.bashrc

$ echo export ROS_IP=<IP address of TurtleBot> >> ~/.bashrc

Here <IP address of TurtleBot> is replaced with the IP address of the TurtleBot
netbook, which is normally called the IP address of the TurtleBot. This sets the
TurtleBot as the Master.

Secure Shell (SSH) connection
The Secure Shell (SSH) will be used to allow remote login to the TurtleBot's netbook
from the remote computer. Check the SSH status with the following command:

$ sudo service ssh status

If the SSH service is not present, install it using this command:

$ sudo apt-get install openssh-server

Then run the previous command to check the SSH status. This software package
should be installed on both the TurtleBot netbook and the remote computer.

For the authors' TurtleBot netbook, our username is turtlebot. Your username can
be found by running the following command:

$ whoami

To communicate with the TurtleBot, on the remote computer, type the ssh command
in the following form and enter your TurtleBot password when prompted:

$ ssh <username>@<IP address of TurtleBot>

Summary of network setup
In summary, to set up the communication between the TurtleBot 2 and the remote
computer to control the robot, check the following on both the computers:

•	 TurtleBot's netbook hosts the ROS Master with:
ROS_MASTER_URI= http://<IP address of TurtleBot>:11311

and
ROS_IP=http://<IP address of TurtleBot>

Driving Around with TurtleBot

[94]

•	 The remote computer has:
ROS_MASTER_URI = http://<IP address of TurtleBot>:11311

and
ROS_IP=http://<IP address of remote computer>

The addresses here are assumed to be the addresses of the TurtleBot netbook and the
remote computer on a wireless network.

Troubleshooting your network connection
Many problems in networking ROS occur because the IP addresses of the netbook
and the remote computer are not set correctly. Perform the following steps:

1.	 Check the computers' network settings.
2.	 Make sure that the network is working by communicating with the server or

router for the network.
3.	 Use the ifconfig and env | grep ROS commands to check whether the

network addresses are set correctly.
4.	 If your network has DHCP, see if the assigned IP addresses have changed.

Some information about networks that may be helpful can be
found at the following site:
https://www.lifewire.com/networking-with-a-
router-817719

Testing the TurtleBot 2 system
To test the system and the communication, perform the following steps:

1.	 Make sure that the TurtleBot base battery and the netbook battery are
charged.

2.	 Plug in the netbook to the base and power up the base.
3.	 Turn on the netbook and log on using the netbook's password and then

connect to your network.
4.	 Give the TurtleBot room to move without obstacles in the way.
5.	 Log on to the remote computer and start communicating with the TurtleBot

through your network.

https://www.lifewire.com/networking-with-a-router-817719
https://www.lifewire.com/networking-with-a-router-817719

Chapter 3

[95]

This procedure is used to command the robot from the remote computer by typing
the ssh command at the remote computer terminal and entering the TurtleBot
password. The first example in the Using keyboard teleoperation to move TurtleBot
section will allow you to control the TurtleBot using several keyboard keys.

To start communication with the TurtleBot from the remote computer, type the ssh
command and enter the TurtleBot password when prompted:

$ ssh <username>@<IP address of TurtleBot>

(The output is not included for brevity.)

As described earlier, our TurtleBot IP address is 192.168.11.123.

The window prompt will change to the window prompt of the TurtleBot
netbook. Our netbook prompt is turtlebot@turtlebot-0428:~$
and has been left in the following command lines to identify where the
commands are issued.

After the response, you can send commands to the TurtleBot by typing the
following command:

turtlebot@turtlebot-0428:~$ roslaunch turtlebot_bringup minimal.launch

The output is as follows:

.

.

Checking log directory for disk usage. This may take awhile

After a long list of parameters and nodes, you will see the ROS Master address. In
our system, the output is as follows:

auto-starting new master

process[master]: started with pid [23426]

ROS_MASTER_URI=http://192.168.11.123:11311

This line of the output shows that the TurtleBot is the ROS Master. It is followed by a
list of the processes running and other information.

To view the nodes that are active after the minimal launch, in a second terminal use
the following command:

$ rosnode list

Driving Around with TurtleBot

[96]

TurtleBot 2 hardware specifications
Before driving the real TurtleBot around, it would be useful to understand the
capabilities of the robot in terms of its possible speed, turning capability, carrying
capacity, and other such properties. With this information, you can plan the motion
and speed of TurtleBot and design interesting applications. The specifications here
are taken from the information provided for the Kobuki base by the Yujin Robot
company. Their website for general information and specifications can be found at
the following site:

http://kobuki.yujinrobot.com/about2

A user's guide for the Kobuki base is included at the following site:

http://kobuki.yujinrobot.com/wiki/online-user-guide

The base has a rechargeable battery that powers the motors turning the wheels. The
netbook has its own battery but is not charged when the TurtleBot is moving on its
own. There are a number of sensors in the base.

In the previous examples of teleoperation, the TurtleBot linear speed in the forward or
backward direction was 0.2 meters/second or 20 cm/second. That is a bit over 1 foot
per second and is probably fast enough for a robot moving in a room with obstacles
in its way. The turning rate was 1 radian/second. Since there are 2π (6.28) radians in a
circle, the TurtleBot will rotate completely around in about 6 seconds or so.

According to the manufacturer, Yujin Robot, the maximum values are as follows:

•	 The maximum linear speed is 70 cm/second (27.5 inches/second)
•	 The maximum angular velocity is 180 degrees/second or π radians/second
•	 The payload is 5 kg (11 pounds) on a hard floor

Review the other functional and hardware specifications to familiarize yourself with
TurtleBot and its capabilities and limitations. In our laboratory for safety reasons, we
run the TurtleBot at a relatively slow speed compared to its maximum speed.

TurtleBot 2 dashboard
In this section, it is assumed that you have established communication with the
TurtleBot and can send commands to start the minimal launch.

In a new terminal window on the remote computer, type the following command to
bring up the dashboard:

$ roslaunch turtlebot_dashboard turtlebot_dashboard.launch

http://kobuki.yujinrobot.com/about2
http://kobuki.yujinrobot.com/wiki/online-user-guide

Chapter 3

[97]

Wait for the image of the dashboard to appear.

In the following Turtlebot (Kobuki) dashboard screenshot, we have clicked on
the diagnostic icon in the far upper-left corner of the screen to bring up the status
messages on the dashboard:

Kobuki dashboard

The dashboard indicates the status of various systems of the TurtleBot:

•	 A diagnostic indicator, /rosout messages, and motor control (OFF/ON) in
the upper-left corner of the screen

•	 Controls for two colored LEDs on the base that can be turned on or off
•	 Battery monitor indicators for the netbook and the Kobuki base
•	 Status of the power system, the motors, and the sensors

If your netbook battery monitor does not work, check the directions in the Setting
up to control a real TurtleBot section to select a proper battery for monitoring. The
TurtleBot's dashboard is described at the site with the selection of the Groovy and
Indigo versions: http://wiki.ros.org/turtlebot_dashboard.

http://wiki.ros.org/turtlebot_dashboard

Driving Around with TurtleBot

[98]

Moving the real TurtleBot 2
There are a number of ways to move the TurtleBot using ROS. In this section, we
present the following three methods:

•	 Using the keyboard
•	 Using ROS terminal window commands
•	 Using a Python script

Using keyboard teleoperation to move
TurtleBot 2
In a new terminal window, launch the TurtleBot keyboard teleop program on the
remote computer:

$ roslaunch turtlebot_teleop keyboard_teleop.launch

The output is as follows:

... logging to /home/harman/.ros/log/87ca9e6a-3c0c-11e7-a3ba-
6c71d9a711bd/roslaunch-D104-45931-5873.log

Checking log directory for disk usage. This may take a while.

Press Ctrl-C to interrupt

Done checking log file disk usage. Usage is <1GB.

started roslaunch server http://192.168.11.139:43506/

SUMMARY

========

PARAMETERS

 * /rosdistro: kinetic

 * /rosversion: 1.12.7

 * /turtlebot_teleop_keyboard/scale_angular: 1.5

 * /turtlebot_teleop_keyboard/scale_linear: 0.5

Chapter 3

[99]

NODES

 /

turtlebot_teleop_keyboard (turtlebot_teleop/turtlebot_teleop_key)

ROS_MASTER_URI=http://192.168.11.123:11311

core service [/rosout] found

process[turtlebot_teleop_keyboard-1]: started with pid [5882]

Control Your Turtlebot!

Moving around:

u i o

j k l

m , .

q/z : increase/decrease max speeds by 10%

w/x : increase/decrease only linear speed by 10%

e/c : increase/decrease only angular speed by 10%

space key, k : force stop

anything else : stop smoothly

CTRL-C to quit

currently: speed 0.2 turn 1

We have left the entire output from the launch because it is useful to know the
parameters and nodes involved when a package is launched. Make sure that the
TurtleBot base and the netbook batteries are sufficiently charged so you can move
the TurtleBot around to become familiar with its capabilities for straight-line motion
and rotation. Now try the i key to move the TurtleBot forward or the , key to drive
backward. The speed is 0.2 meters/second.

Driving Around with TurtleBot

[100]

Using ROS commands to move TurtleBot 2
around
There are a number of ways to control the TurtleBot movement other than using the
keyboard. There are several ROS commands that are useful to move and monitor the
TurtleBot in motion:

•	 rostopic pub is used to publish commands to move the TurtleBot
•	 rostopic echo is used to display the messages sent

After the TurtleBot has been brought up with the minimal launch command, the
rostopic pub command can be used to move and turn the TurtleBot. To move the
TurtleBot forward, issue this command from the remote computer:

$ rostopic pub -r 10 /mobile_base/commands/velocity \geometry_msgs/Twist
'{linear: {x: 0.2}}'

TurtleBot should move forward continuously at 0.2 meters/second until you press
Ctrl + C while the focus is on the active window.

This command publishes (pub) the /mobile_base/commands/velocity topic at the
rate of 10 times per second. The –r variable indicates that the rate is repeated. To
send the message once, use -1 instead of –r.

To move the TurtleBot backward, issue the following command:

$ rostopic pub -r 20 /mobile_base/commands/velocity \geometry_msgs/Twist
'{linear: {x: -0.2}}'

Always press Ctrl + C to stop TurtleBot.

To cause the robot to turn in a circle requires some forward velocity and angular
velocity, which the following command shows:

$ rostopic pub -r 10 /mobile_base/commands/velocity \geometry_msgs/Twist
'{linear: {x: 0.2}, angular: {x: 0, y: 0, z: 1.0}}'

The linear speed is 0.2 meters/second and the rotation is 1.0 radian (about 57
degrees) per second.

To view the messages sent, type the following command in a separate terminal
window:

$ rostopic echo /mobile_base/commands/velocity

Chapter 3

[101]

The output is as follows:

linear:

 x: 0.2

 y: 0.0

 z: 0.0

angular:

 x: 0.0

 y: 0.0

 z: 1.0

The message repeats the linear velocity and angular rotation values being sent 10
times a second. Use Ctrl + C to stop the display.

Writing your first Python script to control
TurtleBot 2
We will present a simple Python script to move the TurtleBot in this section. The
basic approach to create a script begins with a design. The design should detail the
activity to be accomplished. For example, a script can command TurtleBot to move
straight ahead, make several turns, and then stop. The next step is to determine
the commands for TurtleBot to accomplish the tasks. Finally, a script is written and
tested to see whether TurtleBot responds in the expected way. The remote computer
will execute the Python script and TurtleBot will move as directed if the script is
correctly written.

In terms of the TurtleBot commands that will be used, we can summarize the process
as follows:

1.	 Design the program outlining the activities of TurtleBot when the script
is executed

2.	 Determine the nodes, topics, and messages to be sent (published) or received
(subscribed) from the TurtleBot during the activity

3.	 Study the ROS Python tutorials and examples to determine the way to
write Python statements that send or receive messages between the remote
computer and the TurtleBot

Driving Around with TurtleBot

[102]

There is a great deal of documentation describing ROS Python scripts. The statement
structure is fixed for many operations. The http://wiki.ros.org/rospy site briefly
describes rospy, which is called the ROS client library for Python. The purpose is
to allow statements written in Python language to interface with ROS topics and
services.

The http://wiki.ros.org/rospy_tutorials site contains a list of tutorials. At
the top of the tutorial page, there is a choice of distributions of ROS, and Kinetic is
chosen for our discussions. A specific tutorial that describes many Python statements
that are used in a typical script can be found at http://wiki.ros.org/ROS/
Tutorials/WritingPublisherSubscriber(python).

To find the nodes that are active after the keyboard_teleop.launch file is launched,
type this command:

$ rosnode list

The output is as follows:

/bumper2pointcloud

/cmd_vel_mux

/diagnostic_aggregator

/mobile_base

/mobile_base_nodelet_manager

/robot_state_publisher

/rosout

/turtlebot_laptop_battery

/turtlebot_teleop_keyboard

The nodes are described in the Kobuki tutorial that can be found at:

http://wiki.ros.org/kobuki/Tutorials/Kobuki's%20Control%20System

According to the site, the mobile_base node listens for commands, such as velocity,
and publishes sensor information. The cmd_vel_mux node serves to multiplex
commands to assure that only one velocity command at a time is relayed to the
mobile base.

In the previous example, we used the rostopic pub command to publish the linear
and angular geometry_msgs/Twist data in order to move the TurtleBot. The Python
script that follows will accomplish essentially the same thing. The script will send a
Twist message on the cmd_vel_mux/input/navi topic.

http://wiki.ros.org/rospy
http://wiki.ros.org/rospy_tutorials
http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber(python)
http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber(python)
http://wiki.ros.org/kobuki/Tutorials/Kobuki's%20Control%20System

Chapter 3

[103]

A Python script will be created to move the TurtleBot forward in a simple example.
If you are not very familiar with Python, it may be best to study and execute the
example script and then refer to the ROS tutorials. The procedure to create an
executable script on the remote computer is as follows:

1.	 Write the script with the required format for a ROS Python script using an
ordinary text editor.

2.	 Give the script a name in the <name>.py format and save the script.

We have called our script ControlTurtleBot.py and saved it in our home directory.

To make the script executable, execute the Ubuntu command:

$ chmod +x ControlTurtleBot.py

Make sure that the TurtleBot is ready by running the minimal launch. Then, in a new
terminal window, type this command:

$ python ControlTurtleBot.py

In our example, Ctrl + C is used to stop the TurtleBot. The comments in the script
explain the statements. The tutorials listed previously give further details of Python
scripts written using the ROS conventions:

#!/usr/bin/env python
Execute as a python script
Set linear and angular values of TurtleBot's speed and turning.
import rospy # Needed to create a ROS node
from geometry_msgs.msg import Twist # Message that moves base

classControlTurtleBot():
 def __init__(self):
 # ControlTurtleBot is the name of the node sent to the #master
 rospy.init_node('ControlTurtleBot', anonymous=False)

 # Message to screen
 rospy.loginfo("Press CTRL+c to stop TurtleBot")

 # Keys CNTL + c will stop script
 rospy.on_shutdown(self.shutdown)

 # Publisher will send Twist message on topic
 # cmd_vel_mux/input/navi

 self.cmd_vel = rospy.Publisher('cmd_vel_mux/input/navi',
 Twist, queue_size=10)

Driving Around with TurtleBot

[104]

 # TurtleBot will receive the message 10 times per second.
 rate = rospy.Rate(10);
 # 10 Hz is fine as long as the processing does not exceed
 # 1/10 second.

 # Twist is geometry_msgs for linear and angular velocity
 move_cmd = Twist()
 # Linear speed in x in meters/second is + (forward) or –
 # (backwards)
 move_cmd.linear.x = 0.3
 # Modify this value to change speed
 # Turn at 0 radians/s
 move_cmd.angular.z = 0
 # Modify this value to cause rotation rad/s

 # Loop and TurtleBot will move until you type CNTL+c
 while not rospy.is_shutdown():
 # publish Twist values to TurtleBot node /cmd_vel_mux
 self.cmd_vel.publish(move_cmd)
 # wait for 0.1 seconds (10 HZ) and publish again
 rate.sleep()

 def shutdown(self):
 # You can stop turtlebot by publishing an empty Twist
 # message
 rospy.loginfo("Stopping TurtleBot")

 self.cmd_vel.publish(Twist())
 # Give TurtleBot time to stop
 rospy.sleep(1)

if __name__ == '__main__':
 try:
 ControlTurtleBot()
 except:
 rospy.loginfo("End of the trip for TurtleBot")

Introducing rqt tools
The rqt tools (ROS Qt GUI toolkit) that are part of ROS allow graphical
representations of ROS nodes, topics, messages, and other information. The ROS
wiki lists many of the possible tools that are added to the rqt screen as plugins:
http://wiki.ros.org/rqt/Plugins.

http://wiki.ros.org/rqt/Plugins

Chapter 3

[105]

The ROS tutorial on the topics also describes some of the features of the rqt tool is at:
http://wiki.ros.org/ROS/Tutorials/UnderstandingTopics.

rqt_graph
One of the common uses of rqt is to view the nodes and topics that are active. Bring
the TurtleBot up with the minimal launch as previously described. Then, on the
remote computer, issue the following command:

$ rqt_graph

Select the top-left box, Nodes/Topics (all). The following screenshot of rqt_graph
shows the nodes that are active and the connections between the publishers and
subscribers that deal with moving the base of the TurtleBot. Pass the cursor over the
various items to see the nodes and topics and see how they communicate:

rqt_graph after minimal launch of TurtleBot

http://wiki.ros.org/ROS/Tutorials/UnderstandingTopics

Driving Around with TurtleBot

[106]

On the menu bar at the top of the screen, keep the dead sinks, leaf topics, and debug
topics hidden to simplify the graph. Take a look at the preceding graph; the names,
such as mobile_base, are called namespaces to identify the items. Ellipses (ovals)
represent nodes while arrows represent connections through topics. The names in
the rectangles represent topics.

For example, the /mobile_base_nodelet_manager node publishes on the /joint_
states and /diagnostics topics.

After the minimal launch, the keyboard_teleop.launch command is issued in a
separate terminal window, as described earlier. Issue the following command:

$ roslaunch turtlebot_teleop keyboard_teleop.launch

One of the screen outputs shows the name of the node that the turtlebot_teleop
package is using, as follows:

NODES

 /turtlebot_teleop_keyboard (turtlebot_teleop/turtlebot_teleop_key)

The following screenshot portion shows selected nodes and topic after the
launch of keyboard_teleop.launch. As shown in the following screenshot,
a new turtlebot_teleop_keyboard node has appeared, publishing on the
/cmd_vel_mux/input/teleop topic:

rqt_graph after TurtleBot teleoperation

To list all the active nodes, the rosnode list command, on the remote computer,
can be issued. For details on a particular node, such as /turtlebot_teleop_
keyboard, type the following command:

$ rosnode info /turtlebot_teleop_keyboard

The output is as follows:

Node [/turtlebot_teleop_keyboard]

Chapter 3

[107]

Publications:

 * /rosout [rosgraph_msgs/Log]

 * /cmd_vel_mux/input/teleop [geometry_msgs/Twist]

Subscriptions: None

Services:

 * /turtlebot_teleop_keyboard/get_loggers

 * /turtlebot_teleop_keyboard/set_logger_level

contacting node http://192.168.11.139:34375/ ...

Pid: 8593

Connections:

 * topic: /cmd_vel_mux/input/teleop

 * to: /mobile_base_nodelet_manager

 * direction: outbound

 * transport: TCPROS

 * topic: /rosout

 * to: /rosout

 * direction: outbound

 * transport: TCPROS

From the keyboard, the messages of the geometry_msgs/Twist type are sent when
you press a key that moves TurtleBot as indicated by the node's publications.

rqt message publisher and topic monitor
There are a number of variations of the rqt command with options. The simplest
command is as follows:

$ rqt

This brings up a display screen, as shown in the following screenshot. In the menu
bar, there are drop-down menu items that allow you to make choices to perform the
following steps:

1.	 Select the Plugins tab that will be displayed; in our screenshot, the Message
Publisher and Topic Monitor options were chosen from the Plugins tab.

2.	 Select the topics or other information for your plugins.
3.	 Rearrange the screen to suit your preferences if you choose more than

one plugin.

Driving Around with TurtleBot

[108]

The rqt command and the drop-down menu selections are shown in the
following screenshot:

rqt command initial screen with plugin selections

For the following screenshot of rqt, the selections are made in the following order:

1.	 Issue the rqt command.
2.	 From the Plugins tab, select Message Publisher under the Topics tab.
3.	 From the Plugins tab, select Topic Monitor under the Topics tab.
4.	 Choose to publish the Twist message to /cmd_vel_mux and see the message

monitored.
5.	 Rearrange the plugins on the screen for convenient viewing:

Chapter 3

[109]

Two rqt plugins to publish and monitor messages

After you make the selections, there will be two plugins on the screen.
You can rearrange them by clicking on the undocking symbol ()
in the upper-right corner of the plugins screen and dragging the
window of the Topic Monitor below that of the Message Publisher.

Specifically, in the Topic entry box, type /cmd_vel_mux/input/teleop and click on
the + button to add the topic. Left-click to check the topic's checkbox and right-click
to expand the parameters of the message to see the angular and linear parameters of
the Twist message. Note that the rate variable has been set to 10.00 from its original
value of 1.00 so that the TurtleBot can move smoothly. When you click on the linear
x or angular z variable, you can change the parameter under the column titled
expression. Changing the values from 0.0 will cause the TurtleBot to move because
the message will be published.

The result shows the Message Publisher and the Topic Monitor with the /cmd_vel_
mux/input/teleop topic selected. From the geometry_msgs package, the Twist
message will be sent to the TurtleBot to move the robot.

Driving Around with TurtleBot

[110]

From the screenshot showing the drop-down menu, it is clear that there are many
options associated with the rqt tools. View the tutorials and try various options
to experience the power of the rqt tools to allow you to control and monitor your
robot's activities. One use is for debugging your scripts if the TurtleBot does not
respond as expected, because you can monitor the messages sent to the TurtleBot.

TurtleBot's odometry
In this section, we explore the TurtleBot's odometry. The general definition of
odometry is the use of data from motion sensors, such as wheel encoders, to estimate
change in Turtlebot's position over time. Odometry is used by the TurtleBot to estimate
its position and orientation relative to its starting location given in terms of an x and y
position and an orientation around the z (upward) axis as the TurtleBot moves.

The odometry data to determine position and orientation can become very inaccurate
as the TurtleBot moves a long distance. The inaccuracy can be due to errors in
the robot's parameters such as incorrect wheel diameters used in calculation of
distance or due to the uneven driving surfaces causing the wheel encoders to output
inaccurate data. A comprehensive discussion of odometry is found in the paper
Measurement and Correction of Systematic Odometry Errors in Mobile Robots by Johann
Borenstein and Liqiang Feng. The paper can be found at the following site: http://
www-personal.umich.edu/~johannb/Papers/paper58.pdf.

For the TurtleBot 2's Kobuki base, the odometry data published combines outputs
from wheel encoders and the Kobuki's Inertial Measurement Unit (IMU) to
determine TurtleBot's position and orientation relative to the starting pose. The form
of the odometry data is found by typing several commands to determine the type
and then the message format. First, type the following command:

$ rostopic type /odom

This yields the message type:

nav_msgs/Odometry

Then, determine the format of the message by typing the following command:

$ rosmsg show nav_msgs/Odometry

The message yields the following information:

std_msgs/Header header

 uint32 seq

 time stamp

 string frame_id

http://www-personal.umich.edu/~johannb/Papers/paper58.pdf
http://www-personal.umich.edu/~johannb/Papers/paper58.pdf

Chapter 3

[111]

string child_frame_id

geometry_msgs/PoseWithCovariance pose

 geometry_msgs/Pose pose

 geometry_msgs/Point position

 float64 x

 float64 y

 float64 z

 geometry_msgs/Quaternion orientation

 float64 x

 float64 y

 float64 z

 float64 w

 float64[36] covariance

geometry_msgs/TwistWithCovariance twist

 geometry_msgs/Twist twist

 geometry_msgs/Vector3 linear

 float64 x

 float64 y

 float64 z

 geometry_msgs/Vector3 angular

 float64 x

 float64 y

 float64 z

 float64[36] covariance

The nav_msgs/Odometry type contains header and other information as well as
geometry_msgs, which contain the position, orientation, linear velocity, and angular
velocity of TurtleBot. The pose of TurtleBot is defined in terms of position and
orientation by the geometry_msgs/Pose messages. The linear and angular velocities
are given by the geometry_msgs/Twist messages. The structure for the pose is
pose/pose/position or pose/pose/orientation. We will demonstrate several
variations of the rostopic echo odom command to explain its use.

Typing the following command:

$ rostopic echo /odom

Driving Around with TurtleBot

[112]

This yields a typical output similar to the following with TurtleBot stopped at an
arbitrary position and orientation:

header:

 seq: 135240

 stamp:

 secs: 1496265119

 nsecs: 103228903

 frame_id: odom

child_frame_id: base_footprint

pose:

 pose:

 position:

 x: 0.190646478751

 y: 0.255858923656

 z: 0.0

 orientation:

 x: 0.0

 y: 0.0

 z: -0.634932792625

 w: 0.772567374958

 covariance: [0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.1, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 1.7976931348623157e+308, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 1.7976931348623157e+308, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
1.7976931348623157e+308, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.05]

twist:

 twist:

 linear:

 x: 0.0

 y: 0.0

 z: 0.0

 angular:

 x: 0.0

 y: 0.0

 z: -0.00174532925199

 covariance: [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]

Chapter 3

[113]

When you execute this rostopic echo command, the output will be updated
continuously on the screen. The output here indicates that TurtleBot is at the point in
x, y about (0.19, 0.26) meters from the (0,0) value of TurtleBot's original position.

To reset the odometry values to zero after the TurtleBot has moved, you can find the
message type by typing:

$ rostopic type /mobile_base/commands/reset_odometry

std_msgs/Empty

Then publish the message to reset the odometry values by typing:

$ rostopic pub /mobile_base/commands/reset_odometry std_msgs/Empty

This yields the following output:

publishing and latching message. Press ctrl-C to terminate

If only the position and orientation of TurtleBot are desired, they can be found by
typing:

$ rostopic echo /odom/pose/pose

with the result is as follows for TurtleBot at its origin:

position:

 x: 0.0

 y: 0.0

 z: 0.0

orientation:

 x: 0.0

 y: 0.0

 z: 0.0

 w: 1.0

This indicates that the TurtleBot is at the (0,0) position pointing in its +x direction.
This position and orientation occurs as a result of the TurtleBot minimal launch or
after the odometry values are reset.

The IMU data can be displayed with the following command:

$ rostopic echo /mobile_base/sensors/imu_data

The IMU data for TurtleBot indicates the orientation as a quaternion, the angular
velocity about the z axis, and the linear acceleration. The orientation values are the
same as for the /odom topic since the orientation is determined by the IMU.

Driving Around with TurtleBot

[114]

Using the numbers that are generated by the /odom topic can be useful in many
cases. However, often we wish to display TurtleBot's motion using rviz. When the
odometry option is chosen in rviz, the TurtleBot's position and orientation will be
displayed with arrows that are generated as TurtleBot moves.

Odom for the simulated TurtleBot 2
The simulated TurtleBot will be used to demonstrate the odometry display
possible in rviz.

To run Gazebo on your remote computer, you must reassign the
ROS Master if it is assigned to the TurtleBot in the .bashrc file.
In each terminal window you open, type the following commands
or put the commands in the .bashrc file:
$ export ROS_MASTER_URI=http://localhost:11311

$ export ROS_HOSTNAME=localhost

The commands executed on the remote computer to start Gazebo for simulation and
rviz for visualization are as follows:

$ roslaunch turtlebot_gazebo turtlebot_world.launch

In another terminal window, run this command:

$ roslaunch turtlebot_rviz_launchers view_robot.launch

Gazebo includes the physics of the robot and rviz allows a variety of visualization
options. In particular, it is useful to show the pose of the robot as indicated by arrows
that point in the direction of the motion of the TurtleBot on the screen.

In rviz, it is necessary to choose several options to show the TurtleBot's odometry
arrows on the screen. As shown in the following screenshot, we choose the following:

1.	 Under Global Options on the left side panel for Fixed Frame, change
base_link or base_footprint to odom.

2.	 Click on Add, and select the By topic tab shown.
3.	 Choose Odometry and click on OK.
4.	 On the left side panel, click on the small arrow to the left of Odometry to

show the various options. The topic is odom and the screen will keep 100
arrows that point to the direction of the simulated TurtleBot as it moves:

Chapter 3

[115]

Selection of the odom topic in rviz showing a list of topics

5.	 Once these selections are made, the simulated TurtleBot will appear on
the screen with an arrow pointing in its forward direction, as shown in the
following screenshot:

Rviz showing odom arrow for initial position of simulated TurtleBot

Driving Around with TurtleBot

[116]

To track the motion of the simulated TurtleBot on the screen and display the arrows,
we issue a movement command. Once the two screens are up for Gazebo and
rviz, any commands to move the robot are possible, including the execution of a
Python script. For example, in a third terminal window, issue one of the following
commands to make the TurtleBot move in a circle on the screen:

$ rostopic pub -r 10 /cmd_vel_mux/input/teleop \geometry_msgs/Twist
'{linear: {x: 0.1, y: 0, z: 0}, angular: {x: 0, y: 0, z: -0.5}}'

$ rostopic pub -r 10 /mobile_base/commands/velocity \geometry_msgs/Twist
'{linear: {x: 0.1, y: 0, z: 0}, angular: {x: 0, y: 0, z: -0.5}}'

The result is the same in terms of the movement of the robot in our examples, but
the /mobile_base/commands/velocity topic is used to control the mobile base as
explained in the Kobuki tutorial at: http://wiki.ros.org/kobuki/Tutorials/
Kobuki%27s%20Control%20System.

The /cmd_vel_mux node is used to multiplex velocity commands from different
sources, such as the keyboard or a Python script. Either command makes the
TurtleBot move in a circle, with the result shown in the following screenshot:

Simulated TurtleBot moving in a circle with the direction shown in rviz

http://wiki.ros.org/kobuki/Tutorials/Kobuki%27s%20Control%20System
http://wiki.ros.org/kobuki/Tutorials/Kobuki%27s%20Control%20System

Chapter 3

[117]

Real TurtleBot 2's odometry display in rviz
The commands used in simulation can be used with the physical TurtleBot.
After bringing up the real TurtleBot with the minimal launch, start rviz on the
remote computer:

$ roslaunch turtlebot_rviz_launchers view_robot.launch

TurtleBot will appear in rviz, as shown in the following screenshot:

TurtleBot on rviz bringup

Then, set up rviz with odom for Fixed Frame and navigate to Add | By topic |
Odometry, as was done with the simulated TurtleBot.

Run the following command to move TurtleBot in a circle:

$ rostopic pub -r 10 /mobile_base/commands/velocity \geometry_msgs/Twist
'{linear: {x: 0.1, y: 0, z: 0}, angular: {x: 0, y: 0, z: -0.5}}'

Stop the TurtleBot by pressing Ctrl + C with the focus on the window in which you
executed the command to move the robot.

Driving Around with TurtleBot

[118]

In the following screenshot, TurtleBot's turning was stopped by pressing Ctrl + C,
and the Python script was executed that drives TurtleBot straightforward until the
Ctrl + C keys are pressed again.

The command is as follows:

$ python ControlTurtleBot.py

TurtleBot's path after the Twist message and running of the Python script

TurtleBot 2 automatic docking
TurtleBot 2 has the capability of finding its docking station and moving to that
station for recharging as described in the tutorial available at:
http://wiki.ros.org/kobuki/Tutorials/Automatic%20Docking.

According to the tutorial, the TurtleBot must be placed in line-of-sight of the docking
station since the robot homes on the station using an infrared beam. The docking
station will show a solid red light when it is powered up. If the TurtleBot finds the
station and docks properly, the red light will turn to blinking green when charging
and solid green when TurtleBot's battery is fully charged.

http://wiki.ros.org/kobuki/Tutorials/Automatic%20Docking

Chapter 3

[119]

Make sure that the minimal launch is active and the TurtleBot is within the line-of-
sight to the docking station. On the remote computer, type the following command:

$ roslaunch kobuki_auto_docking minimal.launch

Then, in another terminal window, type the following command to cause the
TurtleBot to start the search for the docking station:

$ roslaunch kobuki_auto_docking activate.launch

The following screenshot shows the TurtleBot rotating to find the IR signal and then
heading toward the dock:

TurtleBot docking

In the preceding screenshot, the distance that the TurtleBot moved was about 2
meters (about 6 feet) to find the docking station and start recharging the base battery.
The screen output as TurtleBot was completing the docking is as follows:

Feedback: [DockDrive: DOCKED_IN]:

Feedback: [DockDrive: DOCKED_IN]:

Result - [ActionServer: SUCCEEDED]: Arrived on docking station
successfully.

[dock_drive_client_py-1] process has finished cleanly

Driving Around with TurtleBot

[120]

log file: /home/tlharmanphd/.ros/log/789b3ecc-6bca-11e5-b156-
6c71d9a711bd/dock_drive_client_py-1*.log

all processes on machine have died, roslaunch will exit

shutting down processing monitor...

... shutting down processing monitor complete

Done

As much as we enjoyed working with the TurtleBot 2, we have discovered a newer
TurtleBot named TurtleBot 3. Our laboratory served as a beta test site for the new
mobile robot. In the next section, we will introduce TurtleBot 3 and describe how to
load its ROS software for simulation and for the real TurtleBot 3.

Introducing TurtleBot 3
At ROSCon 2016, a conference for developers, the TurtleBot 3 was introduced.
TurtleBot 3 is a mobile robot designed and manufactured by ROBOTIS that is
particularly suitable for education and hobbyist use. For remote control, the
TurtleBot 3 must be connected via Wi-Fi to a network and a remote computer.

These ROS-based robots are smaller than the TurtleBot 2 described previously in this
chapter. The two TurtleBot3 models are shown in the following image:

TurtleBot 3 Burger and Waffle

Chapter 3

[121]

The Burger model has a small footprint with a wheelbase of 160 mm (6.29 in) and
height of 192 mm (7.5 in) with a Laser Distance Sensor (LDS) on its top level.
According to the specifications, the Burger version can carry 15 kg (33 lbs) and run
for 2.5 hours. The Waffle model is larger with a wheelbase of 278mm (10.9 in) but
with a height of only 141mm (5.5 in).

The TurtleBot 3 website describes the models presently available:
http://turtlebot3.robotis.com/en/latest/.

In contrast to the TurtleBot 2, the TurtleBot 3 versions come with a powerful single-
board computer (SBC) so there is no need for a netbook. Both versions have three-
axis gyros, accelerometers, and magnetometers. Several types of 3D sensors are
also available. The following websites have a great deal of information about the
TurtleBot 3 versions, including links to the specifications of the SBC:

•	 https://github.com/ROBOTIS-GIT/turtlebot3_wiki

•	 https://github.com/ROBOTIS-GIT/turtlebot3_wiki/blob/master/
docs/source/specifications.rst

Mounted on top of the TurtleBots are LDS to send distance data for navigation and
obstacle detection to a SBC. The laser is connected to the SBC via a small interface
board (USB2LDS). The Burger model computer board is a Raspberry Pi 3 Model B.
The Waffle uses an Intel® Joule™ computer and incorporates an Intel® RealSense™
3D sensor in addition to the laser sensor.

In both models, the SBC interfaces with a controller board, powered by an ARM
Cortex-M7 (https://developer.arm.com/products/processors/cortex-m/
cortex-m7), to which the motors and battery are connected. This board, developed
by ROBOTIS and called the Open-Source Control module for ROS (OpenCR), is
programmable with the Arduino software development environment. This OpenCR
board is designed to be open source hardware as well as software. The following
website describes the OpenCR board in detail:

http://turtlebot3.robotis.com/en/latest/appendix_opencr.html

In addition to the two basic kits for TurtleBot 3, instructions for other TurtleBot 3
configurations can be found at the following website:

http://turtlebot3.robotis.com/en/latest/friends.html

In the next sections, we will define first how to load the TurtleBot 3 simulation
software and explore the TurtleBot 3 simulation that runs on rviz and Gazebo. Then
the hardware and software for the real TurtleBot 3 will be discussed. Then, TurtleBot
3 will be driven around by keyboard teleoperation.

http://turtlebot3.robotis.com/en/latest/
https://github.com/ROBOTIS-GIT/turtlebot3_wiki
https://github.com/ROBOTIS-GIT/turtlebot3_wiki/blob/master/docs/source/specifications.rst
https://github.com/ROBOTIS-GIT/turtlebot3_wiki/blob/master/docs/source/specifications.rst
https://developer.arm.com/products/processors/cortex-m/cortex-m7
https://developer.arm.com/products/processors/cortex-m/cortex-m7
http://turtlebot3.robotis.com/en/latest/appendix_opencr.html
http://turtlebot3.robotis.com/en/latest/friends.html

Driving Around with TurtleBot

[122]

Loading TurtleBot 3 simulation software
The software packages for the TurtleBot 3 simulation will reside on the remote
computer or any other desktop/laptop computer capable of running Gazebo
simulations. This computer should be loaded with Ubuntu 16.04 and ROS Kinetic,
as described in the Installing and launching ROS section in Chapter 1, Getting Started
with ROS.

To begin, open a terminal window and type the following commands:

$ sudo apt-get install ros-kinetic-joy ros-kinetic-teleop-twist-joy ros-
kinetic-teleop-twist-keyboard ros-kinetic-laser-proc ros-kinetic-rgbd-
launch ros-kinetic-depthimage-to-laserscan ros-kinetic-rosserial-arduino
ros-kinetic-rosserial-python ros-kinetic-rosserial-server ros-kinetic-
rosserial-client ros-kinetic-rosserial-msgs ros-kinetic-amcl ros-kinetic-
map-server ros-kinetic-move-base ros-kinetic-urdf ros-kinetic-xacro
ros-kinetic-compressed-image-transport ros-kinetic-rqt-image-view ros-
kinetic-gmapping ros-kinetic-navigation

If you have not created a catkin workspace, refer to the Creating a catkin workspace
section in Chapter 1, Getting Started with ROS.

For loading the TurtleBot 3 simulation software, we will also load all of the ROS
catkin workspace packages developed for the TurtleBot 3 remote computer. We
found that it was necessary to load both the remote computer software packages for
the real TurtleBot 3 along with the simulation software package.

Type the following commands to load and compile these packages:

$ cd ~/catkin_ws/src/

$ git clone https://github.com/ROBOTIS-GIT/turtlebot3_simulations.git

$ git clone https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git

$ git clone https://github.com/ROBOTIS-GIT/turtlebot3.git

$ cd ~/catkin_ws

$ catkin_make

Chapter 3

[123]

Directories for turtlebot3, turtlebot3_msgs, and turtlebot3_simulations
are created under the src directory of the catkin workspace. The turtlebot3_
simulations directory contains the turtlebot3_fake package that is the TurtleBot
3 simulation in rviz. The turlebot3_gazebo package is also in the turtlebot3_
simulations directory. This package contains the software for the TurtleBot 3
Gazebo simulation.

When running TurtleBot 3 simulations in rviz and Gazebo, the
environment variables should be set to return ROS control to
your local computer. Use the following commands in every
new window that is used or include them in a script file that is
run when a new window is open:
$ export ROS_MASTER_URI=http://localhost:11311

$ export ROS_HOSTNAME=localhost

Launching TurtleBot 3 simulation
in rviz
The TurtleBot 3 rviz simulation is created and controlled by the turtlebot3_fake_
node node.

This node generates the model of the TurtleBot in rviz and allows for it to be run
with a teleop node.

Be sure that your ROS IP environment variables are set to localhost or to the
IP address of your computer. In your first terminal window, set the environment
variable for the Turtlebot 3 model you wish to use in the rviz simulation. Either
burger or waffle can be selected for the model parameter. For our examples, we
have chosen the model to be burger:

$ export TURTLEBOT3_MODEL=burger

Then type the following command to launch the simulation:

$ roslaunch turtlebot3_fake turtlebot3_fake.launch

Driving Around with TurtleBot

[124]

Three nodes are started: robot_state_publisher, rviz, and turtlebot3_fake_
node. The following screenshot should appear:

TurtleBot 3 in rviz

Now you can control the simulated TurtleBot with the keyboard. Open a second
terminal window and type the following command:

$ roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch

The turtlebot_teleop_keyboard node becomes active and allows for keyboard
keys to be used to drive the TurtleBot across the rviz screen. The keys to control the
robot are as follows:

Control Your Turtlebot3!

Moving around:

 w

a s d

 x

w/x : increase/decrease linear velocity

Chapter 3

[125]

a/d : increase/decrease angular velocity

space key, s : force stop

CTRL-C to quit

(Be sure and focus on (select) the keyboard teleop window.)

Hitting the W key will slowly start the TurtleBot 3 moving forward and the following
information will be displayed:

currently: linear vel 0.01 angular vel 0

Hitting the W key a few more times will increase the speed slowly:

currently: linear vel 0.02 angular vel 0

currently: linear vel 0.03 angular vel 0

currently: linear vel 0.04 angular vel 0

Hitting the S key will stop the robot and pressing the A key will make the robot
turn left:

currently: linear vel 0 angular vel 0

currently: linear vel 0 angular vel -0.1

Enjoy moving the TurtleBot around in the rviz environment, but remember to use
the spacebar or S key to stop its movement.

Next, we will try TurtleBot 3 in the Gazebo 3D simulator. Close all terminal windows
before proceeding to the next section.

Launching TurtleBot 3 simulation in
Gazebo
Before launching TurtleBot 3 in Gazebo, set the environment variable for the
Turtlebot 3 model you wish to use in the Gazebo simulation. Either burger or
waffle can be selected for the model parameter:

$ export TURTLEBOT3_MODEL=burger

To start the simulation, type the following command:

$ roslaunch turtlebot3_gazebo turtlebot3_empty_world.launch

Driving Around with TurtleBot

[126]

You should see the words Advertise odom on odom! on the screen and a
screenshot similar to the following:

TurtleBot 3 in Gazebo empty world

Now let us try a more interesting scene with objects for TurtleBot to drive around. Use
Quit on the Gazebo application from the menu bar and press Ctrl + C in the terminal
window to halt the process. If you close the terminal window at this point, make sure
that you export the TURTLEBOT3_MODEL variable in a new terminal window.

Now, type the following command to spawn the TurtleBot 3 model on the TurtleBot
3 world map:

$ roslaunch turtlebot3_gazebo turtlebot3_world.launch

This command should produce a screenshot similar to the following:

Chapter 3

[127]

TurtleBot 3 in Gazebo TurtleBot3 world

Notice the small black dot between the large turtle's back legs. This is TurtleBot 3!
You can use the keyboard control command that was used for rviz to drive TurtleBot
around the TurtleBot 3 world. Open a second terminal window and type the
following command:

$ roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch

The TurtleBot 3 can also run autonomously, navigating around the TurtleBot 3
world. To view this application, hit Ctrl + C in the terminal window running the
keyboard teleop process, and close the window. Open a new terminal window and
type the following commands:

$ export TURTLEBOT3_MODEL=burger

$ roslaunch turtlebot3_gazebo turtlebot3_simulation.launch

Driving Around with TurtleBot

[128]

The Gazebo window should show TurtleBot 3 actively running around the TurtleBot
3 world. Next, open another terminal window and launch rviz configured to
visualize certain TurtleBot 3 published topics by typing the following commands:

$ export TURTLEBOT3_MODEL=burger

$ roslaunch turtlebot3_gazebo turtlebot3_gazebo_rviz.launch

The rviz screen should look similar to the following screenshot:

rviz visualization of TurtleBot 3 in TurtleBot 3 world

In the preceding screenshot, TurtleBot is near the left wall of the TurtleBot 3 world and
the red line represents the laser scan data. This laser scan visualization will be discussed
in more detail in the next chapter, Chapter 4, Navigating the World with TurtleBot.

Now, we will present the real TurtleBot 3 and describe how to get the robot up and
running.

Chapter 3

[129]

Hardware assembly and testing
TurtleBot 3 arrives as a kit of parts that must be assembled. Assembly instructions
can be found in the Hardware Setup section at: http://turtlebot3.robotis.com/
en/latest/hardware.html.

Testing the operation of the components while you are assembling the robot is
important. We recommend running the Basic Operations identified for the OpenCR
board when the OpenCR board, motors, and battery are all connected. This step will
verify their operation before you attach the layers for the SBC and vision sensor(s).
In addition, when power is applied, look for green LEDs to light on all the boards to
indicate that they are operational.

The following sections will focus on the TurtleBot 3 Burger version since that was the
version that the authors evaluated as beta testers. For instructions on the TurtleBot
3 Waffle and other versions, refer to the following website: http://turtlebot3.
robotis.com/en/latest/.

Loading TurtleBot 3 software
TurtleBot 3 software resides in three locations: onboard the robot in the SBC, the
OpenCR board, and on the remote computer. The remote computer can be a laptop
or a desktop computer but must have Wi-Fi capability. Since the OpenCR board
typically comes preloaded with software and is configured for the TurtleBot 3
model that is purchased, the instructions for loading the OpenCR software will not
be described here. The next two sections will explain loading the software for the
remote computer and loading the software for the SBC.

Installing remote computer software

If you have already installed TurtleBot 3 simulation software,
skip this section and proceed to Installing SBC software.

This section provides an explanation of loading software to control TurtleBot 3. It is
assumed that Ubuntu 16.04 and ROS Kinetic software are installed on the computer
that you will be using. Details for installing ROS Kinetic software are provided in the
Installing and launching ROS section in Chapter 1, Getting Started with ROS.

http://turtlebot3.robotis.com/en/latest/hardware.html
http://turtlebot3.robotis.com/en/latest/hardware.html
http://turtlebot3.robotis.com/en/latest/
http://turtlebot3.robotis.com/en/latest/

Driving Around with TurtleBot

[130]

The following steps reflect the instructions provided in the PC Software Setup
section of the TurtleBot 3 documentation: http://turtlebot3.robotis.com/en/
latest/pc_software.html.

Open a terminal window and type the following command:

$ sudo apt-get install ros-kinetic-joy ros-kinetic-teleop-twist-joy ros-
kinetic-teleop-twist-keyboard ros-kinetic-laser-proc ros-kinetic-rgbd-
launch ros-kinetic-depthimage-to-laserscan ros-kinetic-rosserial-arduino
ros-kinetic-rosserial-python ros-kinetic-rosserial-server ros-kinetic-
rosserial-client ros-kinetic-rosserial-msgs ros-kinetic-amcl ros-kinetic-
map-server ros-kinetic-move-base ros-kinetic-urdf ros-kinetic-xacro
ros-kinetic-compressed-image-transport ros-kinetic-rqt-image-view ros-
kinetic-gmapping ros-kinetic-navigation

After these packages have been successfully installed, proceed with loading the
remaining TurtleBot 3 packages into your catkin workspace and running catkin_
make. If you have already loaded the TurtleBot 3 simulation software using the
instructions from the previous section, Loading TurtleBot 3 simulation software, you
will not need to perform the following commands. Proceed to the next section for
instructions on loading the SBC software.

If you have not created a catkin workspace, refer to the Creating a catkin workspace
section in Chapter 1, Getting Started with ROS. To download the TurtleBot 3 packages
to your catkin workspace, type the following commands:

$ cd ~/catkin_ws/src/

$ git clone https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git

$ git clone https://github.com/ROBOTIS-GIT/turtlebot3.git

$ cd ~/catkin_ws

$ catkin_make

If the last command executes without errors, you are ready to load the software on
the SBC.

Installing SBC software
This section describes installing the TurtleBot 3 software on the Raspberry Pi 3. For
instructions on installing TurtleBot 3 software on the Intel® Joule™, refer to the SBC
Software Setup section at:

http://turtlebot3.robotis.com/en/latest/sbc_software.html

http://turtlebot3.robotis.com/en/latest/pc_software.html
http://turtlebot3.robotis.com/en/latest/pc_software.html
http://turtlebot3.robotis.com/en/latest/sbc_software.html

Chapter 3

[131]

Loading Ubuntu MATE
The Linux operating system must be loaded onto the microSD card prior to installing
it into the Raspberry Pi's microSD slot. The microSD card must be at least 8 GB and
the operation of loading the operating system must be done on another computer.
This can be your remote computer. Typically, an adapter card is needed to fit the
microSD card into an SD card slot on the computer.

When you have the microSD card placed in the adapter and slid into the SD card
slot of your computer, go to this website to download the latest version of Ubuntu
MATE 16.04:

https://ubuntu-mate.org/download/

Select the release for Ubuntu MATE 16.04 LTS, then click on Raspberry Pi as the
architecture. Next, scroll down to the Via Direct Download section and click on the
Bytemarktag that shows the .xz file. The download will begin and an Ubuntu
MATE .xz file will be placed in your computer's Download directory. When the
download has completed, perform the following steps:

1.	 Select the .xz file and use the Open With Disk Image Writer option from the
pop-up selection menu.

2.	 From the pop-up Restore Disk Image window, select the Destination Drive
for your microSD card. This should be the 7.9 GB Drive if you are using an 8
GB microSD card.

3.	 Click the Start Restoring… button.
4.	 Click the Restore button when prompted with Are you sure you want to

write the disk image to the device?
5.	 Type your user password to authenticate the action.

https://ubuntu-mate.org/download/

Driving Around with TurtleBot

[132]

You should see a pop-up window similar to the following if all the steps have been
done properly:

Installing Ubuntu MATE on microSD card

When the download is complete, the SD adapter can be removed from the computer
and the microSD card can be removed from the adapter. The microSD card can then
be inserted in the slot at the bottom of the Raspberry Pi 3 board.

For the next steps, an external keyboard, mouse, and monitor will need to be
connected to the Raspberry Pi board. When these components have been connected,
apply power to the Raspberry Pi board. If the Pi is not connected by I/O pins 4 and
6 to the OpenCR board, you can apply power using an external micro USB charger.
The monitor should display a stream of text messages, then display the Ubuntu
MATE GUI, as shown in the following screenshot:

Chapter 3

[133]

Ubuntu MATE GUI

As you will notice in the upper-left corner, the main menu bar has selections for the
Dash icon, Applications, Places, System, and the Mozilla Foxfire icon.

Loading ROS packages
The next steps will install ROS Kinetic on your Raspberry Pi 3 running Ubuntu
MATE (be sure that the Pi is connected to the internet to download the ROS
packages):

1.	 The first step is to configure the Ubuntu repositories to allow restricted,
universe, and multiverse. For this step, find System on the main menu, then
pull down the menu to find Administration, then continue over to Software
& Updates. When the window pops up, the first four checkboxes should be
checked. Then close this window.

2.	 From the main menu, select Application, pull down System Tools, and
select MATE Terminal to open a terminal window. Next install the ROS
packages with the following commands:
$ sudo apt-get update

$ sudo apt-get upgrade

$ wget https://raw.githubusercontent.com/ROBOTIS-GIT/robotis_
tools/master/install_ros_kinetic_rp3.sh && chmod 755 ./install_
ros_kinetic_rp3.sh && bash ./install_ros_ kinetic_rp3.sh

Driving Around with TurtleBot

[134]

The wget command retrieves the ROS Kinetic packages via an installation
script, install_ros_kinetic_rp3.sh.
If the last command generates an error, add the option --no-check-
certificate to the wget command.

3.	 Now reboot the Raspberry Pi.

Loading TurtleBot 3 packages
After successfully loading the ROS packages, the TurtleBot 3 packages should be
installed with the following command:

$ sudo apt-get install ros-kinetic-joy ros-kinetic-teleop-twist-joy ros-
kinetic-teleop-twist-keyboard ros-kinetic-laser-proc ros-kinetic-rgbd-
launch ros-kinetic-depthimage-to-laserscan ros-kinetic-rosserial-arduino
ros-kinetic-rosserial-python ros-kinetic-rosserial-server ros-kinetic-
rosserial-client ros-kinetic-rosserial-msgs ros-kinetic-amcl ros-kinetic-
map-server ros-kinetic-move-base ros-kinetic-urdf ros-kinetic-xacro
ros-kinetic-compressed-image-transport ros-kinetic-rqt-image-view ros-
kinetic-gmapping ros-kinetic-navigation

After these packages have been successfully installed, proceed with loading the
remaining TurtleBot 3 packages into your catkin workspace and running catkin_
make. To download the TurtleBot 3 packages to your catkin workspace, type the
following commands:

$ cd ~/catkin_ws/src/

$ git clone https://github.com/ROBOTIS-GIT/hls_lfcd_lds_driver.git

$ git clone https://github.com/ROBOTIS-GIT/turtlebot3_msgs.git

$ git clone https://github.com/ROBOTIS-GIT/turtlebot3.git

$ cd ~/catkin_ws

$ catkin_make

If the git clone commands produce a fatal: unable to access error message,
use the following command to set the environment variable to disable security
checking:

$ export GIT_SSL_NO_VERIFY=1

If the catkin_make command executes without errors, the SBC software has
successfully been installed.

Chapter 3

[135]

Setting up udev rules for TurtleBot 3
Ubuntu uses udev system software to dynamically manage devices connected to
the computer system. The USB ports on the Raspberry Pi 3 need to be configured
to operate without requiring root (sudo) permission. These ports are used for
connections to the OpenCR board and USB2LDS. Type the following commands
to establish special system configuration rules, called udev rules, to bypass this
required permission:

$ cd ~/catkin_ws/src/turtlebot3

$ sudo cp ./99-turtlebot3-cdc.rules /etc/udev/rules.d/

$ sudo udevadm control --reload-rules

$ sudo udevadm trigger

Before disconnecting the monitor, keyboard, and mouse from the Raspberry Pi 3, be
sure to complete the forthcoming section on TurtleBot 3 network setup and perform
the steps there to identify and prepare the network connection for the robot.

Networking TurtleBot 3 and the remote
computer
The TurtleBot 3 and remote computer must be configured to set up communications
on the same network. Each computer's IP address should be identified and used
to establish the ROS environment variable for the communication system. The
following figure shows how these variables are identified:

TurtleBot 3 and remote computer ROS network configuration

Driving Around with TurtleBot

[136]

Note that the TurtleBot 3 and the remote computer identify the remote computer IP
address as the ROS_MASTER_URI variable. This setup is different than that for the ROS
variables for TurtleBot 2. For TurtleBot 3, the Master resides on the remote computer.

The next two sections will step through the network configuration setup process.

Remote computer network setup
The remote computer should be set to connect to the same network as the
TurtleBot 3. Determine the remote computer's IP address on that network by typing:

$ ifconfig

From the screen output, look for the IP address of this computer on the wireless
network:

wlan0 Link encap:Ethernet HWaddr 9c:b6:d0:0f:6f:89

 inet addr:192.168.11.139 Bcast:192.168.11.255
Mask:255.255.255.0

The IP address for our remote computer on our Buffalo router network is
192.168.11.139, as shown in the preceding output. Your IP address will
be different.

With the IP addresses of the remote computer, use the following commands with
your specific IP addresses and assign the ROS_MASTER_URI and ROS_HOSTNAME
variables:

$ export ROS_MASTER_URI=http://<IP address of remote computer>:11311

$ export ROS_HOSTNAME=<IP address of remote computer>

We recommend that you add these commands to the .bashrc script file of the
remote computer so the ROS environment variables will always be set correctly. Use
your favorite editor to add these lines to the .bashrc script, then save the file and
run the following command:

$ source ~/.bashrc

To check that the ROS environment variables are set correctly, type:

$ env | grep ROS

Next, it is necessary to establish the TurtleBot 3 network configuration.

Chapter 3

[137]

TurtleBot 3 network setup
While the Raspberry Pi is still connected to the monitor, keyboard, and mouse, set
up TurtleBot's network configuration to always select the desired network on power
up. Be sure that the Raspberry Pi is connected to the network that you plan to use for
communication from the remote computer.

On the main menu of Ubuntu MATE, find the System option, pull down the menu
and select Preferences. From the Preferences option, select Internet and Network,
then Network Connections. Select the network connection you will be using and hit
the Edit button. A pop-up window should appear. Make sure that the General tab is
selected. A screen similar to the following screenshot should be displayed:

TurtleBot 3 network setup

Check the top two checkboxes in this window to set the network to always connect
to your desired network. Then click on the Save button in the lower-right corner.
Other network connections can be disabled by unchecking these two boxes for those
network connections. Then close the network connection window.

Next, find the IP address of TurtleBot 3 using the following command:

$ ifconfig

Driving Around with TurtleBot

[138]

From the screen output, look for the wlan settings similar to the following:

wlan0 Link encap:Ethernet HWaddr b8:27:eb:b4:87:c4

 inet addr:192.168.11.127 Bcast:192.168.1.255
Mask:255.255.255.0

The IP address for our TurtleBot 3 on our Buffalo router network is 192.168.11.127,
as shown in the preceding output. Your IP address will be different.

With the IP addresses of the remote computer and the TurtleBot, use the following
commands with your specific IP addresses and assign the ROS_MASTER_URI and ROS_
HOSTNAME variables:

$ export ROS_MASTER_URI=http://<IP address of remote computer>:11311

$ export ROS_HOSTNAME=<IP address of TurtleBot 3>

We recommend that you modify these commands in the .bashrc script file for
TurtleBot 3 so the ROS environment variables will always be set correctly. To open
this script, type:

$ pluma ~/.bashrc

Look for the two lines at the end of the .bashrc script that assign the ROS_MASTER_
URI and ROS_HOSTNAME variables. Change the word localhost to the appropriate IP
address indicated previously. Save and close the script and then, run the following
command:

$ source ~/.bashrc

To check that the ROS environment variables are set correctly, type:

$ env | grep ROS

One last check on the TurtleBot 3 will finish setting up the SSH connection from the
Raspberry Pi.

SSH connection
While the Raspberry Pi is still connected to the monitor, keyboard, and mouse, check
to make sure that you can SSH from the remote computer to the TurtleBot 3 SBC. On
the Raspberry Pi, use the following command to check the SSH status:

$ sudo service ssh status

Chapter 3

[139]

The output should show Active: active (running) when SSH is working
properly. If the screen output lists Active: inactive (dead), the following
command will restart the SSH services:

$ sudo service ssh restart

This command is only a temporary fix for the problem. To have SSH work
automatically on boot up, use the following command:

$ sudo systemctl enable ssh

Next, the communication between the TurtleBot 3 and the remote computer will
be verified.

Testing the SSH communication
To test the connection between your remote computer and TurtleBot 3, try to
establish an SSH connection from your remote computer to the TurtleBot 3 by typing
the following command on your remote computer:

$ ssh <username>@<IP address of TurtleBot>

For the authors' Raspberry Pi, the user account was set up with the username
turtlebot3. The username for your Raspberry Pi can be found with the whoami
command.

Troubleshooting your network connection
If an SSH connection cannot be established, check the following details:

•	 Both the Raspberry Pi and remote computer are set to the same network
•	 All network setup for the Raspberry Pi and remote computer were

completed as described in the Remote computer network setup and TurtleBot 3
network setup sections

•	 The SSH service on the Raspberry Pi is set to automatically boot up on
power up

If all of these troubleshooting steps have been completed, try to ping the TurtleBot
with the following command:

$ ping <IP address of TurtleBot>

Driving Around with TurtleBot

[140]

If the ping communication can be established but SSH does not work, then it is
recommended to remove and re-install the openssh software on the Raspberry Pi.
The following commands should be typed on the Raspberry Pi:

$ sudo apt-get remove openssh-client openssh-server

$ sudo apt-get install openssh-client openssh-server

Retry SSHing to the TurtleBot 3. When you have successfully established a
communication link, the window prompt of the TurtleBot Raspberry Pi will be seen
on the remote computer.

When you are able to SSH from the remote computer to the TurtleBot 3, proceed to
the next section to operate TurtleBot 3 with the keyboard. You will no longer need
the monitor, keyboard, and mouse connected to your TurtleBot 3.

Moving the real TurtleBot 3
As with TurtleBot 2, TurtleBot 3 has a number of ways to move using ROS. In the
following section, we will present moving TurtleBot around using a keyboard.

To operate the TurtleBot 3 on you network, perform the following steps:

1.	 Make sure that the TurtleBot battery is charged.
2.	 Turn on the TurtleBot and make sure that green lights illuminate on the

OpenCR board and the Raspberry Pi. A red light should also be lit on the
Raspberry Pi. The green light on the USB2LDS board should also be lit.

3.	 Make sure the TurtleBot has room to move on the floor.
4.	 Connect the remote computer to the network for TurtleBot and start

communicating.

This procedure will be used each time you set up to use the ssh command from the
remote computer terminal. The TurtleBot 3 password will be required after using the
ssh command described in the next section.

While operating the TurtleBot 3, be aware that the buzzer will emit
a warning sound when the battery is running low. The buzzer will
sound continuously and the actuators will become disabled when
the battery voltage level drops below 11V. The TurtleBot should
then be connected to the charger to recharge the battery.

Chapter 3

[141]

Using keyboard teleoperation to move
TurtleBot 3
To bring up the TurtleBot from the remote computer, open a terminal window on the
remote computer and start roscore:

$ roscore

In a second terminal window, start the communication with the TurtleBot from the
remote computer using the ssh command:

$ ssh <username>@<IP address of TurtleBot>

After you have entered the TurtleBot password and see the window prompt change
to the TurtleBot prompt, type in the following command to start the TurtleBot's basic
operations:

$ roslaunch turtlebot3_bringup turtlebot3_robot.launch

When this command executes properly, the LDS sensor on the TurtleBot 3 will start
spinning. This visual check and no errors in the terminal window will assure you
that TurtleBot is up and running.

This command launches two nodes: turtlebot3_core and turtlebot3_lds. This
command is similar to the minimal launch command of TurtleBot 2. The operations
in the two terminal windows just described will be necessary to launch the TurtleBot
and run most other applications on TurtleBot 3.

To view the real TurtleBot 3 in rviz, open a new terminal window and type the
following commands:

$ export TURTLEBOT3_MODEL=burger

$ roslaunch turtlebot3_bringup turtlebot3_model.launch

Driving Around with TurtleBot

[142]

An rviz screen should appear, similar to the following screenshot:

Real TurtleBot 3 in rviz

In rviz, the TurtleBot 3 model appears at the center of the environment and the tf
frames for the robot are displayed. You should also see red dots surrounding the
TurtleBot indicating the 3D points detected by the LDS sensor for objects detected
at a distance. This sensor is essential for collecting the distance data required for
Simultaneous Localization and Mapping (SLAM).

To start the keyboard teleoperation, open another terminal window and enter the
following command:

$ roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch

Chapter 3

[143]

This command will launch the turtlebot3_teleop_keyboard node to handle
processing the keyboard input and sending the cmd_vel topics to the turtlebot3_
core node. The turtlebot3_core node handles control of the wheel motors. On the
screen in the terminal window, the keyboard control instructions will be displayed:

Control Your Turtlebot3!

Moving around:

 w

a s d

 x

w/x : increase/decrease linear velocity

a/d : increase/decrease angular velocity

space key, s : force stop

CTRL-C to quit

Hitting the W key will cause the TurtleBot to start moving forward slowly and the
following text will appear on the screen:

currently: linear vel 0.01 angular vel 0

Repeatedly pressing the W key will increase the linear velocity by 0.01 each time.
For angular velocity, the increments are increased or decreased by 0.1 m/s. Press the
spacebar or the S key to stop all TurtleBot movement.

Now enjoy driving TurtleBot around your room.

Summary
This chapter introduced the TurtleBot 2 robot and described how to load the
necessary software for this TurtleBot. The Gazebo simulator was used to show the
capability of ROS to control the TurtleBot 2 in simulation.

To control a real TurtleBot 2 and allow it to roam autonomously, it is desirable to
set up a wireless communication between a remote computer and the TurtleBot's
netbook. The explanation given in this chapter will allow you to set up the network
and remotely control TurtleBot 2.

Driving Around with TurtleBot

[144]

The various methods to control TurtleBot 2 were presented. Teleoperation from the
remote computer is one of the common methods used to control the robot's motion.
A Python script was shown, which, when executed, will make the TurtleBot 2 move
in a straight line. This chapter also covered the use of rqt tools to send commands to
TurtleBot 2 and monitor them.

An important aspect of this chapter is that the TurtleBot 2 can be controlled in
simulation or in a real environment with the same commands and scripts. This use of
a simulator can save much time in planning, testing, and debugging the applications
for TurtleBot 2 before the real robot is turned loose.

Odometry for the TurtleBot 2 was described for the simulated TurtleBot and the real
TurtleBot using rviz for visualizing the robot's motion. The auto-docking feature of
TurtleBot 2 was also demonstrated.

Finally, the Burger and Waffle TurtleBot 3 models were described. Simulations
in rviz and Gazebo were presented. Next, loading the software to control a real
TurtleBot 3 was presented for both the remote computer and the TurtleBot itself.
Then, TurtleBot was controlled by keyboard teleoperation.

The next chapter explains TurtleBot's use of the vision sensor. The chapter shows
in detail how to create a map for TurtleBot and enable it to autonomously navigate
around its environment. The mapping and navigation capabilities for both TurtleBot
2 and TurtleBot 3 described.

[145]

Navigating the World with
TurtleBot

In the previous chapter, the TurtleBot 2 robot was described as a two-wheeled
differential drive robot developed by Willow Garage. The setup of the TurtleBot
2 hardware, netbook, network system, and remote computer were explained, so
the user could set up and operate their own TurtleBot. Then, the TurtleBot 2 was
driven around using keyboard control, command-line control, and a Python script.
TurtleBot 3 was also introduced and driven around using keyboard control.

In this chapter, we will expand TurtleBot's capabilities by giving the robot vision.
The chapter begins by describing 3D vision systems and how they are used to map
obstacles within the camera's field of view. The four types of 3D sensors typically
used for TurtleBot are shown and described, detailing their specifications. A 2D
vision system is also introduced for TurtleBot 3.

Setting up the 3D sensor for use on TurtleBot 2 is described and the configuration
is tested in a standalone mode. To visualize the sensor data coming from TurtleBot
2, two ROS tools are utilized: Image Viewer and rviz. Then, an important aspect of
TurtleBot is described and realized: navigation. TurtleBot will be driven around and
the vision system will be used to build a map of the environment. The map is loaded
into rviz and used to give the user point and click control of TurtleBot so that it can
autonomously navigate to a location selected on the map. Two additional navigation
methods will be shown: driving TurtleBot to a location without a map and driving
with a map and a Python script. The autonomous navigation ability using rviz is also
shown for TurtleBot 3.

Navigating the World with TurtleBot

[146]

In this chapter, you will learn the following topics:

•	 How 3D vision sensors work
•	 The difference between the four primary 3D sensors for TurtleBot
•	 Details on a 2D vision system for TurtleBot 3
•	 Information on TurtleBot environmental variables and the ROS software

required for the sensors
•	 ROS tools for the rgb and depth camera output
•	 How to use TurtleBot to map a room using Simultaneous Localization and

Mapping (SLAM)
•	 How to operate TurtleBot in autonomous navigation mode by adaptive

monte carlo localization (amcl)
•	 How to navigate TurtleBot to a location without a map
•	 How to navigate TurtleBot to waypoints with a Python script and a map

3D vision systems for TurtleBot
TurtleBot's capability is greatly enhanced by the addition of a 3D vision sensor.
The function of 3D sensors is to map the environment around the robot by
discovering nearby objects that are either stationary or moving. The mapping
function must be accomplished in real time so that the robot can move around
the environment, evaluate its path choices, and avoid obstacles. For autonomous
vehicles, such as Waymo's self-driving cars, 3D mapping is accomplished by a high-
cost LIDAR system that uses laser radar to illuminate its environment and analyze
the reflected light. For our TurtleBot, we will present a number of low cost but
effective options. These standard 3D sensors for TurtleBot include Kinect sensors,
ASUS Xtion sensors, Carmine sensors, and Intel RealSense sensors. TurtleBot 3
navigates using a 2D low cost laser distance sensor, the Hitachi-LG LDS.

How these 3D vision sensors work
The 3D vision systems that we describe for TurtleBot have a common infrared
(IR) technology to sense depth. This technology was developed by PrimeSense,
an Israeli 3D sensing company and originally licensed to Microsoft in 2010 for
the Kinect motion sensor used in the Xbox 360 gaming system. The depth camera
uses an IR projector to transmit beams that are reflected back to a monochrome
Complementary Metal–Oxide–Semiconductor (CMOS) sensor that continuously
captures image data. This data is converted into depth information, indicating the
distance that each IR beam has traveled. Data in x, y, and z distance is captured for
each point measured from the sensor axis reference frame.

[147]

For a quick explanation of how 3D sensors work, the video How the
Kinect Depth Sensor Works in 2 Minutes is worth watching at
https://www.youtube.com/watch?v=uq9SEJxZiUg.

This 3D sensor technology is primarily for use indoors and does not typically work
well outdoors. Infrared from the sunlight has a negative effect on the quality of
readings from the depth camera. Objects that are shiny or curved also present a
challenge for the depth camera.

Comparison of 3D sensors
Currently, many 3D vision sensors have been integrated with ROS and TurtleBot.
Microsoft Kinect, ASUS Xtion, PrimeSense Carmine, and Intel RealSense have all
been integrated with camera drivers that provide a ROS interface used for TurtleBot
2. The Intel RealSense sensors are also used with the TurtleBot 3 Waffle version, but
navigation is performed using the (2D) LDS on both the Burger and Waffle versions
of TurtleBot 3. The ROS packages that handle the processing for these sensors will be
described in an upcoming section, but first, a comparison of these products is provided.

Microsoft Kinect
Kinect was developed by Microsoft as a motion sensing device for video games, but
it works well as a mapping tool for TurtleBot. Kinect is equipped with an rgb camera,
a depth camera, an array of microphones, and a tilt motor.

The rgb camera acquires 2D color images in the same way in which our smart
phones or webcams acquire color video images. The Kinect microphones can be
used to capture sound data and a three-axis accelerometer can be used to find the
orientation of the Kinect. These features hold the promise of exciting applications for
TurtleBot, but this book will not delve into the use of these Kinect sensor capabilities.

Kinect is connected to the TurtleBot netbook through a USB 2.0 port (USB 3.0 for
Kinect v2). Software development on Kinect can be done using the Kinect Software
Development Kit (SDK), freenect, and Open Source Computer Vision (OpenCV).
The Kinect SDK was created by Microsoft to develop Kinect apps, but unfortunately,
it only runs on Windows. OpenCV is an open source library of hundreds of
computer vision algorithms that provides support for 2D image processing. 3D
depth sensors, such as the Kinect, ASUS, PrimeSense, and RealSense are supported
in the VideoCapture class of OpenCV. Freenect packages and libraries are open
source ROS software that provides support for Microsoft Kinect. More details on
freenect will be provided in an upcoming section titled Configuring TurtleBot and
installing 3D sensor software.

https://www.youtube.com/watch?v=uq9SEJxZiUg

Navigating the World with TurtleBot

[148]

Microsoft has developed three versions of Kinect to date: Kinect for Xbox 360, Kinect
for Xbox One, and Kinect for Windows v2. The following figure presents images of
the variations and the subsequent table shows their specifications:

Microsoft Kinect versions

[149]

Microsoft Kinect version specifications:

Spec Kinect 360 Kinect One Kinect for Windows
v2

Release date November 2010 November 2013 July 2014
Horizontal field of view
(degrees) 57 57 70

Vertical field of view
(degrees) 43 43 60

Color camera data
640 x 480 32-bit @
30 fps

640 x 480 @ 30 fps
1920 x 1080 @
30 fps

Depth camera data
320 x 240 16-bit @
30 fps

320 x 240 @ 30 fps 512 x 424 @ 30 fps

Depth range (meters) 1.2–3.5 0.5–4.5 0.5–4.5
Audio 16-bit @ 16 kHz 4 microphones
Dimensions 28 x 6.5 x 6.5 cm 25 x 6.5 x 6.5 cm 25 x 6.5.x 7.5 cm

Additional information
Motorized tilt base
range ± 27 degrees;
USB 2.0

Manual tilt base;
USB 2.0

No tilt base;
USB 3.0 only

Requires external
power

fps: frames per second

ASUS
ASUS Xtion, Xtion PRO, PRO LIVE, and the recently released Xtion 2 are also 3D
vision sensors designed for motion sensing applications. The technology is similar to
the Kinect, using an IR projector and a monochrome CMOS receptor to capture the
depth information.

The ASUS sensor is connected to the TurtleBot netbook through a USB 2.0 port (or
USB 3.0 for the Xtion 2) and no other external power is required. Applications for
the ASUS Xtion sensors can be developed using the ASUS development solution
software, OpenNI2, and OpenCV. OpenNI2 packages and libraries are open source
software that provides support for ASUS and PrimeSense 3D sensors. More details
on OpenNI2 will be provided in the following section, Configuring TurtleBot and
installing 3D sensor software.

Navigating the World with TurtleBot

[150]

The following figure presents images of the ASUS sensor variations and the
subsequent table shows their specifications:

ASUS Xtion and PRO versions

[151]

ASUS Xtion and PRO version specifications:

Spec Xtion Xtion PRO Xtion PRO LIVE Xtion 2
Horizontal
field of view
(degrees)

58 58 58 74

Vertical
field of view
(degrees)

45 45 45 52

Color camera
data none none 1280 x 1024 2592 x 1944

Depth camera
data unspecified

640 x 480 @ 30
fps
320 x 240 @ 60
fps

640 x 480 @ 30
fps
320 x 240 @ 60
fps

640 x 480 @ 30
fps
320 x 240 @ 60
fps

Depth range
(meters) 0.8–3.5 0.8–3.5 0.8–3.5 0.8–3.5

Audio none none 2 microphones none
Dimensions
(cm) 18 x 3.5 x 5 18 x 3.5 x 5 18 x 3.5 x 5 11 x 3.5 x 3.5

Additional
information USB 2.0 USB 2.0 USB 2.0/ 3.0 USB 3.0

No additional power required—powered through USB

Navigating the World with TurtleBot

[152]

PrimeSense Carmine
PrimeSense was the original developer of the 3D vision sensing technology using
near-infrared light. They also developed the NiTE software that allows developers
to analyze people, track their motions, and develop user interfaces based on gesture
control. PrimeSense offered its own sensors, Carmine 1.08 and 1.09, to the market
before the company was bought by Apple in November 2013. The Carmine sensor
is shown in the following image. ROS OpenNI2 packages and libraries also support
the PrimeSense Carmine sensors. More details on OpenNI2 will be provided in the
upcoming section titled Configuring TurtleBot and installing 3D sensor software:

PrimeSense Carmine

PrimeSense has two versions of the Carmine sensor: 1.08 and the short range 1.09.
The preceding image shows how the sensors look and the subsequent table shows
their specifications:

Spec Carmine 1.08 Carmine 1.09
Horizontal field of view
(degrees) 57.5 57.5

Vertical field of view (degrees) 45 45
Color camera data 640 x 480 @ 30 Hz 640 x 480 @ 60 Hz
Depth camera data 640 x 480 @ 60 Hz 640 x 480 @ 60 Hz
Depth range (meters) 0.8–3.5 0.3–1.4
Audio Two microphones Two microphones
Dimensions 18 x 2.5 x 3.5 cm 18 x 3.5 x 5 cm
Additional information USB 2.0 / 3.0 USB 2.0 / 3.0

No additional power required—powered through
USB

[153]

Intel RealSense
Intel RealSense technology was developed to integrate gesture tracking, facial
analysis, speech recognition, background segmentation, 3D scanning, augmented
reality, and many more applications into an individual's personal computer
experience. For TurtleBot, the RealSense series of 3D cameras can be combined with
powerful and adaptable machine perception software to give TurtleBot the capability
to navigate on its own. Given that these cameras are powered by a USB 3.0 interface,
connecting to the TurtleBot's netbook or SBC is straightforward. Any of these
cameras will provide color, depth, and IR video streams for navigation.

In the following paragraphs, we will introduce and describe the latest Intel RealSense
series cameras: R200, SR300, and ZR300. Intel's Euclid Development Kit integrates
the RealSense camera technology with a power computer to provide a compact
all-in-one imaging system. The Euclid will be introduced and described also in a
subsequent paragraph.

Intel RealSense Camera R200: It is a long range, stereo vision 3D imaging system.
The R200 has two active IR cameras positioned on the left and right of an IR
laser projector. These two cameras provide the ability to implement stereo vision
algorithms to calculate depth. Images detected by these cameras are sent to the
R200 application-specific integrated circuit (ASIC). The ASIC is custom designed
to calculate the depth value for each pixel in the image. The IR laser projector is a
class-1 laser device that emits additional illumination to texture a scene for better
stereo vision performance. The R200 also has a full HD color imaging sensor for
color vision data. The R200 has the added advantage of outdoor use because of the
IR projection system. Adjustments for a fully sunlit environment might be necessary.
The product datasheet for the R200 can be found at the website:
https://software.intel.com/sites/default/files/managed/d7/a9/
realsense-camera-r200-product-datasheet.pdf.

Intel RealSense Camera SR300: It's a short range, coded light 3D imaging system
that is optimized for background segmentation and facial tracking applications. The
SR300 is the second-generation improvement over the Intel RealSense F200 camera
in depth range and higher quality depth data. The F200 and SR300 imaging systems
use embedded coded light IR for depth measurement and full HD color for imaging.
The SR300 camera contains an IR laser projector system and a fast video graphics
array (VGA) IR sensor that work together using a coded light pattern projected on
a 2D array of monochromatic pixel values. This coded light method provides depth
imaging with reduced exposure time allowing for faster dynamic motion capture.
This technology has two significant drawbacks:

1.	 Multiple SR300 (and F200) cameras used for the same scene degrade the
cameras' performance.

https://software.intel.com/sites/default/files/managed/d7/a9/realsense-camera-r200-product-datasheet.pdf
https://software.intel.com/sites/default/files/managed/d7/a9/realsense-camera-r200-product-datasheet.pdf

Navigating the World with TurtleBot

[154]

2.	 The camera does not work well in outdoor environments due to
ambient IR.

The camera can operate to produce independent color, depth, and IR video streams
or synchronizes these video data streams to a client computer system. The SR300
product datasheet can be found at:
https://software.intel.com/sites/default/files/managed/0c/ec/
realsense-sr300-product-datasheet-rev-1-0.pdf.

Intel RealSense Camera ZR300: This variant is a mid-range, stereo vision 3D
imaging system similar to the R200. The ZR300 stereo vision is implemented with
a left IR camera, a right IR camera, and an IR laser projector. The image data is
received from the cameras on the ZR300 ASIC, which calculates the depth values
for each pixel in the image. The ZR300 also incorporates a six-degree of freedom
IMU and a fisheye optical sensor. The ZR300 image streams have timestamp
synchronization to a 50µs reference clock. The ZR300 product datasheet can be found
at: https://www.intel.com/content/dam/support/us/en/documents/emerging-
technologies/intel-realsense-technology/ZR300-Product-Datasheet-
Public.pdf.

Intel Euclid Developer Kit: The Euclid combines a ZR300 camera with a full
featured computer into the compact size of a candy bar. The computer is an Intel
Atom x7-8700 Quad-Core processor with 4 GB of memory and 32 GB of storage. It
comes pre-installed with Ubuntu 16.04 and ROS Kinetic Kame. The Euclid has both
Wi-Fi and Bluetooth communication and USB 3.0, Micro HDMI, and USBOTG/
Charging ports. Sensors within the Euclid include an IMU, barometric pressure
sensor, GPS, and proximity sensor. It can be powered by its own lithium polymer
battery pack or with external power. The Euclid comes ready to use out of the box
and the developer uses a web interface from a phone or computer to run, monitor,
and manage the application. Many more details on the Euclid Developer Kit are
available at the following websites:

•	 Euclid Development Kit Datasheet: https://click.intel.com/media/
productid2100_10052017/335926-001_public.pdf

•	 Euclid Development Kit User Guide: https://click.intel.com/media/
productid2100_10052017/euclid_user_guide_2-15-17_final3d.pdf

•	 Euclid Operating Guide: https://click.intel.com/media/
productid2100_10052017/euclid-operating-guide-final.pdf

https://software.intel.com/sites/default/files/managed/0c/ec/realsense-sr300-product-datasheet-rev-1-0.pdf
https://software.intel.com/sites/default/files/managed/0c/ec/realsense-sr300-product-datasheet-rev-1-0.pdf
https://www.intel.com/content/dam/support/us/en/documents/emerging-technologies/intel-realsense-technology/ZR300-Product-Datasheet-Public.pdf
https://www.intel.com/content/dam/support/us/en/documents/emerging-technologies/intel-realsense-technology/ZR300-Product-Datasheet-Public.pdf
https://www.intel.com/content/dam/support/us/en/documents/emerging-technologies/intel-realsense-technology/ZR300-Product-Datasheet-Public.pdf
https://click.intel.com/media/productid2100_10052017/335926-001_public.pdf
https://click.intel.com/media/productid2100_10052017/335926-001_public.pdf
https://click.intel.com/media/productid2100_10052017/euclid_user_guide_2-15-17_final3d.pdf
https://click.intel.com/media/productid2100_10052017/euclid_user_guide_2-15-17_final3d.pdf
https://click.intel.com/media/productid2100_10052017/euclid-operating-guide-final.pdf
https://click.intel.com/media/productid2100_10052017/euclid-operating-guide-final.pdf

[155]

Software development tools for the RealSense cameras are available with any of the
following software packages:

•	 The Intel RealSense SDK for Windows was created to encourage users to
develop natural, immersive, and intuitive interactive applications with the
3D cameras. Each of the cameras requires Depth Camera Manager (DCM)
software specific for that camera to be downloaded and installed for use
with the SDK. This SDK makes it easy to incorporate human-computer
interaction capabilities such as facial recognition, hand gesture recognition,
user background segmentation/removal, 3D scanning, and more features
into your apps. Unfortunately, Intel has decided to discontinue support
of the SDK for Windows. The librealsense API (described next) is the
recommended alternative software for developers. Information on the SDK
for Windows is available at:
https://software.intel.com/en-us/intel-realsense-sdk.

•	 The librealsense API was developed by Intel as an open-source,
cross-platform (Linux, OS X, and Windows) driver for streaming video
data from the RealSense cameras. It provides image streams for color,
depth, and IR as well as produces rectified and registered image streams.
Librealsense also supports multi-camera capture from single or multiple
RealSense models simultaneously. This API has been initiated to support
developers in the areas of robotics, virtual reality, and internet of things. The
GitHub repository is present at https://github.com/IntelRealSense/
librealsense.

•	 The Intel RealSense SDK for Linux is a collection of software libraries, tools,
and samples utilizing the librealsense API. The SDK libraries provide
the ability to correlate color and depth images, create point clouds, and
apply other advanced image processing. Tools and samples are provided to
demonstrate the usage of the SDK libraries. https://software.intel.com/
sites/products/realsense/sdk/.

•	 OpenCV software can also be used with the image streams produced by the
RealSense cameras.

•	 ROS RealSense packages rely on the librealsense API described previously.
The librealsense package is used by the ROS realsense_camera package,
which creates the camera node for publishing streams of color, depth, and IR
data. http://wiki.ros.org/RealSense.

More details on ROS RealSense software is provided in the upcoming section titled
Configuring TurtleBot and installing 3D sensor software.

https://software.intel.com/en-us/intel-realsense-sdk
https://github.com/IntelRealSense/librealsense
https://github.com/IntelRealSense/librealsense
https://software.intel.com/sites/products/realsense/sdk/
https://software.intel.com/sites/products/realsense/sdk/
http://wiki.ros.org/RealSense

Navigating the World with TurtleBot

[156]

The Intel RealSense cameras currently considered for integrating with TurtleBot are
the R200, SR300, ZR300, and the Euclid Development Kit as shown in the following
figure. Specifications for the R200, SR300, and ZR300 cameras are shown in the
subsequent table:

Intel RealSense cameras and the development kit

Intel RealSense camera's specifications:

Spec R200 SR300 ZR300
Release Date December 2015 July 2016 January 2017
Horizontal field of view
(degrees) 70 71.5 68

Vertical field of view
(degrees) 43 55 41.5

Color camera data 1920 x 1080 @ 30
fps

1920 x 1080 @ 30
fps 1920 x 1080

Depth camera data 640 x 480 @ 60 fps 640 x 480 @ 60 fps 640 x 480
IR camera data 640 x 480 @ 60 fps 640 x 480 @ 200 fps 640 x 480
Depth range (meters) 0.4–3.5 0.2–1.5 0.55–2.8

Audio None Dual-array
Microphones None

[157]

Spec R200 SR300 ZR300

Dimensions
10.2 x. 1.0 x 0.4 cm
11 x 1.3 x 0.4 cm

15.5 x 3.2 x 0.9 cm

Additional information

Outdoor depth
range up to 10
meters
USB 3.0 only

USB 3.0 only

Includes: Fisheye
Camera 640 x 480;
IMU
USB 3.0 only

No additional power required—powered through USB

Hitachi-LG LDS
The TurtleBot 3 LDS rotates in a continuous 360 degrees to collect 2D distance
data that is transmitted to the SBC. The hardware configurations are described
in the Introducing TurtleBot 3 section in Chapter 3, Driving Around with TurtleBot.
The distance data is used for obstacle detection, SLAM mapping, and navigation.
The LDS uses a Class 1 laser with a semiconductor laser diode light source. Basic
specifications for the device can be found at http://wiki.ros.org/hls_lfcd_lds_
driver?action=AttachFile&do=view&target=LDS_Basic_Specification.pdf.

The software driver is contained in the ROS package hls-lfcd-lds-driver. The
LDS starts operating as part of the basic TurtleBot 3 operation described in the Using
keyboard teleoperation to move TurtleBot 3 section in Chapter 3, Driving Around with
TurtleBot. The following figure shows a side view and top view of the LDS and the
subsequent table shows its specifications:

Hitachi-LG LDS

http://wiki.ros.org/hls_lfcd_lds_driver?action=AttachFile&do=view&target=LDS_Basic_Specification.pdf
http://wiki.ros.org/hls_lfcd_lds_driver?action=AttachFile&do=view&target=LDS_Basic_Specification.pdf

Navigating the World with TurtleBot

[158]

LDS specifications:

Spec LDS
Distance range (meters) 0.120 – 3.5
Angular range (degrees) 360
Angular resolution (degrees) 1
Distance accuracy (meters)
 0.120 – 0.499
 0.500 – 3.500

± 0.015
± 5.0%

Distance precision (meters)
 0.120 – 0.499
 0.500 – 3.500

± 0.010
± 3.5%

Scan rate (rpm) 300 ± 10

TurtleBot uses 2D and 3D sensing for autonomous navigation and obstacle
avoidance, as described later in this chapter. Other applications that these 3D sensors
are used in include 3D motion capture, skeleton tracking, face recognition, and voice
recognition.

Obstacle avoidance drawbacks
There are a few drawbacks that you need to know about when using the infrared 3D
sensor technology for obstacle avoidance. These sensors have a narrow imaging area
of about 58 degrees horizontal and 43 degrees vertical (typically), although those for
Kinect for Windows v2 and Xtion 2 are slightly larger. These sensors can also not
detect anything within the first 0.5 meters (~20 inches). Highly reflective surfaces,
such as metals, glass, or mirrors cannot be detected by the 3D vision sensors.

Configuring TurtleBot and installing the
3D sensor software
There are minor but important environmental variables and software that are needed
for the TurtleBot based on your selection of 3D sensors. We have attached a Kinect
Xbox 360 sensor to our TurtleBot, but we will provide instructions to configure each
of the 3D sensors mentioned in this chapter. These environmental variables are used
by the ROS launch files to launch the correct camera drivers. In ROS Kinetic, the
Kinect, ASUS, and RealSense sensors are supported by different camera drivers, as
described in the following sections.

[159]

Kinect
The environmental variables for the Kinect sensors are as follows:

export KINECT_DRIVER=freenect
export TURTLEBOT_3D_SENSOR=kinect

These variables should be added to the ~/.bashrc files of both the TurtleBot and
the remote computer. For mapping and navigation a common 3dsensor launch file
is utilized and these environment variables identify the 3D vision sensor attached to
TurtleBot.

Libfreenect is an open source library that provides an interface for Microsoft Kinect
to be used with Linux, Windows, and Mac. ROS packages for Kinect 360 and Kinect
One are installed with TurtleBot software installation described in the Setting up to
control a real TurtleBot 2 section in Chapter 3, Driving Around with TurtleBot. These ROS
packages are:

•	 ros-kinetic-libfreenect

•	 ros-kinetic-freenect-camera

•	 ros-kinetic-freenect-launch

•	 ros-kinetic-rgbd-launch

Kinect for Windows v2 requires a different camera driver named libfreenect2 and
the iai_kinect2 software toolkit. The installation of this software is described in
Chapter 9, Flying a Mission with Crazyflie.

For the latest information on the ROS freenect software, check the ROS
wiki at http://wiki.ros.org/freenect_launch. Maintainers
of the freenect software utilize as much of the OpenNI2 software as
possible to preserve compatibility.

ASUS and PrimeSense
The TurtleBot software for ROS Kinetic is configured to work with the ASUS Xtion
PRO as the default configuration. It is possible to add the following environmental
variable:

export TURTLEBOT_3D_SENSOR=asus_xtion_pro

although, (at this time) it is not necessary.

The openni2_camera ROS package supports the ASUS Xtion, Xtion PRO, and the
PrimeSense 1.08 and 1.09 cameras. The openni2_camera package does not support
any Kinect devices. This package provides drivers for the cameras to publish raw
rgb, depth, and IR image streams.

http://wiki.ros.org/freenect_launch

Navigating the World with TurtleBot

[160]

ROS packages for OpenNI2 are installed with the TurtleBot software installation
described in the Setting up to control a real TurtleBot 2 section in Chapter 3, Driving
Around with TurtleBot. These ROS packages are:

•	 ros-kinetic-openni2-camera

•	 ros-kinetic-openni2-launch

For the latest information on the ROS OpenNI2 software, check
the ROS wiki at http://wiki.ros.org/openni2_launch.

Intel RealSense
The environmental variable for one of the Intel RealSense cameras is as follows:

export TURTLEBOT_3D_SENSOR=<R200, F200, SR300, ZR300>

Only one of the camera identifiers within the brackets should be used. This variable
can be added to the ~/.bashrc files of both TurtleBot and the remote computer.

The RealSense ROS packages enable the use of Intel's RealSense cameras with
ROS. Librealsense is the underlying library of drivers for communicating with all
the cameras. The ROS package realsense_camera is the software for the camera
node that publishes the image data. These packages are installed with the TurtleBot
software installation described in the Setting up to control a real TurtleBot 2 section
in Chapter 3, Driving Around with TurtleBot. For installing these packages on the
TurtleBot 3 Waffle SBC, use the following commands:

$ sudo apt-get install ros-kinetic-librealsense

$ sudo apt-get install ros-kinetic-realsense-camera

http://wiki.ros.org/openni2_launch

[161]

Camera software structure
The freenect_camera, openni2_camera and realsense_camera packages are ROS
nodelet packages used to streamline the processing of an enormous quantity of
image data. Initially, a nodelet manager is launched and then nodelets are added
to the manager. The default 3D sensor data type for the camera nodelet processing
is depth_image. The camera driver software publishes the depth_image message
streams. These messages can be converted to point cloud data types to make them
more usable for Point Cloud Library (PCL) algorithms. Basic navigation operations
on TurtleBot use depth_images for faster processing. Launching nodelets to
handle the conversion of raw depth, rgb, and IR data streams to the depth_image,
disparity_image, and registered_point_cloud messages is the method of
handling all the conversions in one process. Nodelets allow multiple algorithms to
be running in a single process without creating multiple copies of the data when
messages are passed between processes.

The depthimage_to_laserscan package uses the depth_image data to create
sensor_msgs/LaserScan in order to utilize more processing power to generate
maps. For more complex applications, converting depth_images to the point cloud
format offers the advantage of using the PCL algorithms.

Defining terms
The important terms that are used in configuring TurtleBot are as follows:

•	 Depth cloud: Depth cloud is another name for the depth_image produced
by a 3D sensor, such as the Kinect, ASUS, PrimeSense, and RealSense depth
cameras.

•	 Point cloud: A point cloud is a set of points with x, y, and z coordinates that
represent the surface of an object.

•	 Registered DepthCloud and Registered PointCloud: These terms are used
by ROS for special DepthCloud or PointCloud data colored by the rgb image
data. These data streams are available when the depth_registration option
is selected (set to true).

Navigating the World with TurtleBot

[162]

Testing the 3D sensor in standalone
mode
Before we make an attempt to control the TurtleBot 2 from a remote computer, it is
wise to test the TurtleBot 2 in standalone mode. TurtleBot will be powered on and
we will use its netbook to check whether the robot is operational on its own.

To prepare the TurtleBot, the following steps should be performed:

1.	 Plug in the power to the 3D sensor via the TurtleBot base connection
(Kinect only).

2.	 Plug in the power to the netbook via the TurtleBot base connection.
3.	 Power on the netbook and establish the network connection on the netbook.

This should be the network used for TurtleBot's ROS_MASTER_URI IP address.
4.	 Power on the TurtleBot base.
5.	 Plug in the 3D sensor to the netbook through a USB 2.0 port (for Kinect) or a

USB 3.0 port (for Windows v2, Xtion 2, and RealSense).

Ensure that ROS environment variables are configured correctly on the netbook.
Refer to the Netbook network setup section in Chapter 3, Driving Around with TurtleBot,
and the Configuring TurtleBot and installing 3D sensor software section of this chapter.

To test the operation of the TurtleBot 2's 3D sensor in standalone mode, perform the
following steps on the netbook:

1.	 On the TurtleBot netbook, bring up a terminal window and run the TurtleBot
minimal launch:
$ roslaunch turtlebot_bringup minimal.launch

2.	 Open another terminal window and start the camera nodelets for Kinect:

$ roslaunch freenect_launch freenect.launch

If you are using an ASUS or Carmine sensor, start the camera nodelets using
the following command:
$ roslaunch openni2_launch openni2.launch

If you are using an Intel RealSense camera, start the camera nodelets using
the following command that corresponds to the correct camera type:
$ roslaunch realsense_camera r200_nodelet_default.launch

$ roslaunch realsense_camera sr300_nodelet_default.launch

$ roslaunch realsense_camera zr300_nodelet_default.launch

[163]

If these commands run on TurtleBot with no errors, you are ready to proceed with
running 3D visualizations from the remote computer. If you receive errors, such as
No devices connected…, make sure that the correct camera drivers are installed, as
described in the Configuring TurtleBot and installing 3D sensor software section of this
chapter. Also, make sure that the TurtleBot base is powered on.

Running ROS nodes for visualization
Viewing images on the remote computer is the next step to setting up TurtleBot 2.
Two ROS tools can be used to visualize the rgb and depth camera images. Image
Viewer and rviz are used in the following sections to view the image streams
published by the Kinect sensor.

Visual data using Image Viewer
A ROS node can allow us to view images that come from the rgb camera on Kinect.
The camera_nodelet_manager node implements a basic camera capture program
using OpenCV to handle publishing ROS image messages as a topic. This node
publishes the camera images in the /camera namespace.

Three terminal windows will be required to launch the base and camera nodes on
TurtleBot and launch the Image Viewer node on the remote computer. The steps are
as follows:

1.	 Terminal Window 1: Minimal launch of TurtleBot:
$ ssh <username>@<TurtleBot's IP Address>

$ roslaunch turtlebot_bringup minimal.launch

2.	 Terminal Window 2: Launch freenect camera:
$ ssh <username>@<TurtleBot's IP Address>

$ roslaunch freenect_launch freenect.launch

This freenect.launch file starts the camera_nodelet_manager node, which
prepares to publish both the rgb and depth stream data. When the node is
running, we can check the topics by executing the rostopic list command.
The topic list shows the /camera namespace with multiple depth,
depth_registered, ir, rectify_color, rectify_mono, and rgb topics.

3.	 To view the image messages, open a third terminal window and type the
following command to bring up the Image Viewer:
$ rosrun image_view image_view image:=/camera/rgb/image_color

Navigating the World with TurtleBot

[164]

This command creates the /image_view node that opens a window,
subscribes to the /camera/rgb/image_color topic, and displays the image
messages. These image messages are published over the network from the
TurtleBot to the remote computer (a workstation or laptop). If you want to
save an image frame, you can click on the disk icon on the main menu of
the viewer.

If you are using an ASUS sensor and openni2_launch, the
/camera/rgb/image_color topic does not exist. Instead, use
the /camera/rgb/image_raw topic.

The following screenshot from the Image Viewer shows the rgb image of the
Baxter robot in our laboratory:

An image view of an rgb image

4.	 To view depth camera images, press the Ctrl + C keys to end the previous
image_view process. Then, type the following command in the third terminal
window:

[165]

$ rosrun image_view image_view image:=/camera/depth/image

A pop-up window for Image Viewer will appear on your screen. Our view is
shown in the following screenshot:

An image view of a depth image

To close the Image Viewer and other windows, press the Ctrl + C keys in each
terminal window.

Visual data using rviz
To visualize the 3D sensor data from the TurtleBot using rviz, begin by launching
the TurtleBot minimal launch software. Next, a second terminal window should be
opened to start the launch software for the 3D sensor:

1.	 Terminal Window 1: Minimal launch of TurtleBot:
$ ssh <username>@<TurtleBot's IP Address>

$ roslaunch turtlebot_bringup minimal.launch

2.	 Terminal Window 2: Launch 3D sensor software:
$ ssh <username>@<TurtleBot's IP Address>

$ roslaunch turtlebot_bringup 3dsensor.launch

Navigating the World with TurtleBot

[166]

The 3dsensor.launch file within the turtlebot_bringup package
configures itself based on the TURTLEBOT_3D_SENSOR environment variable
set by the user. Using this variable, it includes a custom Kinect or ASUS
Xtion PRO or RealSense R200 launch.xml file that contains all of the unique
camera and processing parameters set for that particular 3D sensor. The
3dsensor.launch file turns on all the sensor processing modules as the
default. These modules include the following:

°° rgb_processing

°° ir_processing

°° depth_processing

°° depth_registered_processing

°° disparity_processing

°° disparity_registered_processing

°° scan_processing

It is typically not desirable to generate so much sensor data for an
application. The 3dsensor.launch file allows users to set arguments
to minimize the amount of sensor data generated. Typically, TurtleBot
applications only turn on the sensor data needed in order to minimize the
amount of processing performed. This is done by setting selected roslaunch
arguments to false when particular sensor data is not needed.
When the 3dsensor.launch file is executed, the turtlebot_bringup
package launches a /camera_nodelet_manager node with multiple nodelets.
Nodelets were described in the Camera software structure section. The
following is a list of nodelets that are started:
NODES

 /camera/

 camera_nodelet_manager (nodelet/nodelet)

 depth_metric (nodelet/nodelet)

 depth_metric_rect (nodelet/nodelet)

 depth_points (nodelet/nodelet)

 depth_rectify_depth (nodelet/nodelet)

 depth_registered_hw_metric_rect (nodelet/nodelet)

 depth_registered_metric (nodelet/nodelet)

 depth_registered_rectify_depth (nodelet/nodelet)

 depth_registered_sw_metric_rect (nodelet/nodelet)

 disparity_depth (nodelet/nodelet)

 disparity_registered_hw (nodelet/nodelet)

[167]

 disparity_registered_sw (nodelet/nodelet)

 driver (nodelet/nodelet)

 ir_rectify_ir (nodelet/nodelet)

 points_xyzrgb_hw_registered (nodelet/nodelet)

 points_xyzrgb_sw_registered (nodelet/nodelet)

 register_depth_rgb (nodelet/nodelet)

 rgb_debayer (nodelet/nodelet)

 rgb_rectify_color (nodelet/nodelet)

 rgb_rectify_mono (nodelet/nodelet)

 /

 depthimage_to_laserscan (nodelet/nodelet)

Next, launch rviz to allow various forms of visualization data to be seen.

3.	 Terminal Window 3: View sensor data on rviz:

$ roslaunch turtlebot_rviz_launchers view_robot.launch

The turtlebot_rviz_launchers package provides the view_robot.launch
file for bringing up rviz and is configured to visualize the TurtleBot and its
sensor output.
Within rviz, the 3D sensor data can be displayed in many formats. If images
are not visible in the environment window, set the Fixed Frame (under
Global Options) on the Displays panel to /camera_link. Try checking
the box for the Registered PointCloud and rotating the TurtleBot's screen
environment in order to see what the Kinect is sensing. Zoom out to see the
entire screen. Then wait. Patience is required because displaying a point
cloud involves a lot of processing power.

Navigating the World with TurtleBot

[168]

The following screenshot shows the rviz display of a Registered PointCloud
image in our lab:

A Registered PointCloud image

On the rviz Displays panel, the following display types can be added and
checked for viewing in the environment window:

°° DepthCloud
°° Registered DepthCloud
°° Image
°° LaserScan
°° PointCloud
°° Registered PointCloud

If the sensor display does not appear, then the topic is not being published.
You can check whether the topic is being published with the rostopic
echo command. The processing modules for these topics are selected in the
3dsensor.launch file.

[169]

The following table describes the different types of image sensor displays available
in rviz and the message types that they display:

Sensor name Description Messages used

Camera
This creates a new rendering window from the
perspective of a camera and overlays the image
on top of it.

sensor_msgs/Image,
sensor_msgs/
CameraInfo

DepthCloud,
Registered
DepthCloud

This displays point clouds based on depth
maps. sensor_msgs/Image

Image
This creates a new rendering window with an
image. Unlike the camera display, this display
does not use camera information.

sensor_msgs/Image

LaserScan
This shows data from a laser scan with
different options for rendering modes,
accumulation, and so on.

sensor_msgs/LaserScan

Map This displays an occupancy grid on the ground
plane.

nav_msgs/
OccupancyGrid

PointCloud,
PointCloud2,
and Registered
PointCloud

This shows data from a point cloud with
different options for rendering modes,
accumulation, and so on.

sensor_msgs/
PointCloud,
sensor_msgs/
PointCloud2

Navigating with TurtleBot
Launch files for TurtleBot will create ROS nodes either remotely on the TurtleBot
netbook (via SSH to TurtleBot) or locally on the remote computer. As a general
rule, the launch files (and nodes) that handle the GUI and visualization processing
should run on the remote computer while the minimal launch and camera drivers
should run on the TurtleBot netbook or SBC. Note that we will specify when to SSH
to TurtleBot for a ROS command or omit the SSH for using a ROS command on the
remote computer.

Navigating the World with TurtleBot

[170]

Mapping a room with TurtleBot 2
TurtleBot can autonomously drive around its environment if a map is made of the
environment. The 3D sensor is used to create a 2D map of the room as the TurtleBot
is driven around either by a joystick, keyboard, or any other method of teleoperation.

Since we are using the Kobuki base, calibration of the gyro inside the base is
not necessary. If you are using the Create base, make sure that you perform the
gyro calibration procedure in the TurtleBot ROS wiki at http://wiki.ros.org/
turtlebot_calibration/Tutorials/Calibrate%20Odometry%20and%20Gyro
before you begin with the mapping operation.

Defining terms
The core terms that are used in TurtleBot navigation are as follows:

•	 Odometry: Data gathered from moving sensors is used to estimate the
change in a robot's position over time. This data is used to estimate the
current position of the robot relative to its starting location.

•	 Map: For TurtleBot, a map is a 2D representation of an environment encoded
with occupancy data.

•	 Occupancy Grid Map (OGM): An OGM is a map generated from the 3D
sensor measurement data and the known pose of the robot. The environment
is divided into an evenly spaced grid in which the presence of obstacles is
identified as a probabilistic value in each cell on the grid.

•	 Localization: Localization determines the present position of the robot with
respect to a known map. The robot uses features in the map to determine
where its current position is on the map.

Building a map
The following steps are fairly complex and will require the use of four or five terminal
windows. Be conscious of which commands are on TurtleBot (requiring SSH from the
remote computer) and those that are on the remote computer (not requiring SSH).
In each terminal window, enter the commands following the $ prompt:

1.	 Terminal window 1: Minimal launch of TurtleBot:
$ ssh <username>@<TurtleBot's IP Address>

$ roslaunch turtlebot_bringup minimal.launch

These commands are the now familiar process of setting the many arguments
and parameters and launching nodes for the TurtleBot mobile base
functionality.

http://wiki.ros.org/turtlebot_calibration/Tutorials/Calibrate%20Odometry%20and%20Gyro
http://wiki.ros.org/turtlebot_calibration/Tutorials/Calibrate%20Odometry%20and%20Gyro

[171]

2.	 Terminal window 2: Launch the gmapping operation as follows:
$ ssh <username>@<TurtleBot's IP Address>

$ roslaunch turtlebot_navigation gmapping_demo.launch

Look for the following text on your window:
odom received!

The gmapping_demo launch file launches the 3dsensor.launch file,
specifying turning off the rgb_processing, depth_registration, and
depth_processing modules. This leaves the modules for ir_processing,
disparity_processing, disparity_registered_processing, and
scan_processing. The .xml files for gmapping.launch and move_base.
launch are also invoked. The gmapping.launch.xml file launches the
slam_gmapping node and sets multiple parameters in the .xml file. The
move_base.launch.xml file launches the move_base node and also starts the
nodes for velocity_smoother and safety_controller. A more complete
description of this processing is provided in the following How does TurtleBot
accomplish this mapping task? section.

3.	 Terminal window 3: View navigation on rviz by running the following
command:
$ roslaunch turtlebot_rviz_launchers view_navigation.launch

Rviz should come up in the TopDownOrtho view identified in the Views
panel on the right side of the screen. This environment shows a map that
is the initial OGM, which shows occupied space, free space, and unknown
space.
If a map is not displayed, make sure that the following display checkboxes
have been selected on the Displays panel (on the left side):

°° Grid
°° RobotModel
°° LaserScan
°° Bumper Hit
°° Map
°° Global Map
°° Local Map
°° Amcl Particle Swarm
°° Full Plan

Navigating the World with TurtleBot

[172]

Examine the rviz screen; the grid is the coordinate system for the map
you will be making. TurtleBot is located at the origin of the grid and map.
TurtleBot's x direction is pointing along the positive x axis of the grid. If you
align the direction TurtleBot is facing perpendicular to the wall of the room
then the map will squarely overlay the grid. From TurtleBot's starting point
for the map (the origin of the grid), locations ahead of it will be positive in x,
to the left will be positive in y, behind will be negative in x, and to the right
will be negative in y.
Your rviz screen should display results similar to the following screenshot:

An initial gmapping screen in rviz

4.	 Terminal window 4: Keyboard control of TurtleBot:

$ roslaunch turtlebot_teleop keyboard_teleop.launch

Here, the keyboard navigation command is used, but the joystick
teleop or interactive marker navigation can be used instead.

At this point, you should use keyboard commands to navigate TurtleBot completely
around the environment. A representation of the map is built and can be viewed in
rviz as TurtleBot's 3D sensor detects objects within its range.

[173]

The following screenshot shows a map of our lab that TurtleBot produced on rviz:

TurtleBot mapping a room

Notice that light gray areas are clear, unoccupied space, dark gray areas are
unexplored areas, black indicates a solid border, such as a wall, and colored spots
are obstacles in the room. The area of the brightest color is TurtleBot's local map
(the area the sensor is currently detecting).

When a complete map of the environment appears on rviz, the map should be saved.
Without killing any of the prior processes, open another terminal window and type
the following commands:

$ ssh <username>@<Turtlbot's IP Address>

$ rosrun map_server map_saver -f /home/<TurtleBot's username>/my_map

If you do not know the TurtleBot's username, after SSH'ing to TurtleBot, use the pwd
command to find it.

The process creates two files: my_map.yaml and my_map.pgm and places them in your
TurtleBot netbook home directory. The path and filename can be changed as you
desire, but files should be saved on the TurtleBot.

The .yaml file contains configuration information of the map and the path and name
of the .pgm image file. The .pgm file is in portable gray map format and contains the
image of the OGM.

Navigating the World with TurtleBot

[174]

The map configuration information includes the following:

•	 The absolute pathname to the .pgm image file
•	 The map resolution in meters per pixel
•	 Coordinates (x, y, and yaw) of the origin on the lower-left corner of the grid
•	 A flag to reverse the white pixel=free and black pixel=occupied semantics of the

map color space
•	 The lowest threshold value at which pixels will be considered completely

occupied
•	 The highest threshold value at which pixels will be considered completely

free

In the next section, we will examine TurtleBot's mapping process from a more in-
depth ROS perspective.

How does TurtleBot accomplish this mapping task?
TurtleBot builds maps using the ROS gmapping package. The gmapping package is
based on OpenSlam's Gmapping (http://openslam.org/gmapping.html), which is
a highly efficient Rao-Blackwellized particle filter algorithm. This approach is based
on a laser scan-based SLAM implementation. Although a laser scanner would work
the best for SLAM, the Kinect will provide a simulated laser scan for the TurtleBot.
The ROS gmapping package contains the slam_gmapping node that takes the
incoming laser scan stream and transforms it to the odometry tf reference frame.

The gmapping process is implemented by a set of parameters within the gmapping_
demo.launch file in the turtlebot_navigation package. This launch file initiates
the 3dsensor.launch file from the turtlebot_bringup package to handle the
processing of the 3D sensor. Some of the sensor processing modules are turned off to
minimize processing for this task.

The slam_gmapping node subscribes to the sensor_msgs/LaserScan messages from
the camera_nodelet_manager node and the tf/tfMessage messages containing the
odometry frames. The following diagram from rqt_graph shows the /tf and
/tf_static topics (with tf/tfMessage messages) and the /scan topic (with
sensor_msgs/LaserScan messages) being subscribed to by the slam_gmapping
node. The slam_gmapping node combines this data to create an OGM of the
environment. As the robot is driven around the room, the slam_gmapping node
publishes the /map topic to update the OGM with an estimate of TurtleBot's location
and the surrounding environment based on data from the laser scan.

http://openslam.org/gmapping.html

[175]

slam_gmapping node

When you issue the command to save the map, the map_saver node of the map_
server package gets activated. The map_saver node provides a ROS service to take
the OGM data and saves it to a pair of files (the .pgm and .yaml files described in the
previous section). Each cell of the OGM records its occupancy state as a color for the
corresponding pixel. Free space is identified as white with a value of 0 and occupied
space is identified as black with a value of 100. A special value of -1 is used for
unknown (unmapped) space. The threshold values within the .yaml file make the
pixel values between 0 and 100 categorized as occupied, free, or in-between.

Autonomous navigation with TurtleBot 2
ROS has implemented the concept of a Navigation Stack. ROS stacks are a collection
of packages that provide a useful functionality, in this case navigation. Packages in
the Navigation Stack handle the processing of odometry data and sensor streams
into velocity commands for the robot base. As a differential drive base, TurtleBot
takes advantage of the ROS Navigation Stack to perform tasks, such as autonomous
navigation and obstacle avoidance. Therefore, understanding TurtleBot's navigation
processes will provide the knowledge base for many other ROS mobile robots as well
as a basic understanding of navigation for aerial and underwater robots.

In this section, we will use the map that we created in the Mapping a room with
TurtleBot 2 section. As an alternative, you can use a bitmap image of a map of the
environment, but you will need to build the .yaml file by hand. Values for map
resolution, coordinates of the origin, and the threshold values will need to be
selected. With the environment map loaded, we will command TurtleBot to move
from its present location to a given location on the map defined as its goal.

Navigating the World with TurtleBot

[176]

At this point, understand that:

•	 TurtleBot is publishing odometry data and accepting velocity commands
•	 Kinect is publishing 3D sensor data (fake laser scan data)
•	 The tf library is maintaining the transformations between base_link, odom

frame, and the depth sensor frame of Kinect
•	 Our map (my_map) will identify the environment locations that have obstacles

Defining terms
The following are the core terms used for autonomous navigation with TurtleBot:

•	 Amcl: The amcl algorithm works to figure out where the robot would need
to be on the map in order for its laser scans to make sense. Each possible
location is represented by a particle. Particles with laser scans that do not
match well are removed, resulting in a group of particles representing the
location of the robot in the map. The amcl node uses the particle positions to
compute and publish the transform from map to base_link.

•	 Global navigation: These processes perform path planning for a robot to
reach a goal on the map.

•	 Local navigation: These processes perform path planning for a robot to
create paths to nearby locations on a map and avoid obstacles.

•	 Global costmap: This costmap keeps information for global navigation.
Global costmap parameters control the global navigation behavior. These
parameters are stored in global_costmap_params.yaml. Parameters
common to global and local costmaps are stored in costmap_common_
params.yaml.

•	 Local costmap: This costmap keeps information for local navigation. Local
costmap parameters control the local navigation behavior and are stored in
local_costmap_params.yaml.

Driving without steering TurtleBot 2
To navigate the environment, TurtleBot needs a map, a localization module, and
a path planning module. TurtleBot can safely and autonomously navigate the
environment if the map completely and accurately defines the environment.

Before we begin with the steps for autonomous navigation, check the location of
your .yaml and .pgm map files created in the previous section.

[177]

As in the previous section, be conscious of which commands are on TurtleBot
(requiring ssh from the remote computer) and those that are on the remote computer
(not requiring ssh). At this point, all terminal windows should be closed. Then, open
a window as indicated and enter the commands following the $ prompt:

1.	 Terminal Window 1: Minimal launch of TurtleBot:
$ ssh <username>@<TurtleBot's IP Address>

$ roslaunch turtlebot_bringup minimal.launch

2.	 Terminal Window 2: Launch amcl operation:
$ ssh <username>@<TurtleBot's IP Address>

$ roslaunch turtlebot_navigation amcl_demo.launch map_file:=/
home/<TurtleBot's username>/my_map.yaml

Look for the following text on your window:
odom received!

The amcl_demo launch file launches the 3dsensor.launch file, specifying to
turn off the rgb_processing, depth_registration, and depth_processing
modules. This leaves the modules for ir_processing, disparity_
processing, disparity_registered_processing, and scan_processing.
The map_server node is launched to read the map data from the file. The
.xml files for amcl.launch and move_base.launch are also invoked. The
amcl.launch.xml file launches the amcl node and processing sets multiple
parameters in the .xml file. The move_base.launch.xml file launches the
move_base node and also starts the nodes for velocity_smoother and
safety_controller. A more complete description of this processing is
provided in the following How does TurtleBot accomplish this navigation task?
section.

3.	 Terminal Window 3: View navigation on rviz:

$ roslaunch turtlebot_rviz_launchers view_navigation.launch

Navigating the World with TurtleBot

[178]

This command launches the rviz node and rviz will come up in the
TopDownOrtho view. Your rviz screen should display results similar to the
following screenshot:

An initial amcl screen in rviz

rviz control
When amcl_demo loads the map of the environment, TurtleBot does not know
its current location on the map. It needs a little help. Locate TurtleBot's position
in the rviz environment and let TurtleBot know this location by performing the
following steps:

1.	 Click on the 2D Pose Estimate button on the tool toolbar at the top of the
main screen.

2.	 Click the cursor on the location on the map where TurtleBot is located. A
large green arrow will appear. Drag the mouse to extend the arrow in the
direction TurtleBot is facing.

[179]

The giant green arrow helps you align the direction of TurtleBot's orientation. An
example is shown in the following screenshot:

TurtleBot 2D Pose Estimate

When the mouse button is released, a collection of small arrows will appear around
TurtleBot to show the direction. If the location and/or orientation are not correct,
these steps can be repeated.

The previous steps seed TurtleBot's localization, so it has some idea where it is on
the environment map. To improve the accuracy of the localization, it is best to drive
TurtleBot around a bit so that the estimate of its current position converges when
comparing data from the map with TurtleBot's current sensor streams. Use one
of the teleoperation methods previously discussed. Be careful driving around the
environment because there is no obstacle avoidance software running at this point.
TurtleBot can be driven into obstacles even though they appear on its map.

Next, we can command TurtleBot to a new location and orientation in the room by
identifying a goal:

1.	 Click on the 2D Nav Goal button on the tool toolbar at the top of the
main screen.

Navigating the World with TurtleBot

[180]

2.	 Click the cursor on the location on the map where you want TurtleBot to
go. A large green arrow will appear. The point you clicked will be the final
location of the TurtleBot. The arrow extending from that point indicates the
direction TurtleBot should be facing when it is finished.

Warning:

Try to avoid navigating near obstacles that have low protrusions that
will not be detected by the 3D sensor. In our lab, the extensions at the
base of the Baxter robot cannot be seen by the TurtleBot.

The following screenshot shows setting the navigation goal for our TurtleBot:

TurtleBot 2D Nav Goal

[181]

The following screenshot shows our TurtleBot accomplishing the goal:

TurtleBot reaches its goal

TurtleBot can also perform obstacle avoidance during autonomous navigation.
While TurtleBot is on its way to a goal, step in front of it (at least 0.5 meters (1.6 feet)
in front of the Kinect) and see that TurtleBot will move around you. Objects can be
moved around or doors can be opened or closed to alter the environment. TurtleBot
can also respond to the teleoperation control during this autonomous navigation.

In the next section, we will examine TurtleBot's autonomous navigation process from
a more in-depth ROS perspective.

How does TurtleBot accomplish this navigation task?
At the highest level of processing, ROS navigation acquires odometry data from the
robot base, 3D sensor data, and a goal robot pose. To accomplish the autonomous
navigation task, safe velocity commands are sent to the robot to move it to the goal
location.

Navigating the World with TurtleBot

[182]

TurtleBot's navigation package, turtlebot_navigation, contains a collection of
launch and YAML configuration files to launch nodes with the flexibility to modify
process parameters on the fly. The following diagram shows an overview of the
navigation process:

The ROS navigation process

When the amcl node is launched, it begins providing localization information
about the location of the robot based on the current 3D sensor scans (sensor_
msgs/LaserScan), tf transforms (tf/tfMessage), and the OGM (nav_msgs/
OccupancyGrid). When a 2D Pose Estimate is input by the operator, an initialpose
message (geometry_msgs/PoseWithCovaianceStamped) resets the localization
parameter and reinitializes the amcl particle filter. As laser scans are read, amcl
resolves the data to the odometry frame. The amcl node provides TurtleBot's
estimated position in the map (geometry_msgs/PoseWithCovarianceStamped), a
particle cloud (geometry_msgs/PoseArray), and the tf transforms for odom (tf/
tfMessage).

The main component of the TurtleBot navigation is the move_base node. This node
performs the task of commanding the TurtleBot to make an attempt to reach the
goal location. This task is set as a preemptable action based on its implementation
as a ROS action and TurtleBot's progress toward the goal is provided as feedback.
The move_base node uses a global and a local planner to accomplish the task.
Two costmaps, global_costmap and local_costmap, are also maintained for the
planners by the move_base node.

The behavior of the move_base node relies on the following YAML files:

•	 costmap_common_params.yaml

•	 local_costmap_params.yaml

[183]

•	 global_costmap_params.yaml

•	 dwa_local_planner_params.yaml

•	 move_base_params.yaml

•	 global_planner_params.yaml

•	 navfn_global_planner_params.yaml

The global planner and costmap are used to create long-term plans over the entire
environment, such as path planning for the robot to get to its goal. The local planner
and costmap are primarily used for interim goals and obstacle avoidance.

The move_base node receives the goal information as a pose with position and
orientation of the robot in relation to its reference frame. A move_base_msg/
MoveBaseActionGoal message is used to specify the goal. The global planner will
calculate a route from the robot's starting location to the goal taking into account
data from the map. The 3D sensor will publish sensor_msgs/LaserScan with
information on obstacles in the world to be avoided. The local planner will send
navigation commands for TurtleBot to steer around objects even if they are not on
the map. Navigation velocity commands are generated by the move_base node as
geometry_msgs/Twist messages. TurtleBot's base will use the cmd_vel.linear.x,
cmd_vel.linear.y, and cmd_vel.angular.z velocities for the base motors.

Goal tolerance is a parameter set by the user to specify the acceptable limit for
achieving the goal pose. The move_base node will attempt certain recovery behaviors
if TurtleBot is stuck and cannot proceed. These recovery behaviors include clearing
out the supplied map and using sensor data by rotating in place.

Navigating to a designated location
In the ROS commands and Gazebo section of Chapter 3, Driving Around with TurtleBot,
we used the mobile_base node from the Kobuki base of TurtleBot 2 to move the
real TurtleBot. The node subscribes to the topic /mobile_base/commands/velocity
topic with the geometry_msgs/Twist message type. The message is a movement
command with linear.x pointing forwards as velocity in meters per second. The
angular.z is interpreted as angular velocity in the xy plane in radians per second.
The positive angular velocity values are rotations left or counterclockwise when the
robot is viewed from above.

The websites http://wiki.ros.org/kobuki_node and http://wiki.ros.org/
kobuki/Tutorials/Kobuki%27s%20Control%20System describe the Kobuki base
that subscribes to the topic commands/velocity with message type geometry_msgs/
Twist that sets the desired velocity of the robot. The relative movement of the robot
can be monitored with the topic /odom with nav_msgs/odometry type message. The
odometry of the robot is based on the gyro and motor encoders.

http://wiki.ros.org/kobuki_node
http://wiki.ros.org/kobuki/Tutorials/Kobuki%27s%20Control%20System
http://wiki.ros.org/kobuki/Tutorials/Kobuki%27s%20Control%20System

Navigating the World with TurtleBot

[184]

In this section, we use the move_base package to move the real TurtleBot by
specifying a target pose as position and orientation with respect to a designated
frame of reference. The topic move_base_simple/goal with message type
geometry_msgs/PoseStamped defines the goal pose of the robot. The website
http://wiki.ros.org/move_base describes the move_base package and the move_
base_simple/goal.

Similar to the instructions in the Building a map section in this chapter, you can
command the TurtleBot minimal launch, launch the gmapping_demo.launch, and
move the TurtleBot from its initial position forward in its x direction as an example.
Be sure TurtleBot has a clear space to move.

This will require four terminals to command TurtleBot. Enter the commands as shown:

1.	 Terminal Window 1: Minimal launch of TurtleBot:
$ ssh <username>@<TurtleBot's IP Address>

$ roslaunch turtlebot_bringup minimal.launch

2.	 Terminal Window 2: Check initial pose after minimal launch by typing:
$ rostopic echo /odom/pose/pose

You should see the following:
position:

x: 0.0

y: 0.0

z: 0.0

orientation:

x: 0.0

y: 0.0

z: 0.0

w: 1.0

Use Ctrl + C to stop the display.
3.	 Terminal Window 3: Launch the gmapping_demo by typing the following

commands:
$ ssh <username>@<TurtleBot's IP Address>

$ roslaunch turtlebot_navigation gmapping_demo.launch

http://wiki.ros.org/move_base

[185]

As previously described, this launches the move_base node, which will be
used to move TurtleBot to a specific location with a designated pose. It is not
necessary to move TurtleBot around to create a map. The gmapping_demo
creates an initial map that consists of values -1 indicating an unknown or
unmapped space.
The move_base_simple/goal topic will be used to issue a non-action
command to TurtleBot to move to the desired location. The action based
implementation of move_base is described in the next section.

4.	 Terminal Window 4: To move TurtleBot ahead about 1 meter, type the
command:
$ rostopic pub /move_base_simple/goal geometry_msgs/PoseStamped '{
header: { frame_id: "map" }, pose: { position: { x: 1.0, y: 0, z:
0 }, orientation: { x: 0, y: 0, z: 0, w: 1 } } }'

and watch TurtleBot move.
5.	 Terminal Window 2 again: Check the final pose with the command:

$ rostopic echo /odom/pose/pose

Our results showed the following:
position:

x: 0.908365634848

y: -0.0158582614505

z: 0.0

orientation:

x: 0.0

y: 0.0

z: -0.0352483477781

w: 0.99937858391

In our laboratory, our TurtleBot moved ahead with an error in the x distance
of about 9% based on the odometry data.

Navigating to waypoints with a Python script
using a map
In this section, we present a Python script that causes the real TurtleBot 2 to move
from one position to another using locations on a map created in our laboratory. In
the previous section, Driving without steering TurtleBot 2, the rviz 2D Nav Goal option
was used to select the goal location of TurtleBot.

Navigating the World with TurtleBot

[186]

In the example, the initial pose of the TurtleBot will be set on the map using 2D Pose
Estimate. Then, the Publish Points icon will be used to select goal points that act as
waypoints for TurtleBot on the map. A Python script will be executed to move the
real TurtleBot to several goal positions in our room as determined by the positions
on the map.

In each terminal window, enter the following commands to initialize TurtleBot,
select the map, and display the map with TurtleBot on the map:

1.	 Terminal Window 1: Minimal launch of TurtleBot:
$ ssh <username>@<TurtleBot's IP Address>

$ roslaunch turtlebot_bringup minimal.launch

2.	 Terminal Window 2: Launch amcl operation:
$ ssh <username>@<TurtleBot's IP Address>

$ roslaunch turtlebot_navigation amcl_demo.launch map_file:=/
home/<TurtleBot's username>/my_map.yaml

3.	 Terminal Window 3: Launch rviz and display the map:

$ roslaunch turtlebot_rviz_launchers view_navigation.launch

The following screenshot shows TurtleBot on the map in rviz:

TurtleBot's initial position in rviz

[187]

Defining TurtleBot's position on a map
To determine TurtleBot's initial pose on the map, type the following:

$ rostopic echo /initialpose

This will display the initial pose after using the 2D Pose Estimate in rviz to identify
the initial position and orientation of TurtleBot in the room.

Our result for the initial pose was as follows:

header:

 seq: 1

 stamp:

 secs: 1500506112

 nsecs: 896815961

 frame_id: map

pose:

 pose:

 position:

 x: 0.172010675073

 y: 0.0527899339795

 z: 0.0

 orientation:

 x: 0.0

 y: 0.0

 z: -0.0139684328787

 w: 0.999902436682

 covariance: [0.25, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.25, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.06853891945200942]

For the map we created, TurtleBot's position is roughly in the middle of the map
representing the middle of our laboratory.

Navigating the World with TurtleBot

[188]

Defining waypoints on a map
Using the Publish Point icon, select several points on the map and record the x and y
coordinates of each point. The position of the cursor at any point will be displayed in
a panel at the lower left of the screen. Alternatively, echo the topic /clicked_point
with the following command line:

$ rostopic echo /clicked_point

Our results for two points were as follows:

header:

 seq: 6

 stamp:

 secs: 1500506877

 nsecs: 337500725

 frame_id: map

point:

 x: 3.00541186333

 y: -0.0026988487225

 z: -0.0013427734375

header:

 seq: 7

 stamp:

 secs: 1500506893

 nsecs: 543592195

 frame_id: map

point:

 x: 3.03029751778

 y: 3.57522583008

 z: 0.00247192382812

Our map overlays a 10 by 10 grid of squares 1 meter on a side with the origin in
the center. Your map, however, may be rotated with respect to the grid, so use the
Publish Point method to determine the values on your map so that they can be
related to real positions in the room.

[189]

Using our map, we chose the following points from the map that indicate locations
in our laboratory: (3.0, 0.0, 0.0) for the first goal point and (3.0, 3.6, 0.0) for the final
position. The first point is near the wall on the right in the map and the second is
near the door to the lab at the upper right corner of the map. At initialization and at
the first waypoint, the orientation of TurtleBot will be chosen to be straight ahead
as defined by the quaternion (0, 0, 0, 1) along the x axis. At the second waypoint,
TurtleBot will be aligned with the y axis of the map with quaternion (0, 0, 0.707,
0.707) indicating approximately a 90 degree change in orientation. The following
modified screenshot shows these locations:

Goal locations chosen in rviz

Using Python code to move TurtleBot
You should choose goal points that relate to your map and replace the items in the
list GoalPoints in the following Python script. Execute our Python script by typing
in a new terminal:

$ python MoveTBtoGoalPoints.py	

The following Python script named MoveTBtoGoalPoints.py moves TurtleBot to the
various goal positions:

#!/usr/bin/env python

import rospy

Navigating the World with TurtleBot

[190]

import actionlib # Use the actionlib package for client and
server

from move_base_msgs.msg import MoveBaseAction, MoveBaseGoal

Define Goal Points and orientations for TurtleBot in a list
GoalPoints = [[(3.0, 0.0, 0.0), (0.0, 0.0, 0.0, 1.0)] ,
 [(3.0, 3.6, 0.0), (0.0, 0.0, 0.707, 0.707)]]

The function assign_goal initializes goal_pose variable as a
MoveBaseGoal action type.
def assign_goal(pose):
 goal_pose = MoveBaseGoal()
 goal_pose.target_pose.header.frame_id = 'map'
 goal_pose.target_pose.pose.position.x = pose[0][0]
 goal_pose.target_pose.pose.position.y = pose[0][1]
 goal_pose.target_pose.pose.position.z = pose[0][2]
 goal_pose.target_pose.pose.orientation.x = pose[1][0]
 goal_pose.target_pose.pose.orientation.y = pose[1][1]
 goal_pose.target_pose.pose.orientation.z = pose[1][2]
 goal_pose.target_pose.pose.orientation.w = pose[1][3]
	
 return goal_pose

if __name__ == '__main__':
 rospy.init_node('MoveTBtoGoalPoints')

 # Create a SimpleActionClient of a move_base action type and wait
for server.
 client = actionlib.SimpleActionClient('move_base', MoveBaseAction)
 client.wait_for_server()

 # for each goal point in the list, call the action server and move
to goal
 for TBpose in GoalPoints:
 TBgoal = assign_goal(TBpose) # For each goal point assign
pose
 client.send_goal(TBgoal)
 client.wait_for_result()

 # print the results to the screen
 if(client.get_state() == GoalStatus.SUCCEEDED):
 rospy.loginfo("success")
 else:
 rospy.loginfo("failed")

[191]

When the program finishes, the terminal display should show success.

This Python script sends goal poses to TurtleBot one pose at a time to move it to a
particular location. This code uses the navigation stack as described in the How does
TurtleBot accomplish this navigation task? section. The rospy and actionlib packages
and the MoveBaseAction and MovBaseGoal messages are used within the script and
are imported at the beginning of the code. The MoveBaseAction message defines the
action goal, action result, and action feedback specifically for behaviors regarding
TurtleBot's movement. The MoveBaseGoal message is used to define the target pose.

The goal poses for TurtleBot are identified in the list GoalPoints. For the Python
script, the goal poses in terms of position x, y, z and the orientation in terms of a
quaternion were chosen as:[[(3.0, 0.0, 0.0), (0.0, 0.0, 0.0, 1.0)] and
[(3.0, 3.6, 0.0), (0.0, 0.0, 0.707, 0.707)]].

Next in the code is the definition of the assign_goal function. The assign_goal
function creates a message of type MoveBaseGoal and assigns the values from the
pose item in GoalPoints to target pose in this message.

When the main function of this program runs, it creates the ROS node
MoveTBtoGoalPoints. Then it creates an action client for the SimpleActionServer,
which is configured to communicate with the move_base server and adhere to the
behaviors defined in the MoveBaseAction message. The wait statement indicates
that a response from the action server is necessary before proceeding to the next
lines of code.

The for loop increments through each of the goal poses in the GoalPoints list and
causes each of these poses to be processed by the move_base action server. The first
statement in the loop calls the assign_goal function to create a MoveBaseGoal
message and assign the values of that message to be the values of the goal pose. The
second statement calls the action client send_goal function to send the goal to the
action server. The process then waits for the server to return the results of the action
and the appropriate message is displayed. When we tested our example, the success
message appeared on the screen.

TurtleBot at final goal point
As a result in our laboratory, TurtleBot moved toward the wall on the right of the
map and turned approximately 90 degrees left and moved toward the door at the
upper right. The script completes with the reply:

[INFO] [1499983063.642908]: success

Navigating the World with TurtleBot

[192]

The following screenshot shows the final location of TurtleBot after the Python script
is executed:

TurtleBot's final location in rviz

You can check the robot's final position as it moves on the map by typing:

$ rostopic echo /amcl_pose

Our final pose from topic /amcl_pose was as follows:

header:

 seq: 72

 stamp:

 secs: 1500584344

 nsecs: 824573719

 frame_id: map

pose:

 pose:

 position:

 x: 2.95402869322

 y: 3.30398805405

 z: 0.0

 orientation:

[193]

 x: 0.0

 y: 0.0

 z: 0.666663241366

 w: 0.745359056168

 covariance: [0.02732330983433684, -0.001682319824116263, 0.0, 0.0, 0.0,
0.0, -0.001682319824116263, 0.002880105195270488, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.004937415284215015]

The indicated position and orientation is reasonably close to the selected values. The
pose only can be viewed by typing:

$ rostopic echo /odom/pose/pose

since the covariance is not relevant in this case.

TurtleBot 3 has SLAM and autonomous navigation applications similar to those
described for TurtleBot 2. The sequences and commands will be briefly described in
the next two sections.

SLAM for TurtleBot 3
Before proceeding with the next two sections, check to verify your network
configuration and ROS environment variables for both the TurtleBot 3 and the
remote computer are set as described in the Networking TurtleBot 3 and the remote
computer section of Chapter 3, Driving Around with TurtleBot.

The same launch procedure will be used as was described previously in the Moving
the real TurtleBot 3 section of Chapter 3, Driving Around with TurtleBot:

1.	 On the remote computer, start the ROS Master with the following command:
$ roscore

2.	 In a second terminal window, ssh to the TurtleBot from the remote
computer and then launch the TurtleBot basic operations with the following
commands:
$ ssh <username>@<IP address of TurtleBot>

$ roslaunch turtlebot3_bringup turtlebot3_robot.launch

3.	 Next launch the SLAM software in a new terminal window with the
following commands:
$ export TURTLEBOT3_MODEL=burger

$ roslaunch turtlebot3_slam turtlebot3_slam.launch

Navigating the World with TurtleBot

[194]

4.	 After the turtlebot3_slam_gmapping node has launched, information
regarding the laser scans will begin to appear on the screen and run
continuously updating data with each scan performed. To visualize the
TurtleBot and the area that will become the map, start rviz with the following
roslaunch command:

$ rosrun rviz rviz -d `rospack find turtlebot3_slam`/rviz/
turtlebot3_slam.rviz

An rviz window should be displayed similar to the following screenshot:

An initial SLAM map for TurtleBot 3 in rviz

This is very similar to the rviz window that is generated by SLAM gmapping
for the TurtleBot 2.

[195]

5.	 Now, move the TurtleBot around the environment with keyboard control by
using the following command in a new terminal window:
$ roslaunch turtlebot3_teleop turtlebot3_teleop_key.launch

6.	 When you have completely driven the robot around your environment and
are happy with your map, open one additional terminal window and save
the map to a file with the following command:
$ rosrun map_server map_saver -f ~/map

The map will be saved to the home directory of your remote computer, not
on TurtleBot 3. Two files will be created for the map: map.pgm and map.yaml.
These files are the same type as those described for TurtleBot 2.

7.	 Next, this map will be used to autonomously navigate TurtleBot around the
area that was just mapped. Use Ctrl + C in each terminal window to kill all
the processes and then close the windows.

Autonomous navigation with TurtleBot 3
As in the previous section, verify the network configuration and ROS environment
variables for the TurtleBot 3 and the remote computer. Also, start the ROS Master
and launch the basic operation of TurtleBot 3.

To launch the navigation software for the TurtleBot 3 Burger, use the following
commands in a new terminal window:

$ export TURTLEBOT3_MODEL=burger

$ roslaunch turtlebot3_navigation turtlebot3_navigation.launch map_
file:=~/map.yaml

If you named the map file with a name other than map, substitute that name with
the .yaml extension in the preceding command. To visualize the map and Turtlebot,
start rviz with the following rosrun command:

$ rosrun rviz rviz -d `rospack find turtlebot3_navigation`/rviz/
turtlebot3_nav.rviz

Navigating the World with TurtleBot

[196]

The rviz screen should display the map with TurtleBot 3 located within the map
surrounded by a cloud of small green arrows similar to the following screenshot:

An initial navigation map for TurtleBot 3 in rviz

In the same manner as was done for TurtleBot 2, rviz should be updated with the
initial location and orientation of the TurtleBot 3. To perform this update:

1.	 Click on the 2D Pose Estimate button on the top toolbar.
2.	 Click the cursor on the location on the map where TurtleBot is located. A

large green arrow will appear. Drag the mouse to extend the arrow in the
direction TurtleBot is facing.

[197]

The giant green arrow that appears will help to align the direction TurtleBot is
facing. When the mouse button is released, the map will update with the new
location and orientation of the TurtleBot and its surrounding area.

To autonomously navigate TurtleBot to another location on the map, indicate a goal
location and orientation by performing the following steps:

1.	 Click on the 2D Nav Goal button on the top toolbar.
2.	 Click the cursor on the location on the map where you want TurtleBot to

go. A large green arrow will appear. The point you clicked will be the final
location of the TurtleBot. The arrow extending from the point indicates the
direction TurtleBot should be facing when it is finished.

When the mouse button is released, TurtleBot will create a path to the goal location
and begin executing the path plan. It will avoid obstacles detected by the LDS sensor.
Be aware that the LDS sensor will only detect objects at the level of its own height.
Objects above or below this height will not be sensed.

rqt_reconfigure
The many parameters involved in TurtleBot 2 navigation can be tweaked on the
fly by using the rqt_reconfigure tool. This tool was previously named Dynamic
Reconfigure and this name still appears on the screen. To activate this rqt plugin, use
the following command:

$ rosrun rqt_reconfigure rqt_reconfigure

Navigating the World with TurtleBot

[198]

Nodes that have been programmed using the rqt_reconfigure API will be visible
on the rqt_reconfigure GUI. On the GUI, nodes can be selected and a window
with the nodes' parameters will appear with the current values and range limits.
Sliders and input boxes allow the user to enter new values that will dynamically
overwrite the current values. At present, TurtleBot 2 has implemented the rqt_
reconfigure API as shown in the following screenshots. The following screenshot
shows configuration parameters that can be changed for the /camera/depth, /
camera/depth_registered, and /camera/driver:

rqt_reconfigure camera parameters

The parameters for the move_base node control can be accessed through rqt_
reconfigure. These parameters are set by the move_base_params.yaml file
mentioned in the previous section. This screen identifies the base_global_planner
and the base_local_planner as well as how often to update the planning process
(planner_frequency), and so on. These parameters allow the operator to tweak the
performance of the software during an operation.

[199]

rqt_reconfigure move_base parameters

Exploring ROS navigation further
The ROS wiki provides extensive information on all aspects of setting up and
configuring the navigation parameters. The following links are provided to enhance
your understanding:

•	 http://wiki.ros.org/navigation

•	 http://wiki.ros.org/navigation/Tutorials/RobotSetup

•	 http://wiki.ros.org/navigation/Tutorials/Navigation%20Tuning%20
Guide

The following book is worth reading to gain a deeper understanding of amcl and
robotic navigation:

Probabilistic Robotics by Thrum, Burgard, and Fox by MIT Press

http://wiki.ros.org/navigation
http://wiki.ros.org/navigation/Tutorials/RobotSetup
http://wiki.ros.org/navigation/Tutorials/Navigation%20Tuning%20Guide
http://wiki.ros.org/navigation/Tutorials/Navigation%20Tuning%20Guide

Navigating the World with TurtleBot

[200]

Summary
TurtleBot comes with its own 3D vision system that is a low-cost laser scanner. The
Kinect, ASUS, PrimeSense, or RealSense devices can be mounted on the TurtleBot
base and provide a 3D depth view of the environment. This chapter provided a
comparison of these four types of sensors and identified the software that is needed
to operate them as ROS components. We checked their operation by testing the
sensor on TurtleBot in standalone mode. To use the devices, we can utilize Image
Viewer or rviz to view image streams from the rgb or depth cameras.

For TurtleBot 3, the LDS sensor was described and ROS software and camera driver
software was identified.

The primary objective is for TurtleBot to see its surroundings and be able to
autonomously navigate through them. First, TurtleBot is driven around in
teleoperation mode to create a map of the environment. The map provides the room
boundaries and obstacles so that TurtleBot's navigation algorithm, amcl, can plan
a path through the environment from its start location to a user-defined goal.

Navigation to a designated location is also performed without a map. Additionally,
an example of a Python script is used to navigate with the move_base action using
a map of the environment.

In the next chapter, we will return to the ROS simulation world and create a robot
arm. The development of a URDF for a robotic arm and control of it in simulation
will then prepare us to examine the robotic arms of Baxter in Chapter 6, Wobbling
Robot Arms Using Joint Control. Using Baxter's robot arms, we will explore the
complexities of multiple joint control and the mathematics of kinematic solutions
for positioning multiple joints.

[201]

Creating Your First Robot
Arm (in Simulation)

In this chapter, you will begin to understand the control of robot arms with ROS. We
will show a simple three-link, two-joint, articulated robotic arm in simulation. The
simulated robot arm, rrbot, has two revolute joints that will help you to understand
the operations of a physical robot arm, without the complexities that more joints
would create. We will use the URDF elements described in Chapter 2, Creating Your
First Two-Wheeled ROS Robot (in Simulation) and incorporate the advantages of Xacro
to make our code more modular and efficient. We will also include a mesh design for
our gripper, and add control elements for the arm and gripper to our URDF. Next,
we will show various ways to control the robot arm in Gazebo.

In this chapter, you will learn the following:

•	 The advantages of using Xacro in a URDF
•	 Designing a three-link, two-joint robotic arm using Xacro and mesh files
•	 Controlling the arm in Gazebo using ROS commands and rqt

We will begin by expanding your 3D modeling skills in order to create a robot arm
URDF using Xacro. First, the advantages of Xacro are described.

Creating Your First Robot Arm (in Simulation)

[202]

Features of Xacro
Xacro is the XML macro language for ROS. Xacro provides a set of macro operations
to replace some repetitive statements with shorter, concise macros that will expand
into full XML statements when processed. Xacro can be used with any XML
document, but is most useful with long, complex URDF files. Xacro allows you to
create shorter and more readable XML files for the robot URDF. Xacro provides
advantages in many different areas:

•	 Properties and property blocks: If repeated information is used in a
URDF/SDF file, the <property> tag can be used to specify these constant
values in a central location. Property blocks are snippets that can contain one
or more XML definitions. These are typically parameters that can be changed
later. Properties and property blocks are usually declared at the beginning
of the file, although this is not required. They can be found anywhere in the
XML file at any level. It does not matter whether the property declaration is
before or after its use.
Here is an example of how to implement a property:

°° <xacro:property name="my_name" value ="Robby" />

This is a property declaration for my_name.

°° This property is used in the expression "${my_name}", which is
evaluated as the value of my_name, and can be used to substitute the
text "Robby" into an attribute.

•	 Simple math: Math expressions can be constructed using the four basic
operations: +, -, /, and *. The unary minus and parentheses can also be used.
The expression must be enclosed in the ${} construct. Numeric values are
floating point numbers.

•	 Macros: This is the main feature of Xacro. When creating a macro, a simple
<xacro> tag can expand into a statement or sequence of statements in the
URDF/SDF file. Macros are extremely useful when statements are repeated
or reused with modifications defined by parameters.

•	 Use of rospack commands: Xacro supports the use of rospack commands,
just as roslaunch does for substitution arguments (args) (http://wiki.
ros.org/roslaunch/XML). The rospack commands enclosed within $() will
be resolved during Xacro processing. For example, $(find ros_robotics)
will find the relative pathname for the ros_robotics package. The $(arg
var1) argument will be resolved to a value passed by an Xacro statement or
the command line. Arguments passed via the command line must use the
myvar:=true flag.

http://wiki.ros.org/roslaunch/XML
http://wiki.ros.org/roslaunch/XML

Chapter 5

[203]

•	 Combining multiple Xacro files: Other Xacro files can be included in the
main URDF file to allow you to modularize the URDF file into component
files. The tag is as follows:
<xacro:include filename="path to filename/filename" />

•	 Other features of Xacro can be found at http://wiki.ros.org/xacro.

These features will be used in the URDF file for rrbot throughout this chapter. The
order in which Xacro processes all these features is as follows:

1.	 Includes
2.	 Properties and property blocks
3.	 Macro definitions
4.	 Instantiation of macros
5.	 Expression evaluation

Building an articulated robot arm URDF
using Xacro
Our simple robot arm model rrbot consists of three link elements of various heights
and two joint elements that join the links together. The joint elements each connect
two of the links and enable the links to rotate around one of its axes.

In the next few sections, the rrbot URDF will be created and incrementally built
to incorporate the advantages of each of the Xacro features we discussed in the last
section. If you have not created the ros_robotics package, refer to the Creating and
building a ROS package section in Chapter 2, Creating Your First Two-Wheeled ROS Robot
(in Simulation).

Specifying a namespace
In order to create the URDF file from Xacro files, the Xacro file must contain an
XML namespace declaration using the xmlns attribute with the xacro tag and
corresponding URI. Here is the XML namespace (xmlns) attribute for our rrbot
robot arm:

<robot name="rrbot" xmlns:xacro="http://www.ros.org/wiki/xacro">

This declaration is vital for the file to parse properly. This statement appears as the
second line in the main Xacro file, following the XML version reference.

http://wiki.ros.org/xacro

Creating Your First Robot Arm (in Simulation)

[204]

Using the Xacro property tag
For the first iteration of our rrbot robot arm, we will build a URDF file that defines
three links with the <visual>, <collision>, and <inertial> tags, and two joints
with the <parent>, <child>, <origin>, and <axis> tags. This is a very similar
format to the dd_robot URDF file that you are familiar with from Chapter 2, Creating
Your First Two-Wheeled ROS Robot (in Simulation). The differences for the Xacro
format are listed here and explained in more detail after the code is presented:

•	 Addition of the XML namespace declaration on the second line
•	 Use of the Xacro <property> tag to define constant values
•	 Addition of property names instead of values within the <box> and

<origin> tags
•	 Simple math (along with property names) to calculate link <origin> z values
•	 Joints for this arm are revolute and have the additional tags of <dynamics>

and <limit>

The rrbot.xacro file can be downloaded from the Packt website. Otherwise, you
can enter the following code into your favorite editor and place the file in your catkin
workspace in the ros_robotics package:

<?xml version="1.0"?>
<!-- Revolute-Revolute Manipulator -->
<robot name="rrbot" xmlns:xacro=http://www.ros.org/wiki/xacro>

 <!-- Constants for robot dimensions -->
 <xacro:property name="width" value="0.1" />
 <xacro:property name="height1" value="2" />
 <xacro:property name="height2" value="1" />
 <xacro:property name="height3" value="1" />
 <xacro:property name="axle_offset" value="0.05" />
 <xacro:property name="damp" value="0.7" />

 <!-- Base Link -->
 <link name="base_link">
 <visual>
 <origin xyz="0 0 ${height1/2}" rpy="0 0 0" />
 <geometry>
 <box size="${width} ${width} ${height1}" />
 </geometry>
 </visual>

 <collision>

Chapter 5

[205]

 <origin xyz="0 0 ${height1/2}" rpy="0 0 0" />
 <geometry>
 <box size="${width} ${width} ${height1}" />
 </geometry>
 </collision>

 <inertial>
 <origin xyz="0 0 ${height1/2}" rpy="0 0 0" />
 <mass value="1" />
 <inertia ixx="1.0" ixy="0.0" ixz="0.0"
 iyy="1.0" iyz="0.0" izz="1.0"/>
 </inertial>
 </link>

 <!-- Joint between Base Link and Middle Link -->
 <joint name="joint_base_mid" type="revolute">
 <parent link="base_link" />
 <child link="mid_link" />
 <origin xyz="0 ${width} ${height1 - axle_offset}"
 rpy="0 0 0"/>
 <axis xyz="0 1 0"/>
 <dynamics damping="${damp}"/>
 <limit effort="100.0" velocity="0.5" lower="-3.14"
 upper="3.14"/>
 </joint>

 <!-- Middle Link -->
 <link name="mid_link">
 <visual>
 <origin xyz="0 0 ${height2/2 - axle_offset}" rpy="0 0 0" />
 <geometry>
 <box size="${width} ${width} ${height2}" />
 </geometry>
 </visual>

 <collision>
 <origin xyz="0 0 ${height2/2 - axle_offset}" rpy="0 0 0" />
 <geometry>
 <box size="${width} ${width} ${height2}" />
 </geometry>
 </collision>

 <inertial>
 <origin xyz="0 0 ${height2/2 - axle_offset}" rpy="0 0 0" />

Creating Your First Robot Arm (in Simulation)

[206]

 <mass value="1" />
 <inertia ixx="1.0" ixy="0.0" ixz="0.0"
 iyy="1.0" iyz="0.0" izz="1.0" />
 </inertial>
 </link>

 <!-- Joint between Middle Link and Top Link -->
 <joint name="joint_mid_top" type="revolute">
 <parent link="mid_link" />
 <child link="top_link" />
 <origin xyz="0 ${width} ${height2 - axle_offset*2}"
 rpy="0 00"/>
 <axis xyz="0 1 0" />
 <dynamics damping="${damp}" />
 <limit effort="100.0" velocity="0.5" lower="-3.14"
 upper="3.14"/>
 </joint>

 <!-- Top Link -->
 <link name="top_link">
 <visual>
 <origin xyz="0 0 ${height3/2 - axle_offset}" rpy="0 0 0" />
 <geometry>
 <box size="${width} ${width} ${height3}" />
 </geometry>
 </visual>

 <collision>
 <origin xyz="0 0 ${height3/2 - axle_offset}" rpy="0 0 0" />
 <geometry>
 <box size="${width} ${width} ${height3}" />
 </geometry>
 </collision>

 <inertial>
 <origin xyz="0 0 ${height3/2 - axle_offset}" rpy="0 0 0" />
 <mass value="1" />
 <inertia ixx="1.0" ixy="0.0" ixz="0.0"
 iyy="1.0" iyz="0.0" izz="1.0"/>
 </inertial>
 </link>

</robot>

Chapter 5

[207]

This file and all the .xacro files should be saved in the /urdf directory of your ros_
robotics package.

The preceding XML code defines a robot arm, labeled rrbot, which has three links
that are 0.1 meters deep and wide. The base_link link is 2 meters tall, and the mid_
link and top_link links are both 1 meter tall. The origin of the base_link is at (0, 0,
1) in order for the arm to be above the ground plane in rviz. The reference frame of
the box is 1 meter in the z direction above the reference frame of the link. This base_
link is identified as the URDF root link, and is the beginning of the kinematic chain
for the arm. The collision elements of each link match their visual elements. Each
inertial element indicates that each link weighs 1 kilogram and has the same basic
inertia matrix values (we will utilize this duplication of the inertial element when we
improve the code for rrbot later in the section Using the Xacro include and macro tags).

In rrbot.xacro, the <property> elements are used for the dimensions of the links,
the offset for the axis of rotation, and for the damping coefficient, which are all
constant values. These values are declared at the beginning of the XML code, making
it easy to change the size of the links, the limits of the joints' rotation, or the damping
characteristics of the arm.

Two new tags have been added to the joint elements: <dynamics damping> and
<limit>. The dynamics damping coefficient is set to 0.7 Nms/rad. This damping
is the amount of opposing force applied to the joint velocity that slows down the
moving arms to a rest position. Using the <property> element, this damping value
can be changed in one location. You are encouraged to change the value when you
run the rrbot URDF/SDF with Gazebo and see the change made to the pendulum's
swinging motion. The <limit> tag is required for revolute joints. The limit effort
for the maximum joint effort that can be commanded is set to 100.0 N-m. The joint
velocity is limited to a magnitude of 0.5 rad/s, with a damping effort applied when
the joint is commanded beyond this limit. The upper and lower limits of the joint are
set to pi radians and -pi radians, respectively.

Expanding Xacro
To generate a URDF file, the xacro program (from the xacro package) expands all
the macros and outputs a resulting URDF file. Make sure that you are in the same
directory as the rrbot.xacro file, then run the following command:

$ rosrun xacro xacro --inorder rrbot.xacro > rrbot.urdf

Creating Your First Robot Arm (in Simulation)

[208]

This command will pull together all of the xacro include files, expand the xacro
macros in rrbot.xacro, and output the result to rrbot.urdf. The --inorder
option mandates that the file be processed in read order. This processing will enable
the latest property or macro to overlay a previous definition with the same name.
This command is not necessary for running in rviz or Gazebo, but it can be a handy
tool when used to examine the full URDF. The URDF XML file is generated with a
heading comment warning that the file is autogenerated and that editing the file is
not recommended.

The most common way to generate the URDF is in a launch file. The following line
of code can be added to a launch file to create the most current robot_description
from the Xacro file:

<param name="robot_description"
 command="$(find xacro)/xacro --inorder
 '$(find ros_robotics)/urdf/rrbot.xacro'" />

For complex robots, generating the URDF file at launch time will require a bit more
time to process. The advantages are that the URDF is up to date and does not require
a lot of memory to be stored.

Using roslaunch for rrbot
Modifications made to the launch file in rviz are necessary, but you will notice
similarities to the ddrobot_rviz.launch file in Chapter 2, Creating Your First Two-
Wheeled ROS Robot (in Simulation). Either download the rrbot_rviz.launch file
from the ros_robotics/launch directory on this book's website, or create the
rrbot_rviz.launch file from the following code:

<launch>
 <!-- set parameter on Parameter Server -->
 <arg name="model" />
 <param name="robot_description"
 command="$(find xacro)/xacro --inorder
 '$(find ros_robotics)/urdf/$(arg model)'" />

 <!-- send joint values from gui -->
 <node name="joint_state_publisher" pkg="joint_state_publisher"
 type="joint_state_publisher">
 <param name="use_gui" value="TRUE"/>
 </node>

 <!-- use joint positions to update tf -->

Chapter 5

[209]

 <node name="robot_state_publisher" pkg="robot_state_publisher"
 type="state_publisher"/>

 <!-- visualize robot model in 3D -->
 <node name="rviz" pkg="rviz" type="rviz"
 args="-d $(find ros_robotics)/urdf.rviz" required="true"/>

</launch>

The main difference in this rviz launch file is the execution of xacro with the
argument passed as the model parameter. This process will generate the
robot_description parameter to be loaded on the Parameter Server. Make
sure that you place this rrbot_rviz.launch file in the /launch directory of your
ros_robotics directory.

If you have added the ROS_MASTER_URI and ROS_HOSTNAME or
ROS_IP environment variables to your .bashrc file, you will need
to comment out these lines with # as the first character of the line.
Add the following two commands to your .bashrc file so that you
can execute the ROS commands used in this chapter:

export ROS_MASTER_URI=http://localhost:11311//
export ROS_HOSTNAME=localhost

Next, run your rviz roslaunch command:

$ roslaunch ros_robotics rrbot_rviz.launch model:=rrbot.xacro

Creating Your First Robot Arm (in Simulation)

[210]

The rviz screen will look similar to the following screenshot:

rrbot.xacro in rviz

In the preceding screenshot, notice the pop-up window with two joint control sliders
for joint_base_mid and joint_mid_top. The center (0.00) position for both the
joints puts the arm in a vertical position. You are encouraged to play with the sliders
and the Randomize and Center buttons to understand the controls for the arm joints.
The selection of 1 or 2 in the bottom field changes the format of the pop-up window.

Chapter 5

[211]

Using the Xacro include and macro tags
In the following increment of the rrbot Xacro file, we will use an Xacro <include>
tag to specify colors for each link of the robot arm. The materials.xacro file must
be in the ros_robotics/urdf directory. To create the materials.xacro file, use the
following code:

<?xml version="1.0"?>
<robot>

 <material name="black">
 <color rgba="0.0 0.0 0.0 1.0"/>
 </material>

 <material name="blue">
 <color rgba="0.0 0.0 0.8 1.0"/>
 </material>

 <material name="green">
 <color rgba="0.0 1.0 0.0 1.0"/>
 </material>

 <material name="grey">
 <color rgba="0.2 0.2 0.2 1.0"/>
 </material>

 <material name="orange">
 <color rgba="${255/255} ${108/255} ${10/255} 1.0"/>
 </material>

 <material name="brown">
 <color rgba="${222/255} ${207/255} ${195/255} 1.0"/>
 </material>

 <material name="red">
 <color rgba="0.8 0.0 0.0 1.0"/>
 </material>

 <material name="white">
 <color rgba="1.0 1.0 1.0 1.0"/>
 </material>

</robot>

Creating Your First Robot Arm (in Simulation)

[212]

Color values can be modified to your preferences for colors and textures. Within
each <visual> element of the arm link, the following code should be added with any
appropriate color:

<material name="any color defined in materials.xacro"/>

An Xacro <macro> block is also added to the rrbot Xacro file to replace the duplicate
inertial elements in each link. The macro for <inertial> is as follows:

<xacro:macro name="default_inertial" params="z_value i_value mass">
 <inertial>
 <origin xyz="0 0 ${z_value}" rpy="0 0 0"/>
 <mass value="${mass}" />
 <inertia ixx="${i_value}" ixy="0.0" ixz="0.0"
 iyy="${i_value}" iyz="0.0"izz="${i_value}" />
 </inertial>
</xacro:macro>

Within each <link> of the arm, the entire <inertial> block is replaced with the
following code:

<xacro:default_inertial
 z_value="${computation for <origin> in z-axis}"
 i_value="1.0" mass="1"/>

Study the following code to understand the computation for <origin> in the z axis.
This code is in the rrbot2.xacro file available for download on this book's website,
or can be entered as shown in the following lines (lines from the previous code have
been left in or omitted and new code has been highlighted):

<?xml version="1.0"?>
<!-- Revolute-Revolute Manipulator -->
...

 <!-- Import Rviz colors -->
 <xacro:include
 filename="$(find ros_robotics)/urdf/materials.xacro" />

 <!-- Default Inertial -->
 <xacro:macro name="default_inertial"
 params="z_value i_value mass">
 <inertial>
 <origin xyz="0 0 ${z_value}" rpy="0 0 0"/>

Chapter 5

[213]

 <mass value="${mass}" />
 <inertia ixx="${i_value}" ixy="0.0" ixz="0.0"
 iyy="${i_value}" iyz="0.0"
 izz="${i_value}" />
 </inertial>
 </xacro:macro>

 <!-- Base Link -->
 ...
 </collision>

 <xacro:default_inertial z_value="${height1/2}"
 i_value="1.0" mass="1"/>
 </link>
 ...
 <!-- Middle Link -->
 ...
 </collision>

 <xacro:default_inertial z_value="${height2/2 - axle_offset}"
 i_value="1.0" mass="1"/>
 </link>
 ...
 <!-- Top Link -->
 ...
 </collision>

 <xacro:default_inertial z_value="${height3/2 - axle_offset}"
 i_value="1.0" mass="1"/>
 </link>

</robot>

Next, run the rviz roslaunch command:

$ roslaunch ros_robotics rrbot_rviz.launch model:=rrbot2.xacro

Creating Your First Robot Arm (in Simulation)

[214]

The rviz screen will look similar to the following screenshot:

rrbot2.xacro in rviz

Although the book may show the screenshot in shades of gray, the base_link of the
arm is now red, the mid_link is green, and the top_link is blue. On your screen,
you will see the colors specified in your rrbot2.xacro file. The arm is shown in a
random pose.

Adding mesh to the robot arm
A mesh is a collection of polygonal surfaces that provides a more realistic shape for
an object in 3D. Although adding a mesh to the URDF is not unique to Xacro, we
include the exercise here to give you the experience of using meshes and to append a
more realistic gripper to our robot arm.

Chapter 5

[215]

For the next upgrade to our robot arm, we will add a composite mesh image of a
gripper to the top_link of the arm. To make our code design modular, we will
create the gripper code in a separate file and use an Xacro <include> statement in
the main rrbot3.xacro file:

<xacro:include filename="$(find ros_robotics)/urdf/gripper.xacro" />

Using this <include> statement, the gripper.xacro file must be in the ros_
robotics/urdf directory.

The gripper is defined as four links with the <visual>, <collision>, and
<inertial> tags, and four joints with the <parent>, <child>, <origin>, and
<axis> tags. The four links are identified as left_gripper, left_tip, right_
gripper, and right_tip. The links utilize the mesh files from the PR2 robot for their
<visual> and <geometry> definitions. The PR2 robot is another famous Willow
Garage robot, now mainly used for academic research. The pr2_description
Xacro files are part of the ros-kinetic-desktop-full installation described in the
Installing and launching ROS section in Chapter 1, Getting Started with ROS. The files
used for the gripper are found in the /opt/ros/kinetic/share/pr2_description/
meshes/gripper_v0 directory. The l_finger.dae and l_finger_tip.dae files
should be copied to a /meshes directory under your ros_robotics package
directory, or they can be downloaded from the example code on this book's website.

The code to add the mesh file to the left_gripper link:

<link name="left_gripper">
 <visual>
 <origin xyz="0 0 0" rpy="0 0 0"/>
 <geometry>
 <mesh
 filename="package://ros_robotics/meshes/l_finger.dae"/>
 </geometry>
 </visual>

The other links follow the same format with the left_tip and right_tip links both
utilizing the l_finger_tip.dae file. The .dae file is a Digital Asset Exchange file
in the COLLADA format, representing a 3D image. These images can be created in
Photoshop, SketchUp, AutoCAD, Blender, and other graphics software.

Creating Your First Robot Arm (in Simulation)

[216]

You can use the same geometry or meshes for both the <collision> and <visual>
elements, although for performance improvements, we strongly suggest that you
have simplified models/meshes for your collision geometry. A good open-source tool
used to simplify meshes is Blender. There are many closed-source tools, such as Maya
and 3DS Max, that can also simplify meshes. In the case of our robot arm, we specify
simple rectangular shapes to be <collision><geometry> for each of these links.

Two types of joints are used for our gripper. The left_gripper and right_gripper
links are connected to top_link of our robot arm using a revolute joint to restrict
the range of movement of the joint. A <limit> tag is required for a revolute joint to
define the <effort>, <velocity>, <lower>, and <upper> limits of the range. The
effort limit is set to 30 Nm, the velocity limit is 0.1 rad/s, and the range is from -0.548
to 0.0 radians for the left_gripper_joint and right_gripper_joint.

A fixed joint is specified between the left_gripper and the left_tip and also
between the right_gripper and the right_tip. There is no movement between
these links.

This following code is provided for gripper.xacro, or it can be downloaded from
the Packt website for this book:

<?xml version="1.0"?>
<robot xmlns:xacro="http://www.ros.org/wiki/xacro">

 <!-- Gripper -->
 <joint name="left_gripper_joint" type="revolute">
 <parent link="top_link"/>
 <child link="left_gripper"/>
 <origin xyz="0 0 ${height2 - axle_offset}" rpy="0 -1.57 0"/>
 <axis xyz="0 0 -1"/>
 <limit effort="30.0" lower="-0.548" upper="0.0"
 velocity="0.1"/>
 </joint>

 <link name="left_gripper">
 <visual>
 <origin xyz="0 0 0" rpy="0 0 0"/>
 <geometry>
 <mesh
 filename="package://ros_robotics/meshes/l_finger.dae"/>
 </geometry>
 </visual>

 <collision>
 <origin xyz="0.05 0.025 0" rpy="0 0 0"/>
 <geometry>

Chapter 5

[217]

 <box size="0.1 0.05 0.05"/>
 </geometry>
 </collision>
 <xacro:default_inertial z_value="0" i_value="1e-6" mass="1"/>
 </link>

 <joint name="left_tip_joint" type="fixed">
 <parent link="left_gripper"/>
 <child link="left_tip"/>
 </joint>

 <link name="left_tip">
 <visual>
 <origin xyz="0.09137 0.00495 0" rpy="0 0 0"/>
 <geometry>
 <mesh
 filename="package://ros_robotics/meshes/l_finger_tip.dae"/>
 </geometry>
 </visual>

 <collision>
 <origin xyz="0.11 0.005 0"rpy="0 0 0"/>
 <geometry>
 <box size="0.02 0.03 0.02"/>
 </geometry>
 </collision>
 <xacro:default_inertial z_value="0" i_value="1e-6"
 mass="1e-5"/>
 </link>

 <joint name="right_gripper_joint" type="revolute">
 <parent link="top_link"/>
 <child link="right_gripper"/>
 <origin xyz="0 0 ${height2 - axle_offset}" rpy="0 -1.57 0"/>
 <axis xyz="0 0 1"/>
 <limit effort="30.0" lower="-0.548" upper="0.0" velocity="0.1"/>
 </joint>

 <link name="right_gripper">
 <visual>
 <origin xyz="0 0 0" rpy="3.1415 0 0"/>
 <geometry>
 <mesh

Creating Your First Robot Arm (in Simulation)

[218]

 filename="package://ros_robotics/meshes/l_finger.dae"/>
 </geometry>
 </visual>

 <collision>
 <origin xyz="0.05 -0.025 0" rpy="0 0 0"/>
 <geometry>
 <box size="0.1 0.05 0.05"/>
 </geometry>
 </collision>
 <xacro:default_inertial z_value="0" i_value="1e-6" mass="1"/>
 </link>

 <joint name="right_tip_joint" type="fixed">
 <parent link="right_gripper"/>
 <child link="right_tip"/>
 </joint>

 <link name="right_tip">
 <visual>
 <origin xyz="0.09137 0.00495 0" rpy="-3.1415 0 0"/>
 <geometry>
 <mesh
 filename="package://ros_robotics/meshes/l_finger_tip.dae"/>
 </geometry>
 </visual>

 <collision>
 <origin xyz="0.11 -0.005 0" rpy="0 0 0"/>
 <geometry>
 <box size="0.02 0.03 0.02"/>
 </geometry>
 </collision>
 <xacro:default_inertial z_value="0" i_value="1e-6"
 mass="1e-5"/>
 </link>
</robot>

Chapter 5

[219]

Next, run the rviz roslaunch command:

$ roslaunch ros_robotics rrbot_rviz.launch model:=rrbot3.xacro

Note that a number of warning messages similar to
TIFFFieldWithTag: Internal error, unknown tag
xxxxxx may be displayed. This message is not an indication of
any operational problem, and you may continue without difficulty.

A close-up view of the gripper should look similar to the following screenshot:

rrbot gripper in rviz

Creating Your First Robot Arm (in Simulation)

[220]

The controls for the arm and gripper are accessible via the four joint control sliders,
as shown in the following screenshot. Controls for left_gripper_joint and right_
gripper_joint have been added to the arm joints. The robot arm is shown in a
random pose:

rrbot3.xacro in rviz

With our robot arm built using Xacro, we are ready to add modifications to the Xacro
file so that it can be recognized as an SDF by Gazebo. Then, we will add transmission
and control plugins to enable our robot arm to be controlled by ROS commands from
the command line or rqt.

Controlling an articulated robot arm in
Gazebo
The Modifications to the robot URDF section in Chapter 2, Creating Your First Two-
Wheeled ROS Robot (in Simulation), describes changes that need to be made to the
URDF model so that Gazebo recognizes it as an SDF. The next section identifies the
changes needed for our robot arm, rrbot.

Chapter 5

[221]

Adding Gazebo-specific elements
Specific elements unique to the Gazebo simulation environment are grouped into the
following areas:

•	 The <material> tags are used to specify the Gazebo color or texture for each
link

•	 The <mu1> and <mu2> tags are used to define the friction coefficients for the
contact surfaces of four of the robot's links

•	 A plugin is added for control of the revolute joints of rrbot (included here,
but described in the Adding a Gazebo ROS control plugin section)

These specific Gazebo XML elements needed for simulation are split into a separate
file labeled rrbot.gazebo, and an Xacro <include> statement is used in the main
rrbot4.xacro file:

<xacro:include filename="$(find ros_robotics)/urdf/rrbot.gazebo" />

Using this <include> statement, the rrbot.gazebo file must be located in the ros_
robotics/urdf directory.

To create the rrbot.gazebo file, use the following code:

<?xml version="1.0"?>
<robot>

 <!-- Base Link -->
 <gazebo reference="base_link">
 <material>Gazebo/Red</material>
 </gazebo>

 <!-- Middle Link -->
 <gazebo reference="mid_link">
 <mu1>0.2</mu1>
 <mu2>0.2</mu2>
 <material>Gazebo/Green</material>
 </gazebo>

 <!-- Top Link -->
 <gazebo reference="top_link">
 <mu1>0.2</mu1>
 <mu2>0.2</mu2>

Creating Your First Robot Arm (in Simulation)

[222]

 <material>Gazebo/Blue</material>
 </gazebo>

 <!-- Gripper Elements -->
 <gazebo reference="left_gripper">
 <mu1>0.2</mu1>
 <mu2>0.2</mu2>
 </gazebo>

 <gazebo reference="right_gripper">
 <mu1>0.2</mu1>
 <mu2>0.2</mu2>
 </gazebo>

 <gazebo reference="left_tip" />
 <gazebo reference="right_tip" />

 <!-- ros_control plugin -->
 <gazebo>
 <plugin name="gazebo_ros_control"
 filename="libgazebo_ros_control.so">
 <robotNamespace>/rrbot</robotNamespace>
 <robotSimType>
 gazebo_ros_control/DefaultRobotHWSim
 </robotSimType>
 </plugin>
 </gazebo>

</robot>

Fixing the robot arm to the world
Since Gazebo simulates the physics of the real world, a robot arm, as we have
defined it, will not stand up for long as the force of gravity will cause it to topple.
Therefore, we need to attach our robot arm model to Gazebo's world frame. In the
rrbot4.xacro version of our code, a world link has been added and a fixed joint
attaching the robot's base_link to the world link:

<link name="world"/>

<joint name="fixed" type="fixed">
 <parent link="world"/>
 <child link="base_link"/>
</joint>

Chapter 5

[223]

With the base_link of the arm fixed to the world link, the mid_link and top_link
will still succumb to the force of gravity. Although the robot arm appears to be
standing straight up when the arm is launched in Gazebo, you will see that these top
two links of the arm fall. The arm will swing and slow down due to the <dynamics
damping> element defined for the joint, until it comes to a complete stop. We
encourage you to play with the <dynamics damping> value in order to understand
its property in relation to the Gazebo simulation.

Viewing the robot arm in Gazebo
Before we continue to add control elements to our URDF, we need to launch the
rrbot4.xacro file in Gazebo. This launch file is similar to the ddrobot_gazebo.
launch file in Chapter 2, Creating Your First Two-Wheeled ROS Robot (in Simulation).
This launch file can be downloaded from the book's website, or created as rrbot_
gazebo.launch from the following XML code:

<launch>
 <!-- We resume the logic in gazebo_ros packageempty_world.launch,
 changing only the name of the world to be launched -->
 <include file="$(find gazebo_ros)/launch/empty_world.launch">
 <arg name="world_name"
 value="$(find ros_robotics)/worlds/rrbot.world"/>

 <arg name="paused" default="false"/>
 <arg name="use_sim_time" default="true"/>
 <arg name="gui" default="true"/>
 <arg name="headless" default="false"/>
 <arg name="debug" default="false"/>

 </include>

 <!-- Load the URDF into the ROS Parameter Server -->
 <param name="robot_description"
 command="$(find xacro)/xacro--inorder
 '$(find ros_robotics)/urdf/rrbot4.xacro'" />

 <!-- Spawn rrbot into Gazebo -->
 <node name="spawn_urdf" pkg="gazebo_ros"
 type="spawn_model" respawn="false" output="screen"
 args="-param robot_description -urdf -model rrbot" />
</launch>

Creating Your First Robot Arm (in Simulation)

[224]

The rrbot.world file from this book's website can be downloaded and used, or you
can use the ddrobot.world file created in Chapter 2, Creating Your First Two-Wheeled
ROS Robot (in Simulation). You can even just omit the argument for world_name in
the include statement and use empty_world from the gazebo_ros package.

The command to launch the robot arm in Gazebo is as follows:

$ roslaunch ros_robotics rrbot_gazebo.launch

The Gazebo screen should look similar to the following screenshot after the top two
links of the arm have fallen and slowed to a stop:

rrbot4.xacro in Gazebo

After verifying the model in Gazebo, additional control elements should be added to
the robot arm URDF.

Chapter 5

[225]

Adding controls to Xacro
The following are the steps used to set up controls for this robot arm in the Gazebo
simulation:

1.	 Define transmission elements for the joints in the rrbot and gripper
Xacro files.

2.	 Add a gazebo_ros_control plugin to our file of Gazebo-specific elements.
3.	 Create a YAML configuration file for control parameters.
4.	 Create a control launch file to launch the robot joint controllers.

To begin with, we need to install four packages: gazebo_ros_pkgs, gazebo_ros_
control, ros_control, and ros_controllers. gazebo_ros_pkgs is a set of ROS
packages (metapackage) that provides the interface and control for a robot in
Gazebo. ros_control and ros_controllers provide generic controllers for ROS
robots. For ROS Kinetic, the Debian packages should be installed with the following
command:

$ sudo apt-get install ros-kinetic-gazebo-ros-pkgs ros-kinetic-gazebo-
ros-control ros-kinetic-ros-control ros-kinetic-ros-controllers

The gazebo_ros_control package integrates the ros_contol controller software
with the Gazebo simulator. The gazebo_ros_control package instantiates the ros_
control metapackage controller_manager package to provide simulation of the
robot's controllers. The controller manager will be used by our control launch file to
spawn controllers for the joint_state_controller and controllers for all four of
the robot arm's revolute joints.

More details on the ROS controllers and the ros_control packages can be found at
http://wiki.ros.org/ros_control.

Defining transmission elements for joints
Specific elements must be added to the URDF/SDF in order for a model to be
controlled in the Gazebo simulation environment. The <transmission> element
is used to define the relationship between the robot joint and the actuator. This
<transmission> element encapsulates the details of the mechanical coupling with
specific gear ratios and parallel linkages defined. For the rrbot robot, we have simple
mechanical joints and do not require complex transmission element definitions.

http://wiki.ros.org/ros_control

Creating Your First Robot Arm (in Simulation)

[226]

The rrbot robot arm requires a <transmission> element for each of the rrbot
revolute joints (joint_base_mid, joint_mid_top, left_gripper, and right_
gripper). Each <transmission> element has a unique <name> and is associated
with one of the <joint names> for the revolute joints. The <type> is transmission_
interface/SimpleTransmission. In the <joint>, the <hardwareInterface> is
hardware_interface/EffortJointInterface because we will be using simulated
ros_control hardware_interface::RobotHW. This interface corresponds to the
control plugin selected in the next section, Adding a Gazebo ROS control plugin. Each
of the four <transmission> elements will look similar to the following code:

<transmission name="transmission1">
 <type>transmission_interface/SimpleTransmission</type>
 <joint name="joint_base_mid">
 <hardwareInterface>hardware_interface/EffortJointInterface
 </hardwareInterface>
 </joint>
 <actuator name="motor1">
 <mechanicalReduction>1</mechanicalReduction>
 </actuator>
</transmission>

This code should be duplicated twice and added to the joint_base_mid joint
and joint_mid_top joint in the rrbot4.xacro file. It should also be duplicated
twice and added to the left_gripper joint and right_gripper joint in the
gripper.xacro file.

More details on the <transmission> elements can be found at http://wiki.ros.
org/urdf/XML/Transmission.

Adding a Gazebo ROS control plugin
The gazebo_ros_control plugin defined previously in the Adding Gazebo-specific
elements section is as follows:

<!-- ros_control plugin -->
<gazebo>
 <plugin name="gazebo_ros_control"
 filename="libgazebo_ros_control.so">
 <robotNamespace>/rrbot</robotNamespace>
 <robotSimType>
 gazebo_ros_control/DefaultRobotHWSim
 </robotSimType>
 </plugin>
</gazebo>

http://wiki.ros.org/urdf/XML/Transmission
http://wiki.ros.org/urdf/XML/Transmission

Chapter 5

[227]

This plugin will parse the <transmission> elements in the rrbot4.xacro and
gripper.xacro files and load the identified hardware interfaces and controller
managers. The preceding control plugin is a custom simulation plugin that should
already be in the rrbot.gazebo file.

Creating a YAML configuration file
YAML is a markup language commonly used for ROS parameters. It is convenient to
use YAML-encoded files to set ROS parameters on the Parameter Server. For rrbot,
a YAML file is created to hold the joint controller configurations, and this YAML file
is loaded via the control launch file. The controller type is defined for the joint_
state_controller, as well as for all the four rrbot joint controllers. The four rrbot
controllers also have proportional–integral–derivative (pid) gains defined. These
pid gains have been tuned to the control of the rrbot arm and gripper. The rrbot_
control.yaml file contains the following code:

rrbot:
 # Publish all joint states
 joint_state_controller:
 type: joint_state_controller/JointStateController
 publish_rate: 50

 # Position Controllers
 joint_base_mid_position_controller:
 type: effort_controllers/JointPositionController
 joint: joint_base_mid
 pid: {p: 100.0, i: 0.01, d: 10.0}
 joint_mid_top_position_controller:
 type: effort_controllers/JointPositionController
 joint: joint_mid_top
 pid: {p: 100.0, i: 0.01, d: 10.0}
 left_gripper_joint_position_controller:
 type: effort_controllers/JointPositionController
 joint: left_gripper_joint
 pid: {p: 1.0, i: 0.00, d: 0.0}
 right_gripper_joint_position_controller:
 type: effort_controllers/JointPositionController
 joint: right_gripper_joint
 pid: {p: 1.0, i: 0.00, d: 0.0}

The rrbot_control.yaml file should be saved to a /config directory under the
ros_robotics package directory.

Creating Your First Robot Arm (in Simulation)

[228]

Creating a control launch file
The best way to initiate control of our rrbot robot arm is to create a launch file
to load the parameters into the Parameter Server and start all the ros_control
controllers. The rosparam statement loads the controller settings to the Parameter
Server from the YAML configuration file. Next, the control_spawner node creates
the five controllers for rrbot using the controller_manager package. Another node
is started for the robot_state_publisher. This rrbot_control.launch control
file contains the following code, and is stored in the /launch directory of the ros_
robotics package directory:

<launch>

 <!-- Load joint controller configurations from YAML file to
 parameter server -->
 <rosparam file="$(find ros_robotics)/config/rrbot_control.yaml"
 command="load"/>

 <!-- load the controllers -->
 <node name="control_spawner" pkg="controller_manager"
 type="spawner" respawn="false"
 output="screen" ns="/rrbot" args="joint_state_controller
 joint_base_mid_position_controller
 joint_mid_top_position_controller
 left_gripper_joint_position_controller
 right_gripper_joint_position_controller"/>

 <!-- convert joint states to TF transforms for rviz, etc -->
 <node name="robot_state_publisher" pkg="robot_state_publisher"
 type="robot_state_publisher" respawn="false" output="screen">
 <remap from="/joint_states" to="/rrbot/joint_states" />
 </node>

</launch>

After the nodes are started, the joint_state_controller begins publishing all
the (nonfixed) joint states of rrbot on the JointState topic. The robot_state_
publisher node subscribes to the JointState messages and publishes the robot's
transforms to the tf transform library. Each of the other joint position controllers
manages the control for its particular revolute joint.

Chapter 5

[229]

To start the rrbot simulation, launch rrbot in Gazebo using the following
command:

$ roslaunch ros_robotics rrbot_gazebo.launch

When rrbot is visible in the Gazebo window, open a second terminal window and
launch the controllers using the following command:

$ roslaunch ros_robotics rrbot_control.launch

In the previously created control launch file, both the controller_manager and
robot_state_publisher packages are used. If you plan to reuse this code or share
it, it is recommended that you add these dependencies to your package.xml file for
the ros_robotics package. The following statements should be added under the
dependencies:

<exec_depend>controller_manager</exec_depend>
<exec_depend>robot_state_publisher</exec_depend>

Controlling your robot arm with the ROS
command line
Now, we are able to send commands via a third terminal window to control our
rrbot robot arm. The rostopic pub command is used to publish our command data
to a specific joint position controller.

To command the top link of the arm to move to a 1.57radian (90degree) position,
relative to the middle link, type the following command:

$ rostopic pub -1 /rrbot/joint_mid_top_position_controller/command std_
msgs/Float64 "data: 1.57"

On the terminal, the following screen message is displayed:

publishing and latching message for 3.0 seconds

Creating Your First Robot Arm (in Simulation)

[230]

On the Gazebo screen, the rrbot arm should look similar to the following
screenshot. The view has been rotated to make the arm more visible to the reader:

rrbot joint_mid_top at 1.57 radians

Note that the top link of the arm may not be at a true 90 degree angle to
the middle link because of the gravitational effects of the environment
and the action of the controller. The proportional gain of the pid controls
can be increased to improve these results. This can be done by changing
the rrbot controller gains in the YAML file or in real-time using the
Dynamic Reconfigure tool described in the upcoming section.

Chapter 5

[231]

To open the gripper, two commands can be sent consecutively to move the right
gripper and then the left gripper -0.5 radians from their center position:

$ rostopic pub -1 /rrbot/right_gripper_joint_position_controller/command
std_msgs/Float64 "data: -0.5"; rostopic pub -1 /rrbot/left_gripper_joint_
position_controller/command std_msgs/Float64 "data: -0.5"

On the Gazebo screen, the rrbot gripper should look similar to the following
screenshot. Joint axes and rotation are shown in the Gazebo view:

rrbot gripper open 1.0 radians

Creating Your First Robot Arm (in Simulation)

[232]

Controlling your robot arm with rqt
Another tool that we can use to control our rrbot arm is rqt, the ROS plugin-based
user interface described in the Introducing rqt tools section of Chapter 3, Driving
Around with TurtleBot. The command to start rqt is as follows:

$ rosrun rqt_gui rqt_gui

Or simply:

$ rqt

Under the Plugins menu in the rqt main window menu bar, select the Topics |
Message Publisher plugin. From the Topics drop-down box, at the top of the
Message Publisher plugin, select the command for the particular controller that
you want to publish to and add it to the Message Publisher main screen. The green
plus sign button at the top-right corner of the window will add the command to the
main screen. In the following screenshot, the /rrbot/joint_base_mid_position_
controller/command and/rrbot/joint_mid_top_position_controller/
command topics have been added to the Message Publisher main screen:

rqt Message Publisher screen for rrbot

Chapter 5

[233]

To change the position of the rrbot arm, expand the topic by clicking on the triangle
symbol on the left side. Next, select and change the expression field of one of the
topics and check the checkbox on the left of the topic to publish the message. In
the following screenshot, the value of the /rrbot/joint_base_mid_position_
controller/command topic has been changed to -1.57 radians. In addition to this,
the plugin for Topic Monitor has been displayed so that the change in the published
state of the /rrbot/joint_base_mid_position_controller/state topic set_
point field can be verified:

rqt Message Publisher and Topic Monitor

Creating Your First Robot Arm (in Simulation)

[234]

The following screenshot shows both rqt and Gazebo with the rrbot arm positioned
with its joint_base_mid at -1.57 radians. The joint_mid_top is set at 0.0 radians:

rrbot arm controlled via rqt

Trying more things in rqt
The following suggestions are additional starting points for using rqt with your
rrbot arm:

•	 Message Publisher expression values can also be equations, such as sin(i/10),
where i is an rqt variable for time. Inserting this equation into one of the joint
commands will make the joint vary sinusoidally with respect to time.

•	 The rqt Plot plugin is found under Plugins | Visualization | Plot. Choose to
plot joint_xxx_position_controller/command/data to the screen or even
joint_xxx_position_controler/state/error. The error plot will visually
display how well the pid control eliminates the error on the joint.

•	 The rqt Dynamic Reconfigure plugin is found under Plugins |
Configuration | Dynamic Reconfigure. Click on Expand All to see all the
options and select pid for any of the joint controllers. A pop-up window will
allow you to dynamically change p, i, d, i_clamp_min, and i_clamp_max to
tune that controller's performance.

Moving the robot arm with a Python script is also possible, but this is left as an
exercise for the reader.

Chapter 5

[235]

Summary
This chapter helped you to develop an understanding of how robot arms are
modeled and controlled. We created a URDF/SDF for a simple three-link, two-joint
robot arm to be used in a Gazebo simulation. Xacro was used to make the URDF/
SDF modular and efficient. Mesh files were incorporated into the gripper design to
give it a more realistic look. Control plugins and transmission elements were added
to the robot model code to enable control of the robot arm in simulation. Then,
ROS commands were used via the command-line and rqt tools to control the arm's
position in Gazebo.

In Chapter 6, Wobbling Robot Arms Using Joint Control, we will extend our control
of robot arms to the 7-DOF dual-armed Baxter. You will learn multiple ways to
command and control Baxter's arms using both forward kinematic and inverse
kinematic methods.

[237]

Wobbling Robot Arms Using
Joint Control

Mobile robots are good at getting from one location to another without running into
objects around them. Making them even more useful, a robot arm can grasp and
manipulate objects in its environment. This chapter features a leading-edge robot
that uses its two arms to perform tasks from manufacturing to human assistance
and more. The Baxter robot by Rethink Robotics is a collaborative robot that works
safely alongside humans without the need for safety precautions. The Gazebo
simulated version of Baxter is included in this book for those who do not have access
to a real Baxter.

In this chapter, you will be introduced to Baxter in both real and simulated forms.
The software for Baxter Simulator will be installed and executed to bring up the
Gazebo environment with a Baxter model in it. Baxter's arms will be controlled using
a variety of methods: keyboard, joystick, and Python script. Demonstrations of the
different types of joint controls for Baxter's arms will be provided.

A more in-depth look at tf, ROS transform reference frames, is included in this
chapter. These reference frames are critical to maintaining the complex kinematic
equations that are required for Baxter's arm joints. Another ROS tool, MoveIt!, will
be introduced and used to manipulate Baxter's arms. MoveIt! provides a framework
for motion planning for either both of Baxter's arms, an individual arm, or a subset of
joints in an arm.

Wobbling Robot Arms Using Joint Control

[238]

A section on the real Baxter is included and describes the configuration of Baxter
with a workstation computer. This setup is the standard for what is referred to as
the research Baxter. In the Introducing Baxter section, the different versions of Baxter
will be described. All of the commands and controls described for Baxter Simulator
will also apply to the real Baxter. The use of MoveIt! to plan Baxter's arm movements
to avoid obstacles will be presented. Then, the versatile ROS package for state
machines, SMACH, will be introduced and a fun example using Baxter's arms will be
implemented.

In this chapter, you will learn the following topics:

•	 Baxter and the robot's hardware
•	 Loading and using Baxter Simulator with Gazebo
•	 Using MoveIt! to create trajectories for Baxter's arms
•	 Controlling the real Baxter with applications
•	 Implementing a state machine for Baxter arm poses

Introducing Baxter
Baxter is a two-armed robot created by Rethink Robotics designed to be a
collaborative worker in the manufacturing industry. Each of Baxter's arms has
seven degrees of freedom (DOF) and a series of joint actuators, which makes Baxter
unique as a manufacturing robot. Baxter's joints are composed of series-elastic
actuators (SEAs) that have a spring between the motor/gearing and the output of
the actuator. This springiness makes Baxter's arms compliant and capable of detecting
external forces, such as contact with a human. This advantage makes Baxter safe
to work alongside people without a safety cage. The SEAs also provide greater
flexibility for control using the torque deflection as feedback for the control system.

Baxter, shown in the following image, has a number of sensors that enable Baxter to
perform many tasks:

•	 A 360-degree sonar sensor at the top of Baxter's head
•	 A 1024 x 600 pixel screen face with a built-in camera
•	 A camera, infrared sensor, and accelerometer on the cuff at the end of

each arm

Chapter 6

[239]

•	 A gripper mount that can easily mount a variety of end-effectors
•	 Navigator buttons with a scroll-wheel dial on each forearm and torso side

Baxter on a pedestal

Wobbling Robot Arms Using Joint Control

[240]

The manufacturing version of Baxter is programmed by moving the arms to the
desired locations and interacting with the navigator buttons on the arm or torso to
store the positions. Gripper control is achieved by activating the buttons located on
each cuff. An indented spot on Baxter's cuff places the arm in Zero Force Gravity
(Zero-G) mode to allow the arm's joints to be moved effortlessly into position. Baxter
can be taught different arm positions and trajectories, and these can be collected into
a sequence and stored as a type of program. The display-screen face is used as a GUI
for the worker to build and store these programs. No special programming language
or mathematics is required; only arm manipulation, button presses, and the use of
the scroll-wheel dial located alongside the navigator buttons.

Position to activate Zero-G mode

More information on Baxter's technical specifications can be found at the following
websites:

•	 http://www.rethinkrobotics.com/baxter/tech-specs/

•	 http://sdk.rethinkrobotics.com/wiki/Hardware_Specifications

•	 https://www.active8robots.com/wp-content/uploads/Baxter-
Hardware-Specification-Architecture-Datasheet.pdf

Information on the manufacturing version of Baxter can be found at http://www.
rethinkrobotics.com/baxter/.

http://www.rethinkrobotics.com/baxter/tech-specs/
http://sdk.rethinkrobotics.com/wiki/Hardware_Specifications
https://www.active8robots.com/wp-content/uploads/Baxter-Hardware-Specification-Architecture-Datasheet.pdf
https://www.active8robots.com/wp-content/uploads/Baxter-Hardware-Specification-Architecture-Datasheet.pdf
http://www.rethinkrobotics.com/baxter/
http://www.rethinkrobotics.com/baxter/

Chapter 6

[241]

Baxter, the research robot
A second version of Baxter was introduced by Rethink the year after the
manufacturing version was released. This later version is primarily for the use of
academic and research organizations. The hardware for the research version of
Baxter is identical to the manufacturing version, however, the software for the two
versions is not the same.

The Baxter research robot is configured with an SDK that runs on a remote computer
workstation and allows researchers to develop custom software for Baxter. The SDK
provides an open source ROS application programming interface (API) to directly
run ROS commands and scripts to operate Baxter. Baxter runs as the ROS Master
and any remote workstation (on Baxter's network) launches ROS nodes to connect to
Baxter and control its joints and sensors.

An alternative arrangement of configuring the SDK directly on the
physical Baxter is possible, but that scenario will not be covered in this
book.
For information on the Baxter on-robot workspace setup and code
execution, visit http://sdk.rethinkrobotics.com/wiki/SSH.

Researchers have been able to develop applications with Baxter in numerous areas.
Rethink Robotics hosts a web page to link many of these accomplishments.

For videos, visit http://sdk.rethinkrobotics.com/wiki/Customer_Videos.

For research papers, visit http://sdk.rethinkrobotics.com/wiki/Published_
Work.

http://sdk.rethinkrobotics.com/wiki/SSH
http://sdk.rethinkrobotics.com/wiki/Customer_Videos
http://sdk.rethinkrobotics.com/wiki/Published_Work
http://sdk.rethinkrobotics.com/wiki/Published_Work

Wobbling Robot Arms Using Joint Control

[242]

Baxter Simulator
Baxter Simulator has been developed by Rethink Robotics to provide a comparable
simulation experience for controlling Baxter using Gazebo. The simulation software
for Baxter is contained in the baxter_simulator ROS metapackage. Baxter's URDF
is used to create the simulated Baxter model and an emulation of the hardware
interfaces to the research Baxter is provided by the baxter_sim_hardware ROS
package. This package allows models of the position and velocity controllers to
be modified using the ROS rqt tool. The arm and head controllers are found in the
baxter_sim_controllers package. These controller plugins for Gazebo are for
arm position, arm velocity, and arm torque control, and position control for the
head and the electric grippers. Interfaces are also simulated for the following Baxter
components:

•	 The head sonar ring
•	 The infrared sensors on each cuff
•	 The cameras on each cuff and head
•	 The navigator lights and buttons
•	 The shoulder buttons
•	 The head screen display (xdisplay)

Baxter Simulator can also be used with the ROS tools, rviz and MoveIt!. Details on
rviz can be found in the Introducing rviz section of Chapter 2, Creating Your First Two-
Wheeled ROS Robot (in Simulation); details on MoveIt! will be provided later in this
chapter, in the Introducing MoveIt! section. Further details on Baxter Simulator will be
supplied in the section Installing Baxter Simulator as we install the software and learn
to control the simulated Baxter in Gazebo.

For details on the Baxter Simulator ROS packages and API, refer to the following
Rethink websites:

•	 http://sdk.rethinkrobotics.com/wiki/Simulator_Architecture

•	 http://sdk.rethinkrobotics.com/wiki/Baxter_Simulator

•	 http://sdk.rethinkrobotics.com/wiki/API_
Reference#tab.3DSimulator_API

•	 https://github.com/RethinkRobotics/baxter_simulator

http://sdk.rethinkrobotics.com/wiki/Simulator_Architecture
http://sdk.rethinkrobotics.com/wiki/Baxter_Simulator
http://sdk.rethinkrobotics.com/wiki/API_Reference#tab.3DSimulator_API
http://sdk.rethinkrobotics.com/wiki/API_Reference#tab.3DSimulator_API
https://github.com/RethinkRobotics/baxter_simulator

Chapter 6

[243]

Baxter's arms
Baxter has seven rotary joints, as shown in the following figure. Each arm is often
referred to as a 7-DOF arm, since motion of the arm is controlled by seven actuators
(motors), which are capable of independent rotation.

Baxter's 7-DOF arms are described on the Rethink Robotics site at http://sdk.
rethinkrobotics.com/wiki/Arms.

Baxter's arm joints

The arm joints are named in the following manner:

•	 S0: Shoulder Twist (Roll)
•	 S1: Shoulder Bend (Pitch)
•	 E0: Elbow Twist (Roll)
•	 E1: Elbow Bend (Pitch)
•	 W0: Wrist Twist (Roll)
•	 W1: Wrist Bend (Pitch)
•	 W2: Wrist Twist (Roll)

http://sdk.rethinkrobotics.com/wiki/Arms
http://sdk.rethinkrobotics.com/wiki/Arms

Wobbling Robot Arms Using Joint Control

[244]

The designation of the joints as S0, S1, E0, E1, W0, W1, and W2 enables us to define,
and even monitor, each of the angles for these joints with respect to the coordinates
of the joints. In ROS, the angles are measured in radians. As there are 2π radians in
a complete circle, one radian is 360/(2π), or about 57.3 degrees. A 90-degree angle is
π/4, or about 0.7854 radians. These conversion values are given because it is often
necessary to move the joints to a 90-degree position or another angle defined in
radians and it is usual for us to think in terms of degrees of rotation.

The joints of the arms are connected by links of various lengths. Although all the
joints are rotary joints, there is a distinction between bend joints and twist joints. The
bend joints, also called pitch joints, are S1, E1, and W1. They pitch up and down on
the arm and rotate about their axis perpendicular to the joint. The twist or roll joints
S0, E0, W0, and W2 rotate about an axis that extends along their centerline.

Information on maximum joint speeds, joint flexure stiffness, peak torque, and other
detailed arm specifications can be found at http://sdk.rethinkrobotics.com/
wiki/Hardware_Specifications.

Baxter's bend joints
Three of the arm joints, S1, E1, and W1, are defined as bend joints and are labeled in
the following figure for positive and negative direction:

Baxter's bend joints

http://sdk.rethinkrobotics.com/wiki/Hardware_Specifications
http://sdk.rethinkrobotics.com/wiki/Hardware_Specifications

Chapter 6

[245]

The following table shows Baxter's bend joint limits and range of motion measured
in both degrees and radians for each joint:

Joint
Min limit Max limit Range Min limit Max limit Range
in degrees in radians

S1 -123 +60 183 -2.147 +1.047 3.194
E1 -2.864 +150 153 -0.05 +2.618 2.67
W1 -90 +120 210 -1.5707 +2.094 3.6647

Baxter's twist joints
Four of Baxter's arm joints, S0, E0, W0, and W2, are defined as twist or roll joints and
are labeled in the following figure for positive and negative direction:

Baxter's twist joints

Wobbling Robot Arms Using Joint Control

[246]

The following table shows Baxter's twist joint limits and range of motion measured
in both degrees and radians for each joint:

Joint
Min limit Max limit Range Min limit Max limit Range
in degrees in radians

S0 -97.494 +97.494 194.998 -1.7016 +1.7016 3.4033

E0 -174.987 +174.987 349.979 -3.0541 +3.0541 6.1083
W0 -175.25 +175.25 350.5 -3.059 +3.059 6.117
W2 -175.25 +175.25 350.5 -3.059 +3.059 6.117

Baxter's coordinate frame
Before we discuss the details of the arm positions and orientations, it is necessary
to define a base coordinate system from which other positions are measured. The
following figure shows Baxter's reference coordinate system:

Baxter's base coordinate system

Chapter 6

[247]

Standing behind Baxter, the positive x axis runs forward, along the centerline of
Baxter, the positive y axis runs to the left from the centerline, and the positive z axis
runs up vertically. The z axis center of Baxter's base coordinate system is at the base
of Baxter's torso. This is the z=0 position. The x=0, y=0 position is behind Baxter's
front plate, along the centerline on the vertical axis.

An important use of this base coordinate system is to define the position of the
grippers at the end of Baxter's arms in terms of the distance in x, y, and z from the
base origin considered (0, 0, 0). This is useful because, when positioned on a pedestal,
Baxter has a base coordinate system that does not move during operations. However,
the coordinates of each joint and the grippers will change as Baxter performs various
tasks.

Cartesian positions are defined in meters in ROS, as defined in REP 103, titled
Standard Units of Measure and Coordinate Conventions (http://www.ros.org/reps/
rep-0103.html).

Another measure for a three-dimensional object is its orientation or angles with
respect to a given coordinate system, usually a coordinate system centered on the
object itself if it is stationary. We will discuss the orientation of Baxter's grippers
when the transformation of coordinate systems, tf, is introduced.

In the previous figure, Baxter's outstretched arms represent the joint angles of zero
degrees for all its joints. The various conventions for measuring the distance and
rotation of Baxter's grippers will be presented later.

Control modes for Baxter's arms
There are four modes of controlling Baxter's arms: joint position, joint velocity, joint
torque, and raw joint position control. Note the descriptions and the important
differences between these four joint control modes:

•	 Joint position control: This mode is the most fundamental control mode
and is the primary method for controlling Baxter's arms. The angle of each
of Baxter's joints is specified in a message to the motor controllers, which
contains seven values—one value for each of the seven joints. The motor
controller processes the message, checking for collisions in the URDF model
between the two arms and also between the arms and the torso. If a potential
collision is detected, the collision-avoidance model plans offsets to the
commanded path to avoid impact.

http://www.ros.org/reps/rep-0103.html
http://www.ros.org/reps/rep-0103.html

Wobbling Robot Arms Using Joint Control

[248]

•	 Joint velocity control: This mode is for advanced control of Baxter's arms.
Joint velocities are specified for the joints to simultaneously achieve. The joint
command message will contain seven velocity values for the controllers to
achieve. Collision avoidance and detection is applied. If the velocity given in
a command would take a joint to a position beyond its limits, no joints will
move. This mode is dangerous and extreme caution should be used.

•	 Joint torque control: This mode is also for the advanced control of Baxter's
arms. Joint torques are specified in the command message, which will
contain seven torque values for the controllers to simultaneously perform.
Collision avoidance and detection is not applied. This mode is dangerous and
extreme caution should be used.

•	 Raw joint position control: This mode provides a more direct position
control, leaving the execution of joint commands primarily for the
controllers. Collision avoidance and detection is not implemented and motor
velocity limits are not monitored. This mode is dangerous and extreme caution
should be used.

For an in-depth description of the joint control modes, refer to Rethink's wiki at
http://sdk.rethinkrobotics.com/wiki/Arm_Control_Modes.

Baxter's grippers
Rethink provides two options for grippers Baxter can have: electric grippers and
suction grippers. The electric gripper, as shown on the left in the following image,
has two fingers with removable inserts to allow different configurations of the
gripping surface. Force control of the grippers allows them to pick up rigid and
semirigid objects. The electric grippers can grasp an object from the inside or outside.
The gripper can open to 144 mm (approximately 5.6 inches) to grasp an object,
though the fingers have various configurations within this grasping range.

The suction gripper supports the attachment of a single vacuum cup or a multicup
vacuum manifold. The image shows a single suction gripper (on the right). The
gripper is powered by an external air supply line. This gripper works well on
smooth, nonporous, or flat objects:

http://sdk.rethinkrobotics.com/wiki/Arm_Control_Modes

Chapter 6

[249]

Baxter's electric and suction grippers

Baxter's arm sensors
Each of Baxter's arms has a number of sensors on the cuff at the end of the arm. An
integrated camera is mounted on the cuff and is pointed toward objects that the
gripper could potentially pick up. The camera has a frame rate of 30 frames per
second and a maximum resolution of 1280 x 800 pixels. An infrared sensor pointing
in the same direction can detect distances from 4 to 40 cm (1.5–15 inches). The
following image shows the positions of the cuff camera and the infrared sensor. Each
cuff also contains a three-axis accelerometer:

Baxter's cuff camera and infrared sensor

Wobbling Robot Arms Using Joint Control

[250]

Additional information on these sensors can be found at the following websites:

•	 http://sdk.rethinkrobotics.com/wiki/Hardware_Specifications

•	 https://github.com/RethinkRobotics/sdk-docs/wiki/API-
Reference#Sensors

•	 http://sdk.rethinkrobotics.com/wiki/API_Reference#Cameras

Loading Baxter software
This section describes how to load software packages for the SDK, Baxter Simulator,
and MoveIt. It is assumed that Ubuntu 16.04 and ROS Kinetic software are installed
on the computer to be used for the Baxter Simulator and software development. The
steps for installing Ubuntu and ROS are described in Chapter 1, Getting Started with
ROS, in the Installing and launching ROS section.

Installing Baxter SDK software
The installation of Baxter Simulator requires the SDK to already have been
downloaded and installed into a ROS catkin workspace on the workstation
computer. Instructions for the installation are presented here and can also be found
on the Rethink website at http://sdk.rethinkrobotics.com/wiki/Workstation_
Setup. These instructions are for installing with Ubuntu 14.04 and ROS Indigo. We
have updated the instructions here for Ubuntu 16.04 and ROS Kinetic.

In Chapter 1, Getting Started with ROS, we created the catkin_ws catkin workspace
and used this workspace in Chapter 2, Creating Your First Two-Wheeled ROS Robot (in
Simulation), to create the ros_robotics ROS package. For the Baxter SDK packages,
we will create another catkin workspace, baxter_ws, to contain the Rethink ROS
packages and be the development space for the new software we wish to create. If
you wish to use the catkin_ws workspace for your Baxter software, skip to the step
where the Baxter SDK dependencies are installed. (Afterwards, remember to replace
the baxter_ws name in each of the command lines with catkin_ws.)

At the system level, the Baxter software can also be installed for
all users of the workstation computer. Administrator privileges
are necessary. We have installed our Baxter workspace
under the /opt directory using the following instructions by
replacing ~/baxter_ws with /opt/baxter_ws.

http://sdk.rethinkrobotics.com/wiki/Hardware_Specifications
https://github.com/RethinkRobotics/sdk-docs/wiki/API-Reference#Sensors
https://github.com/RethinkRobotics/sdk-docs/wiki/API-Reference#Sensors
http://sdk.rethinkrobotics.com/wiki/API_Reference#Cameras
http://sdk.rethinkrobotics.com/wiki/Workstation_Setup
http://sdk.rethinkrobotics.com/wiki/Workstation_Setup

Chapter 6

[251]

For a user-level installation, create the Baxter catkin workspace baxter_ws by typing
these commands:

$ mkdir -p ~/baxter_ws/src

$ cd ~/baxter_ws/src

$ catkin_init_workspace

Build and install the Baxter workspace:

$ cd ~/baxter_ws

$ catkin_make

Next, source the setup.bash file within the Baxter workspace to overlay this
workspace on top of the ROS environment for the workstation:

$ source ~/baxter_ws/devel/setup.bash

Remember to add this source command to your .bashrc file:

$ echo "source ~/baxter_ws/devel/setup.bash" >> ~/.bashrc

Make sure that the ROS_PACKAGE_PATH environment variable includes the path you
just sourced by typing this command:

$ echo $ROS_PACKAGE_PATH

The /home/<username>/baxter_ws/src path should be displayed as one of the
paths on the screen.

Now that the Baxter catkin workspace has been created, the Baxter SDK
dependencies are installed by typing the following commands:

$ sudo apt-get update

$ sudo apt-get install git-core python-argparse python-wstool python-
vcstools python-rosdep ros-kinetic-control-msgs ros-kinetic-joystick-
drivers

Next, the ROS wstool workspace tool is used to check out all the required Baxter
SDK packages from the GitHub repository and place them in the Baxter workspace
source directory:

$ cd ~/baxter_ws/src

$ wstool init

$ wstool merge https://raw.githubusercontent.com/RethinkRobotics/baxter/
master/baxter_sdk.rosinstall

$ wstool update

Wobbling Robot Arms Using Joint Control

[252]

Then, the workspace is built and installed:

$ cd ~/baxter_ws

$ catkin_make

$ catkin_make install

These instructions install the latest version of the Baxter SDK source, which is
version 1.2 at the time of writing. In the next section, installation instructions for the
Baxter Simulator software packages will be described.

Installing Baxter Simulator
Since Rethink has made the packages for Baxter Simulator open source, owning
a real Baxter robot is no longer necessary to gain access to the GitHub files. The
instructions for loading the Baxter Simulator software on your computer presented
here can also be found at http://sdk.rethinkrobotics.com/wiki/Simulator_
Installation.

To ensure that you have the supporting ROS packages required for Baxter Simulator,
we recommend that you execute the following two commands in preparation for
loading the Baxter Simulator packages:

$ sudo apt-get update

$ sudo apt-get install gazebo7 ros-kinetic-qt-build ros-kinetic-gazebo-
ros-control ros-kinetic-gazebo-ros-pkgs ros-kinetic-ros-control ros-
kinetic-control-toolbox ros-kinetic-realtime-tools ros-kinetic-ros-
controllers ros-kinetic-xacro python-wstool ros-kinetic-tf-conversions
ros-kinetic-kdl-parser

A large number of ROS packages are loaded by the sudo apt-get command. These
packages are as follows:

•	 Gazebo7: This is the correct version of Gazebo to work with ROS Kinetic.
•	 qt_build: This is necessary for building qt and rqt applications such as rqt_

reconfigure.
•	 gazebo_ros_control, ros_control, control_toolbox, and ros_

controllers: These provide the simulated control software, as well as the
real-time control software for Baxter Simulator.

•	 gazebo_ros_pkgs: This provides the interface between Gazebo and ROS,
enabling robots to be simulated in the Gazebo environment.

•	 realtime_tools: This provides a real-time publisher that publishes ROS
messages to a topic from a real-time thread.

http://sdk.rethinkrobotics.com/wiki/Simulator_Installation
http://sdk.rethinkrobotics.com/wiki/Simulator_Installation

Chapter 6

[253]

•	 xacro: This package is used with Baxter's URDF to generate the robot_
description parameter. Xacro is described in some detail in Chapter 5,
Creating Your First Robot Arm (in Simulation).

•	 tf_conversions: This package and kdl_parser work together to
support the tf transforms of Baxter. The tf_conversion package provides
conversions for the user to obtain the data type they require from the
transform library. KDL stands for Kinematics and Dynamics Library. The
kdl_parser package provides the tools to construct the full KDL tree from
the URDF. If you are not familiar with URDF, Chapter 2, Creating Your First
Two-Wheeled ROS Robot (in Simulation) and Chapter 5, Creating Your First Robot
Arm (in Simulation), provide an understanding of how the URDF describes
the robot, its kinematics structure, and its dynamic movement.

The ROS wstool workspace tool is used to check out all the required Baxter
Simulator packages from the GitHub repository and place them in the Baxter
workspace source directory:

$ cd ~/baxter_ws/src

$ wstool init

(If your baxter_ws already exists, skip the preceding step.)

$ wstool merge https://raw.githubusercontent.com/RethinkRobotics/baxter_
simulator/kinetic-devel/baxter_simulator.rosinstall

(Say yes when prompted.)

$ wstool update

Then, the workspace is built and installed:

$ cd ~/baxter_ws

$ catkin_make

Configuring the Baxter shell
The Baxter SDK requires the baxter.sh script file to establish the connections
between the Baxter robot and the workstation computer. This connection will
depend on how your network is set up. Further details on a network connection to a
real Baxter will be discussed in the Configuring a real Baxter setup section.

Wobbling Robot Arms Using Joint Control

[254]

Baxter Simulator additionally uses the baxter.sh file to establish a simulation mode
where the ROS environment variables are set up to identify the host workstation
computer. The baxter.sh script file contains a special hook for Baxter Simulator.

1.	 First, the file must be copied to the baxter_ws directory and the file
permissions changed to grant execution privileges to all users:
$ cp ~/baxter_ws/src/baxter/baxter.sh ~/baxter_ws

$ chmod +x baxter.sh

2.	 Next, open the baxter.sh script in your favorite editor and find the your_ip
parameter (around line 26). Change the your_ip value to the IP address of
your workstation computer:
your_ip="192.168.XXX.XXX"

If the IP address of your computer is unknown, connect to the network used
for Baxter, then use the ifconfig command:
$ ifconfig

The screen results will contain the inet_addr field for the IP address of the
workstation computer.

3.	 Alternatively, if you wish to use the hostname, comment out the line for
your_ip and uncomment the line for your_hostname. To use the real
hostname of your workstation computer, use the following command:
$ hostname

Then, add this to the your_hostname parameter.
These parameters will assign either the ROS_IP or ROS_HOSTNAME
environment variable. If both are present, the ROS_HOSTNAME variable takes
precedence.

4.	 Also, near line 30, change ros_version to kinetic. Then, save and close the
baxter.sh script.

Installing MoveIt!
MoveIt! is an important ROS tool for path planning and can be used with Baxter
Simulator or a real Baxter. The installation of MoveIt! is described here, while the
operation of MoveIt! is detailed later in the chapter, in the Introducing MoveIt! section.
Instructions for the installation can also be found on the Rethink website at http://
sdk.rethinkrobotics.com/wiki/MoveIt_Tutorial. These instructions are for ROS
Indigo, but they have been updated for ROS Kinetic here.

http://sdk.rethinkrobotics.com/wiki/MoveIt_Tutorial
http://sdk.rethinkrobotics.com/wiki/MoveIt_Tutorial

Chapter 6

[255]

The MoveIt! software should be loaded into the source (src) directory of the catkin
workspace baxter_ws created earlier in the chapter in the section Loading the Baxter
software. The commands are as follows:

$ cd ~/baxter_ws/src

$ git clone https://github.com/ros-planning/moveit_robots.git

$ sudo apt-get update

$ sudo apt-get install ros-kinetic-moveit

Then, new additions to the workspace are incorporated with the catkin_make
command:

$ cd ~/baxter_ws

$ catkin_make

To verify that all the Baxter SDK, simulator, and MoveIt packages were downloaded
and installed, type the following command:

$ ls ~/baxter_ws/src

The output should be as follows:

baxter baxter_examples baxter_simulator CMakeLists.txt

baxter_common baxter_interface baxter_tools MoveIt!_robots

Launching Baxter Simulator in Gazebo
Before launching Baxter Simulator in Gazebo, it is important to check the ROS
environment variables. To start up Baxter Simulator, use the following commands
to get to your Baxter catkin workspace and run your baxter.sh script with the sim
parameter:

$ cd ~/baxter_ws

$./baxter.sh sim

The command prompt should return with the following tag appended to the
beginning of the prompt:

[baxter - http://localhost:11311]

Wobbling Robot Arms Using Joint Control

[256]

You are now talking to the simulated Baxter! At this point, check your ROS
environment with the following command:

$ env | grep ROS

Within the output screen text, look for the following result:

ROS_MASTER_URI=http://localhost:11311

ROS_IP= <your workstation's IP address>

or

ROS_HOSTNAME=<your workstation's hostname>

The ROS_HOSTNAME field need not be present.

If the ROS_IP or ROS_HOSTNAME environment variables does not match the IP address
of your workstation (use ifconfig to check), type exit to stop communication with
the simulated Baxter. Then, edit the baxter.sh script to change the your_ip variable
(near line 26) to the current IP address of your workstation. To continue, repeat the
preceding steps for a final check.

If there are issues with Baxter's hardware, software, or network, refer to the general
Baxter troubleshooting website at http://sdk.rethinkrobotics.com/wiki/
Troubleshooting.

The baxter.sh script should run without errors and the ROS environment variables
should be correct. The next section covers running Baxter Simulator for the first time.

Bringing Baxter Simulator to life
To start Baxter Simulator, go to the baxter_ws workspace and run the Baxter shell
script with the sim parameter specified:

$ cd ~/baxter_ws

$./baxter.sh sim

Next, call the roslaunch command to start the simulation with controllers:

$ roslaunch baxter_gazebo baxter_world.launch

http://sdk.rethinkrobotics.com/wiki/Troubleshooting
http://sdk.rethinkrobotics.com/wiki/Troubleshooting

Chapter 6

[257]

The following lines are some of the results you will see on the screen while Baxter
Simulator starts:

NODES

 /

 base_to_world (tf2_ros/static_transform_publisher)

 baxter_emulator (baxter_sim_hardware/baxter_emulator)

 baxter_sim_io (baxter_sim_io/baxter_sim_io)

 baxter_sim_kinematics_left (baxter_sim_kinematics/kinematics)

 baxter_sim_kinematics_right (baxter_sim_kinematics/kinematics)

 gazebo (gazebo_ros/gzserver)

 gazebo_gui (gazebo_ros/gzclient)

 robot_state_publisher (robot_state_publisher/robot_state_publisher)

 urdf_spawner (gazebo_ros/spawn_model)

 /robot/

 controller_spawner (controller_manager/controller_manager)

 controller_spawner_stopped (controller_manager/controller_manager)

 left_gripper_controller_spawner_stopped (controller_manager/
controller_manager)

 right_gripper_controller_spawner_stopped (controller_manager/
controller_manager)

As the process is completing, look for these lines:

[INFO] [1502315064.794924787, 0.718000000]: Simulator is loaded and
started successfully

[INFO] [1502315064.905968083, 0.830000000]: Robot is disabled

[INFO] [1502315064.906014361, 0.830000000]: Gravity compensation was
turned off

Wobbling Robot Arms Using Joint Control

[258]

The following screenshot should appear with Baxter in a disabled state:

Baxter's initial state in Gazebo

If Gazebo and Baxter Simulator fail to appear or there are red error messages in your
terminal window, refer to the Gazebo Troubleshooting page provided by Rethink
Robotics at http://sdk.rethinkrobotics.com/wiki/Gazebo_Troubleshooting.

To remove all Gazebo processes after shutdown, use the command:
$ killall gzserver

For an introduction to using Gazebo, refer to the Gazebo section in Chapter 2, Creating
Your First Two-Wheeled ROS Robot (in Simulation). In that section, the various Gazebo
display panels, menus, and toolbars are explained. Gazebo uses similar cursor/
mouse controls to those of rviz, and these mouse/cursor actions are described in the
Introducing rviz: Mouse control section of Chapter 2, Creating Your First Two-Wheeled
ROS Robot (in Simulation).

http://sdk.rethinkrobotics.com/wiki/Gazebo_Troubleshooting

Chapter 6

[259]

In the previous screenshot, the World panel on the left shows the Models element
open to reveal the two models in the environment: ground_plane and baxter.
Under the baxter model, all of Baxter's links are listed and you are welcome to select
the links to explore the details about each one. The screenshot also shows the smaller
display window that contains Baxter's IO. Baxter's four navigators, located one on
each side of the rear torso (near the shoulders) and one on each arm, are also shown.
The oval-shaped navigators have three push buttons, one of which is a scroll wheel.
Baxter's cuff buttons are also shown in this window. There are two buttons and one
touch sensor on each cuff.

The terminal window in which the roslaunch command was performed will
be unable to run additional commands, so a second terminal window should be
opened. In this window, go to the baxter_ws workspace and run the baxter.sh
script with the sim parameter:

$ cd ~/baxter_ws

$./baxter.sh sim

For each additional terminal window opened, go to the baxter_ws
workspace and run the baxter.sh script with the sim parameter.

Baxter (in simulation) is initially in a disabled state. To confirm this, use the enable_
robot script from the baxter_tools package using the following command:

$ rosrun baxter_tools enable_robot.py -s

The screen should display the following output:

ready: False

enabled: False

stopped: False

error: False

estop_button: 0

estop_source: 0

To enable Baxter, use the same enable_robot script with the -e option:

$ rosrun baxter_tools enable_robot.py -e

The output is similar to the following:

[INFO] [1501189929.999603, 141.690000]: Robot Enabled

Wobbling Robot Arms Using Joint Control

[260]

Confirm Baxter is enabled using the following command:

$ rosrun baxter_tools enable_robot.py -s

The output should be as follows:

ready: False

enabled: True

stopped: False

error: False

estop_button: 0

estop_source: 0

Always enable Baxter Simulator before attempting to control
any of the motors.

At this point, a cheat sheet for use with Baxter Simulator is provided for you to use
with the example programs that follow. The commands for launching, enabling, and
untucking are provided here for your reference:

Baxter Simulator cheat sheet
To launch Baxter Simulator in Gazebo, use the following commands:
$ cd ~/baxter_ws

$./baxter.sh sim

$ roslaunch baxter_gazebo baxter_world.launch

For subsequent terminal windows, use the following commands:
$ cd ~/baxter_ws

$./baxter.sh sim

To enable the robot, use the following command:
$ rosrun baxter_tools enable_robot.py -e

To enable and set the arms in a known position, use the following
command:
$ rosrun baxter_tools tuck_arms.py -u

Chapter 6

[261]

With Baxter enabled, the next section describes some of Baxter's example scripts
using the head display screen.

Warm-up exercises
Rethink Robotics has provided a collection of example scripts to demonstrate
Baxter's interfaces and features. These example programs are contained in the
baxter_examples package and work primarily with a real Baxter and the SDK. A
portion of these example programs also work with Baxter Simulator.

The baxter_examples are Python programs that access Baxter's hardware and
functionality through the baxter_interface package. The baxter_examples
programs are written to demonstrate how to use Baxter interfaces. The baxter_
interface package is a repository of Python APIs to use for interacting with
the Baxter Research Robot. The repository contains a set of classes that are ROS
wrappers to communicate with and control Baxter's hardware and functionality.
These Python classes are built on top of the ROS API layer.

This section and the following sections present SDK example programs that can be
used with Baxter Simulator. To find additional information on the SDK example
programs implemented in Baxter Simulator, visit the following website:

http://sdk.rethinkrobotics.com/wiki/API_Reference#tab=Simulator_API

The first example program will display an image on Baxter's (simulated) head
display screen using the following command:

$ rosrun baxter_examples xdisplay_image.py --file=`rospack find baxter_
examples`/share/images/baxterworking.png

http://sdk.rethinkrobotics.com/wiki/API_Reference#tab=Simulator_API

Wobbling Robot Arms Using Joint Control

[262]

Your screen should look similar to the following screenshot:

Baxter after xdisplay_image.py

The xdisplay_image.py program locates the baxterworking.png image in
the specified location under the baxter_examples package. This image data is
published as a sensor_msgs/Image ROS message. The display image must be a .png
or .jpg file with a display resolution of 1024 x 600 pixels or smaller. Smaller images
will appear in the top-left corner of Baxter's display screen.

A second baxter_examples program will cause Baxter Simulator to nod Baxter's
head up and down, then turn from side to side:

$ rosrun baxter_examples head_wobbler.py

The simulated Baxter should randomly wobble its head until Ctrl + C is pressed.
The movement demonstrates both the head pan motion (side to side) and head
nod motion (up and down) interfaces. This program shows the use of the baxter_
interface Head class (head.py). The command_nod function is called first to trigger
an up-down motion of the head. It is not possible to command a specific angle for the
nod motion. The pan motion is achieved with several calls to the set_pan function,
with random angles provided as the parameter.

Chapter 6

[263]

Another baxter_examples program also moves Baxter's head through a set of head
positions and velocities. The Head Action Client Example demonstrates the use of
the Head Action Server. This example is similar to the head wobble just performed,
but provides a good example of an action server and client interaction. If you wish
to try the Head Action Client Example, access the instructions and explanations at
http://sdk.rethinkrobotics.com/wiki/Head_Action_Client_Example.

The next section will demonstrate some example programs for Baxter's arms.

Flexing Baxter's arms
The focus of the following sections will be on Baxter's arms. The section on Bringing
Baxter Simulator to life should be completed before starting these sections. Baxter
Simulator should be launched in Gazebo and the robot should be enabled with its
arms untucked.

The following example programs use the baxter_interface Limb class (limb.py)
to create instances for each arm. The joint_names function is used to return an array
of all the joints in the limb.

Commands for the joint control modes are via ROS messages within the baxter_
core_msgs package. To move the arm, a JointCommand message must be published
on the robot/limb/<left/right>/joint_command topic. Within the JointCommand
message, a mode field indicates the control mode to the Joint Controller Boards as
POSITION_MODE, VELOCITY_MODE, TORQUE_MODE, or RAW_POSITON_MODE.

In the following sections, various methods of controlling Baxter's arm movements
will be demonstrated. After several example arm programs have been presented, a
Python script to command Baxter's arms to move to a home position will be shown.

Untucking Baxter's arms
Before Baxter's arms can be commanded, Baxter must be enabled. This can be
accomplished using the tuck_arms.py program provided by Rethink using the
untuck option. During untuck movements, Baxter's collision avoidance is disabled.
Collision avoidance for Baxter Simulator is modeled as part of the URDF. Each of
Baxter's links is tagged with a collision block that is slightly larger than the visual
element. For further details on the URDF, collision blocks, and the visual element,
refer to Chapter 2, Creating Your First Two-Wheeled ROS Robot (in Simulation).
Typically, when the position of the arms places the collision blocks into contact with
each other, the collision model detects the contact and ends the movement to avoid
the parts colliding.

http://sdk.rethinkrobotics.com/wiki/Head_Action_Client_Example

Wobbling Robot Arms Using Joint Control

[264]

To command Baxter into the untuck position, use the following command:

$ rosrun baxter_tools tuck_arms.py –u

The output should be similar to the following:

[INFO] [1501190044.262606, 0.000000]: Untucking arms

[INFO] [1501190044.375889, 255.938000]: Moving head to neutral position

[INFO] [1501190044.376109, 255.938000]: Untucking: Arms already Untucked;
Moving to neutral position.

[INFO] [1501190045.673587, 257.234000]: Finished tuck

The following screenshot shows the simulated Baxter in the untucked position:

Baxter untucked

To explore Baxter's untuck operation further, refer to the Rethink wiki Tuck Arms
Tool information at http://sdk.rethinkrobotics.com/wiki/Tuck_Arms_Tool.

http://sdk.rethinkrobotics.com/wiki/Tuck_Arms_Tool

Chapter 6

[265]

Wobbling arms
The next example program provides a demonstration of controlling Baxter's arms
using joint velocity control. The joint control modes for Baxter's arms were described
in the Baxter's arms section. In simulation, the joint velocity wobble can be observed
by typing the following command:

$ rosrun baxter_examples joint_velocity_wobbler.py

The output should be as follows:

Initializing node...

Getting robot state...

Enabling robot...

[INFO] [1501190177.147845, 388.564000]: Robot Enabled

Moving to neutral pose...

Wobbling. Press Ctrl-C to stop...

The program will begin by moving Baxter's arms to a preset neutral starting position.
Next, random velocity commands are sent to each arm to create a sinusoidal motion
across both limbs. The following screenshot shows Baxter's neutral starting position:

Baxter's neutral position

Wobbling Robot Arms Using Joint Control

[266]

To explore Baxter's arms' joint_velocity_wobbler operation in more detail, refer
to the Rethink wiki Wobbler Example information at http://sdk.rethinkrobotics.
com/wiki/Wobbler_Example.

Controlling arms and grippers with a keyboard
Baxter's arms can also be controlled with keyboard keystrokes. Keystrokes are used
to control the positions of the joints, with each keyboard key mapped to either
increase or decrease the angle of one of Baxter's 14 arm joints. Keys on the right
side of the keyboard are mapped to Baxter's left arm and keys on the left side of the
keyboard are mapped to Baxter's right arm.

This example demonstrates another of Baxter's arm control modes: joint position
control.

To start the keyboard joint position control example, use the following command:

$ rosrun baxter_examples joint_position_keyboard.py

This should be the output on the screen:

Initializing node...

Getting robot state...

Enabling robot...

[INFO] [1501190427.217690, 638.355000]: Robot Enabled

Controlling joints. Press ? for help, Esc to quit.

key bindings:

 Esc: Quit

 ?: Help

http://sdk.rethinkrobotics.com/wiki/Wobbler_Example
http://sdk.rethinkrobotics.com/wiki/Wobbler_Example

Chapter 6

[267]

/: left: gripper calibrate

,: left: gripper close

m: left: gripper open

y: left_e0 decrease

o: left_e0 increase

u: left_e1 decrease

i: left_e1 increase

6: left_s0 decrease

9: left_s0 increase

7: left_s1 decrease

8: left_s1 increase

h: left_w0 decrease

l: left_w0 increase

j: left_w1 decrease

k: left_w1 increase

n: left_w2 decrease

.: left_w2 increase

b: right: gripper calibrate

c: right: gripper close

x: right: gripper open

q: right_e0 decrease

r: right_e0 increase

w: right_e1 decrease

e: right_e1 increase

1: right_s0 decrease

4: right_s0 increase

2: right_s1 decrease

3: right_s1 increase

a: right_w0 decrease

f: right_w0 increase

s: right_w1 decrease

d: right_w1 increase

z: right_w2 decrease

v: right_w2 increase

The output has been modified to aid ease of use.

Controlling arms and grippers with a joystick
This example program uses a joystick to control Baxter's arms. The joint_
position_joystick program uses the ROS drivers from the joy package to
interface with a generic Linux joystick. Joysticks with a USB interface are supported
by the joy package. The joy package creates a joy_node to generate a sensor_
msgs/Joy message containing the various button-push and joystick-move events.

The first step is to check for the joystick driver package joy using the following
command:

$ rospack find joy

If the ROS package is on the computer, the screen should display this:

/opt/ros/kinetic/share/joy

Wobbling Robot Arms Using Joint Control

[268]

If it is not, then an error message is displayed:

[rospack] Error: stack/package joy not found

If the joy package is not present, install it with the following command:

$ sudo apt-get install ros-kinetic-joystick-drivers

For a PS3 joystick controller, you will need the ps3joy package.
Instructions can be found at http://wiki.ros.org/ps3joy/Tutorials/
PairingJoystickAndBluetoothDongle.

Next, type the command to start the joint_position_joystick program using one
of the joystick types (xbox, logitech, or ps3):

$ roslaunch baxter_examples joint_position_joystick.launch
joystick:=<joystick_type>

We used the Xbox controller joystick in our example; the output is as follows:

...

NODES

 /

 joy_node (joy/joy_node)

 rsdk_joint_position_joystick (baxter_examples/joint_position_
joystick.py)

...

[INFO] [1501196267.914400, 251.752000]: Robot Enabled

Press Ctrl-C to quit.

rightTrigger: left gripper close

rightTrigger: left gripper open

leftTrigger: right gripper close

leftTrigger: right gripper open

leftStickHorz: right inc right_s0

leftStickHorz: right dec right_s0

rightStickHorz: left inc left_s0

rightStickHorz: left dec left_s0

leftStickVert: right inc right_s1

leftStickVert: right dec right_s1

rightStickVert: left inc left_s1

rightStickVert: left dec left_s1

rightBumper: left: cycle joint

http://wiki.ros.org/ps3joy/Tutorials/PairingJoystickAndBluetoothDongle
http://wiki.ros.org/ps3joy/Tutorials/PairingJoystickAndBluetoothDongle

Chapter 6

[269]

leftBumper: right: cycle joint

btnRight: left calibrate

btnLeft: right calibrate

function1: help

function2: help

Press Ctrl-C to stop.

The preceding output shows the Xbox joystick buttons and knobs to move Baxter's
joints. The joystick controls two joints at a time on each of Baxter's two arms using
the Left Stick and the Right Stick (see the following diagram). The up-down
(vertical) control of the stick controls increasing and decreasing one of the joint
angles. The side-to-side (horizontal) control increases and decreases another joint
angle. The Left Bumper and Right Bumper cycle the joystick control through all of
Baxter's arm joints in the order: S0-S1-E0-E1-W0-W1-W2. For example, initially, the
Left Stick control will be in command of the (right arm) S0 joint using horizontal
direction, and the S1 joint using vertical direction. When the Left Bumper is pressed,
the Left Stick horizontal control will command the S1 joint, and the vertical control
will command the E0 joint. Cycling the joints continues in a continuous loop, where
the S0 joint will be selected after the W2 joint.

The joystick mapping of joystick left = robot right allows the
operator ease of use while the operator is positioned facing Baxter.

The following image and table describe the mapping of the Xbox joystick controls:

Xbox joystick controls

Wobbling Robot Arms Using Joint Control

[270]

Buttons Action for RIGHT
Arm Buttons Action for

LEFT Arm
Back Help Ctrl + C or Ctrl + Z Quit

Left Button (X) gripper calibrate Right Button (B) gripper
calibrate

Top Button (Y) none Bottom Button (A) none
Left Trigger [PRESS] gripper close Right Trigger[PRESS] gripper close

Left Trigger [RELEASE] gripper open Right
Trigger[RELEASE] gripper open

Left Bumper cycle joints Right Bumper cycle joints
Stick Axes Action
Left Stick Horizontal right: increase/decrease <current joint 1> (S0)
Left Stick Vertical right: increase/decrease <current joint 2> (S1)
Right Stick Horizontal left: increase/decrease <current joint 1> (S0)
Right Stick Vertical left: increase/decrease <current joint 2> (S1)

Controlling arms with a Python script
In this section, we will create a simple Python script to command Baxter's arms into
a specific pose. The following script commands Baxter's arms to a home position,
similar to the untuck position. Comments have been placed throughout the code
to provide information on the process. Further explanation of this Python code
operation is given following the script:

#!/usr/bin/env python

"""
Script to return Baxter's arms to a "home" position
"""

rospy - ROS Python API
import rospy

baxter_interface - Baxter Python API
import baxter_interface

initialize our ROS node, registering it with the Master

Chapter 6

[271]

rospy.init_node('Home_Arms')

create instances of baxter_interface's Limb class
limb_right = baxter_interface.Limb('right')
limb_left = baxter_interface.Limb('left')

store the home position of the arms
home_right = {'right_s0': 0.08, 'right_s1': -1.00, 'right_w0': -0.67,
'right_w1': 1.03, 'right_w2': 0.50, 'right_e0': 1.18, 'right_e1':
1.94}
home_left = {'left_s0': -0.08, 'left_s1': -1.00, 'left_w0': 0.67,
'left_w1': 1.03, 'left_w2': -0.50, 'left_e0': -1.18, 'left_e1': 1.94}

move both arms to home position
limb_right.move_to_joint_positions(home_right)
limb_left.move_to_joint_positions(home_left)

quit()

This code can be placed in a file named home_arms.py. Then, it can be made
executable using the Ubuntu chmod + x command. Execute this Python script with
this terminal command:

$ python home_arms.py

In this script, the rospy ROS-Python interface package is used to create ROS
components from Python code. The rospy client API provides software routines for
initializing the ROS node, Home_Arms, to invoke the process. The baxter_interface
package provides the API for interacting with Baxter. In the script, we instantiate
instances of the Limb class for both the right and left arms. A Python dictionary is
used to assign joint angles to specific joints for both the right and left arms. These
joint angle dictionaries are passed to the move_to_joint_positions method
to command the respective arm to the provided position. The move_to_joint_
positions method is also a part of the baxter_interface package.

Wobbling Robot Arms Using Joint Control

[272]

Recording and replaying arm movements
Another capability provided by the baxter_examples programs is the ability to
record and play back arm positions. A recorder program captures the time and
joint positions in an external file. The armRoutine filename is used in the following
command lines, but you may substitute your own filename instead. After the
command for the recorder program is executed, the operator should move Baxter's
arms manually or using the keyboard, joystick, ROS commands, or a script. When
the operator wishes to end the recording, Ctrl + C or Ctrl + Z must be pressed to stop
the recording. The playback program can be executed with the external file passed
as a parameter. The playback program will run through the arm positions in the file
once and then exit. The following instructions show the commands and the order of
operation:

$ rosrun baxter_examples joint_recorder.py -f armRoutine

The output should be as follows:

Initializing node...

Getting robot state...

Enabling robot...

[INFO] [1501198989.301174, 2970.058000]: Robot Enabled

Recording. Press Ctrl-C to stop.

At this time, you should use your hands or the joystick, keyboard, Python script,
and/or commands to move Baxter's arms. Press Ctrl + C when you are finished
moving Baxter's arms. Next, execute the following command to play the file back:

$ rosrun baxter_examples joint_position_file_playback.py -f armRoutine

The output on the screen should be similar to the following:

Initializing node...

Getting robot state...

Enabling robot...

[INFO] [1501199319.366765, 3299.749000]: Robot Enabled

Playing back: armRoutine

Moving to start position...

 Record 10462 of 10462, loop 1 of 1

Exiting example...

Chapter 6

[273]

If the file armRoutine is brought up in an editor, you should see that it contains data
similar to the following:

time,left_s0,left_s1,left_e0,left_e1,left_w0,left_w1,left_w2,left_
gripper,right_s0,right_s1,right_e0,right_e1,right_w0,right_w1,right_
w2,right_gripper

0.221000,-0.0799704928309,-1.0000362209,-0.745950772448,-
0.0499208630966,-1.6948350728,1.03001017593,-0.500000660376,0.0,-
1.04466483018,-0.129655442605,1.5342459042,1.94952695585,-
0.909650985497,1.03000093981,0.825985250377,0.0

...

As shown, the first line contains the labels for the data on each of the subsequent
rows. As the first label indicates, the first field contains the timestamp. The
subsequent fields hold the joint positions for each of the left and right arm joints and
grippers.

Baxter's arms and forward kinematics
Considering Baxter's arms up to the wrist cuff, each arm has seven values that define
the rotation angle of each joint. Since the link lengths and joint angles are known, it is
possible to calculate the position and orientation of the gripper attached to the wrist.
This approach to calculating the pose of the gripper, given the configuration of the
arm is called forward kinematic analysis.

Fortunately, ROS has programs that allow the calculation and publishing of the joint
angles, given a particular position and orientation of the gripper. The particular topic
for Baxter is /robot/joint_states.

Joints and joint state publisher
Baxter has seven joints in each of its two arms and two more joints in its head.
The /robot/joint_states topic publishes the current joint states of the head pan
(side-to-side) joint and the 14 arm joints. These joint states show position, velocity,
and effort values for each of these joints. Joint position values are in radians, velocity
values are in radians per second, and torque values are in Newton meters. The robot
state publisher internally has a kinematic model of the robot. So, given the joint
positions of the robot, the robot state publisher can compute and broadcast the 3D
pose of each link in the robot.

Wobbling Robot Arms Using Joint Control

[274]

For the examples in this section, it is assumed that Baxter Simulator is running,
baxter_world is launched from baxter_gazebo, and the simulated robot is enabled:

$ cd baxter_ws

$./baxter.sh sim

$ roslaunch baxter_gazebo baxter_world.launch

In a second terminal, type the following commands:

$ cd baxter_ws

$./baxter.sh sim

$ rosrun baxter_tools enable_robot.py -e

Baxter's arms will be placed in the home position using the Python script presented
previously via the following command:

$ python home_arms.py

The joint states will be displayed with the screen output edited to show the arm
positions as angles of rotation in radians. To view one output of the joint states,
type this:

$ rostopic echo /robot/joint_states –n1

Here is our output on the screen:

header:

 seq: 42448

 stamp:

 secs: 850

 nsecs: 553000000

 frame_id: ''

name: ['head_pan', 'l_gripper_l_finger_joint', 'l_gripper_r_finger_
joint', 'left_e0', 'left_e1', 'left_s0', 'left_s1', 'left_w0', 'left_
w1', 'left_w2', 'r_gripper_l_finger_joint', 'r_gripper_r_finger_joint',
'right_e0', 'right_e1', 'right_s0', 'right_s1', 'right_w0', 'right_w1',
'right_w2']

position: [9.642012118504795e-06 (Head),

Chapter 6

[275]

Left: -9.409649977892339e-08, -0.02083311343765363, -1.171334885477055,
1.9312641121225074, -0.07941855421008803, -0.9965989736590268,
0.6650922280384437, 1.0314330310192892, -0.49634000104265397,

Right: 0.020833000098799456, 2.9266103072174966e-10, 1.1714460516466971,
1.9313701087550257, 0.07941788278369621, -0.9966421178258322,
-0.6651529936706897, 1.0314155121179436, 0.49638770883940264]

velocity: [8.463358573117045e-09, 2.2845555643152853e-05,
2.766005018018799e-05, 6.96516608889685e-08, -1.4347584964474649e-07,
5.379243329637427e-08, -3.07783563763457e-08, -5.9625446169838476e-06,
-2.765075210928186e-06, 4.37915209815064e-06, -1.9330586583769175e-08,
-3.396963606705046e-08, -4.1024914575147146e-07, -6.470964538079114e-07,
1.2464164369422782e-07, -3.489373517131325e-08, 1.3838850846575283e-06,
1.1659521943505596e-06, -3.293066091641411e-06]

effort: [0.0, 0.0, 0.0, -0.12553439407980704, -0.16093410986695034,
1.538268268319598e-06, -0.1584186302672208, 0.0026223415490989055,
-0.007023475006633362, -0.0002595722218323715, 0.0, 0.0,
0.12551329635801522, -0.16096013901023554, -1.4389475655463002e-05,
-0.1583874287014453, -0.0026439994199378702, -0.0070054474078151685,
0.00024931690616014635]

Compare the radian values from home_arms.py and the result of rostopic echo of
joint states, but watch the order of listing of the joints:

store the home position of the arms
home_right = {'right_s0': 0.08, 'right_s1': -1.00, 'right_w0': -0.67,
'right_w1': 1.03, 'right_w2': 0.50, 'right_e0': 1.18, 'right_e1':
1.94}
home_left = {'left_s0': -0.08, 'left_s1': -1.00, 'left_w0': 0.67,
'left_w1': 1.03, 'left_w2': -0.50, 'left_e0': -1.18, 'left_e1': 1.94}

The velocity and effort (torque) terms are essentially zero, since Baxter's arms are
not moving. Rounding off the arm joint position values to two places shows that the
angular positions of the arm joints are equivalent to the values in the Python script.

We find the type of messages for joint states from sensor_msgs using this command:

$ rostopic type /robot/joint_states

The output is as follows:

sensor_msgs/JointState

Wobbling Robot Arms Using Joint Control

[276]

To show the home_arms pose for Baxter in Gazebo, follow these steps:

1.	 Go to World | Models, click on baxter, and then select left_s0.
2.	 Pull the Property window into view by clicking and dragging the three small

ticks above this panel.
The figure should look like this:

Baxter home position

3.	 Choose pose and look at the value of angle_0: -0.07886530088. Rounded
off, this is left_s0: -0.08 selected in home_arms.py. You can view other
information by selecting another joint or link of Baxter from the World panel.

Chapter 6

[277]

Another command shows the position and orientation of the end of the left arm:

$ rostopic echo /robot/limb/left/endpoint_state/pose -n1

The output should be similar to the following:

header:

 seq: 62403

 stamp:

 secs: 1249

 nsecs: 653000000

 frame_id: ''

pose:

 position:

 x: 0.582326339279

 y: 0.191017651504

 z: 0.111128161508

 orientation:

 x: 0.131168552915

 y: 0.991040351028

 z: 0.0117205349262

 w: 0.0222814367168

Wobbling Robot Arms Using Joint Control

[278]

Yet another way to see the values is to start rqt and select Topics as Plugins and
Topic Monitor. Select the /robot/limb/left/endpoint_state and /robot/limb/
right/endpoint_state topics. The result is shown in the following screenshot:

Topic Monitor in rqt for endpoint states

The left arm's endpoint x, y, and z position agrees with the output from the rostopic
echo command for the left endpoint_state topic. The right arm endpoint has the
same x and z positions, but a negative value for y. This indicates that it is to the right
of Baxter's vertical centerline.

Understanding tf
Tf is a transform system used to keep track of the relation between different
coordinate frames in ROS. The relationship between the coordinate frames is
maintained in a tree structure that can be viewed. In Baxter's example, the robot has
many coordinate frames that can be referenced to Baxter's base frame.

Tutorials about tf are given on the ROS wiki at http://wiki.ros.org/tf/
Tutorials.

http://wiki.ros.org/tf/Tutorials
http://wiki.ros.org/tf/Tutorials

Chapter 6

[279]

To demonstrate the use of tf, the following Baxter examples will be provided:

•	 Show tf in rviz after Baxter's arms are moved to a position in which the
angles of the joints are zero

•	 Show various coordinate frames for Baxter's elements, such as cameras or
grippers

A program to move Baxter's arms to a zero angle
position
With Baxter Simulator running (Gazebo), executing the Python script arms_to_
zero_angles.py will move Baxter's arms to a position in which all the joint angles
are zero.

The following code simply sets the joint angles to zero:

#!/usr/bin/env python # arms_to_zero_angles.py
#
"""
Script to return Baxter's arms to a " zero" position
"""

rospy - ROS Python API
import rospy

baxter_interface - Baxter Python API
import baxter_interface

initialize our ROS node, registering it with the Master
rospy.init_node('Zero_Arms')

create instances of baxter_interface's Limb class
limb_right = baxter_interface.Limb('right')
limb_left = baxter_interface.Limb('left')

store the zero position of the arms
zero_zero_right = {'right_s0': 0.0, 'right_s1': 0.00, 'right_w0':
0.00, 'right_w1': 0.00, 'right_w2': 0.00, 'right_e0': 0.00, 'right_
e1': 0.00}
zero_zero_left = {'left_s0': 0.0, 'left_s1': 0.00, 'left_w0': 0.00,
'left_w1': 0.00, 'left_w2': 0.00, 'left_e0': 0.00, 'left_e1': 0.00}

move both arms to zero position

Wobbling Robot Arms Using Joint Control

[280]

limb_right.move_to_joint_positions(zero_zero_right)
limb_left.move_to_joint_positions(zero_zero_left)

quit()

Make the Python script executable:

$ chmod +x arms_to_zero_angles.py

Then, run the script:

$ python arms_to_zero_angles.py

The position of the arms can be visualized in Gazebo and the values for position,
velocity, and effort can be displayed. In the following Gazebo window, Baxter has
arms outstretched at an angle from its torso:

Baxter's joints at zero degrees

Chapter 6

[281]

The results of the joint states showing only the name and position are as follows:

header:

 seq: 120710

 stamp:

 secs: 2415

 nsecs: 793000000

 frame_id: ''

name: ['head_pan', 'l_gripper_l_finger_joint', 'l_gripper_r_finger_
joint', 'left_e0', 'left_e1', 'left_s0', 'left_s1', 'left_w0', 'left_
w1', 'left_w2', 'r_gripper_l_finger_joint', 'r_gripper_r_finger_joint',
'right_e0', 'right_e1', 'right_s0', 'right_s1', 'right_w0', 'right_w1',
'right_w2']

position: [2.1480795875383762e-05,

0.02083300010459807, 7.094235804419552e-09,

 -0.0052020885142498585, 0.008648349108503872, -0.0003526224733487737,
-0.004363080957646481, 0.0029469234535000055, 0.004783709772852696,
-0.0022098995590349446,

-4.685055459408831e-10, -0.02083300002921974, 0.005137618938708677,
0.008541712202397633, 0.0003482148331919177, -0.004308001456631239,
-0.0029103069740452625, 0.004726431947482013, 0.002182588672263286]

Within numerical error tolerance, the values are zero for the arm joint angles.

Commanding the joint angles directly
You can send joint angles directly to Baxter using the JointCommand message from
the baxter_core_messages package.

The JointCommand message is defined as follows:

int32 mode

float64[] command

string[] names

int32 POSITION_MODE=1

int32 VELOCITY_MODE=2

int32 TORQUE_MODE=3

int32 RAW_POSITION_MODE=4

Wobbling Robot Arms Using Joint Control

[282]

The message defines the control mode, the command as an angle for the joints, and
the names of the joints being controlled. The details of this are discussed on the
following website:

http://sdk.rethinkrobotics.com/wiki/Arm_Control_Modes

As an example, move Baxter's arms into an arbitrary pose and then, to set the angles
of four of Baxter's joints to zero using position control, type this command:

$ rostopic pub /robot/limb/left/joint_command baxter_core_msgs/
JointCommand

"{mode: 1, command: [0.0, 0.0, 0.0, 0.0], names: ['left_w1', 'left_e1',
'left_s0', 'left_s1']}" -r 10

rviz tf frames
With Gazebo running and Baxter's arms in a zero-angle pose, start rviz:

$ rosrun rviz rviz

Now select the parameters for rviz:

1.	 Select the field next to Fixed Frame (under Global Options) and select base.
2.	 Select the Add button under the Displays panel, add Robot Model, and you

will see Baxter appear.
3.	 Select the Add button under the Displays panel, add TF, and see all the

frames that are too complicated to use.
4.	 Arrange the windows to see the left panel and the figure. Close the Views

window on the right panel.
°° Expand TF in the Displays panel by clicking on the triangle symbol

on the left
°° Under TF, expand Frames by clicking on the left triangle
°° Uncheck the checkbox next to All Enabled

5.	 Now, check left_gripper to display the axes.

http://sdk.rethinkrobotics.com/wiki/Arm_Control_Modes

Chapter 6

[283]

The rviz display looks similar to the following screenshot:

tf transform base and left gripper

You will see the left gripper axes in color on your screen: x is down (red), y is to the
right (green), and z is forward (blue) in the preceding screenshot.

Now you can choose various elements of Baxter to see the tf coordinate axes.

Viewing a tf tree of robot elements
The view_frames program can generate a PDF file with a graphical representation
of the complete tf tree. To try the program, Baxter Simulator or the real Baxter
should be communicating with the terminal window. To run view_frames, use the
following command:

$ rosrun tf view_frames

In the current working folder, you should now have a file called frames.pdf. Open
the file with the following command:

$ evince frames.pdf

Wobbling Robot Arms Using Joint Control

[284]

More information about the tf frames can be found at http://wiki.ros.org/tf/
Tutorials/Introduction%20to%20tf.

Introducing MoveIt!
One of the challenging aspects of robotics is defining a path for the motion of a
robot's arms to grasp an object, especially when obstacles may obstruct the most
obvious path of motion. Fortunately, a ROS package called MoveIt! allows us to plan
and execute a complicated trajectory.

A video created by Rethink Robotics shows how to use MoveIt! to plan the motion
of Baxter's arms and then have MoveIt! actually cause a real or simulated Baxter
to execute that motion. To see the video, go to: https://www.youtube.com/
watch?feature=player_detailpage&v=1Zdkwym42P4.

A tutorial is available on the Rethink wiki site at http://sdk.rethinkrobotics.
com/wiki/MoveIt_Tutorial.

First, start the Baxter simulator in Gazebo:

$ cd baxter_ws

$./baxter.sh sim

$ roslaunch baxter_gazebo baxter_world.launch

In a second terminal window, untuck Baxter's arms and start the Python script that
starts joint_trajectory_action_server:

$ cd baxter_ws

$./baxter.sh sim

$ rosrun baxter_tools tuck_arms.py -u

$ rosrun baxter_interface joint_trajectory_action_server.py

The output on the screen should be as follows:

Initializing node...

Initializing joint trajectory action server...

Running. Ctrl-c to quit

In a third terminal, start MoveIt! and wait for the response:

$ cd baxter_ws

$./baxter.sh sim

$ roslaunch baxter_moveit_config baxter_grippers.launch

http://wiki.ros.org/tf/Tutorials/Introduction%20to%20tf
http://wiki.ros.org/tf/Tutorials/Introduction%20to%20tf
https://www.youtube.com/watch?feature=player_detailpage&v=1Zdkwym42P4
https://www.youtube.com/watch?feature=player_detailpage&v=1Zdkwym42P4
http://sdk.rethinkrobotics.com/wiki/MoveIt_Tutorial
http://sdk.rethinkrobotics.com/wiki/MoveIt_Tutorial

Chapter 6

[285]

Look for the output:

. . .

You can start planning now!

Looking at the Gazebo window and the MoveIt! window, you'll see that Baxter looks
the same in terms of the positions of its arms:

MoveIt! startup

In the screenshot, which is the rviz screen, the Displays and Motion Planning
windows are shown on the left with the Context tab information showing. On the
right, you can see the simulated Baxter in the starting position of MoveIt! with its
arms untucked.

You can select any one of the Displays categories and modify the parameters. For
example, the screenshot shows Baxter with a lightened Background Color chosen
under Global Options.

Wobbling Robot Arms Using Joint Control

[286]

Under the MotionPlanning panel, the Context/Planning/Manipulation/Scene
Objects/Stored Scenes/Stored States/Status tabs are defined in the following table:

Tab Uses
Context Select the planning library and planner parameters; set collision

awareness for IK solver
Planning Set the start state, the goal state, and plan and execute moves of

Baxter's arms
Manipulation Object detection and manipulation
Scene Objects Import or export scenes such as pillars or tabletops from a disk file or

database, manipulate objects, and Publish Scene
Stored Scenes Stored scenes on a database
Stored States Store and load robot states
Status Status

Planning a move of Baxter's arms with
MoveIt!
Click on the Planning tab under MotionPlanning. On the Planning panel, look for
the Query field and the Select Start State heading. Click on Select Start State to
reveal a menu box and set it to <current>. Then, click on the Update button.

Now to move Baxter's arms, we will do the following:

1.	 Use arrows and rings to move Baxter's simulated arms to the desired
positions. The desired goal positions should appear in orange in the
simulation window.

2.	 Under the Commands area, choose the Plan button to see the trajectory of
Baxter's arms in MoveIt!.

3.	 Choose the Execute button to see Baxter's arms move to the goal positions.

Chapter 6

[287]

4.	 You should see red arms move from the start state to the final (goal) states:

Baxter's arms and goal state for its arms

Next, have the arms move back to the original start positions to perform another
move. To do this, under the Query field, click on Select Goal State to reveal the
menu box and set it to <same as start>. Then, click on the Update button:

Query field to return arms to start positions

Wobbling Robot Arms Using Joint Control

[288]

Adding objects to a scene
Select the Scene Objects tab from the MotionPlanning frame. If you have scenes in
your computer's directories, you can import them using the Scene Geometry field by
selecting Import From Text. Alternatively, use the following scene, which we created
in the PillarTable.scene file. Make sure that this file is saved as a text file.

(noname)+
* pillar
1
box
0.308 0.13056 0.6528
0.7 -0.01 0.03
0.0108439 0.706876 0.0103685 0.707178
0 0 0 0
* tabletop
1
box
0.7 1.3 0.02
0.7 0.04 -0.13
0 0 0 1
0.705882 0.705882 0.705882 1
.

The first line of dimensions under box in the file represents the height, width, and
length of the pillar in meters. The next line defines the position from Baxter's origin.
The third line is the pose of the pillar as a quaternion. The following screenshot
shows the results of importing the scene elements:

Chapter 6

[289]

Baxter with tabletop and pillar

To manipulate the objects by moving or rotating them, select the object name (not the
checkbox), and the arrows and rings should appear. Change their position with the
green and blue arrows and rotate them with the ring. Moving the Scale slider will
change the size of the object. Move the mouse to rotate the object, and roll the mouse
wheel, if you have one, to zoom the object's size. You can save the scene (Export As
Text) after you finish manipulating it.

Next, on the Scene Objects panel, click on the Publish Scene button under the Scene
Geometry field. This step is important and tells MoveIt! to plan around obstacles in the
environment!

Wobbling Robot Arms Using Joint Control

[290]

Position of objects
When pillar is selected under Current Scene Objects (select the word, not the
checkbox), values for its Position (XYZ) and Rotation (RPY) appear under Manage
Pose and Scale. The position of x, y, and z of the centroid of the pillar is shown with
respect to Baxter's origin. Baxter's x axis extends outward toward the viewer. The
positive y axis is to the right in the view and the z axis runs upward. Note that the
roll, pitch, and yaw are about the x, y, and z axes, respectively.

Planning a move to avoid obstacles with
MoveIt!
In the following example, the left arm is going to move to the other side of the
obstacle. MoveIt! will plan the trajectory so that Baxter's arm will not hit the pillar.

Return to the Planning tab on the MotionPlanning panel. First, move Baxter's right
arm away from the pillar. Plan and then Execute moving the right arm.

We can now drag our interactive markers for Baxter's left arm to move the goal
state to a location on the opposite side of the pillar. Each time you click on the Plan
button, a different arm trajectory path is shown on the virtual Baxter. Each path
avoids collision with the pillar.

Caution!
We move Baxter's other arm (the right arm, in this case) out of the way to
avoid any possible collisions. This is necessary if the MoveIt! trajectories
are used on the real Baxter. Move the right arm with the markers and
choose Plan and Execute.

Chapter 6

[291]

The following screenshot shows Baxter prior to moving the left arm around the
pillar. Notice that the right arm is moved out of the way:

Baxter's right arm moved aside

Caution!
When using MoveIt! with the real Baxter, the arms sometimes
move into odd positions. If this happens, move them apart and
restart MoveIt!.

Wobbling Robot Arms Using Joint Control

[292]

Now, click on Execute to see Baxter's arm avoid the obstacle and move to the goal
position on the other side of the pillar. The following screenshot shows that Baxter's
left arm has moved around the pillar to the other side of it:

Baxter's simulated arm moved to the other side of the obstacle

Configuring a real Baxter setup
In the Installing Baxter SDK software section, we loaded the workstation computer
SDK software used to control Baxter. This control can be either through the
baxter_example programs described previously, through Python scripts, or using
the command line. To control the real Baxter, the baxter.sh script is used to set up
the environmental variables for configuring the network for Baxter. Ensure that you
have completed the Configuring Baxter shell section before continuing.

The Baxter Research Robot can be configured to communicate with a development
workstation computer over various network configurations. An Ethernet network
or a wireless network can be established between Baxter and the workstation
computer for bi-directional communication. For full descriptions of the various
network configurations for Baxter and the workstation, refer to the Rethink wiki at
http://sdk.rethinkrobotics.com/wiki/Networking.

http://sdk.rethinkrobotics.com/wiki/Networking

Chapter 6

[293]

To communicate with Baxter, the baxter.sh script must be edited (again) to modify
the baxter_hostname variable. The default for baxter_hostname is the robot's serial
number, located on the back of the robot, next to the power button. An alternative
method is to assign a new robot hostname using the Field Service Menu (FSM),
accessed by plugging a USB keyboard into the back of Baxter. Refer to the Rethink
wiki for more details (http://sdk.rethinkrobotics.com/wiki/Field_Service_
Menu_(FSM)).

Using Baxter's serial number or assigned hostname within the baxter.sh script, find
and edit the following line:

baxter_hostname="baxter_hostname.local"

Next, verify that either the your_ip variable or the your_hostname variable is set to
specify the IP address or hostname of your workstation computer. The IP address
should be the one assigned for the network connection. (When using the $ ifconfig
command, this would be the IP address associated with the inet addr field.)
The hostname must be resolvable by Baxter to identify the workstation computer
hostname.

If there is any doubt, use the ping <IP address> or ping <hostname> command to
verify that the network communication is working.

Find and modify one of the following variables inside the baxter.sh script:

your_ip="192.168.XXX.XXX"
your_hostname="my_computer.local"

Do not use both of these variables; otherwise your_hostname will take precedence.
The unused variable should be commented out with a # symbol. Save your changes
to baxter.sh.

To verify the ROS environment setup for Baxter, it is wise to run the baxter.sh
script and verify the ROS variables. To do so, use the following commands:

$ cd ~/baxter_ws

$./baxter.sh

$ env | grep ROS

http://sdk.rethinkrobotics.com/wiki/Field_Service_Menu_(FSM)
http://sdk.rethinkrobotics.com/wiki/Field_Service_Menu_(FSM)

Wobbling Robot Arms Using Joint Control

[294]

Check whether these important fields are set with the correct information:

•	 ROS_MASTER_URI: This should now contain Baxter's hostname
•	 ROS_IP: This should contain the workstation computer's IP address

Or:
•	 ROS_HOSTNAME: If not using the IP address, this field should contain the

workstation computer's hostname

Again, a cheat sheet for use with the real Baxter is provided for you to use with the
example programs that follow. The commands for communicating, enabling, and
untucking are provided here for your reference:

Real Baxter cheat sheet
To communicate with the real Baxter, use the following commands:
$ cd ~/baxter_ws

$./baxter.sh

For subsequent terminal windows, use the following commands:
$ cd ~/baxter_ws

$./baxter.sh

Be sure that Baxter is enabled and untucked for the examples using
the real Baxter:
$ rosrun baxter_tools enable_robot.py –e

$ rosrun baxter_tools tuck_arms.py -u

If there are issues with Baxter's hardware, software, or network, refer to the general
Baxter troubleshooting website at http://sdk.rethinkrobotics.com/wiki/
Troubleshooting.

If there are problems with the workstation computer setup, refer to the Rethink wiki
site at http://sdk.rethinkrobotics.com/wiki/Workstation_Setup.

Controlling a real Baxter
The baxter_examples programs described in the subsections within the Launching
Baxter Simulator in Gazebo section also work on a real Baxter robot. Some additional
arm control programs that work on a real Baxter but not on Baxter Simulator are
described in the following sections.

http://sdk.rethinkrobotics.com/wiki/Troubleshooting
http://sdk.rethinkrobotics.com/wiki/Troubleshooting
http://sdk.rethinkrobotics.com/wiki/Workstation_Setup

Chapter 6

[295]

Commanding joint position waypoints
This program is another example of joint position control for Baxter's arms. Baxter's
arm is moved using the Zero-G mode to freely configure the arm's joints to the
desired position. When the desired position is attained, the corresponding navigator
button on the arm is pressed to record the waypoint position. This baxter_examples
program is executed with the following command, specifying either right or left for
the arm that is to be moved:

$ rosrun baxter_examples joint_position_waypoints.py -l <right or left>

The output should be as follows:

...

Press Navigator 'OK/Wheel' button to record a new joint position
waypoint.

Press Navigator 'Rethink' button when finished recording waypoints to
begin playback.

...

On the navigator, the center button (scroll wheel) is the control used to record all
seven joint angles of the specified arm's current position. Waypoints can be recorded
repeatedly until the lower button (the button with the Rethink icon) is pressed.
This Rethink button activates playback mode, when the arm will begin going back
to the waypoint positions in the order that they were recorded. This playback
mode will continue to loop through the waypoints until the Ctrl + C or Ctrl + Z key
combination is pressed. Parameters for speed and accuracy can be passed with the
joint_position_waypoints.py command. Refer to Rethink's wiki site at http://
sdk.rethinkrobotics.com/wiki/Joint_Position_Waypoints_Example.

Commanding joint torque springs
This baxter_examples program provides an example of Baxter's joint torque
control. This program moves the arms into a neutral position, then applies joint
torques at 1000 Hz to create an illusion of virtual springs. The program calculates
and applies linear torques to any offset from the arm's starting position. When
the arm is moved, these joint torques will return the arm to the starting position.
Depending on the stiffness and damping applied to the joints, oscillation of the joints
will occur.

This joint torque springs program is executed with the following command,
specifying right or left for the arm that is to be manipulated:

$ rosrun baxter_examples joint_torque_springs.py -l <right or left>

http://sdk.rethinkrobotics.com/wiki/Joint_Position_Waypoints_Example
http://sdk.rethinkrobotics.com/wiki/Joint_Position_Waypoints_Example

Wobbling Robot Arms Using Joint Control

[296]

The joint torques are configurable using the rqt reconfigure tool. To adjust the torque
settings, type the following command in a new terminal:

$ rosrun rqt_reconfigure rqt_reconfigure

The following screenshot shows the rqt_reconfigure screen for joint_torque_
springs.py for the left arm:

rqt reconfigure joint torque springs

Select rsdk_joint_torque_springs from the left panel to view the control menu.
The spring stiffness and damping coefficient can be varied for each joint of the arm
specified.

Be careful when changing these values!
If you experiment with Baxter's control system, you should record the
initial values and reset the values to the originals after changing them.

Chapter 6

[297]

Demonstrating joint velocity
Rethink provides a simple baxter_examples program to demonstrate the joint
velocity control mode for Baxter's arms. This program begins by moving the arms
into a neutral position. The joint velocity puppet program simply mirrors the
movement of Baxter's arm when the other arm is moved in Zero-G mode. This
baxter_examples program is executed with the following command, specifying
either right or left for the arm that is to be moved:

$ rosrun baxter_examples joint_velocity_puppet.py -l <right or left>

A parameter for amplitude can be passed with this command to change the velocity
applied to the puppet response. For more information on this command, refer to
Rethink's wiki site at http://sdk.rethinkrobotics.com/wiki/Puppet_Example.

Additional examples
The baxter_examples programs also include programs for gripper control, camera
control, and analog and digital input/output control. Refer to the Rethink wiki
Baxter examples program site to get details on these programs: http://sdk.
rethinkrobotics.com/wiki/Examples.

In addition, Rethink offers a series of video tutorials that provide information on
everything from setting up Baxter to running the example programs. Referring
to these videos may provide some help if you have problems with executing the
example programs (http://sdk.rethinkrobotics.com/wiki/Video_Tutorials).

Visual servoing and grasping
One of the greatest features of a real Baxter is the capability to detect and grasp an
object. This capability is called visual servoing control. Baxter's cuff camera and
gripper combination makes this a determined objective.

Baxter's cuff camera provides 2D camera images that can be processed by computer
vision software such as OpenCV. OpenCV provides a vast library of functions for
processing real-time image data. Computer vision algorithms for thresholding, shape
recognition, feature detection, edge detection, and many more are useful for 2D (and
3D) perception.

An example of visual servoing from the Rethink website is available at http://sdk.
rethinkrobotics.com/wiki/Worked_Example_Visual_Servoing.

http://sdk.rethinkrobotics.com/wiki/Puppet_Example
http://sdk.rethinkrobotics.com/wiki/Examples
http://sdk.rethinkrobotics.com/wiki/Examples
http://sdk.rethinkrobotics.com/wiki/Video_Tutorials
http://sdk.rethinkrobotics.com/wiki/Worked_Example_Visual_Servoing
http://sdk.rethinkrobotics.com/wiki/Worked_Example_Visual_Servoing

Wobbling Robot Arms Using Joint Control

[298]

This is a basic implementation linking object detection with the autonomous
movement of the arm to grasp the object. This project is a good example of the
technique described previously. Unfortunately, this example works with ROS Hydro
and uses OpenCV functions that have been deprecated.

Only using Baxter's 2D cameras limits the accuracy of grasping objects, making the
depth of objects in the entire scene hard to determine. Typically, programs such as
the one previously mentioned require a setup phase, in which an infrared sensor
measurement to the table surface is required. An alternative is to use an external
3D camera such as the Kinect, ASUS, PrimeSense, or RealSense to detect the depth
of objects and match that information with the RGB camera data. This requires
calibrating the two image data streams. The Open Source Robotics Foundation
has demo software for both 2D perception and manipulation and 3D perception at
https://github.com/osrf/baxter_demos.

The calculation of inverse kinematics to move the gripper to the desired location is
also crucial to this process.

Inverse kinematics
Using forward kinematics, we can determine the position of the gripper at any time.
The inverse kinematic problem is to place the gripper at a desired location and
orientation. This requires the calculation of the joint angles, then sending Baxter the
seven joint angles and commanding the arm to move.

Rethink Robotics provides an Inverse Kinematic (IK) example that sets a specific
endpoint position and orientation in the script and solves the required joint angles.
The example and the Python script are described on these websites:

•	 http://sdk.rethinkrobotics.com/wiki/IK_Service_Example

•	 http://sdk.rethinkrobotics.com/wiki/IK_Service_-_Code_
Walkthrough

To run the IK example to find the joint angles of the left limb (arm) for the fixed
position and orientation in the Python script, type this command:

$ rosrun baxter_examples ik_service_client.py -l left

https://github.com/osrf/baxter_demos
http://sdk.rethinkrobotics.com/wiki/IK_Service_Example
http://sdk.rethinkrobotics.com/wiki/IK_Service_-_Code_Walkthrough
http://sdk.rethinkrobotics.com/wiki/IK_Service_-_Code_Walkthrough

Chapter 6

[299]

The pose of the left end-effector taken from the ik_service_client.py script is as
follows:

 'left': PoseStamped(
 header=hdr,
 pose=Pose(
 position=Point(
 x=0.657579481614,
 y=0.851981417433,
 z=0.0388352386502,
),
 orientation=Quaternion(
 x=-0.366894936773,
 y=0.885980397775,
 z=0.108155782462,
 w=0.262162481772,
),
),
),

Executing this yields the joint angles to move Baxter's left arm to the pose defined
in the script. These angles would be used to move Baxter's arm to this pose from an
arbitrary position, as shown by the example in the next section.

The script also sets an initial pose for the right arm. The endpoint position and
orientation of the right arm can be found using the same command but with the
right option. See the code to find the specific pose assigned for this.

Moving Baxter's arms with IK
To demonstrate the IK service example using the real Baxter's left arm, we will
perform the following steps:

1.	 Power up Baxter and untuck both arms. This is the home position for
the arms.

2.	 Record the endpoint state in the position and orientation of the left arm.
3.	 Move Baxter's left arm to an arbitrary position.
4.	 Modify the ik_service_client.py script in the baxter_examples package

by entering the position and orientation of the untucked left arm and save
the file under a different name in catkin_workspace.

Wobbling Robot Arms Using Joint Control

[300]

5.	 Execute the script to get the joint angles of the left arm.
6.	 Type the angles into a modified home_arms.py script and execute it.
7.	 Record the new endpoint positions and orientations and compare them to the

original values recorded in step 2.

First, execute the script to move Baxter's arms to the untucked position:

$ cd baxter_ws

$./baxter.sh

$ rosrun baxter_tools tuck_arms.py -u

Then, display the left-arm endpoint pose position and orientation and record the
values to two decimal places with the following command:

$ rostopic echo /robot/limb/left/endpoint_state/pose -n1 -w4

Our output for the pose of the left arm is as follows:

position:

 x: 0.57

 y: 0.18

 z: 0.10

orientation:

 x: 0.13

 y: 0.99

 z: 0.00

 w: 0.02

The endpoint of Baxter should be out about 0.57 meters in x, 0.18 meters to the left of
Baxter's vertical centerline in y, and about 0.10 meters up from the base in z. Next, by
hand, move Baxter's arms arbitrarily so that you can test the IK server routine.

To modify the script ik_service_client.py, first use the following command:

$ roscd baxter_examples/scripts

Chapter 6

[301]

Find the Python script to modify in this directory. To use the IK service with the
endpoints of the untucked position and get angles for the left limb, put the x, y, z
values and the orientation into the script ik_service_client.py file by editing the
script with the values shown here, or use the values you obtained:

poses = {
 'left': PoseStamped(
 header=hdr,
 pose=Pose(
 position=Point(
 x=0.57,
 y=0.18,
 z=0.10,
),
 orientation=Quaternion(
 x=0.13,
 y=0.99,
 z=0.00,
 w=0.02,
),
),
),

After editing ik_service_client.py, you should rename the file. Our new file
was named ik_home_arms_ch6RealBaxter.py. To make it executable, type the
following command:

$ chmod +x ik_home_arms_ch6RealBaxter.py

To run this script to find the joint angles of the left arm that would move Baxter's
arm to the specific endpoint position, type this:

$ python ik_home_arms_ch6RealBaxter.py -l left

The output should be similar to the following:

SUCCESS - Valid Joint Solution Found from Seed Type: Current Joint Angles

IK Joint Solution:

{'left_w0': -1.8582664616409326, 'left_w1': -1.460468102595922,
'left_w2': 2.2756459061545797, 'left_e0': -1.6081637990992477, 'left_
e1': 1.9645288022495901, 'left_s0': 0.044896665837355125, 'left_s1':
-0.3326492980686455}

Wobbling Robot Arms Using Joint Control

[302]

Your results will probably be different, but the end position of
Baxter's arms should be the same as in this Python example,
which moves the arms to the home (untucked) position.

Use the resulting angles to move Baxter's arms using the edited Python script, home_
arms.py. Change the values of the left arm joints and save the file with a new name.
We used the MoveLeftArmToHome.py filename. Make the file executable using this
command:

$ chmod +x MoveLeftArmToHome.py

Execute the new script and watch Baxter's left endpoint return to the desired
position, if all goes well:

$ python MoveLeftArmToHome.py

Finally, display the left arm endpoint pose position and orientation and record the
values to compare them to the original values for position and orientation:

$ rostopic echo /robot/limb/left/endpoint_state/pose -n1 -w4

After Baxter's arm moved, our values were fairly close to the originals:

position:

 x: 0.57

 y: 0.18

 z: 0.09

orientation:

 x: 0.12

 y: 0.99

 z: 0.00

 w: 0.02

Chapter 6

[303]

Using a state machine to perform YMCA
Finite-state machines are powerful mechanisms for controlling the behavior of a
system, especially robotic systems. ROS has implemented a state machine structure
and behaviors in a Python-based library called SMACH. The SMACH library is
independent of ROS and can be used with any Python project. SMACH provides
an architecture for implementing hierarchical tasks and mechanisms to define
transitions between these tasks. The advantages of using SMACH for a system
include the following:

•	 Rapid prototyping of a state machine for testing and use
•	 Defining complex behaviors using a clear, straightforward method for

design, maintenance, and debugging
•	 Introspection of the state machine, its transitions, and data flow using

SMACH tools

For a complete set of documentation and tutorials on SMACH, examine these
websites:

•	 http://wiki.ros.org/smach

•	 http://wiki.ros.org/smach/Tutorials

Some basic rules for implementing state machines on a robot are as follows:

•	 A robot can be in one—and only one—state at a time.
•	 A finite number of states must be identified.
•	 The state that a robot transitions to, will depend on the state that just

completed. These behaviors are encapsulated in the states to which they
correspond.

•	 Transitions between states are specified by the structure of the state machine.
•	 All possible outcomes of a state should be identified and corresponding

behaviors should address those outcomes.
•	 States that only have one transition condition cannot fail and only have one

outcome.

To underscore the usefulness of the SMACH package, we devised a simple and fun
example for Baxter, which has been implemented by Mikal Cristen, a recent UHCL
graduate. Because the UHCL Baxter is such a main attraction on our campus, this
project was to endow the robot with an entertainment skill, specifically, dancing to
YMCA.

http://wiki.ros.org/smach
http://wiki.ros.org/smach/Tutorials

Wobbling Robot Arms Using Joint Control

[304]

This state machine has five states corresponding to Baxter's arm poses for each letter:
Y, M, C, A, and a fifth state for a neutral pose. When one pose of the arms completes,
the state will successfully complete and the next state will begin. The code for this
state machine is implemented in the YMCAStateMach.py code that follows and will
be described in subsequent paragraphs.

The code for YMCAStateMach.py and MoveControl.py can
be found in the Chapter 6 folder of the Packt GitHub website
for this book or at the website https://github.com/
FairchildC/ROS-Robotics-By-Example-2nd-Edition

SMACH compels state machines to be implemented using Python procedures to
provide flexibility in their implementation. Notice in the following code, the ROS
convention for state machines is that the state names are identified in ALL_CAPS
and the transition names are in lowercase:

#!/usr/bin/env python

import rospy
from smach import State,StateMachine

from time import sleep
from MoveControl import Baxter_Arms

class Y(State):
 def __init__(self):
 State.__init__(self, outcomes=['success'])

 self.letter_y = {
 'letter': {
 'left': [0.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0],
 'right': [0.0, -1.0, 0.0, 0.0, 0.0, 0.0, 0.0]
 } }
 #DoF Key [s0,s1,e0,e1,w0,w1,w2]

 def execute(self, userdata):
 rospy.loginfo('Give me a Y!')
 barms.supervised_move(self.letter_y)
 sleep(2)
 return 'success'

class M(State):

https://github.com/FairchildC/ROS-Robotics-By-Example-2nd-Edition
https://github.com/FairchildC/ROS-Robotics-By-Example-2nd-Edition

Chapter 6

[305]

 def __init__(self):
 State.__init__(self, outcomes=['success'])

 self.letter_m = {
 'letter': {
 'left': [0.0, -1.50, 1.0, -0.052, 3.0, 2.094, 0.0],
 'right':[0.0, -1.50, -1.0, -0.052, -3.0, 2.094, 0.0]
 } }
 #DoF Key [s0,s1,e0,e1,w0,w1,w2]

 def execute(self, userdata):
 rospy.loginfo('Give me a M!')
 barms.supervised_move(self.letter_m)
 sleep(2)
 return 'success'

class C(State):
 def __init__(self):
 State.__init__(self, outcomes=['success'])

 self.letter_c = {
 'letter': {
 'left': [0.80, 0.0, 0.0, -0.052, 3.0, 1.50, 0.0],
 'right':[0.0, -1.50, -1.0, -0.052, -3.0, 1.0, 0.0]
 } }
 #DoF Key [s0,s1,e0,e1,w0,w1,w2]

 def execute(self, userdata):
 rospy.loginfo('Give me a C!')
 barms.supervised_move(self.letter_c)
 sleep(2)
 return 'success'

class A(State):
 def __init__(self):
 State.__init__(self, outcomes=['success'])

 self.letter_a = {
 'letter': {
 'left': [0.50, -1.0, -3.0, 1.0, 0.0, 0.0, 0.0],
 'right':[-0.50, -1.0, 3.0, 1.0, 0.0, 0.0, 0.0]
 } }

Wobbling Robot Arms Using Joint Control

[306]

 #DoF Key [s0,s1,e0,e1,w0,w1,w2]

 def execute(self, userdata):
 rospy.loginfo('Give me an A!')
 barms.supervised_move(self.letter_a)
 sleep(2)
 return 'success'

class Zero(State):
 def __init__(self):
 State.__init__(self, outcomes=['success'])

 self.zero = {
 'letter': {
 'left': [0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
 'right':[0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00]
 } }
 #DoF Key [s0,s1,e0,e1,w0,w1,w2]

 def execute(self, userdata):
 rospy.loginfo('Ta-da')
 barms.supervised_move(self.zero)
 sleep(2)
 return 'success'

if __name__ == '__main__':

 barms = Baxter_Arms()
 rospy.on_shutdown(barms.clean_shutdown)

 sm = StateMachine(outcomes=['success'])
 with sm:
 StateMachine.add('Y', Y(), transitions={'success':'M'})
 StateMachine.add('M', M(), transitions={'success':'C'})
 StateMachine.add('C', C(), transitions={'success':'A'})
 StateMachine.add('A', A(), transitions={'success':'ZERO'})
 StateMachine.add('ZERO', Zero(), transitions={'success':'s
uccess'})

 sm.execute()

Chapter 6

[307]

This Python script imports the following packages:

•	 rospy: This ROS package is used for information messages and to control
Baxter's arms in the event a system shutdown occurs.

•	 smach: This ROS package imports the State and StateMachine classes and
their methods.

•	 time: This Python package imports the sleep function.
•	 MoveControl: This package imports the Baxter_Arms class and the methods

for interacting with Baxter's arms. Look for this Python script in the
Chapter06 folder of the Packt GitHub website for this book.

Next, classes are defined for each of the states of the state machine: Y, M, C, A,
and Zero. Each of these classes creates a new, initialized instance of the SMACH
State class, identifying all of the possible outcomes for that state. For these states,
success is the only outcome. Next, each of Baxter's 14 arm joints are assigned a
value (in radians). These values are assigned in the specific order they are expected
(ultimately) by the baxter_interface package. This order, as indicated in the code
comment, is S0, S1, E0, E1, W0, W1, W2.

Each of the states also implements an execute method, where the actual work is
done. In each of these state execute methods, the supervised_move function for
moving Baxter's arms is called passing the argument with all of the joint angles for
Baxter's arms. After the function is called, the process sleeps for 2 seconds to allow
all of Baxter's arm movements to stop. When the state finishes, the success flag is
returned as an outcome to the calling function.

The main program of YMCAStateMach.py creates an instance of the Baxter_Arms
class and initializes the attributes for the instance. An instance of a StateMachine
class is also created and a list of possible outcomes is passed as an argument. The
empty StateMachine (sm) instance is opened and populated with the different
states we defined. Each state is added with the add function. For example, the first
StateMachine.add function adds the state Y, with an instance of the class Y() and,
on completion with a successful outcome, the StateMachine class will transition
to state M. Similarly, the state M is added with an instance of the class M() and, with
a successful outcome, will transition to state C. The states C and A are added in a
similar manner, as is the last state ZERO. Upon completion, the state ZERO will return
the successful outcome for StateMachine.

Be sure that the MoveControl.py and YMCAStateMach.py scripts are in your
directory and have execute permissions. Real Baxter or Baxter Simulator should be
running and enabled (preferably in an untucked pose). Then, run the state machine
with the following command:

$ python YMCAStateMach.py

Wobbling Robot Arms Using Joint Control

[308]

You should see Baxter's arms transition to a Y pose, then an M pose, then a C pose,
then an A pose, and end in a pose similar to the arms_to_zero_angles.py pose. The
INFO messages to the terminal window should be similar to the following:

[INFO] : State machine starting in initial state 'Y' with userdata:

[]

[INFO] [1502141862.054272]: Give me a Y!

[INFO] [1502141862.054742]: Movement in progress.

[INFO] : State machine transitioning 'Y':'success'-->'M'

[INFO] [1502141867.569880]: Give me a M!

[INFO] [1502141867.570851]: Movement in progress.

[INFO] [1502141872.782220]: Robot Disabled

[INFO] : State machine transitioning 'M':'success'-->'C'

[INFO] [1502141874.784842]: Give me a C!

[INFO] [1502141874.785353]: Movement in progress.

[INFO] [1502141876.906888]: Robot Disabled

[INFO] : State machine transitioning 'C':'success'-->'A'

[INFO] [1502141878.909487]: Give me an A!

[INFO] [1502141878.910383]: Movement in progress.

[INFO] : State machine transitioning 'A':'success'-->'ZERO'

[INFO] [1502141889.262132]: Ta-da

[INFO] [1502141889.262614]: Movement in progress.

[INFO] : State machine terminating 'ZERO':'success':'success'

Summary
In this chapter, we described a real and popular robot called Baxter, manufactured
by Rethink Robotics Corporation. Many of the details of the robot can be discovered
using Baxter Simulator, which displays a simulated Baxter using the Gazebo
program. Since Baxter has two movable arms, much of the chapter describes the
arms and control of them.

The chapter started with a description of Baxter in both the research and the
manufacturing versions. Baxter's arms and sensors and the control modes for the
arms were described.

Chapter 6

[309]

After downloading the Baxter Simulator software, the simulator was used to
demonstrate various examples of controlling Baxter with Python scripts supplied by
Rethink Robotics. Baxter can be controlled using ROS commands, a keyboard, or a
joystick. We have also included several Python scripts that will make the control of
Baxter easier if joint angles are specified for the movement of the arms.

The ROS frame transform package tf was used to show the relationship between the
coordinate frames of Baxter's base and other elements of the arms. The view in rviz
displays these frames.

MoveIt! is another package that works with a simulated Baxter, as well as with the
real robot. MoveIt! was explained and the method of planning and executing arm
trajectories even with obstacles in Baxter's path was discussed.

Finally, we were introduced to the real Baxter by explaining the setup procedure
for communication between a workstation and Baxter. Various examples showing
control of the real Baxter were also discussed. A state machine using the ROS
SMACH package was implemented to move Baxter's arms into different positions.

In the next chapter, a ROS view of quadrotors will be described using both simulated
and real air vehicles. The simulated air vehicle is a generalized representation of a
quadrotor and is great for learning to control the craft before you decide to try flying
a real one.

In addition to this action packed chapter for Baxter, Chapter 10, Controlling Baxter with
MATLAB© presents the Robotics System Toolbox. This MATLAB toolbox allows
ROS commands to be used with MATLAB scripts to control Baxter.

[311]

Making a Robot Fly
Today, flying vehicles are very popular. Even in their primary configuration,
controlled by a radio controller, some flying vehicles can be considered robots that
respond to their environment to stay in the air. Flying robots that have altitude
sensors can hover in place. If they have Global Positioning System (GPS) sensors,
they know where they are and can fly to a specific location. As more sensors are
added, their capabilities increase.

As you will see in this chapter, there are some commonalities between mobile
robots and flying robots in terms of their command and control. ROS utilizes these
commonalities in the structure of the nodes, topics, messages, and services of these
two categories of robots. The topic cmd_vel, which was used for Turtlesim and
TurtleBot earlier in this book, is again used for the simulated and real quadrotors
presented in this chapter. For sensors and devices that are common between mobile
robots and flying robots, ROS takes advantage of these commonalities through its
standard topic and message interfaces. Just as with other robots, ROS standard topics
and messages communicate information from the onboard sensors about the state of
the quadrotor and its environment.

This chapter begins by providing an overview of how a quadrotor works to stay in
the air. The basic steps of learning to fly a quadrotor are discussed so that you can
quickly gain expertise in flying. Three ROS quadrotors are introduced: one simulated
quadrotor, Hector, which exists only in Gazebo, and two real quadrotors, a tiny
Crazyflie and the Bebop. The Hector and Crazyflie quadrotors will be controlled
through a common Xbox 360 controller interface. The advanced capabilities for
SLAM and autonomous navigation will be explored. References are also given for
controlling multiple quadrotors using ROS.

Making a Robot Fly

[312]

We will cover the following topics in this chapter:

•	 How quadrotors fly
•	 The capability of the sensors that are used in quadrotors
•	 Techniques and rules for flying quadrotors
•	 Examples of quadrotors using ROS
•	 Flying the simulated Hector Quadrotor
•	 Flying real quadrotors: Crazyflie and Bebop

Introducing quadrotors
Quadrotors, sometimes called quadcopters, are part of a broad category of robots
called Unmanned Aerial Vehicles (UAVs) that have four motors and propellers to
provide lift for the craft. In this chapter, we will introduce some of these flying robots
that are controlled by ROS. The chapter will consider both simulations and flying the
real thing.

The following figure shows the Crazyflie quadrotor that will be discussed later in
this chapter:

Crazyflie quadrotor

In the image, notice the four propellers or rotors that act to lift the craft vertically for
takeoff and keep it in flight at a certain altitude when flying. First, such crafts are
classified as rotocrafts because lift is generated by the rotors shown in the figure,
rather than the wings of an airplane. Second, they are not helicopters, because the
main propeller and the tail rotor control the flight of a helicopter. The tail rotor
of a helicopter keeps the craft from rotating itself due to the rotation of the main
horizontal propeller.

Chapter 7

[313]

With a quadrotor, all flight maneuvers are made by varying the speed of one or
more propellers. The propellers are called fixed-pitch propellers, since their angle
with respect to the quadrotor body cannot be changed. There are more sophisticated
quadrotors available with propellers that have variable pitch, but they will not be
considered in this chapter. On helicopters, the main propeller is a variable-pitch
propeller to control the craft's direction of flight.

For a general discussion of quadrotors, visit https://en.wikipedia.org/wiki/
Quadcopter.

Why are quadrotors so popular?
Quadrotors are a popular option for hobbyists and researchers. They have a number
of attractive characteristics; primarily:

•	 Relatively low-cost compared to other aerial craft
•	 Not too difficult to fly due to electronic stabilization during flight
•	 Depending on the size and type, some quadrotors can be flown indoors as

well as outdoors
•	 With the addition of a camera, the quadrotor is excellent for outdoor aerial

photography

Defining roll, pitch, and yaw
As in any field of robotics, there is a vocabulary which is important for speaking
precisely about the operations and tasks involved. A flying craft is said to have six
DOF because the position of the craft can be located in space (x, y, and z coordinates)
and in orientation with respect to three axes. This position is usually defined in terms
of the position of a fixed point, usually on the ground, such as the point of takeoff.
The figure of the plane here shows how the orientation of the plane is defined in
terms of angles around the coordinate axes of the airplane itself. The same definition
would apply to the quadrotor:

Roll, pitch, and yaw for an airplane

https://en.wikipedia.org/wiki/Quadcopter
https://en.wikipedia.org/wiki/Quadcopter

Making a Robot Fly

[314]

Pitch is the movement of the nose, up or down in forward flight. Roll is rotation
around the longitudinal axis that runs along the length of the aircraft. Yaw is the
movement of the nose to the left or right, which is rotation about the vertical axis.
The amount of rotation is typically stated in degrees.

You can imagine two coordinate systems involved in flight.
The fixed system usually defined at a ground point and the
system belonging to the flying craft. The relationship between
these coordinate systems becomes important for flight
maneuvers and when making a flight plan.

The important difference between airplane flight control and quadrotor control is
that in an airplane, turns and other maneuvers are controlled by the movement of
flight surfaces, such as ailerons to control roll and a rudder to control yaw. Pitch
is controlled by the elevator. For fixed-pitch quadrotors, only the speed of the
propellers can be controlled. This control determines the direction and orientation of
the quadrotor, as well as the speed over the ground.

Turning an aircraft to change its heading is called banking, because this requires the
aircraft to roll to achieve an angle of bank. When the plane returns to level flight on
a new heading, the plane would have no pitch, roll, or yaw with respect to its own
coordinate system during straight and level flight. A quadrotor craft is different in
that it can turn on its own yaw axis without banking. It can even fly backwards!

How do quadrotors fly?
The quadrotor has two pairs of counter-rotating propellers. When hovering, the
propellers rotate at the same speed and provide lift to keep the craft in the air,
overcoming the pull of gravity. They are counter-rotating to negate the torque that
would cause the body of the quadrotor to rotate in the opposite direction if only one
propeller turned. Since the propellers cannot change pitch, the lift vector is always
in a direction perpendicular to the plane of the rotors. The gravity vector is always
perpendicular to the ground.

According to our previous discussion of the airplane flying, we expect to control the
pitch, roll, and yaw of the quadrotor to control banking and heading, as well as the
forward speed. A throttle control varies the speed of rotation of the propellers. For
example, in level flight, if the rotational speed of the propellers is increased, the craft
will rise. Thus, what is often called a throttle on the user's flight controller is really
an altitude control for a hovering quadrotor. In forward or backward motion, the
throttle does control speed over the ground.

Chapter 7

[315]

To move the quadrotor forward, the vehicle must tilt in the forward direction, which
causes the front of the craft to pitch down. This is done by increasing the rotational
speed of the rear pair of propellers. As shown in the figure, the lift vector now has
a component in the forward direction, so the craft moves forward. Thus, the lift
vector overcomes the downward force of gravity and the drag force caused by the
air resistance as the quadrotor moves through the air. A component of lift is in the
forward direction and causes the craft to fly forward. However, the lift component
opposing gravity is slightly reduced. The amount of lift increase to keep the craft
level is determined by the flight control software for the quadrotor:

Quadrotor flying forward

The next figure shows a top view of a quadrotor in flight with the forward propeller
1 rotating clockwise (CW) and propeller 4 rotating counterclockwise (CCW). To
achieve forward motion, increasing the speed of motor 2 (rotating CW) and motor 3
(rotating CCW) with respect to motors 1 and 4 will cause the craft to pitch down and
fly forward:

Quadrotor propellers

Making a Robot Fly

[316]

If you want to roll the quadrotor, the speed of the propellers on one or other of the
lateral sides has to be increased, such as motors 2 and 4. To yaw the craft, the speed
of the two motors across from each other diagonally is decreased, and the other two
motors are speeded up. This imparts angular torque to the aircraft, which makes it
turn. An example of this would be to increase the speed of motors 3 and 4.

If you own a quadrotor, notice the pitch (tilt) of the propeller blades on the propellers
that rotate CW and those that rotate CCW. The upward tilt of the blades causes lift
by the propeller rotating, with the upward edge cutting into the air.

Unfortunately, determining and setting the rotational speeds of the four propellers
for such control in flight is quite difficult. Fortunately, in practice, the calculations for
the speed of the propellers are carried out by a microcontroller and the appropriate
software when commands are given to maneuver the quadrotor. The results of the
calculations by the microcontroller are output to an electronic motor control unit,
which adjusts the speed of the individual propellers.

The algorithm that converts commands from the ground-based control device to the
motor controller is typically a PID controller. For those interested in the math, the
following website explains PID for quadrotors: http://blog.oscarliang.net/
quadcopter-pid-explained-tuning/.

In manual flight, the operator commands various maneuvers, such as takeoff,
forward flight, and landing using a flight-control unit with joystick-like controls.
Many quadrotors also allow control by smartphones, tablets such as iPads, and
similar devices. The software interfaces for many quadrotors are provided by the
manufacturer and are unique to that quadrotor. We have chosen quadrotors that can
be controlled by ROS to illustrate the use of ROS in flying them.

The basic control of the quadrotor from the ground is to command its altitude by
causing it to rise or descend and control its direction and attitude. The attitude of a
flying craft represents its pitch and roll or bank with respect to the Earth's horizon.
The electronic motor control unit of the craft makes the necessary changes or
corrections to the speed of the propellers to achieve the result commanded.

Components of a quadrotor
The main components for the flight of a quadrotor craft are the frame, or body,
the motors, and the propellers. The body holds onboard flight and motor control
circuitry, communications circuitry, and a battery. In flight, the quadrotor reports
its condition and other flight information to the ground-based control device using
telemetry.

http://blog.oscarliang.net/quadcopter-pid-explained-tuning/
http://blog.oscarliang.net/quadcopter-pid-explained-tuning/

Chapter 7

[317]

For the quadrotor, telemetry is the wireless transmission of various parameters, such
as the battery condition and the position and orientation of the craft. On the craft,
there is a set of measuring units called sensors that measure the parameters that are
encoded and transmitted to the ground-based control device.

Adding sensors
One important application of quadrotors is for aerial photography. Some models
have a camera built directly into the body. Other models have cameras attached
underneath the body. Usually, the camera is controlled from the ground to take
pictures or videos.

In addition, some quadrotors may have a GPS receiver on board. The position of the
craft over the Earth is available and some quadrotors can be guided to traverse a
selected course through a series of GPS waypoints.

For more information about the GPS system, visit http://www.gps.gov/systems/
gps/.

There are many models of quadrotors on the market. For a comparison, visit
http://quadcopterhq.com/best-quadcopters/.

Since manufacturers are producing new quadrotors in complete or kit form, you
should check websites that review the latest craft if you are in the market to buy one.

Quadrotor communications
There are a number of communication methods that allow quadrotors to be
controlled for autonomous or manually controlled flight. Here are a few examples:

•	 GPS provides position data for your quadrotor if it has a GPS receiver. Using
maps for GPS that can be downloaded, you can plot a course for the craft and
it will fly that course autonomously.

•	 Wi-Fi communication can allow manual control of the quadrotor using
smartphones and tablets. After downloading the manufacturer's software
from a website, a screen appears with an image of flight controls that mimic
joysticks that you can use to fly and control the quadrotor. Data from the
quadrotor can also be received on these devices. If the drone has a camera, the
camera view can be seen on these devices. Some quadrotors come with their
own controllers that usually include joystick-type controls to fly the craft.

•	 Bluetooth connection provides another method for transmitting information
to and from the quadrotor. The range of the signal is limited to 10 meters (32
feet) for mobile devices.

http://www.gps.gov/systems/gps/
http://www.gps.gov/systems/gps/
http://quadcopterhq.com/best-quadcopters/

Making a Robot Fly

[318]

•	 Some quadrotors may use Radio Frequency (RF) signals to communicate
with the craft. Radio-controlled crafts, such as model airplanes, have been
available for many years. These signals allow for a much longer range of
communication.

Understanding quadrotor sensors
The onboard flight controller circuitry receives information from sensors that
provide data about the craft in flight. Some of the possible sensors that determine the
attitude, altitude, and direction of flight include:

•	 A gyroscope that determines the attitude of the craft, including its pitch and
roll. This indicates the rotational motion of the craft.

•	 An accelerometer that determines the rate of change of velocity of the craft
with respect to the three axes.

•	 An altimeter or barometer that determines the altitude of the craft above
ground. At low altitudes, a down-looking sonar sensor may be used to
determine altitudes up to several meters or more.

•	 A magnetometer that serves as a compass to indicate the craft's direction by
using the Earth's magnetic field as a reference.

The accelerometer and magnetometer need calibration to initialize their readings to
the conditions where the flights will take place. For each quadrotor, it is therefore
important to follow the manufacturer's instructions carefully to setup the craft
before flights.

Inertial measurement unit
The inertial measurement unit (IMU) is a combined gyroscope and accelerometer.
This unit will indicate the complete information about the flight characteristics of the
quadrotor. Typically, the unit will measure the acceleration and orientation of the
flying craft in all three dimensions.

These sensors allow indoor and outdoor flight. However, all the sensors previously
mentioned suffer from slight errors that may accumulate during flight, so caution is
necessary while flying in confined spaces.

Quadrotor condition sensors
Many quadrotors have sensors that will indicate information about their condition,
including the motor temperature and the percentage of battery charge. This
information is relayed by telemetry to the ground-based control device.

Chapter 7

[319]

ROS, with its message passing capability, is ideally suited for the communication of
sensor messages between the quadrotor and the ground-based control device. Various
types of ROS sensor messages are listed at http://wiki.ros.org/sensor_msgs.

Preparing to fly your quadrotor
Some quadrotors can be dangerous if flown carelessly. Depending on the size, weight,
and power of the quadrotor, collisions with property, people, or pets can cause
serious damage. At the very least, crashing your quadrotor could damage the craft
and end your flying career until you purchase a new one or repair the damaged one.

Although this book is not about flying quadrotors, we believe that some discussion
of good flying practice is necessary. This discussion will be particularly helpful to
new pilots.

Since this chapter is not about flying the quadrotor, but how ROS is used to control
the craft, we will refer you to various websites on the Internet. Searching for How to
fly a quadrotor or How to fly a quadcopter will yield over one million hits. Therefore, it
is better to refine the search and specify the type of quadrotor you wish to fly.

Many websites present articles on flying quadrotors. For example, various tutorials
are available on the following websites:

•	 http://uavcoach.com/

•	 http://uavcoach.com/how-to-fly-a-quadcopter-guide/

There are also many YouTube videos showing quadrotor or quadcopter flying
techniques.

Some of the things that should be considered before and during flight are as follows:

•	 Testing your quadrotor
•	 Preflight checklist
•	 Safety and dangers
•	 Rules and regulations

Testing your quadrotor
When your new quadrotor first arrives, it is natural to want to begin flying
immediately. Our suggestion is to be patient and take time to familiarize yourself
with the quadrotor and its flight controller. We found that removing the propellers to
test the quadrotor indoors was a good way to understand the craft and its controller
without any danger of crashing.

http://wiki.ros.org/sensor_msgs
http://uavcoach.com/
http://uavcoach.com/how-to-fly-a-quadcopter-guide/

Making a Robot Fly

[320]

Also, some practice on a simulator such as Hector (described later) will help you
understand the flight controls. Remember that the controls will be reversed for
direction and pitch control when the quadrotor is flying towards you, as compared
to when the craft is flying away from you. A little time using the simulator will
improve your flying ability.

Pre-flight checklist
Any good pilot follows a checklist before flight. Some of the basics are as follows:

•	 Check that the quadrotor is not damaged and that its battery is charged.
•	 Make sure that the flight controller is disarmed so the quadrotor cannot take

off until you are ready.
•	 Make sure the area for flight is clear of obstacles and people.
•	 When flying the quadrotor, always be aware of the surroundings and keep

the quadrotor in sight. Flying over people or their private property without
permission is usually illegal in most countries.

•	 When flying in a public area, inform the police or the appropriate authorities
that flights will take place. Be sure to keep the craft well away from
buildings, trees, and people.

•	 If flying using GPS, be sure the GPS satellite signals are locked on before
flying. It could take several minutes for the onboard GPS receiver to get the
signals from at least four satellites.

Precautions when flying your quadrotor
When you are learning, start your flights outdoors in light-wind or no-wind
conditions. A high wind can cause the quadrotor to fly out of control. Remember
that if the battery fails, the quadrotor will not glide but will fall straight down. Keep
aware of the battery percentage charge and bring the quadrotor to its landing point
when the battery charge is low, below 20 percent to be safe.

Use caution when flying quadrotors
Motors can fail and propellers can break due to a hard landing.
Communication between the ground-based control device and the
quadrotor can be interrupted or lost. If the motors or propellers
are damaged, controlled flight may be impossible. If the battery
drains in flight, the quadrotor will fall to the ground unless it has
a fail-safe mode that returns the craft home when the battery is
low or communication with the quadrotor is lost.

Chapter 7

[321]

Following the rules and regulations
Quadrotors are considered drones and these unmanned aircraft systems are
regulated. In the United States, the Federal Aviation Administration (FAA)
regulates flights and requires the registration of some craft, including quadrotors,
based on the weight of the craft. Around the world, the International Civil Aviation
Organization (ICAO) works with many countries to regulate flights.

The FAA has issued guidelines for flying craft in the general category of Model
Aircraft with the following guidelines quoted from the website: https://www.faa.
gov/uas/model_aircraft:

•	 Fly below 400 feet and remain clear of surrounding obstacles
•	 Keep the aircraft within a visual line of sight at all times
•	 Remain well clear of, and do not interfere with, manned aircraft operations
•	 Don't fly within 5 miles of an airport unless you contact the airport and

control tower before flying
•	 Don't fly near people or stadiums
•	 Don't fly an aircraft that weighs more than 55 lbs (24.9 kg)
•	 Don't be careless or reckless with your unmanned aircraft—you could be

fined for endangering people or other aircraft

The ICAO website is at http://www.icao.int/about-icao.

You can also read the book Building Multicopter Video Drones, Ty Audronis, Packt
Publishing (www.PacktPub.com). The book contains many useful suggestions and
safety tips for flying quadrotors.

Be aware that requirements might change and probably will, so keep up with the
latest flying regulations for your quadrotor.

Using ROS with UAVs
The ROS wiki currently contains the following list of ROS quadrotors and
quadcopters:

•	 AscTec Pelican and Hummingbird quadrotors
•	 Bitcraze Crazyflie
•	 Erle-Copter
•	 Navio2

https://www.faa.gov/uas/model_aircraft
https://www.faa.gov/uas/model_aircraft
http://www.icao.int/about-icao
www.PacktPub.com

Making a Robot Fly

[322]

View the list at http://wiki.ros.org/Robots in the future for additions to this list
and the website http://www.ros.org/news/robots/uavs/ to get the latest ROS
UAV news.

A number of universities have adopted using the AscTec Hummingbird as their ROS
UAV of choice. For this book, we present a simulator called Hector Quadrotor and
two real quadrotors that use ROS: Crazyflie and Bebop.

Introducing Hector Quadrotor
The hardest part of learning about flying robots is the constant crashing. From
learning flight control for the first time, to testing new hardware or flight algorithms,
the resulting failures can have a huge cost in terms of broken hardware components.
To avoid such costs, a simulated air vehicle designed and developed for ROS is ideal.

A simulated quadrotor UAV for the ROS Gazebo environment has been developed
by Team Hector of Technische Universität Darmstadt. This quadrotor, called Hector
Quadrotor, is enclosed in the hector_quadrotor metapackage. This metapackage
contains the URDF description for the quadrotor UAV, its flight controllers, and
launch files for running the quadrotor simulation in Gazebo.

Advanced use of the Hector Quadrotor simulation allows the user to record sensor
data such as Lidar, depth camera, and so on. The quadrotor simulation can also be
used to test flight algorithms and control approaches in simulation.

The hector_quadrotor metapackage contains the following key packages:

•	 hector_quadrotor_description: This package provides a URDF model
of the Hector Quadrotor UAV and the quadrotor configured with various
sensors. Several URDF quadrotor models exist in this package, each
configured with specific sensors and controllers.

•	 hector_quadrotor_gazebo: This package contains launch files for executing
Gazebo and spawning one or more Hector Quadrotors.

•	 hector_quadrotor_gazebo_plugins: This package contains four UAV
specific plugins:

°° The simple controller gazebo_quadrotor_simple_controller
subscribes to a cmd_vel topic and calculates the required forces
and torques

°° A sensor plugin gazebo_ros_baro simulates a barometric altimeter
°° The plugins gazebo_quadrotor_propulsion and gazebo_quadrotor_

aerodynamics simulate the propulsion, aerodynamics, and drag from
messages containing motor voltages and wind vector input

http://wiki.ros.org/Robots
http://www.ros.org/news/robots/uavs/

Chapter 7

[323]

•	 hector_quadrotor_controllers: This package provides a library and a
node for controlling a quadrotor using ros_control.

•	 hector_quadrotor_controller_gazebo: This package implements the
ros_controlRobotHWSim interface for the quadrotor controller.

•	 hector_quadrotor_model: This package provides libraries used to model
several aspects of quadrotor dynamics.

•	 hector_quadrotor_teleop: This package provides a node and launch files
for controlling a quadrotor using a joystick or gamepad.

•	 hector_quadrotor_demo: This package provides sample launch files that
run the Gazebo quadrotor simulation and hector_slam for indoor and
outdoor scenarios.

The entire list of packages for the hector_quadrotor metapackage is given in the
next section.

Loading Hector Quadrotor
The repository for the hector_quadrotor software can be found at: https://
github.com/tu-darmstadt-ros-pkg/hector_quadrotor.

At the time this chapter is being revised, the hector_quadrotor software is in a
development release for ROS Kinetic. The instructions for installing this release
are provided here, but you should check the GitHub repository identified in the
preceding paragraph to determine whether a Debian package has been created. If
it has, you can use the apt-get command to install it on your system. Otherwise,
install the Kinetic development release of hector_quadrotor in your catkin
workspace using the following commands:

$ cd ~/catkin_ws/src

$ wstool init hector https://raw.github.com/tu-darmstadt-ros-pkg/hector_
quadrotor/kinetic-devel/tutorials.rosinstall

$ wstool update

Prior to performing a catkin_make on your workspace, you will need to install the
geographic_msgs package:

$ sudo apt-get install ros-kinetic-geographic-msgs

Then proceed with:

$ cd ~/catkin_ws

$ catkin_make

https://github.com/tu-darmstadt-ros-pkg/hector_quadrotor
https://github.com/tu-darmstadt-ros-pkg/hector_quadrotor

Making a Robot Fly

[324]

A large number of ROS packages are downloaded with the hector_quadrotor
metapackage, including the metapackages for hector_slam, hector_localization,
hector_gazebo, and hector_models. Within these metapackages, this installation
downloads the following packages:

•	 hector_components_description

•	 hector_compressed_map_transport

•	 hector_gazebo_plugins

•	 hector_gazebo_thermal_camera

•	 hector_gazebo_worlds

•	 hector_geotiff

•	 hector_geotiff_plugins

•	 hector_imu_attitude_to_tf

•	 hector_imu_tools

•	 hector_map_server

•	 hector_map_tools

•	 hector_mapping

•	 hector_marker_drawing

•	 hector_nav_msgs

•	 hector_pose_estimation

•	 hector_pose_estimation_core

•	 hector_quadrotor_actions

•	 hector_quadrotor_controller_gazebo

•	 hector_quadrotor_controllers

•	 hector_quadrotor_demo

•	 hector_quadrotor_description

•	 hector_quadrotor_gazebo

•	 hector_quadrotor_gazebo_plugins

•	 hector_quadrotor_interface

•	 hector_quadrotor_model

•	 hector_quadrotor_pose_estimation

•	 hector_quadrotor_teleop

•	 hector_sensors_description

•	 hector_sensors_gazebo

•	 hector_slam_launch

•	 hector_trajectory_server

•	 hector_uav_msgs

•	 hector_xacro_tools

•	 message_to_tf

Chapter 7

[325]

A number of these packages will be discussed as the Hector Quadrotor simulations
are described in the next section.

Launching Hector Quadrotor in Gazebo
Two demonstration tutorials are available to provide simulated applications of the
Hector Quadrotor for both outdoor and indoor environments. These simulations are
described in the next sections.

Before you begin the Hector Quadrotor simulations, check your ROS Master using
the following command in your terminal window:

$ echo $ROS_MASTER_URI

If this variable is set to localhost or the IP address of your computer, no action is
needed. If not, type the following command:

$ export ROS_MASTER_URI=http://localhost:11311

The preceding command should be typed into every new terminal window that is
opened, or it can also be added to your .bashrc file. In the .bashrc file, delete or
comment out (with a #) any other commands setting the ROS_MASTER_URI variable.

Flying Hector outdoors
The quadrotor outdoor flight demo software is included as part of the hector_
quadrotor metapackage. Start the simulation by typing the following command:

$ roslaunch hector_quadrotor_demo outdoor_flight_gazebo.launch

This launch file loads a rolling landscape environment into the Gazebo simulation
and spawns a model of the Hector Quadrotor configured with a Hokuyo UTM-30LX
sensor. An rviz node is also started and configured specifically for the quadrotor
outdoor flight. A large number of flight positions and control parameters are
initialized and loaded into the Parameter Server.

Note that the quadrotor propulsion model parameters for the quadrotor_
propulsion plugin and quadrotor drag model parameters for the quadrotor_
aerodynamics plugin are displayed. Then, look for the four Enabled messages:

Enabled wrench output

Enabled attitude output

Enabled yaw rate output

Enabled thrust output

Making a Robot Fly

[326]

The following screenshots show both the Gazebo and rviz display windows when
the Hector outdoor flight simulation is launched:

Hector Quadrotor outdoor Gazebo view

Hector Quadrotor outdoor rviz view

Chapter 7

[327]

The view from the onboard camera can be seen in the lower-left corner of the rviz
window. If you do not see the camera image on your rviz screen, be sure that
Camera has been added to your Displays panel on the left and the checkbox has
been checked. If you would like to pilot the quadrotor using the camera, it is best
to uncheck the checkboxes for tf and robot_model because the visualizations
sometimes block the view. The quadrotor appears on the ground in the simulation
and it is ready for takeoff. Its forward direction is marked by a red mark on its
leading motor mount. To fly the quadrotor, you should launch the joystick controller
software for the Xbox 360 controller. In a second terminal window, launch the joystick
controller software with a launch file from the hector_quadrotor_teleop package:

$ roslaunch hector_quadrotor_teleop xbox_controller.launch

This launch file launches the joy node to process all joystick input from the left stick
and right stick on the Xbox 360 controller, as shown in the following figure. The
message published by joy node contains the current state of the joystick axes and
buttons. The teleop node subscribes to these messages and publishes messages on
the topic /command/twist. These messages provide the velocity and direction for the
quadrotor flight.

Several other joystick controllers are currently supported by the ROS joy package,
including PS3 and Logitech devices. For this launch, the joystick device is accessed as
/dev/input/js0 and is initialized with a deadzone value of 0.050000. Parameters to
set the joystick buttons and axes are as follows:

* /teleop/go_button: 6

* /teleop/slow_button: 4

* /teleop/stop_button: 2

* /teleop/thrust_axis: -3

* /teleop/x_axis: 5

* /teleop/y_axis: 4

* /teleop/yaw_axis: 1

* /teleop/z_axis: 2

Making a Robot Fly

[328]

These parameters map to the left stick and the right stick controls and buttons on
the Xbox 360 controller shown in the following diagram. The directions of the sticks'
controls are as follows:

•	 Left stick:
°° Forward (Up) is ascend
°° Backward (Down) is descend
°° Right is rotate clockwise
°° Left is rotate counterclockwise

•	 Right stick:

°° Forward (Up) is fly forward
°° Backward (Down) is fly backward
°° Right is fly right
°° Left is fly left

Xbox 360 joystick controls for Hector

To begin your flight, press and release the Go Button indicated in the previous
figure. Now, use the joystick to fly around the simulated outdoor environment.
Pressing and holding the Slow Button will cause the quadrotor's speed to decrease
to 20 percent.

Chapter 7

[329]

Pressing the Stop Button will cause the simulated
quadrotor's motors to stop and the vehicle will drop
straight to the ground.

The pilot's view can be seen in the Camera image view at the bottom-left of the
rviz screen.

Within ROS, a clearer understanding of the interactions between the active nodes
and topics can be obtained using the rqt_graph tool. The following diagram depicts
all currently active nodes (except debug nodes) enclosed in oval shapes. These nodes
publish to the topics enclosed in rectangles that are pointed to by arrows:

ROS nodes and topics for Hector Quadrotor outdoor flight demo

The command rostopic list will provide a long list of the topics currently
being published. Other command-line tools such as rosnode, rosmsg, rosparam,
and rosservice will help gather specific information about Hector Quadrotor's
operation.

Making a Robot Fly

[330]

To understand the orientation of the quadrotor on the screen, use the Gazebo GUI
to show the vehicle's tf reference frame. Select quadrotor in the World panel on the
left, and then select the Translation mode on the top Environment toolbar (looks like
crossed double-headed arrows). This selection will bring up the red-green-blue axis for
the x-y-z of the tf frame. In the following figure, the x axis is pointing to the left, the y
axis is pointing to the right (toward the reader), and the z axis is pointing up:

Hector Quadrotor tf reference frame

A YouTube video of a hector_quadrotor outdoor scenario demo shows the
hector_quadrotor in Gazebo operated with a gamepad controller. You can find the
video at: https://www.youtube.com/watch?v=9CGIcc0jeuI.

Flying Hector indoors
The quadrotor indoor SLAM demo software is included as part of the hector_
quadrotor metapackage. To launch the simulation, type the following command:

$ roslaunch hector_quadrotor_demo indoor_slam_gazebo.launch

https://www.youtube.com/watch?v=9CGIcc0jeuI

Chapter 7

[331]

The following screenshots show both the rviz and Gazebo display windows when
the Hector indoor simulation is launched:

Hector Quadrotor indoor rviz and Gazebo views

If you do not see this image for Gazebo, roll your mouse wheel to zoom out of the
image. Then, you will need to rotate the scene to a top-down view in order to find
the quadrotor. Click on the icon on the top Environment toolbar to Change the View
Angle, then select the top icon View from the top.

The environment was the offices at Willow Garage and Hector starts out on
the floor of one of the interior rooms. Just as in the outdoor demo, the
xbox_controller.launch file from the hector_quadrotor_teleop package
should be executed:

$ roslaunch hector_quadrotor_teleop xbox_controller.launch

If the quadrotor becomes embedded in the wall, waiting a few seconds should
release it and it should (hopefully) end up in an upright position ready to fly again.
If you lose sight of it, zoom out from the Gazebo screen and look from a top-down
view. Remember that the Gazebo physics engine is applying minor environment
conditions as well. This can create some drifting out of its position.

Making a Robot Fly

[332]

The rqt graph of the active nodes and topics during the Hector indoor SLAM
demo is shown in the following figure. As Hector is flown around the office
environment, the hector_mapping node will be performing SLAM and creating a
map of the environment:

ROS nodes and topics for Hector Quadrotor indoor SLAM demo

The following screenshot shows Hector Quadrotor mapping an interior room of
Willow Garage:

Chapter 7

[333]

Hector mapping indoors using SLAM

The 3D robot trajectory is tracked by the hector_trajectory_server node and can
be shown in rviz. The map, along with the trajectory information, can be saved to a
GeoTIFF, file with the following command:

$ rostopic pub syscommand std_msgs/String "savegeotiff"

To find the map, use the roscd command:

$ roscd hector_geotiff/maps

In this directory, there will be two parts of the map, labeled hector_slam_map. One
file will be a .tfw format and the other a .tif format. The .tfw file is a text file that
stores the X and Y pixel size, rotational information and world coordinates for the
map that is stored in the .tif file. The .tif file contains the TIFF image of the map.

A YouTube video of hector_quadrotor stack indoor SLAM (https://www.youtube.
com/watch?v=IJbJbcZVY28) demo shows the hector_quadrotor in Gazebo
operated with a gamepad controller.

Now, we will take a look at real quadrotors. For this chapter, we evaluated the entire
spectrum of quadrotors that interface with ROS and were available at the time. At
the bottom of the price range, the Crazyflie was an easy pick, due to its small size
and the advantage of flying it indoors. The small motors cause the propellers to
spin at a high RPM, but the propellers are soft and compliant. Because the vehicle is
lightweight, damage to property, people, or the vehicle itself is usually minimal. In
addition, replacement parts are inexpensive.

https://www.youtube.com/watch?v=IJbJbcZVY28
https://www.youtube.com/watch?v=IJbJbcZVY28

Making a Robot Fly

[334]

Introducing Crazyflie 2.0
Crazyflie is a quadrotor that is classified as a micro air vehicle (MAV), as it only
weighs 27 grams and can fit in your hand. It was developed and is manufactured
by Bitcraze AB and comes as a kit—ready to assemble with no soldering required.
The designers of Crazyflie wanted to build a small flying electronic board that
had minimal mechanical parts. They provide it and support it as an open source
development platform, encouraging others to contribute to both Crazyflie hardware
and software development. For this book, the Crazyflie 2.0 model was used for testing
purposes, but the Crazyflie ROS software indicates that it is compatible with both
Crazyflie 1.0 and 2.0 models embedded with stock firmware. The Crazyflie2.0 model
is shown in the following figure and is the model referred to in the rest of this chapter:

Crazyflie 2.0

The size of the assembled Crazyflie is 92 mm (3.6 inches) square motor to motor and
29 mm (1.1 inches) high.

The Crazyflie 2.0 system design is based on dual microcontroller architecture, as
shown in the following diagram. The STM32F405 Microcontroller Unit (MCU)
controls the flight of the Crazyflie through power to the motor driver. The STM32
also reads data from the 10-DOF IMU, which includes a three-axis accelerometer,
three-axis gyroscope, three-axis magnetometer, and a high precision pressure sensor.
It can control telemetry to other components through the expansion port. The other
MCU is a Nordic Semiconductor nRF51822. The main tasks of this MCU are to
handle the radio communication and the power management for the Crazyflie. Both
Bluetooth Low Energy (BLE) and Compressed Real-Time Protocol (CRTP) are
supported by the nRF51. The CRTP mode is compatible with radio communication
provided by the Crazyradio. The nRF51 also handles logic from the on/off button
and power to the other components in the system:

Chapter 7

[335]

Crazyflie 2.0 system architecture

The Crazyflie is charged through an onboard μUSB port and requires a 40-minute
charge cycle for the stock battery. Flight time is up to 7 minutes.

The Crazyflie 2.0 is priced under $200 and is available at www.seeedstudio.com. Its
local distributors are listed on the website www.bitcraze.io/distributors.

Bitcraze provides excellent documentation to take you from unpacking your
Crazyflie to getting it in the air. Instructions for assembling Crazyflie and getting it
ready to fly can be found at https://www.bitcraze.io/getting-started-with-
the-crazyflie-2-0/.

For any problems that arise, refer to the support forum at
https://forum.bitcraze.io/.

www.seeedstudio.com
www.bitcraze.io/distributors
https://www.bitcraze.io/getting-started-with-the-crazyflie-2-0/
https://www.bitcraze.io/getting-started-with-the-crazyflie-2-0/
https://forum.bitcraze.io/

Making a Robot Fly

[336]

Controlling Crazyflie without ROS
Crazyflie can be controlled through a number of host devices over BLE or a
Crazyradio communication channel. A BLE link to Crazyflie limits the flying
range to 20 meters. The best communications link, Crazyradio PA, extends the
communication range to 1000 meters. Either communication method is supported by
the Crazyflie Python client (PC) software, available for computers running Linux,
Windows, or macOS. Bitcraze has also configured its own virtual machine (VM) that
imports into the Oracle VirtualBox to make it easy to start on Crazyflie development
projects. For more information on the Bitcraze VM, visit https://wiki.bitcraze.
io/projects:virtualmachine:index.

For the latest release of the Crazyflie PC, visit https://github.com/bitcraze/
crazyflie-clients-python/releases.

Instructions for installing the Crazyflie PC can be found at https://github.com/
bitcraze/crazyflie-clients-python.

The Crazyflie PC can be used to upgrade and flash the Crazyflie firmware over the
Crazyradio link. Refer to the following website for instructions: https://wiki.
bitcraze.io/projects:crazyflie2:upgrading:index.

Application software also exists for controlling the Crazyflie from an Android OS
(4.4 or newer) or iOS (7.1 or newer) device. Refer to the appropriate app store for the
Crazyflie software:

•	 For Android users: https://play.google.com/store/apps/
details?id=se.bitcraze.crazyfliecontrol2.

•	 For iOS users: https://itunes.apple.com/us/app/crazyflie-2.0/
id946151480?mt=8.

For Raspberry Pi enthusiasts, check out the client version of software for Raspbian at
https://wiki.bitcraze.io/projects:crazyflie:binaries:raspberrypi#down
load.

For user input control, Crazyflie can use any gamepad with a minimum of four
analog axes. The primary joystick controllers are the Xbox 360 USB controller, the
PS3 USB controller, and the PS4 USB controller. Other controllers can be configured
to work with the Crazyflie by modifying the Crazyflie client software.

https://wiki.bitcraze.io/projects:virtualmachine:index
https://wiki.bitcraze.io/projects:virtualmachine:index
https://github.com/bitcraze/crazyflie-clients-python/releases
https://github.com/bitcraze/crazyflie-clients-python/releases
https://github.com/bitcraze/crazyflie-clients-python
https://github.com/bitcraze/crazyflie-clients-python
https://wiki.bitcraze.io/projects:crazyflie2:upgrading:index
https://wiki.bitcraze.io/projects:crazyflie2:upgrading:index
https://play.google.com/store/apps/details?id=se.bitcraze.crazyfliecontrol2
https://play.google.com/store/apps/details?id=se.bitcraze.crazyfliecontrol2
https://itunes.apple.com/us/app/crazyflie-2.0/id946151480?mt=8
https://itunes.apple.com/us/app/crazyflie-2.0/id946151480?mt=8
https://wiki.bitcraze.io/projects:crazyflie:binaries:raspberrypi#download
https://wiki.bitcraze.io/projects:crazyflie:binaries:raspberrypi#download

Chapter 7

[337]

Communicating using Crazyradio PA
In order to use Crazyflie 2.0 with ROS, a Crazyradio or Crazyradio PA is necessary
to provide wireless radio communication with the Crazyflie. The Crazyradio resides
on a small circuit board mounted on a USB dongle to interface with a computer,
tablet, or smartphone. It has radio amplification to 20 dBm power output and a
Line-of-sight(LOS) range of greater than 1 kilometer. The design is based on the
nRF24LU1+ chip from Nordic Semiconductor, which operates on the 2.4 GHz band
of radio communications. It provides 125 radio channels and offers 2 Megabits per
second (Mbps), 1Mbps, and 250Kbps communication data rates. Firmware for the
Crazyradio is open source and is upgradeable through a bootloader that comes
embedded with the hardware.

The following figure shows the Crazyradio PA with its antenna extended. Additional
information on the Crazyradio PA can be found at https://www.bitcraze.io/
crazyradio-pa.

For the latest stable release of the Crazyradio firmware, go to https://github.com/
bitcraze/crazyradio-firmware/releases.

Crazyradio PA

The next sections will focus on using ROS to command and control the flight of the
Crazyflie quadrotor. A ROS metapackage for the Crazyflie has been developed by
Wolfgang Hoenig, with current information found at his GitHub site: https://
github.com/whoenig/crazyflie_ros. His work was partially done as part of his
research at the ACTLab at University of Southern California (USC). See the website
at: http://act.usc.edu/.

We thank Mr. Hoenig for his generous support in helping us prepare this section.

This software supports both the Crazyflie 1.0 and the Crazyflie 2.0 quadrotors
embedded with stock firmware.

https://www.bitcraze.io/crazyradio-pa
https://www.bitcraze.io/crazyradio-pa
https://github.com/bitcraze/crazyradio-firmware/releases
https://github.com/bitcraze/crazyradio-firmware/releases
https://github.com/whoenig/crazyflie_ros
https://github.com/whoenig/crazyflie_ros
http://act.usc.edu/

Making a Robot Fly

[338]

Loading Crazyflie ROS software
The Crazyflie ROS software for Crazyflie can be added to the catkin workspace
catkin_ws created in Chapter 1, Getting Started with ROS, and then used in Chapter
2, Creating Your First Two-Wheeled ROS Robot (in Simulation), for our package
ros_robotics. However, we provide instructions here to install the Crazyflie
metapackage into a catkin workspace of its own, identified as crazyflie_ws. This
workspace will provide you with the chance to examine the existing Crazyflie ROS
packages and be a development space for new software you might wish to create. If
you wish to use the catkin_ws workspace for your Crazyflie ROS software, skip to the
step where the command sudo apt-get update is issued. (Afterwards, remember to
replace the crazyflie_ws name in each of the command lines with catkin_ws.)

To create the Crazyflie workspace crazyflie_ws, type the following commands:

$ mkdir -p ~/crazyflie_ws/src

$ cd ~/crazyflie_ws/src

$ catkin_init_workspace

Build and install the Crazyflie workspace:

$ cd ~/crazyflie_ws

$ catkin_make

Next, source the setup.bash file within the Crazyflie workspace to overlay this
workspace on top of the ROS environment for the workstation:

$ source ~/crazyflie_ws/devel/setup.bash

Remember to add this source command to your .bashrc file:

$ echo "source ~/crazyflie_ws/devel/setup.bash" >> ~/.bashrc

Then:

$ source ~/.bashrc

Make sure the ROS_PACKAGE_PATH environment variable includes the path you just
sourced:

$ echo $ROS_PACKAGE_PATH

The path /home/<username>/crazyflie_ws/src should be displayed as one of the
paths on the screen.

Chapter 7

[339]

Now that the Crazyflie catkin workspace has been created, update the system
information on the newest versions of packages and their dependencies:

$ sudo apt-get update

Next, move to the Crazyflie workspace source directory and download the software
from GitHub:

$ cd ~/crazyflie_ws/src

$ git clone https://github.com/whoenig/crazyflie_ros.git

Move to the root of the Crazyflie workspace and build the packages:

$ cd ~/crazyflie_ws

$ catkin_make

These instructions install the latest version of the Crazyflie metapackage, which
has no dependencies on the Bitcraze Crazyflie SDK.

Important!
Check your .bashrc file to make sure that no ROS_MASTER_URI
variable is set. If one exists, comment it out with a #.

ROS packages from the Crazyflie metapackage are described here:

•	 crazyflie_controller: This package contains a PID controller used
during autonomous navigation operations such as hovering and waypoint
navigation. It is used with an external motion capture system such
as VICON.

•	 crazyflie_cpp: This package contains a C++ library for Crazyflie and
for Crazyradio.

•	 crazyflie_demo: This package contains a varied set of launch files and
Python scripts to provide the user with sample operations of Crazyflie.
Use these files as a starting point to create your own operational setup for
Crazyflie. Sample teleoperation modes for hovering, waypoint navigation,
and integration to rviz are included.

•	 crazyflie_description: This package provides URDF files and mesh
files to create simulation models of the Crazyflie. Both the Crazyflie 1.0 and
Crazyflie 2.0 models are supplied.

•	 crazyflie_tools: This package contains helpful tools for Crazyflie. The tool
scan is included, which scans for Crazyflie(s) and reports their URI(s).

Making a Robot Fly

[340]

•	 crazyflie_driver: This package contains two important launch files. The
crazyflie_server.launch file launches the crazyflie_server node. The
crazyflie_server node communicates with all Crazyflies that have been
dynamically added via crazyflie_add. The crazyflie_add.launch file
launches the crazyflie_add node to establish communication with a Crazyflie.
These operations are explained in more detail in subsequent sections.

Setting up udev rules for Crazyradio
On the computer workstation, Ubuntu uses udev to manage system devices and
dynamically create and remove device nodes in the /dev directory to handle external
devices. When the Crazyradio USB dongle is plugged in, udev is notified and special
system configuration rules, udev rules, link any user-defined device information.
These udev rules are stored in a file in the directory /etc/udev/rules.d.

The following instructions create rules that will set permission for a user to use the
Crazyradio without requiring root privileges.

The following steps require Superuser (root) or Administrator
privileges. If the sudo program is not available on your
computer, use the following two commands as root:
$ su –

$ apt-get install sudo

The following commands create the group plugdev, to which users can be added
who wish to communicate with Crazyflie via the Crazyradio dongle:

$ sudo group add plugdev

$ sudo usermod -a -G plugdev <username>

Next, the udev rules are created to provide vendor and product identification and
user privileges for the Crazyradio and the Crazyflie. Using the command sudo
<editor> to access your favorite editor, create the file /etc/udev/rules.d/99-
crazyradio.rules, and within the file, add the following line:

SUBSYSTEM=="usb", ATTRS{idVendor}=="1915", ATTRS{idProduct}=="7777",
MODE="0664", GROUP="plugdev"

Using sudo<editor>, create the file /etc/udev/rules.d/99-crazyflie.rules and
add the following line:

SUBSYSTEM=="usb", ATTRS{idVendor}=="0483", ATTRS{idProduct}=="5740",
MODE="0664", GROUP="plugdev"

Restart the computer and prepare to communicate with your Crazyflie!

Chapter 7

[341]

Pre-flight check
It is advisable to mark the right-front (M1) leg of the Crazyflie with something
bright. This marking will help you keep track of the forward direction for your
Crazyflie. Due to the symmetrical design, it is easy to lose track of the orientation of
the Crazyflie.

The Crazyflie should be placed on a stable surface. As you will see, the startup
sequence involves spinning the motors and sensor calibration. In the following figure
of Crazyflie, identify the on/off power button (near the M1 leg) and push it on.

Caution!
The power button is a push button not a slide switch.

Top view of Crazyflie

After the Crazyflie is powered on, the power-on sequence will spin all four
propellers in order. If a propeller does not spin, be sure to check the motor
connections. The blue LED lights on the rear of the UAV should be lit to indicate that
the power is on. The front-right red LED light should be pulsing at 1 Hz to indicate
the vehicle's heartbeat. When Crazyradio communication is established with the
Crazyflie, the red and green LED lights on the front-left will be flashing to indicate
that communication is being exchanged.

Making a Robot Fly

[342]

Next, insert the Crazyradio into a USB 2.0 slot on your computer and insert the
joystick controller into another USB slot. Check that the joystick knobs are in their
center positions so that the throttle is set to zero. You are now ready to start the
Crazyflie ROS software.

Flying Crazyflie with teleop
Before flying Crazyflie for the first time, it is recommended to tie the UAV to a heavy
object, attaching string to the mounting holes on either side of the Printed Circuit
Board (PCB) body.

Remember that the Crazyflie can climb to 50 meters when
flying at full throttle. This height is dangerous if the
battery runs out of power.
The front-right LED will be a steady red light when the
battery is low on power. It is advisable to land to prevent
damage to the Crazyflie.

Before communicating with your Crazyflie, you need to find the Uniform Resource
Identifier (URI). This URI is associated with the communication protocol of the
nRF51 MCU. The format for the URI is as follows:

Interface Type:// Interface Id/Interface Channel/Interface Speed

For the radio interface, this sequence is as follows:

radio://USB dongle number/radio channel number/radio speed

The crazyflie_tools package provides the program scan to identify all the URIs
that are transmitting. Open a terminal window on your computer workstation and
enter the following command:

$ rosrun crazyflie_tools scan

The output will be similar to the following two lines:

Configured Dongle with version 0.53

radio://0/80/250K

The URI for your Crazyflie may be different. For our Crazyflie, the USB dongle
number is 0, the radio channel is 80, and the radio speed is 250K. This means that our
communication link is over a 2480 MHz channel.

Chapter 7

[343]

The package crazyflie_demo contains a spectrum of example launch files to use
with Crazyflie. Launch files are given for using the Xbox 360 controller or the PS3
controller to teleoperate the Crazyflie. To fly your Crazyflie with an Xbox 360
controller, type the command:

$ roslaunch crazyflie_demo teleop_xbox360.launch uri:=<CrazyflieURI>

Replace <CrazyflieURI> with the URI found from the scan command. On the
screen, look for the message:

SYS: Crazyflie2.0 is up and running!

You should see something similar to this:

Starting screen for the teleop_xbox360.launch

The window on the left is running rviz and the two rqt_plot windows on the right
are for battery data and radio signal strength indicator (RSSI) data. In rviz, IMU
sensor data will be displayed on the grid.

If you are anxious to feel the joystick controls in your hands, proceed to using the left
and right stick controls to navigate your Crazyflie. The stick controls are similar to
those used for Hector Quadrotor:

•	 Left Stick – Forward (Up): Throttle provides lift
•	 Left Stick – Backward (Down): No throttle
•	 Left Stick – Right: Clockwise yaw

Making a Robot Fly

[344]

•	 Left Stick – Left: Counter clockwise yaw
•	 Right Stick – Forward (Up): Pitch forward
•	 Right Stick – Backward (Down): Pitch backward
•	 Right Stick – Right: Roll right
•	 Right Stick – Left: Roll left

You are now ready to use the Xbox 360 joystick to fly your Crazyflie around!

Details of teleop_xbox360.launch
The teleop_xbox360.launch file performs a number of operations to launch ROS
nodes, pass arguments, and set ROS parameters. The following list highlights the
tasks performed:

•	 The crazyflie_server.launch file in the crazyflie_driver package is
executed. This file launches the node crazyflie_server. This server handles
communication with the Crazyflie as soon as it is dynamically added by the
crazyflie_add.launch file.

•	 The crazyflie_add.launch file in the crazyflie_driver package
is executed. This file launches the node crazyflie_add using the URI
parameter that is passed into teleop_xbox360.launch. Other parameters
that are set are as follows:

°° tf_prefix: This is the tf prefix for the Crazyflie frame(s)
°° enable_logging: This is the flag to log data

•	 The joy node is launched to handle the joystick controller input.
•	 The xbox360.launch file is included to launch the node quadrotor_teleop

(in the crazyflie_demo package) and set the parameters for the joystick
controller. These parameters include x_axis, y_axis, z_axis, yaw_axis, x_
velocity_max, y_velocity_max, z_velocity_max, and yaw_velocity_max.

•	 The crazyflie_demo_controller node in the crazyflie_demo package is
launched via the script controller.py.

•	 The rviz node in package rviz is launched and the crazyflie.rviz
configuration file in the crazyflie_demo package launch directory is used to
configure rviz.

•	 Two rqt_plot nodes from package rqt_plot are launched. One node plots
the radio signal strength and the other node plots the battery level.

Chapter 7

[345]

Take a look at this figure to see some of the relationships between the nodes and
topics. The large rectangle marked Crazyflie is the namespace for the enclosed nodes
and topics:

Crazyflie ROS teleop nodes and topics

A number of ROS parameters are initialized at the start of this program. When first
flying your Crazyflie, begin with a straightforward push on the Left Stick of the
joystick (throttle). The Crazyflie should lift straight up into the air. If the Crazyflie
seems unstable, the battery may also be moved forward and back to change the pitch
balance. It is recommended to mark the battery position when you get it into the
desired spot.

Prior to flying the Crazyflie, using the rostopic list command allows us to see the
names of the topics that are available. Of primary importance is the /crazyflie/
cmd_vel topic. This topic is published by the /crazyflie/quadrotor_teleop node,
and the data fields for this topic are as follows:

•	 angular.z: The yaw rate value is -200 to 200 degrees per second
•	 linear.x: The pitch value is -30 to 30 degrees
•	 linear.y: The roll value is -30 to 30 degrees
•	 linear.z: The thrust value is 10,000 to 60,000 for pulse-width modulation

(PWM) output

The crazyflie_server node publishes sensor data from the Crazyflie as
sensor_msgs:

•	 The imu topic contains gyroscope and accelerometer data and updates
every 10 milliseconds (ms). The covariance matrices and orientation fields
are not set.

Making a Robot Fly

[346]

•	 The temperature topic contains data from the barometer in degrees Celsius.
This message is updated every 100 ms.

•	 The magnetic_field topic contains data from the magnetometer and is
updated every 100 ms.

•	 The pressure topic contains readings from the pressure sensor in
hectopascals (hPa) or millibars (mbar). This message is updated every
100 ms.

•	 The battery topic contains readings from the battery in volts and is updated
every 100 ms. The stock battery is a 3.7 volt 240 mAh lithium polymer battery.

From this point, feel free to try the rostopic echo command with any of the topics
listed previously to see the data being passed, especially between the computer
and the Crazyflie. The ROS tool rqt can also be used to monitor these topics (Topic
Monitor) and publish messages (Message Publisher) to the Crazyflie.

Flying with a motion capture system
The crazyflie_demo package contains launch files to use the Crazyflie with external
motion capture systems such as VICON or Virtual-Reality Peripheral Network
(VRPN). With an external motion capture system, you can get your Crazyflie to
hover at a given location or navigate autonomously to a set of waypoints. For
example, to get Crazyflie to hover a meter above its starting location using a VICON
system, use the following command:

$ roslaunch crazyflie_demo hover_vicon.launch uri:=<CrazyflieURI>

frame:=<CrazyflieTFframe> x:=0 y:=0 z:=1

Replace <CrazyflieURI> with your Crazyflie's URI and <CrazyflieTFframe> is
the tf-frame of your Crazyflie. The hover_vicon.launch file will automatically run
vicon_bridge.

Flying multiple Crazyflies
The crazyflie_demo package also contains launch files for flying multiple Crazyflies
at the same time. To accomplish this, each Crazyflie must have a different address.
If Crazyflies are to share communication on the same Crazyradio USB dongle, they
should share the same channel and data rate to provide optimum performance. Up to
three Crazyflies have been successfully flown over one Crazyradio dongle. Performance
degrades as the number of Crazyflies increases due to limitations in bandwidth.

Chapter 7

[347]

To command and control multiple Crazyflies using the Xbox 360 joystick controller,
use the following command:

$ roslaunch crazyflie_demo multi_teleop_xbox360.launch
uri1:=radio://0/100/2M/E7E7E7E7E7 uri2:=radio://0/100/2M/E7E7E7E705

The URIs used in the multi_teleop_xbox360.launch command are left as
examples of the duplication of the radio channel and data rate but the difference in
the address.

The authors have not performed the commands in these last two sections because, at
present, we have only one Crazyflie and no external motion capture system. We have
included these examples here to entice you to extend your Crazyflie experience.

Introducing Bebop
The following image shows the Parrot Bebop quadrotor craft, which will be
discussed in this section. This quadrotor is a larger quadrotor with more advanced
features than the Crazyflie. The Bebop gathers data from onboard sensors such as
the three-axes accelerometer, gyroscope, magnetometer, ultrasound sensor and
pressure sensor to provide optimal stable control for flight and agile maneuvers. This
ability for stable flight allows the pilot to obtain quality video and images with the
onboard camera.

Bebop

Making a Robot Fly

[348]

Parrot is a company, with headquarters in Paris, France, that produces products
such as the Bebop quadrotor. As of November 2016, there is now a second version
of Bebop: the Bebop 2. The Bebop 2 is described in detail on the Parrot website at
https://www.parrot.com/us/drones/parrot-bebop-2#parrot-bebop-2. Some
differences between the Bebop 1 and Bebop 2 are identified in the following table:

Factors Bebop 1 Bebop 2
Price $399.99 $549.99
Battery life 11 minutes 25 minutes
Max horizontal speed 13 m/s 16 m/s
Max climbing speed 2.5 m/s 6 m/s
Signal range up to 250 m up to 300 m
GPS 12 satellites max 19 satellites max

Camera 14 megapixel; 180° fisheye
14 megapixel; 180° fisheye
(more tilted towards ground)

Video 3-axis full HD 1080p 3-axis full HD 1080p
Frame type 250 mm 290 mm
Overall dimensions 28 x 32 cm 32.8 x 38.2 cm
Propeller size 14 cm 15.2 cm
Weight 400 grams 500 grams
Colors yellow, red, blue red, white
Other features LED tail light

Both versions of Bebop can be controlled by the Parrot Skycontroller or by using
smartphones or tablets. Operation of the Skycontroller is described on the following
site: http://blog.parrot.com/2014/12/15/how-to-pilot-skycontroller/.

Bebop has onboard sensors for autonomous flight through the use of GPS for
guidance. The Bebop also has a forward-looking camera for aerial photography. The
Wi-Fi communications module of Bebop allows both manual control and control
with a ROS package called bebop_autonomy. The next section will concentrate on the
use of the ROS software to control Bebop.

https://www.parrot.com/us/drones/parrot-bebop-2#parrot-bebop-2
http://blog.parrot.com/2014/12/15/how-to-pilot-skycontroller/

Chapter 7

[349]

Important!
Before flying the Bebop or using the ROS interface, visit the
Bebop website and download and install the latest firmware
version for the Bebop.

The bebop_autonomy software is the ROS driver for Parrot Bebop 1 and Bebop 2
quadrotors based on the Parrot ARDrone SDK3 development kit. This driver was
developed and is maintained at the Autonomy Lab of Simon Fraser University by
Mani Monajjemi. We thank Mr. Monajjemi for his generous assistance in helping us
prepare this section.

Loading bebop_autonomy software
The instructions for loading the ROS software and using it for Bebop are well
described at:

•	 http://bebop-autonomy.readthedocs.org/en/latest/

•	 http://bebop-autonomy.readthedocs.org/en/latest/installation.
html

The features to be incorporated into bebop_autonomy and the status of these features
can be found in the documentation at https://media.readthedocs.org/pdf/
bebop-autonomy/latest/bebop-autonomy.pdf. This document covers bebop_
autonomy versions for Indigo, Jade, and Kinetic.

To load the bebop_autonomy software, first get the required Ubuntu packages with
the following command:

$ sudo apt-get install build-essential python-rosdep python-catkin-tools

Update the system information on the newest versions of packages and their
dependencies:

$ sudo apt-get update

http://bebop-autonomy.readthedocs.org/en/latest/
http://bebop-autonomy.readthedocs.org/en/latest/installation.html
http://bebop-autonomy.readthedocs.org/en/latest/installation.html
https://media.readthedocs.org/pdf/bebop-autonomy/latest/bebop-autonomy.pdf
https://media.readthedocs.org/pdf/bebop-autonomy/latest/bebop-autonomy.pdf

Making a Robot Fly

[350]

Create the Bebop workspace bebop_ws and download software from GitHub:

$ mkdir -p ~/bebop_ws/src

$ cd ~/bebop_ws

$ catkin init

$ git clone https://github.com/AutonomyLab/bebop_autonomy.git src/bebop_
autonomy

Use rosdep to install the bebop_autonomy package dependencies:

$ rosdep update

$ rosdep install --from-paths src -i

Then, build the workspace:

$ catkin build

Once the software is loaded and the files are built, add the following statement in
the .bashrc file:

source ~/bebop_ws/devel/setup.bash

Also within the .bashrc file, verify that the ROS_MASTER_URI, the ROS_IP, and the
ROS_HOSTNAME variables are not set.

Remember, adding the source statement to the .bashrc file will apply it to each new
terminal window opened.

Also, check your ROS package path with the following command:

$ echo $ROS_PACKAGE_PATH

The path /home/<username>/bebop_ws/src should display as five paths on
the screen:

/home/<username>/bebop_ws/src/bebop_autonomy/bebop_autonomy

/home/<username>/bebop_ws/src/bebop_autonomy/bebop_description

/home/<username>/bebop_ws/src/bebop_autonomy/bebop_msgs

/home/<username>/bebop_ws/src/bebop_autonomy/bebop_driver

/home/<username>/bebop_ws/src/bebop_autonomy/bebop_tools

Chapter 7

[351]

The software download creates a number of packages that are used to control Bebop.
The bebop_autonomy package is actually a metapackage with a package.xml file
that lists four other packages, as follows:

•	 bebop_description which contains the URDF and mesh files
•	 bebop_driver which contains C++ code for the node bebop_driver_node
•	 bebop_msgs which contains messages used with Bebop
•	 bebop_tools which contains miscellaneous tools for Bebop

Preparing to fly Bebop
Before flying Bebop, review the Bebop User's Guide available at
http://www.parrot.com/usa/support/parrot-bebop-
drone/.
Read the instructions in that document for the following points:

•	 Assembling the Bebop quadrotor, charging the battery, and
other preliminary matters

•	 Pay attention to the section on Preflight Check, which
includes many safety tips

•	 Study the section on flying, which includes instructions for
calibrating the magnetometer of the Bebop

Testing Bebop communications
After a preflight check and clearing the flying area of people and obstructions, power
on Bebop and wait for several minutes.

Using the Systems Settings tab in the Ubuntu desktop, select Network and check
your wireless connections to see whether your computer is communicating with
Bebop. You should see the Bebop network BebopDrone-<xxxxxxx>. The numbers
indicate the identification number of your Bebop. The IP address should be
192.168.42.1 for the Bebop as the Default Route.

Then, test the communications between the computer workstation and the Bebop by
pinging the craft. From a terminal window, issue the ping command to the Bebop
and wait for the response:

$ ping 192.168.42.1

http://www.parrot.com/usa/support/parrot-bebop-drone/
http://www.parrot.com/usa/support/parrot-bebop-drone/

Making a Robot Fly

[352]

Our output is as follows:

PING 192.168.42.1 (192.168.42.1) 56(84) bytes of data.

64 bytes from 192.168.42.1: icmp_seq=1 ttl=64 time=9.41ms

64 bytes from 192.168.42.1: icmp_seq=2 ttl=64 time=5.46ms

Flying Bebop using commands
Now, it is time to launch the bebop_driver node and use commands to perform a
takeoff and landing. Launch Bebop with the following command:

$ roslaunch bebop_driver bebop_node.launch

Explore the nodes and topics:

$ rosnode list

The output should be as follows:

/bebop/bebop_driver

/bebop/robot_state_publisher

/rosout

Then, type the following command:

$ rostopic list

This will produce a long list, in which the following topics are of interest in getting
Bebop to take off and land:

/bebop/takeoff

/bebop/land

/bebop/reset

/bebop/autoflight/navigate_home

Note that, in both lists, the namespace (ns) is bebop and the items are listed as /
bebop/<node> or /bebop/<topic>.

Take off
Watch it fly. Bebop goes straight up 1 meter after you execute the following command:

$ rostopic pub /bebop/takeoff std_msgs/Empty --once

The output should be as follows:

publishing and latching message for 3.0 seconds

Chapter 7

[353]

Landing
Bebop will land when you issue this command:

$ rostopic pub /bebop/land std_msgs/Empty --once

The output is as follows:

publishing and latching message for 3.0 seconds

There are many other options for the Bebop that are not covered here. Refer to the
Bebop website and the instructions for the bebop_autonomy software previously
listed to explore all of Bebop's functions.

Summary
This chapter featured information about flying robots that are described as
quadrotors or quadcopters because of their four propellers. The first few sections
of the chapter described quadrotors and their flying characteristics, as well as the
sensors that they might have. Sensors such as magnetometers, gyroscopes, and
accelerometers were discussed with the aim of explaining how they allow quadrotors
to stabilize themselves in the air. Other accessories such as cameras and GPS units
were also covered.

The rules for flying safely were presented. These are basically common-sense rules,
such as do not fly over people or pets. Government agencies, such as the FAA in the
United States, govern the use of airspace and those rules should be followed carefully.

The Hector simulator is excellent, particularly for new pilots of quadrotors, in that
a quadrotor can be flown in simulation without any danger of real crashes. Details
of downloading the Hector software were covered in this chapter. ROS is used for
control and message passing to the simulated quadrotor craft.

Finally, two real quadrotors called Crazyflie and Bebop were described and the
ROS software to control them was discussed. The Crazyflie is relatively inexpensive
and safe to fly, but it embodies many of the principles of more expensive and
sophisticated quadrotors. Enjoy your flights!

In the next chapter, Chapter 8, Controlling Your Robots with External Devices, the
use of peripheral devices to teleoperate your robot will be considered. Interfacing
with joysticks, controller boards, and mobile devices will be handled using standard
ROS packages to help you expedite the process of implementing these devices with
your robot.

[355]

Controlling Your Robots with
External Devices

In the past few chapters, we have used ROS to control mobile, armed, flying, and
simulated robots. The similarities and differences between these robots have been
discussed, and we have shown the commonalities that ROS has created between all
these robot types. These commonalities are not only in the structure of the software
and the communication methods, but also in the simulation environment and the
tools used for visualization and analysis.

The influence of ROS goes even further by providing a common interface to control
devices external to the robot. These devices include game controllers (gamepads and
joystick controllers), mobile devices (smartphones and tablets), and even controller
boards (Arduino and Raspberry Pi).

In this chapter, you will learn about the following topics:

•	 Adding a game controller to a robot
•	 Using mobile devices to control robot projects
•	 Interfacing controller boards such as Arduino or Raspberry Pi

Controlling Your Robots with External Devices

[356]

Creating a custom ROS game controller
interface
If you have played with a joystick with either Baxter or Crazyflie, you may think that
the function of certain buttons or joysticks would be better with your own special
design. Each type of game controller has one or more joysticks and various buttons
or triggers to cause events depending on the game software being used. Here, for the
Microsoft Xbox controller, we will do the following:

•	 Show how to determine the mapping between controller joysticks, buttons,
and triggers and the number corresponding to each using a graphical
package, jstest-gtk

•	 Use the terminal command jstest; this will enable you to determine the
corresponding numbers of controller joysticks, buttons, and triggers

The following diagram shows the Xbox 360 game controller. Pushing a button
changes the output from 0 (off) to 1 (on) on the channel corresponding to the pushed
button, which in turn can be read by a program and used to start an application.
Moving the stick outputs a numerical value that can be used to control a robot. The
joystick movements are described by the axis of the movement; moving the stick up
and down defines one axis, and moving the stick to the left and right defines another.

Xbox 360 game controller

Chapter 8

[357]

Testing a game controller
The graphical program jstest-gtk can be used to determine the number of the
channel or axis associated with a button or joystick of a game controller. The package
jstest-gtk is a game controller testing and configuration tool. This package is
described at https://launchpad.net/ubuntu/xenial/+package/jstest-gtk.

To download and install the package, use the following command:

$ sudo apt-get install jstest-gtk

Then, plug your game controller into the USB port of your computer. The command
to execute the game controller test program is:

$ jstest-gtk

The following screenshot shows the result with the Xbox 360 controller connected to
our computer. As shown, the Microsoft Xbox 360 controller has 8 axes and 11 buttons:

jstest-gtk Joystick Preferences screen

https://launchpad.net/ubuntu/xenial/+package/jstest-gtk

Controlling Your Robots with External Devices

[358]

By double-clicking on the name Microsoft X-Box 360 pad, a GUI for the axes and
buttons of the Xbox 360 controller appears, as shown in the following screenshot:

jstest-gtk Xbox screen

As you push a button on the controller, the number of the button will be highlighted
in the display. The relative position of a joystick that is moved is shown graphically,
and the numerical value associated with the motion is also displayed. More details
on this operation are provided at http://manpages.ubuntu.com/manpages/
xenial/en/man1/jstest-gtk.1.html.

Alternative test of a game controller
As an alternative to the graphical display of the game controller's properties,
terminal commands can be used. First, plug your game controller into a USB port on
your computer and then determine the devices connected to the computer by issuing
this command:

$ ls /dev/input/

http://manpages.ubuntu.com/manpages/xenial/en/man1/jstest-gtk.1.html
http://manpages.ubuntu.com/manpages/xenial/en/man1/jstest-gtk.1.html

Chapter 8

[359]

The output should be similar to the following:

by-id event1 event12 event15 event4 event7 js0 mouse1

by-path event10 event13 event2 event5 event8 mice

event0 event11 event14 event3 event6 event9 mouse0

The game controller will appear as a js device in this listing. Note that the system
has the game controller named as js0 in the list. To test the controller and determine
the index numbers of the axes and buttons, type the following command:

$ jstest /dev/input/js0

The output for the Xbox controller should be similar to the following:

Driver version is 2.1.0.

Joystick (Microsoft X-Box 360 pad) has 8 axes (X, Y, Z, Rx, Ry, Rz,
Hat0X, Hat0Y)

and 11 buttons (BtnX, BtnY, BtnTL, BtnTR, BtnTR2, BtnSelect, BtnThumbL,
BtnThumbR, ?, ?, ?).

Testing ... (interrupt to exit)

Axes: 0: 0 1: 0 2: 0 3: 0 4: 0 5: 0 6:
0 7: 0 Buttons: 0:off 1:off 2:off 3:off 4:off 5:off 6:off
7:off 8:off 9

In this case, the controller is the Microsoft X-box 360 pad controller. Experiment
with your controller to understand the output when the joystick is moved or a
button is pressed. When a button is pressed, the corresponding value changes to on.
Also, when a joystick is moved horizontally or vertically, the selected axis value will
change from its initial value to a new value.

Now, for your controller, you can figure out which buttons or axes you will use for
your application. Next, you must consider the type of software or hardware that is
to be controlled by the game controller. For ROS, the /joy node is used to read the
controller output.

A tutorial describing the use of Ubuntu commands is available at http://wiki.ros.
org/joy/Tutorials/ConfiguringALinuxJoystick.

http://wiki.ros.org/joy/Tutorials/ConfiguringALinuxJoystick
http://wiki.ros.org/joy/Tutorials/ConfiguringALinuxJoystick

Controlling Your Robots with External Devices

[360]

Using the ROS joy package
ROS has a driver for a generic controller with a joystick. The joy package contains
the /joy node that interfaces a generic Linux joystick to ROS. This node publishes
a joy message, which contains the current state of each of the joystick's buttons and
axes. Before using the /joy node in an application, see whether you have the joy
package installed by typing this:

$ rospack find joy

The output should be as follows:

/opt/ros/kinetic/share/joy

If you do not see the path to the joy package, install it with this command:

$ sudo apt-get install ros-kinetic-joy

Controlling Turtlesim with a custom game
controller interface
In this section, an example use of a game controller and the /joy node is presented
utilizing the following code files:

•	 The launch file turtlesim_teleop.launch that executes three nodes:
/joy, turtlesim, and turtlesim_joy.

•	 A Python program turtlesim_joy.py that initiates the turtlesim_joy
node and allows the joystick to control the movement of the turtle on
the screen.

•	 The program turtlesim_joy.py calls another Python program called
move_circle.py when a button is pushed on the controller.

The Turtlesim simulator was introduced in the Turtlesim – the first ROS robot
simulation section in Chapter 1, Getting Started with ROS. If you wish to create a ROS
package for this example, refer to the instructions in the Creating and building a ROS
package section in Chapter 2, Creating Your First Two-Wheeled ROS Robot (in Simulation).
In our case, the files are copied to the ros_robotics package created in Chapter 2,
Creating Your First Two-Wheeled ROS Robot (in Simulation).

Chapter 8

[361]

Downloading the example code
You can download the example code files and other support
material for this book from https://www.packtpub.com/
or at the website: https://github.com/FairchildC/ROS-
Robotics-By-Example-2nd-Edition.

In the package directory, the launch file should be copied to a /launch directory.
The Python code should be copied to a /src directory of the package. Make sure the
Python scripts are executable by issuing the following command:

$ chmod +x <filename>.py

Here, <filename> is the name of the Python script. Alternatively, type the following:

$ chmod +x *.py

You can use the preceding command to make all the Python files in the directory
executable.

After loading the files into the directories, issue the catkin_make command in the
catkin workspace directory to link together the ROS files.

The code for the launch file turtlesim_teleop.launch is as follows:

<?xml version="1.0"?>
<launch>

 <!-- turtlesim and joy node-->
 <node name="turtlesim" pkg="turtlesim" type="turtlesim_node"/>
 <node name="joy" pkg="joy" type="joy_node"/>

 <!-- turtlesim_joy node interfaces Xbox controller to turtlesim -->
 <node name="turtlesim_joy" pkg="ros_robotics"
 type="turtlesim_joy.py" output="screen"/>

</launch>

Use the following command to launch the nodes:

$ roslaunch ros_robotics turtlesim_teleop.launch

https://www.packtpub.com/
https://github.com/FairchildC/ROS-Robotics-By-Example-2nd-Edition
https://github.com/FairchildC/ROS-Robotics-By-Example-2nd-Edition

Controlling Your Robots with External Devices

[362]

You should see output similar to the following (edited):

.

.

SUMMARY

========

PARAMETERS

* /rosdistro: kinetic

* /rosversion: 1.12.7

NODES

/

 joy (joy/joy_node)

 turtlesim (turtlesim/turtlesim_node)

 turtlesim_joy (ros_robotics/turtlesim_joy.py)

auto-starting new master

process[master]: started with pid [15595]

ROS_MASTER_URI=http://localhost:11311

.

The preceding command will launch three ROS nodes as shown in the screen output
after the launch file is executed with the roslaunch command. You can also check
the list of nodes with this command:

$ rosnode list

The first Python program turtlesim_joy.py allows the turtle of Turtlesim to
be controlled by the joystick axes [0] and [1] on the game controller. For the
Xbox controller, these axes correspond to the vertical and horizontal left joystick
movements, respectively. In addition, pushing the button corresponding to button
number 0 will cause another Python program, move_circle.py, to drive the turtle
in a circle. On the Xbox controller, this is the green button. The code for turtlesim_
joy.py is as follows:

#!/usr/bin/env python

"""
Node converts joystick inputs into commands for Turtlesim

Chapter 8

[363]

"""

import rospy
from geometry_msgs.msg import Twist
from sensor_msgs.msg import Joy
from move_circle import move_circle

def joy_listener():

 # start node
 rospy.init_node("turtlesim_joy", anonymous=True)

 # subscribe to joystick messages on topic "joy"
 rospy.Subscriber("joy", Joy, tj_callback, queue_size=1)

 # keep node alive until stopped
 rospy.spin()

called when joy message is received
def tj_callback(data):

 # start publisher of cmd_vel to control Turtlesim
 pub = rospy.Publisher("turtle1/cmd_vel", Twist, queue_size=1)

 # Create Twist message & add linear x and angular z from left
joystick
 twist = Twist()
 twist.linear.x = data.axes[1]
 twist.angular.z = data.axes[0]

 # record values to log file and screen
 rospy.loginfo("twist.linear: %f ; angular %f", twist.linear.x,
twist.angular.z)

 # process joystick buttons
 if data.buttons[0] == 1: # green button on xbox controller
 move_circle()

 # publish cmd_vel move command to Turtlesim
 pub.publish(twist)

if __name__ == '__main__':
 try:
 joy_listener()

Controlling Your Robots with External Devices

[364]

 except rospy.ROSInterruptException:
 pass

This code initializes the turtlesim_joy node and subscribes to the joy topic. When
a joy message is received, the tj_callback function reads the values from axes[0]
and axes[1] and assigns them to a twist message. If the value of button[0] is 1,
then this button was pressed and the move_circle function is called.

The listing of move_circle.py is as follows:

#!/usr/bin/env python
"""
Script to move Turtlesim in a circle
"""
import rospy
from geometry_msgs.msg import Twist

def move_circle():

 # Create a publisher which can "talk" to Turtlesim and tell it
 to move
 pub = rospy.Publisher('turtle1/cmd_vel', Twist, queue_size=1)

 # Create a Twist message and add linear x and angular z values
 move_cmd = Twist()
 move_cmd.linear.x = 1.0
 move_cmd.angular.z = 1.0

 # Save current time and set publish rate at 10 Hz
 now = rospy.Time.now()
 rate = rospy.Rate(10)

 # For the next 6 seconds publish cmd_vel move commands to
 Turtlesim
 while rospy.Time.now() < now + rospy.Duration.from_sec(6):
 pub.publish(move_cmd)
 rate.sleep()

if __name__ == '__main__':
 try:
 move_circle()
 except rospy.ROSInterruptException:
 pass

Chapter 8

[365]

When executed, this code will create a twist message and set the linear.x and
angular.z values. As the Python program turtlesim_joy.py is executed, you can
move the turtle with the joystick. As the selected button is pushed, move_circle.py
is executed, and the turtle then turns with a linear velocity of 1.0 units/second and
an angular velocity of 1 radian/second for 6 seconds. Thus, the turtle moves in a
circle. The following screenshot shows the result of one of our experiments with
Xbox 360 joystick control of Turtlesim:

Turtlesim screen

To see the message published by the /joy node, issue this command:

$ rostopic echo /joy

The results indicate the values of the axes and buttons, as well as other information:

header:

 seq: 218

 stamp:

 secs: 1461884528

 nsecs: 370878390

 frame_id: ''

axes: [-0.0, 0.1265602558851242, 0.0, -0.06729009747505188, -0.0, 0.0,
0.0, 0.0]

buttons: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Controlling Your Robots with External Devices

[366]

Move the stick to start and use Ctrl + C to end the output.

To see the nodes and topics, issue the following command:

$ rqt_graph

This yields the following screenshot:

turtlesim_teleop.launch node and topic graph

A tutorial using a C++ program and a launch file for use with a Turtlesim and joystick
is available at http://wiki.ros.org/joy/Tutorials/WritingTeleopNode.

Creating a custom ROS Android device
interface
The Android operating system is an open source mobile platform that is widely
used on smartphones and tablets. Its design is based on the Linux kernel, and its
primary user control interface is via a touchscreen. This user interface consists of
touch actions, such as swiping, tapping, or pinching elements on the screen. Tapping
a virtual keyboard is one of the methods of entering text input. Various types of
game control screens allow user interaction similar to joysticks and pushbuttons.
The screen interface typically adjusts from portrait display to landscape based on the
orientation in which the device is held. Sensors such as accelerometers, gyroscopes,
and proximity sensors are usually available on the mobile device platform and are
used by the application software.

To provide this type of interface for the user of a robot, the ROS Android metapackage
has been developed and made available for use and further development.

The next sections will setup and describe the ROS Android development
environment through the use of Android Studio and a Java Development Kit (JDK).
We start by downloading this software to become an Android developer using ROS.

http://wiki.ros.org/joy/Tutorials/WritingTeleopNode

Chapter 8

[367]

Installing Android Studio and tools
There is one non-ROS software package to download in order to become a
ROS–Android developer. You will need Android Studio, which is the official
Integrated Development Environment (IDE) for Android. Android Studio provides
all the tools you need to build apps for every type of Android device. Download the
Android Studio package as a ZIP file from http://developer.android.com/sdk/
index.html.

Be sure to load the Linux platform distribution.

It is recommended that you install this package in the /opt directory (as /opt/
android-studio). Next, run the setup script using the following command:

$ /opt/android-studio/bin/studio.sh

A setup wizard will guide you through the setup process. When prompted to import
previous Android Studio settings, you may select I do not have a previous version
of Studio and click on OK. Next you will be prompted for installation instructions,
select the Standard installation type.

1.	 The Android SDK components will be downloaded as part of the setup
process. The location for the Android SDK should be selected as either /opt/
android-sdk or /home/<username>/Android/SDK. We have chosen our
location as the second path.

2.	 When the Welcome to Android Studio screen appears, find the Configure
button at the bottom of the window. From the pop-up menu, select SDK
Manager and install the Android SDK Platform package(s) for the Android
OS running on your devices (tablets and/or phones).

3.	 If you wish to store your software in GitHub, you may wish to configure
this setting. From the Configure button on the main screen, select Settings
|Version Control|GitHub.

4.	 To create a Desktop icon for Android Studio, use the Configure button on
the main screen and select Create Desktop Entry. A pop-up window will
give the option to create a desktop entry for all users. This will require
administrator privileges. When visible, be sure to lock the icon to your
launcher if you wish to keep it.

http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html

Controlling Your Robots with External Devices

[368]

Next, execute the following two commands to add Android Studio to your
environment variables. If you installed your Android SDK at /opt/android-sdk,
modify the first command appropriately:

$ echo export ANDROID_HOME=/home/<username>/Android/Sdk >> ~/.bashrc

$ echo export PATH=\${PATH}:${ANDROID_HOME}/tools${ANDROID_HOME}/
platform-tools:/opt/android-studio/bin >> ~/.bashrc

For systems that run a 64-bit version of Ubuntu, the following 32-bit libraries will
need to be installed using the command in a terminal window:

$ sudo apt-get install libc6:i386 libncurses5:i386 libstdc++6:i386
lib32z1 libbz2-1.0:i386

With Android Studio installed, the ROS metapackages for rosjava and android
are now needed. The installation of these metapackages is described in the
upcoming section.

Installing a ROS–Android development
environment
The first step in our instructions for creating a ROS–Android development
environment is to install the Debian packages rosjava-build-tools and genjava.
The rosjava-build-tools package contains simple tools and catkin modules for
rosjava development. The genjava package is useful for generating Java Maven
artifacts for message definitions that are in your source workspace. To install the
rosjava-build-tools and genjava packages, type this command:

$ sudo apt-get install ros-kinetic-rosjava-build-tools ros-kinetic-
genjava

Next, create a workspace for the core Android libraries:

$ mkdir –p ~/android_core

$ wstool init -j4 ~/android_core/src https://raw.github.com/rosjava/
rosjava/kinetic/android_core.rosinstall

$ cd ~/android_core

$ catkin_make

Chapter 8

[369]

Add a source command to this workspace in your .bashrc:

$ echo "source ~/android_core/devel/setup.bash" >>.bashrc

We continue by overlaying these ready-made android_core libraries onto new
workspaces that we will use for Android development. Open a new terminal
window and create an empty catkin workspace overlay on top of these files for your
Java workspace. Use the following commands:

$ mkdir -p ~/myjava

$ wstool init ~/myjava/src

$ cd ~/myjava

$ catkin_make

If you have your own Java source code and you wish to use it in this workspace,
refer to the instructions at http://wiki.ros.org/rosjava/Tutorials/kinetic/
Deb%20Installation.

You can also start from here and create your own rosjava packages. Follow the
tutorials at http://wiki.ros.org/rosjava_build_tools/Tutorials/indigo/
Creating%20Rosjava%20Packages.

Use the following commands to create an Android workspace, which overlays the
rosjava workspace created previously:

$ mkdir -p ~/myandroid

$ wstool init ~/myandroid/src

$ source ~/myjava/devel/setup.bash

$ cd ~/myandroid

$ catkin_make

Other options for installing the source code for ROS–Android core libraries can be
found at http://wiki.ros.org/android/Tutorials/kinetic/Installation%20
-%20ROS%20Development%20Environment.

To test your ROS–Android Development Environment, proceed to the instructions
for accessing the camera on your Android device, found under the Testing section
of http://wiki.ros.org/android/Tutorials/kinetic/Installation%20-%20
ROS%20Development%20Environment.

http://wiki.ros.org/rosjava/Tutorials/kinetic/Deb%20Installation
http://wiki.ros.org/rosjava/Tutorials/kinetic/Deb%20Installation
http://wiki.ros.org/rosjava_build_tools/Tutorials/indigo/Creating%20Rosjava%20Packages
http://wiki.ros.org/rosjava_build_tools/Tutorials/indigo/Creating%20Rosjava%20Packages
http://wiki.ros.org/android/Tutorials/kinetic/Installation%20-%20ROS%20Development%20Environment
http://wiki.ros.org/android/Tutorials/kinetic/Installation%20-%20ROS%20Development%20Environment
http://wiki.ros.org/android/Tutorials/kinetic/Installation%20-%20ROS%20Development%20Environment
http://wiki.ros.org/android/Tutorials/kinetic/Installation%20-%20ROS%20Development%20Environment

Controlling Your Robots with External Devices

[370]

Defining terms
Knowing the following terms should help as you learn more about the rosjava and
android development environments:

•	 Ant: An Apache Ant is a Java library and command-line tool used to build
Java applications. Developers either build antlibs that contain Ant tasks
and types, or they have access to numerous ready-made antlibs. Apache
Ant is a term trademarked by the Apache Software Foundation, which
provides support for open source projects.

•	 Gradle: Gradle is an automated build system that works with Ant and
Maven to offer a method of declaring a project's configuration by identifying
the order of its build tasks. The system can handle large multiproject builds
and supports incremental builds for only the portion of a project that is
dependent on what has been changed.

•	 JAR: A Java Archive (JAR) is the package format that is used to combine
Java class files and the metadata to be distributed as a software application or
library. JARs are compressed into ZIP file format for archiving purposes.

•	 Maven: As a software project management and compression tool, Maven
manages the state of a project's development, including its build, reporting, and
documentation aspects. For our purposes, a repository in Maven will be used to
hold build artifacts and dependencies for ROS–Android applications. Apache
Maven is another open source project of the Apache Software Foundation.

Introducing ROS–Android development
The division between the /myjava and /myandroid workspaces is important to
the development. In the /myjava workspace, you can create and build custom
rosjava message JARs and artifacts. You can also use this space to build and test
rosjava algorithms for use in your Android applications. To dive into rosjava
development, refer to the list of tutorials (for ROS Kinetic) at http://wiki.ros.
org/rosjava?distro=kinetic.

The /android_core workspace contains the official ROS android stacks, a
collection of components and examples that are useful for developing ROS
applications on Android.

http://wiki.ros.org/rosjava?distro=kinetic
http://wiki.ros.org/rosjava?distro=kinetic

Chapter 8

[371]

The following diagram highlights the dependencies between the rosjava and
android libraries:

Official Rosjava-Android Dependency Graph

From this point, you are ready to begin with the creation of Android packages
using rosjava scripts. To begin with, tutorials on creating Android packages and
applications are available at http://wiki.ros.org/rosjava_build_tools/
Tutorials/indigo/Creating%20Android%20Packages.

For a complete list of ROS–Android tutorials, refer to the list of tutorials (for ROS
Kinetic) at http://wiki.ros.org/android?distro=kinetic.

You can also refer to the book ROS Robotics Projects by Lentin Joseph (Packt
Publishing, https://www.packtpub.com/hardware-and-creative/ros-
robotics-projects). Chapter 8, ROS on MATLAB and Android in this book provides
examples of developing ROS–Android applications.

Creating ROS nodes on Arduino or
Raspberry Pi
Arduino and Raspberry Pi are two of the most popular embedded systems
on the market today. Sometimes, their names and capabilities are discussed
interchangeably, but each platform has its own unique capabilities and usage. In
robotics, it is important to know the merits of each of these powerful devices and
how each one can be used with ROS to inherit the advantages of ROS.

http://wiki.ros.org/rosjava_build_tools/Tutorials/indigo/Creating%20Android%20Packages
http://wiki.ros.org/rosjava_build_tools/Tutorials/indigo/Creating%20Android%20Packages
http://wiki.ros.org/android?distro=kinetic
https://www.packtpub.com/hardware-and-creative/ros-robotics-projects
https://www.packtpub.com/hardware-and-creative/ros-robotics-projects

Controlling Your Robots with External Devices

[372]

Rosserial defines the protocol for ROS communication over serial transmission lines
to ROS nodes running on microcontrollers or single-board computers. Standard ROS
messages are serialized/deserialized in a prescribed format, and topics and services
are multiplexed for serial ports or network sockets. For low-level details of this
protocol, refer to http://wiki.ros.org/rosserial/Overview/Protocol.

In the following section, the capability of rosserial is demonstrated in an example
program using Arduino and an ultrasonic sensor.

Using Arduino
The Arduino board contains a microcontroller that can process one ROS node at
a time. This sequential nature makes it easy to use and understand its processing
and communication with external devices, such as motors, sensors, and peripheral
devices. Arduino has a set of digital and analog input/output (I/O) pins to interface
with a wide variety of external sensors and actuators. This simple board can be
used to design and build a robot to sense and move about in its environment or to
enhance an existing robot with extended capabilities.

Interfacing the Arduino board to an external computer allows you to program
the microcontroller using its own Arduino IDE based on the external computer.
Programs developed in C in the Arduino IDE are downloaded to the microcontroller
over its USB connection using its serial communications interface.

Installing Arduino IDE software
The Arduino IDE allows quick and easy programming of Arduino boards. This
open source software can be installed on Windows, macOS, and Linux operating
systems. The IDE can generate software for any Arduino board, but check for special
instructions for your particular board at https://www.arduino.cc/en/Guide/
HomePage.

To install the Arduino IDE as Debian packages on your Ubuntu operating system,
open a terminal window and enter the following commands:

$ sudo apt-get update

$ sudo apt-get install arduino arduino-core

If any additional information is needed, refer to http://playground.arduino.cc/
Linux/Debian.

For installation instructions on how to manually load Arduino, refer to the
Downloading and maintaining manually section of http://playground.arduino.cc/
Linux/Ubuntu.

http://wiki.ros.org/rosserial/Overview/Protocol
https://www.arduino.cc/en/Guide/HomePage
https://www.arduino.cc/en/Guide/HomePage
http://playground.arduino.cc/Linux/Debian
http://playground.arduino.cc/Linux/Debian
http://playground.arduino.cc/Linux/Ubuntu
http://playground.arduino.cc/Linux/Ubuntu

Chapter 8

[373]

The latest software download can be found at https://www.arduino.cc/en/Main/
Software.

Arduino offers extensive documentation guides, tutorials, and examples at the
following websites:

•	 https://www.arduino.cc/en/Guide/Introduction

•	 https://www.arduino.cc/en/Guide/Environment

•	 https://www.arduino.cc/en/Guide/Libraries

•	 https://www.arduino.cc/en/Tutorial/HomePage

Next, we will install the ROS software for Arduino.

Installing ROS–Arduino software
The rosserial_arduino package allows you to implement the ROS communication
protocol over Arduino's serial ports. This package helps the software implement ROS
messages, access ROS system time, and publish tf transforms. Using the rosserial_
arduino package, an independent ROS node running on your Arduino can publish
and subscribe to messages from ROS nodes running on a remote computer.

To load the rosserial_arduino package on your computer, use the following
installation commands:

$ sudo apt-get install ros-kinetic-rosserial-arduino

$ sudo apt-get install ros-kinetic-rosserial

The rosserial metapackage contains the rosserial_msgs, rosserial_client, and
rosserial_python packages. The rosserial_python package is used to provide
the remote computer serial interface to communicate with the Arduino node.

ROS bindings for Arduino are implemented as an Arduino library within the IDE.
This library, ros_lib, must be added to the /libraries subdirectory within the
user's Arduino sketchbook (the code directory). We are using ~/sketchbook as
the directory in which to store our Arduino code (sketches). The subdirectory
/libraries should already exist, or should be created within your sketchbook.
Change to this subdirectory with the following command (<sketchbook> is the path
to your sketchbook directory):

$ cd <sketchbook>/libraries

If the ros_lib library already exists, delete it with this command:

$ rm -rf ros_lib

https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Guide/Introduction
https://www.arduino.cc/en/Guide/Environment
https://www.arduino.cc/en/Guide/Libraries
https://www.arduino.cc/en/Tutorial/HomePage

Controlling Your Robots with External Devices

[374]

To generate the ros_lib library, type the following command:

$ rosrun rosserial_arduino make_libraries.py

This command will create a ros_lib subdirectory and a number of subdirectories
under ros_lib. A ros_lib subdirectory is a wrapper for ROS messages and
services implemented with Arduino data types. The Arduino C/C++ data types
are converted by ros_lib through the use of special header files. We will use
some of these header files in our example with the ultrasound sensor. For now, the
subdirectory we are interested in is /examples. Type the following commands:

$ cd <sketchbook>/libraries/ros_lib/examples/

$ ls

Verify that the contents are similar to the following files:

ADC button_example IrRanger pubsub ServoControl Ultrasound

Blink Clapper Logging ServiceClient Temperature

BlinkM HelloWorld Odom ServiceServer TimeTF

These files contain examples of the ROS–Arduino code. The examples are used to
provide a basic implementation of ROS on Arduino. For example, the Temperature
code can be used to read the temperature values of a sensor connected to the
Arduino board. You can start with the examples and modify them to suit your
particular application.

Next, with your Arduino board plugged into the USB port of the computer, start the
Arduino IDE with this command:

$ arduino

The Arduino Permission Checker may appear in a pop-up window, stating that
You need to be added to the dialout group. It is important that you click on the Add
button and authenticate the selection with a password. An alternative is to enter the
following command to assign yourself to the dialout group:

$ sudo usermod -a -G dialout <username>

Chapter 8

[375]

Administrative privileges are necessary to perform either of these actions.

Check that your screen looks as follows as a result of the arduino command:

Arduino sketchbook

Controlling Your Robots with External Devices

[376]

Verify that you can access the ros_lib examples by navigating the drop-down
menus, File | Examples | ros_lib, as shown in the following screenshot:

Arduino ros_lib installed

Chapter 8

[377]

Also, check the serial port connection to the Arduino board. To list the available
serial ports on your computer, use the following command:

$ ls /dev/tty*

From the Arduino IDE drop-down menu, Tools | Serial Port, verify the serial port
connection. Our Arduino is connected to /dev/ttyACM0, as shown in the following
screenshot:

Connecting to a serial port

The ROS wiki presents a series of tutorials related to the rosserial_arduino
package. These tutorials are listed and can be accessed from http://wiki.ros.org/
rosserial_arduino/Tutorials.

The following example demonstrates the use of a ROS node running on Arduino
publishing a sensor_msgs/Range message. This message contains distance data
retrieved from an HC-SR04 ultrasonic sensor.

http://wiki.ros.org/rosserial_arduino/Tutorials
http://wiki.ros.org/rosserial_arduino/Tutorials

Controlling Your Robots with External Devices

[378]

Ultrasonic sensor control using ROS and Arduino
As an example of interfacing a sensor with the Arduino board, we will add an HC-
SR04 ultrasonic range sensor. The following screenshot shows the face of the sensor:

HC-SR04 ultrasonic sensor

In operation, the sensor emits sound pulses well beyond the range of our hearing.
If the pulses bounce off an obstacle, the returning sound wave is received by the
sensor. Knowing the speed of sound in air as Velocity, it is possible to measure the
time that the sound takes to reach the obstacle and return to the sensor, since the
distance traveled by the sound waves to the object will be:

Time refers to the total time of travel of the sound wave in its two-way trip.

The speed of sound varies with temperature and other factors, but we will use
the typical speed of sound in air at 20°C (68°F) to be 343 meters/second
(1125.3 feet/second).

Chapter 8

[379]

To use the sensor with the Arduino board, it is necessary to write code to trigger the
sensor to emit the sound and then determine the time of travel of the sound wave.
The distance between the sensor and an obstacle is determined from this time, as
shown in the previous equation. The range of the HC-SR04 sensor is 2 cm to 400 cm,
or from less than 1 inch to 13 ft.

Signals associated with the sensor are shown in the following diagram. The trigger
pulse is created by the software as an output from the Arduino board digital pins
to the Trig pin, shown in the preceding screenshot. The sensor sends out the sonic
burst after the trigger pulse has ended. The echo signal on the Echo pin of the sensor
when HIGH has a width that is proportional to the time the sound signal takes to
be emitted and then returned. This signal is connected to a digital input pin of the
Arduino board. Software is used to determine the length of the return echo pulse in
microseconds. Then, the time in microseconds is converted into distance using the
distance formula, as follows:

HC-SR04 sensor signals

According to the specifications of the HC-SR04 sensor, the trigger pulse created by
the software must be at least 10 microseconds long. The repetition time to measure
the distance to an obstacle must be greater than 25 milliseconds to ensure that the
trigger pulses do not overlap in time with the return echo pulse. This is a repetition
rate of 40 hertz. In the code to follow, the repetition time for the published range is
set at 50 milliseconds.

Controlling Your Robots with External Devices

[380]

Connecting the Arduino to the HC-SR04 ultrasonic sensor
For our setup, we used an Arduino UNO to interface with the HC-SR04 sensor. The
following list describes the connections between the sensor pins and the pins of our
Arduino UNO board:

•	 VCC of the sensor to 5V on the Arduino board for power
•	 GND of the sensor to GND on the Arduino board for the ground
•	 Trig input pin of the sensor to digital I/O pin 6 as the output of the

Arduino board
•	 Echo output pin of the sensor to digital I/O pin 5 as the input to the

Arduino board

The Arduino UNO is described at https://www.arduino.cc/en/main/
arduinoBoardUno.

Programming the Arduino to sense distance
An Arduino sketch is provided to interface with the ultrasound sensor and
determine the distance values detected by the sensor. The C code for the Arduino
should be downloaded and stored in the <sketchbook>/ultrasound_sr04 directory
as an .ino file.

Downloading the ultrasound_sr04.ino code
You can download the example code files and other support
material for this book from https://www.packtpub.com/
or at the website: https://github.com/FairchildC/ROS-
Robotics-By-Example-2nd-Edition.

The following code performs these operations:

•	 Defines the pins of the Arduino board used for the sensor and outputs the
trigger signal when the program runs

•	 Creates the node to publish range data indicating the distance between the
sensor and an object

•	 Defines the ROS topic /ultrasound and causes the range data to be
published when the code is run

https://www.arduino.cc/en/main/arduinoBoardUno
https://www.arduino.cc/en/main/arduinoBoardUno
https://www.packtpub.com/
https://github.com/FairchildC/ROS-Robotics-By-Example-2nd-Edition
https://github.com/FairchildC/ROS-Robotics-By-Example-2nd-Edition

Chapter 8

[381]

The code is as follows:

/*
 * rosserial Ultrasound Example for HC-SR04
 */

#include <ros.h>
#include <ros/time.h>
#include <sensor_msgs/Range.h>

const int echoPin = 5; //Echo pin
const int trigPin = 6; //Trigger pin

const int maxRange = 400.0; //Maximum range in centimeters
const int minRange = 0.0; //Minimum range

unsigned long range_timer; //Used to measure 50 ms interval

// instantiate node handle and publisher for
// a sensor_msgs/Range message (topic name is /ultrasound)
ros::NodeHandle nh;
sensor_msgs::Range range_msg;
ros::Publisher pub_range("ultrasound", &range_msg);

/*
 * getRange() - This function reads the time duration of the echo
 * and converts it to centimeters.
 */
float getRange(){
 int sample; //Holds time in microseconds

 // Trigger pin goes low then high for 10 us then low
 // to initiate the ultrasonic burst
 digitalWrite(trigPin, LOW);
 delayMicroseconds(2);

 digitalWrite(trigPin, HIGH);
 delayMicroseconds(10);
 digitalWrite(trigPin, LOW);

 // read pulse length in microseconds on the Echo pin
 sample = pulseIn(echoPin, HIGH);

 // sample in microseconds converted to centimeters

Controlling Your Robots with External Devices

[382]

 // 343 m/s speed of sound; time divided by 2
 return sample/58.3;
}

char frameid[] = "/ultrasound"; // global frame id string

void setup()
{
 // initialize the node and message publisher
 nh.initNode();
 nh.advertise(pub_range);

 // fill the description fields in the range_msg
 range_msg.radiation_type = sensor_msgs::Range::ULTRASOUND;
 range_msg.header.frame_id = frameid;
 range_msg.field_of_view = 0.26;
 range_msg.min_range = minRange;
 range_msg.max_range = maxRange;

 // set the digital I/O pin modes
 pinMode(echoPin, INPUT);
 pinMode(trigPin, OUTPUT);
}

void loop()
{
 // sample the range data from the ultrasound sensor and
 // publish the range value once every 50 milliseconds
 if ((millis()-range_timer) > 50){
 range_msg.range = getRange();
 range_msg.header.stamp = nh.now();
 pub_range.publish(&range_msg);
 range_timer = millis() + 50;
 }
 nh.spinOnce();
}

Executing the ultrasonic sensor program
To open the Arduino IDE, type the following command:

$ arduino

Chapter 8

[383]

From the menu bar, navigate the drop-down menus File | Sketchbook |
ultrasound_sr04 to see the following screen:

Arduino IDE with the ultrasound_sr04 code

On the toolbar menu, choose the right arrow icon to verify and upload the code to
the Arduino board and wait for the Done uploading message.

Controlling Your Robots with External Devices

[384]

In a second terminal window, start the ROS Master by typing:

$ roscore

In a third terminal window, execute the rosserial program by typing:

$ rosrun rosserial_python serial_node.py /dev/<ttyID>

Here, <ttyID> is the identifier of the serial port you are using.

Our system used /dev/ttyACM0, and our output yields the following information:

[INFO] [1505178855.571564]: ROS Serial Python Node

[INFO] [1505178855.574369]: Connecting to /dev/ttyACM0 at 57600 baud

[INFO] [1505178857.937858]: Note: publish buffer size is 280 bytes

[INFO] [1505178857.938173]: Setup publisher on ultrasound [sensor_msgs/
Range]

The rosserial_python package contains a Python implementation to allow
communication between a remote computer and an attached device capable of serial
data transfer, such as the Arduino board. The serial_node.py script creates the/
serial_node node.

The ROS data for distance will be published as range data. As the program executes,
the range value and other information is published on the /ultrasound topic with
the sensor_msgs/Range message. The message format can be seen by entering the
following command in another terminal window:

$ rosmsg show sensor_msgs/Range

The output shows the message format as follows:

uint8 ULTRASOUND=0

uint8 INFRARED=1

std_msgs/Header header

 uint32 seq

 time stamp

 string frame_id

uint8 radiation_type

float32 field_of_view

float32 min_range

float32 max_range

float32 range

Chapter 8

[385]

To see the numerical output of the /ultrasound topic, type this:

$ rostopic echo /ultrasound

The output should look similar to the following:

header:

 seq: 278

 stamp:

 secs: 1463092078

 nsecs: 3101881

 frame_id: /ultrasound

radiation_type: 0

field_of_view: 0.259999990463

min_range: 0.0

max_range: 400.0

range: 50.0

In the screen output, we see the information in the message. Note that the frame_id,
radiation_type, field_of_view (0.26), min_range, and max_range variables
were defined in the C code, which was shown previously. The range value is in
centimeters and the values are published every 50 milliseconds.

To show the topic and range values in a graphical form, type the following
command:

$ rqt_plot

Controlling Your Robots with External Devices

[386]

The rqt_plot window is shown in the next screenshot. The values will of course
depend on your setup and the distance between your sensor and the obstacle:

rqt plot of the range values in centimeters

In the screenshot, the range is a constant 50 cm and the max_range field is set to 400
cm, as defined in the code. The other values are too small to be seen on the scale.

In our test of the HC-SR04 sensor, we noticed some inaccuracies in the range
measurements. As with any sensor like HC-SR04, the system should be calibrated
and tested if you wish to ensure the accuracy of the measurement.

Other applications using ROS and Arduino
There are other sensors for ranging as well as for temperature measurement, motor
control, and many other applications. A complete list of tutorials for Arduino
applications using rosserial can be found at http://wiki.ros.org/rosserial_
arduino/Tutorials.

http://wiki.ros.org/rosserial_arduino/Tutorials
http://wiki.ros.org/rosserial_arduino/Tutorials

Chapter 8

[387]

rosserial can also be used to set up wireless communication using rosserial_
xbee tools in order to create sensor networks using XBee devices and Arduino. More
information on this is available at http://wiki.ros.org/rosserial_xbee.

Using Raspberry Pi
The Raspberry Pi board is a general-purpose computer that contains a version of the
Linux operating system called Raspbian. The Pi can process multiple ROS nodes at a
time and can take advantage of many features of ROS. It can handle multiple tasks at
a time and perform intense processing of images or complex algorithms.

There are several versions of Raspberry Pi available on the market. Each model
is based on a Broadcom system on a chip (SOC) with an ARM processor and a
VideoCore graphics processing unit (GPU). Models vary in the amount of board
memory available, and a Secure Digital (SD) card is used for booting and long-term
storage. Boards are available pre-configured with a variety of USB ports, HDMI and
composite video output, RJ45 Ethernet, WiFi 802.11n, and Bluetooth communication.

To set up your Raspberry Pi and configure the Raspbian operating system, refer to
these websites:

•	 https://www.raspberrypi.org/documentation/setup/

•	 https://www.raspberrypi.org/documentation/installation/

To configure your Raspberry Pi, see the website https://www.raspberrypi.org/
documentation/configuration/.

To get started learning about Raspbian and interfacing with the general-purpose
I/O, camera modules, and communication methods, refer to https://www.
raspberrypi.org/documentation/usage/.

Technical documentation of the hardware is available at https://www.
raspberrypi.org/documentation/hardware/.

Installing ROS on the Raspberry Pi
The installation instructions for loading ROS Kinetic onto the Raspberry Pi can be
found at http://wiki.ros.org/ROSberryPi/Installing%20ROS%20Kinetic%20
on%20the%20Raspberry%20Pi.

These instructions are for a source installation of ROS onto a Raspberry Pi with the
Raspian version Jessie installed for the operating system. A catkin workspace needs
to be created for the source packages, and the ROS–Comm variation is recommended
to install basic ROS packages, build tools, and communication libraries. Packages for
GUI tools are not downloaded as part of this variation.

http://wiki.ros.org/rosserial_xbee
https://www.raspberrypi.org/documentation/setup/
https://www.raspberrypi.org/documentation/installation/
https://www.raspberrypi.org/documentation/configuration/
https://www.raspberrypi.org/documentation/configuration/
https://www.raspberrypi.org/documentation/usage/
https://www.raspberrypi.org/documentation/usage/
https://www.raspberrypi.org/documentation/hardware/
https://www.raspberrypi.org/documentation/hardware/
http://wiki.ros.org/ROSberryPi/Installing%20ROS%20Kinetic%20on%20the%20Raspberry%20Pi
http://wiki.ros.org/ROSberryPi/Installing%20ROS%20Kinetic%20on%20the%20Raspberry%20Pi

Controlling Your Robots with External Devices

[388]

The projects you can undertake with the Raspberry Pi and ROS (sometimes called
ROSberry Pi) are limitless. You can create programs in either Python or C++. A
collection of examples can be found at these websites:

•	 http://wiki.ros.org/rosserial_embeddedlinux/Tutorials

•	 http://wiki.ros.org/ROS/Tutorials

•	 http://www.takktile.com/tutorial:raspberrypi-ros

Summary
This chapter has described ROS interfaces for a number of external devices used
for robot control. The advantages of ROS extend to these types of interfaces, as it is
evident in the common method and message structure used across similar devices.
For game controllers, a custom interface was created using an Xbox 360 controller
for the Turtlesim simulation. The buttons and axes for the Xbox 360 controller were
mapped so that we could select a button and axes to use for Turtlesim control. A
Python script was shown that caused the turtle to move when a joystick was moved
or a certain button was pressed.

Android devices can also provide a common ROS interface for controlling robots.
We looked at some instructions for installing the software and tools to set up a ROS-
Android development environment. We also looked at the key terminology for
Android development.

Embedded systems such as the Arduino and Raspberry Pi are often used for
controlling robots and interfacing to sensors. ROS nodes can run on these
devices and publish messages over topics to nodes on other computers. For
serial communication, ROS provides the rosserial protocol and metapackage
to standardize this interface. Instructions for installing the Arduino–ROS and
Raspberry Pi–ROS development environments were presented. Within the Arduino
IDE, software was written to create a node and publish a message containing sensor
data from an HC-SR04 ultrasound sensor.

In the next chapter, Flying a Mission with Crazyflie, we will leverage all of our current
ROS knowledge (and then some) to autonomously fly a quadrotor to a specific
location. An external camera will be used to coordinate the flight and identify the
quadrotor and the location of the target.

http://wiki.ros.org/rosserial_embeddedlinux/Tutorials
http://wiki.ros.org/ROS/Tutorials
http://www.takktile.com/tutorial:raspberrypi-ros

[389]

Flying a Mission with Crazyflie
Robots are fun and sometimes frustrating to program. Quadrotors are particularly
difficult to control due to the number of flight factors and the complexity of flight
programs required to manage these factors. Quadrotors are currently being tested
for surveillance cameras and delivery vehicles for packages and fast food. In this
chapter, we will explore the subject of programming quadrotors to fly to specific
destinations. This application may be handy for delivering coffee and paperwork
around the office. We will begin by using a barebones quadrotor and an inexpensive
depth camera to sense the quadrotor's location.

This chapter will highlight the use of ROS communication to coordinate the locations
of the quadrotor and the target. A Kinect sensor will be used to visualize the
environment and the position of the quadrotor in it to coordinate its landing at a
marked location. ROS tf transforms and pose messages will be generated to identify
the reference frames and positions of the quadrotor and the target. The transforms
enable the control commands to be published to bring the quadrotor to the target
location. The navigation, flying, and landing mission implements a spectrum of ROS
components—including nodes, topics, messages, services, launch files, tf transforms,
rqt, and more—taught in this book.

Flying a Mission with Crazyflie

[390]

We will set up this mission scenario between a Crazyflie 2.0, a Kinect for Windows
v2 (called Kinect v2 in this chapter), and a target marker acting as the landing
position on top of a TurtleBot. The following image shows the arrangement of
our setup. Feel free to follow these instructions to prepare an arrangement of the
quadrotor, target, and image sensor with the equipment you have available.

Mission setup

For our mission, Crazyflie will be controlled to hover, fly and land. In this chapter,
we will address the following to achieve this mission:

•	 Detecting the Crazyflie on a Kinect v2 image
•	 Establishing a tf framework to support the configuration of our camera

and robot
•	 Determining the Cartesian coordinates (x, y, z) of the Crazyflie with respect

to the image
•	 Publishing a tf transform of the coordinates
•	 Controlling the Crazyflie to hover at its initial location
•	 Locating a target on the video image, determining its coordinates, and

publishing its pose
•	 Controlling the Crazyflie to takeoff, fly to the target and land

Chapter 9

[391]

Mission components
The components we will use in this mission include a Crazyflie 2.0 quadrotor, a
Crazyradio PA, a Kinect for the Windows v2 sensor, and a workstation computer.
Chapter 7, Making a Robot Fly, describes the Crazyflie and Crazyradio and their
operations. Chapter 4, Navigating the World with TurtleBot, is a good introduction to
a depth sensor such as the Kinect v2. It is recommended to review these chapters
before beginning this mission.

Kinect for Windows v2
Kinect v2 is an infrared time of flight depth sensor that operates at a higher
resolution than the Kinect for Xbox 360. The modulated infrared beam measures
how long it takes for the light to travel to the object and back, providing a more
accurate measurement. This sensor has improved performance in dark rooms and
in sunny outdoor conditions. With a horizontal field of view (FOV) of 70 degrees
and a vertical FOV of 60 degrees, the infrared sensor can accurately detect distances
ranging from 0.5 to 4.5 meters (20 inches to 14.75 feet) within this FOV. The image
resolution for the depth camera is 512 x 424 at a rate of 30 frames per second. The
Kinect v2 must be connected to a USB 3.0 port on the workstation computer in order
to provide the image data. External electrical power for the Kinect is also required.

Kinect v2 produces a large amount of image data that can overwhelm the
workstation computer if it is not equipped with a separate graphics processing
unit (GPU). The ROS packages libfreenect2 and iai_kinect2 were developed
to interface with Kinect v2 for image-processing applications. The iai_kinect2
package provides tools for calibrating the sensor and viewing color and depth
images from Kinect v2. Kinect images are used with OpenCV tools to process the
images for object detection. The OpenCV and ROS section provides background
information and describes how these two tools are interfaced.

Kinect's color images will be evaluated to locate markers for the Crazyflie and the
target positions. These markers will enable the position and altitude of the quadrotor
and the target to be determined with respect to the image frame. These positions are
not related to real-world coordinates but applied in relation to the sensor's image
frame. A ROS tf transform is published to advertise the location of the Crazyflie.

Flying a Mission with Crazyflie

[392]

Crazyflie operation
Controlling a quadrotor is the subject of a vast amount of literature. To control
Crazyflie, our plan is to follow the same type of control prepared by Wolfgang
Hoenig in his success with the crazyflie metapackage (https://github.com/
whoenig/crazyflie_ros). This package was developed as part of his research at
the ACT Lab at the University of Southern California (http://act.usc.edu/).
Within his crazyflie_controller package, he created a controller that uses PID
control for each of Crazyflie's four dimensions of control: pitch, roll, thrust, and
yaw. Our software design mimics this approach but deviates in key areas, as the
singular image view of the Kinect requires changes to the control parameters. We
also changed the software to Python. A vast amount of testing was required to attain
control of a Crazyflie in a hover state. When hover results were acceptable, testing
advanced further to add the challenge of flying to the target. Further testing was
required to improve flight control.

The controller software uses the difference between the Crazyflie's current position
and the goal position (either hover or target) to send correction commands to fly
closer to the goal position. This iteration continues every 20 milliseconds with a new
position for Crazyflie detected and a new correction computed and sent. This is a
closed-loop system that computes the difference between positions, and commands
the Crazyflie to fly in the direction of the goal position.

During testing, Crazyflie lived up to its name and would arbitrarily fly to various
corners of the room, out of control. Implementing a new ROS node took care of
this unwanted behavior. The node crazyflie_window was designed to be an
observer of Crazyflie's location in the image frame. When Crazyflie's location came
too close to the image's edge, a service command was sent to the controller and an
appropriate command was published to Crazyflie to fly towards the interior of the
image. This implementation resulted in no more flyaway behavior and saved on
broken motor mounts.

Mission software structure
The code developed for this mission is contained in the crazyflie_autonomous
package and divided into four different nodes:

•	 crazyflie_detector in the detect_crazyflie.py file
•	 target_detector in the detect_target.py file
•	 crazyflie_controller in the control_crazyflie.py, pid.py, and

crazyflie2.yaml files
•	 crazyflie_window in the watcher.py file

https://github.com/whoenig/crazyflie_ros
https://github.com/whoenig/crazyflie_ros
http://act.usc.edu/

Chapter 9

[393]

This mission also relies on a portion of Wolfgang Hoenig's crazyflie metapackage
that was described in Chapter 7, Making a Robot Fly. The nodes used are as follows:

•	 crazyflie_server (crazyflie_server.cpp from the crazyflie_driver
package)

•	 crazyflie_add (crazyflie_add.cpp from the crazyflie_driver package)
node runs briefly during Crazyflie startup to set initial parameters for the
Crazyflie.

•	 joystick_controller (controller.py from the crazyflie_demo package)

A third set of nodes is generated by other packages:

•	 baselink (static_transform_publisher from the tf package)
•	 joy (the joy package)
•	 kinect2_bridge (the iai_kinect2/kinect2_bridge package) The

kinect2_bridge works between the Kinect v2 driver (libfreenect2) and
ROS. Image topics are produced by the kinect2 node.

The relationship between these nodes is shown in the following node graph:

Nodes and topics for Crazyflie mission

Flying a Mission with Crazyflie

[394]

All of the code for Chapter 9, Flying a Mission with Crazyflie is available
online at the Packt Publishing website: http://www.PacktPub.
com or https://github.com/FairchildC/ROS-Robotics-
By-Example-2nd-Edition. The code is too extensive to include
in this chapter. Only important portions of the code are described in
the following sections to aid in the learning of the techniques used for
this mission.

Python code within a package should be executable. For Python
code within your crazyflie_autonomous/scripts directory,
use the command:
$ chmod +x *.py

OpenCV and ROS
In the previous two chapters (Chapter 4, Navigating the World with TurtleBot and
Chapter 6, Wobbling Robot Arms using Joint Control), we introduced and described
a little about the capabilities of OpenCV. Since this mission heavily relies on the
interface between ROS and OpenCV, and also on the OpenCV library, we will go
into further background details about OpenCV.

OpenCV is a library of powerful computer vision tools for a vast expanse of
applications. It was originally developed at Intel by Gary Bradsky in 1999 as a
C library. The upgrade to OpenCV 2.0 was released in October 2009 with a C++
interface. Much of this work was done at Willow Garage, headed by Bradsky and
Vadim Pisarevsky. It is open source software with a BSD license, and free for both
academic and for commercial use. OpenCV is available on multiple operating
systems, including Windows, Linux, macOS, Android, iOS, and more. The primary
interface for OpenCV is C++, but programming language interfaces exist for Python,
C, Java, MATLAB/Octave, and wrappers for C# and Ruby.

The OpenCV library contains more than 2,500 effective and efficient vision
algorithms for a wide range of vision-processing and machine learning applications.
The fundamental objective is to support real-time vision applications, such as
tracking moving objects and detecting and recognizing faces for surveillance. Many
other algorithms support object identification, the tracking of human gestures and
facial expressions, the production of 3D models of objects, the construction of 3D
point clouds from stereo camera data, and the modeling of scenes based on multiple
image sources, to name just a few. This extensive library of tools is used throughout
the industry and in academia and government as well.

http://www.PacktPub.com
http://www.PacktPub.com
https://github.com/FairchildC/ROS-Robotics-By-Example-2nd-Edition
https://github.com/FairchildC/ROS-Robotics-By-Example-2nd-Edition

Chapter 9

[395]

To learn more about OpenCV, visit http://opencv.org/. This website provides
access to excellent tutorials, documentation on structures and functions, and an API
interface for C++, and to a lesser extent Python. ROS Kinetic Kame uses OpenCV
version 3 as its default version.

ROS provides the vision_opencv stack to integrate the power of the OpenCV
library of tools. The wiki website for this interface stack is http://wiki.ros.org/
vision_opencv.

The OpenCV software and the ROS vision_opencv stack were installed when
you performed the ROS software install of the ros-kinetic-desktop-full
configuration in Chapter 1, Getting Started with ROS. To install only the OpenCV
library with the ROS interface and Python wrapper, use the following command:

$ sudo apt-get install ros-kinetic-vision-opencv ros-kinetic-opencv3

This vision_opencv stack currently provides two packages: cv_bridge and image_
geometry. The cv_bridge package is the connection between ROS messages and
OpenCV. It provides the conversion of OpenCV images into ROS images and vice
versa. The image_geometry package contains a powerful library of image processing
tools for both Python and C++. Images can be handled with respect to the camera
parameters provided in the CameraInfo messages. It is also used with camera
calibration and image rectification.

For this mission, we will use OpenCV algorithms to analyze the Kinect image and
detect the Crazyflie and target within the scene. Using the location of the Crazyflie
and target, the Crazyflie will be given commands to fly to the location of the target.
This scenario hides the layers of complex computation and understanding required
to perform this seemingly simple task.

Loading software for the mission
Part of the software that is needed to perform this cooperative mission has been
installed in previous chapters. Refer back to the previous chapters for software that is
required to perform this mission:

•	 The ROS software installation of the ros-kinetic-desktop-full
configuration is described in the Installing and launching ROS section of
Chapter 1, Getting Started with ROS

•	 The installation of Crazyflie ROS software is described in the Loading
Crazyflie ROS software section of Chapter 7, Making a Robot Fly

http://opencv.org/
http://wiki.ros.org/vision_opencv
http://wiki.ros.org/vision_opencv

Flying a Mission with Crazyflie

[396]

Software for the Kinect v2 to interface with ROS requires the installation of two
items: libfreenect2 and iai_kinect2. The following sections provide the details of
these installations.

Installing libfreenect2
The libfreenect2 software provides an open-source driver for Kinect v2. This
driver does not support the Kinect for Xbox 360 or Xbox One. Libfreenect2 provides
for the image transfer of RGB and depth as well as the combined registration of
RGB and depth. Image registration aligns the color and depth images for the same
scene into one reference image. Kinect v2 firmware updates are not supported in
this software.

The installation instructions can be found at https://github.com/OpenKinect/
libfreenect2. The website lists installation instructions for Windows, macOS, and
Linux operating systems. It is important to follow these directions accurately and
read all the related troubleshooting information to ensure a successful installation.
The instructions provided here are tested for Ubuntu 16.04 and will load the software
into the current directory. This installation can be either local to your home directory
or system wide if you have sudo privileges.

To install the libfreenect2 software in your home directory, type the following:

$ git clone https://github.com/OpenKinect/libfreenect2.git

$ cd ~/libfreenect2

A number of build tools are required to be installed as well:

$ sudo apt-get install build-essential cmake pkg-config

The libusb package provides access for the Kinect v2 to the USB device on your
operating system. Install libusb with the following command:

$ sudo apt-get install libusb-1.0-0-dev

TurboJPEG provides a high-level open-source API for compressing and
decompressing JPEG images in the memory to improve CPU/GPU performance.
Install the following packages for TurboJPEG by typing:

$ sudo apt-get install libturbojpeg libjpeg-turbo8-dev

Open Graphics Library (OpenGL) is an open-source cross-platform API with a
variety of functions designed to improve graphics processing performance. To install
OpenGL's packages, type the following commands:

$ sudo apt-get install libglfw3-dev

https://github.com/OpenKinect/libfreenect2
https://github.com/OpenKinect/libfreenect2

Chapter 9

[397]

Some of these packages may already be installed on your system. You will receive a
screen message indicating that the latest version of the package is installed.

Additional software packages can be installed to use with libfreenect2, but they
are optional:

•	 Open Computing Language (OpenCL) creates a common interface despite
the underlying computer system platform. The libfreenect2 software uses
OpenCL to perform more effective processing on the system.
The OpenCL software requires that certain underlying software be installed
to ensure that the libfreenect2 driver can operate on your processor.
OpenCL dependencies are specific to your computer system's GPU.
Refer to the detailed instructions at https://github.com/OpenKinect/
libfreenect2.

•	 Installation instructions for CUDA (used with Nvidia), Video Acceleration
API (VAAP) (used with Intel), and Open Natural Interaction (OpenNI2) are
provided at the libfreenect2 website.

Whether or not you install the optional software, the last step will be to build the
actual Protonect executable using the following commands:

$ cd ~/libfreenect2

$ mkdir build

$ cd build

$ cmake .. -DCMAKE_INSTALL_PREFIX=$HOME/freenect2

$ make

$ make install

Remember that udev rules are used to manage system devices and create device
nodes for the purpose of handling external devices, such as Kinect. Most likely, an
udev rule will be required so that you will not need to run Protonect for the Kinect
with sudo privileges. For this reason, it is necessary to copy the udev rule from its
place in the downloaded software to the /etc/udev/rules.d directory:

$ sudo cp ~/libfreenect2/platform/linux/udev/90-kinect2.rules /etc/udev/
rules.d

https://github.com/OpenKinect/libfreenect2
https://github.com/OpenKinect/libfreenect2

Flying a Mission with Crazyflie

[398]

Now you are ready to test the operation of your Kinect. Verify that the Kinect v2
device is plugged into power and into the USB 3.0 port of the computer. If your Kinect
was plugged in prior to installing the udev rule, unplug and reconnect the sensor.

Remember that the Kinect v2 can only be used through a
USB 3.0 port.

Now run the program using the following command:

$./libfreenect2/build/bin/Protonect

You are successful if a terminal window opens with four camera views. The
following screenshot shows our Kinect pointed at Baxter:

Protonect output

Use Ctrl + C keys in the terminal window to quit Protonect.

If you are experiencing problems, check the libfreenect2 software GitHub for the
latest master release and installation instructions.

Chapter 9

[399]

If you experience errors, refer to the FAQ at https://github.com/OpenKinect/
libfreenect2 and the issues at https://github.com/OpenKinect/libfreenect2/
wiki/Troubleshooting.

Protonect is a very useful tool when it comes to checking out
the operation of your Kinect v2. Anytime the Kinect seems to
work improperly, use Protonect to check the operation of the
libfreenect2 driver. The command to do this is:
$./libfreenect2/build/bin/Protonect

Installing iai_kinect2
The iai_kinect2 software is a library of functions and tools that provide the ROS
interface for Kinect v2. The libfreenect2 driver is required for using the iai_
kinect2 software library. The iai_kinect2 package was developed by Thiemo
Wiedemeyer of the Institute for Artificial Intelligence at the University of Bremen.

Instructions for the installation of the software can be found at:

https://github.com/code-iai/iai_kinect2

For a cooperative mission, you can decide to either add the software to the
crazyflie_ws workspace or create a new catkin workspace for this software. The
authors decided to create a new catkin workspace called mission_ws to contain
the software for the iai_kinect2 metapackage and the crazyflie_autonomous
package developed for this mission.

To install the iai_kinect2 software, move to your catkin workspace src directory
and clone the repository:

$ cd ~/<your_catkin_ws>/src/

$ git clone https://github.com/code-iai/iai_kinect2.git

Next, move into the iai_kinect2 directory, install the dependencies, and build the
executable:

$ cd iai_kinect2

$ rosdep install -r --from-paths .

$ cd ~/<your_catkin_ws>

$ catkin_make -DCMAKE_BUILD_TYPE="Release"

https://github.com/OpenKinect/libfreenect2
https://github.com/OpenKinect/libfreenect2
https://github.com/OpenKinect/libfreenect2/wiki/Troubleshooting
https://github.com/OpenKinect/libfreenect2/wiki/Troubleshooting
https://github.com/code-iai/iai_kinect2

Flying a Mission with Crazyflie

[400]

Notice that running the rosdep command will output an error
regarding not being able to locate [kinect2_bridge] and
[kinect2_registration]. Disregard this error because these
packages are part of the iai_kinect2 metapackage and rosdep
is unaware of these packages at this time.

Now it is time to operate the Kinect sensor using the kinect2_bridge launch file.
Type the following command:

$ roslaunch kinect2_bridge kinect2_bridge.launch

At the end of a large amount of screen output, you should see this line:

[INFO] [Kinect2Bridge::main] waiting for clients to connect

If you are successful, congratulations! Great work! If not, start your diagnosis by
referring to the kinect2_bridge is not working/crashing, what is wrong? FAQ and other
helpful queries at https://github.com/code-iai/iai_kinect2.

When you receive the waiting for clients to contact message, the next step is
to view the output images of kinect2_bridge. To do this, use kinect2_viewer by
typing in the following:

$ rosrun kinect2_viewer kinect2_viewer

The output should be as follows:

[INFO] [main] topic color: /kinect2/qhd/image_color_rect

[INFO] [main] topic depth: /kinect2/qhd/image_depth_rect

[INFO] [main] starting receiver...

Our screen shows the following image:

https://github.com/code-iai/iai_kinect2

Chapter 9

[401]

kinect2_viewer output

Use Ctrl + C in the terminal window to quit kinect2_viewer.

As shown in the preceding screenshot, kinect2_viewer has the default settings of
quarter high definition (qhd), image_color_rect, and image_depth_rect. This
Cloud Viewer output is the default viewer. These settings and other options for
kinect2_viewer will be described in more detail in the following section.

The next section describes the packages that are contained in the iai_kinect2
metapackage. These packages make the job of interfacing to the Kinect v2 flexible
and relatively straightforward. It is extremely important to calibrate your Kinect
sensor to align the RGB camera with the infrared (IR) sensor. This alignment will
transform the raw images into a rectified image. The kinect2_calibration tool that
can be used to perform this calibration and the calibration process is described in the
next section.

Flying a Mission with Crazyflie

[402]

Using the iai_kinect2 metapackage
The IAI Kinect 2 library provides the following tools for the Kinect v2:

•	 kinect2_calibration: This tool is used to align the Kinect RGB camera
with its IR camera and depth measurements. It relies on the functions of the
OpenCV library for image and depth processing.

•	 kinect2_registration: This package projects the depth image onto the
color image to produce the depth registration image. OpenCL or Eigen must
be installed for this software to work. It is recommended to use OpenCL to
reduce the load on the CPU and obtain the best performance possible.

•	 kinect2_bridge: This package provides the interface between the Kinect
v2 driver, libfreenect2, and ROS. This real-time process delivers Kinect
v2 images at 30 frames per second to the CPU/GPU. The kinect2_bridge
software is implemented with OpenCL to take advantage of the system's
architecture for processing depth registration data.

•	 kinect2_viewer: This viewer provides two types of visualization: a color
image overlaid with a depth image or a registered point cloud.

Additional information is provided in later sections.

kinect2_bridge and kinect2_viewer
The kinect2_bridge and kinect2_viewer provide several options for producing
images and point clouds. Three different resolutions are available from the
kinect2_bridge interface: Full HD (1920 x 1080), quarter Full HD (960 x 540), and
raw IR/depth images (512 x 424). Each of these resolutions can produce a number of
different images, such as the following:

•	 image_color

•	 image_color/compressed

•	 image_color_rect

•	 image_color_rect/compressed

•	 image_depth_rect

•	 image_depth_rect/compressed

•	 image_mono

•	 image_mono/compressed

•	 image_mono_rect

•	 image_mono_rect/compressed

•	 image_ir

Chapter 9

[403]

•	 image_ir/compressed

•	 image_ir_rect

•	 image_ir_rect/compressed

•	 points

The kinect2_bridge software limits the depth range for the sensor between 0.1 and
12.0 meters. For more information on these image topics, refer to the documentation
at https://github.com/code-iai/iai_kinect2/tree/master/kinect2_bridge.

The kinect2_viewer has the command-line options to bring up the different
resolutions described previously. These modes are as follows:

•	 hd: for Full High Definition (Full HD)
•	 qhd: for quarter Full HD
•	 sd: for raw IR/depth images

Visualization options for these modes can be image for a color image overlaid with
a depth image, cloud for a registered point cloud, or both to bring up both the
visualizations in different windows. An example command is:

$ rosrun kinect2_viewer kinect2_viewer sd cloud

kinect2_calibration
The kinect2_calibration tool requires the use of a chessboard or circle board
pattern to align the color and depth images. A number of patterns are provided
in the downloaded iai_kinect2 software, inside the kinect2_calibration/
patterns directory. For a detailed description of how the 3D calibration works, refer
to the OpenCV website at http://opencv-python-tutroals.readthedocs.io/en/
latest/py_tutorials/py_calib3d/py_calibration/py_calibration.html.

The iai_kinect2 calibration instructions can be found at https://github.com/
code-iai/iai_kinect2/tree/master/kinect2_calibration.

We used the chess5x7x0.03 pattern to calibrate our Kinect and printed it on plain
8.5 x 11 inch paper. Be sure to check the dimensions of the squares to assure that they
are the correct measurement (3 centimeters in our case). Sometimes, printers may
change the size of objects on the page. Next, mount your pattern on a flat, moveable
surface, assuring that the pattern is smooth and no distortions will be experienced
that will corrupt your sensor calibration.

https://github.com/code-iai/iai_kinect2/tree/master/kinect2_bridge
http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_calib3d/py_calibration/py_calibration.html
http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_calib3d/py_calibration/py_calibration.html
https://github.com/code-iai/iai_kinect2/tree/master/kinect2_calibration
https://github.com/code-iai/iai_kinect2/tree/master/kinect2_calibration

Flying a Mission with Crazyflie

[404]

The Kinect should be mounted on a stationary surface and a tripod works well. The
Kinect will be positioned in one location for the entire calibration process. Adjust it
to align it with a point straight ahead in an open area, in which you will be moving
around the calibration chess pattern. The instructions mention the use of a second
tripod for mounting the chess pattern, but we found it easier to move the pattern
around by hand (using a steady hand). It is important to obtain clear images of the
pattern from both the RGB and IR cameras.

If you wish to judge the effects of the calibration process, use the kinect2_bridge
and kinect2_viewer software to view and take the initial screenshots of the
registered depth images and point cloud images of your scene. When the calibration
process is complete, repeat the screenshots and compare the results.

Calibrating your Kinect
First, you will need to make a directory on your computer to hold all of the
calibration data that is generated for this process. To do this, type the following:

$ mkdir ~/kinect_cal_data

$ cd ~/kinect_cal_data

To start the calibration process, set up your Kinect and run:

$ roscore

In a second terminal window, start kinect2_bridge but pass the parameter
for setting a low number of frames per second. This will reduce the CPU/GPU
processing load:

$ rosrun kinect2_bridge kinect2_bridge _fps_limit:=2

Notice as the software runs, similar output should come onto the screen:

[Info] [Freenect2Impl] 9 usb devices connected

[Info] [Freenect2Impl] found valid Kinect v2 @2:3 with serial
501493641942

[Info] [Freenect2Impl] found 1 devices

[INFO] [Kinect2Bridge::initDevice] Kinect2 devices found:

[INFO] [Kinect2Bridge::initDevice] 0: 501493641942 (selected)

Chapter 9

[405]

Your data will be different, but note the serial number of your Kinect v2 (ours is
501493641942). When the waiting for clients to connect, text appears on the screen;
type the following command:

$ rosrun kinect2_calibration kinect2_calibration <type of pattern> record
color

Our <type of pattern> is the chess5x7x0.03 pattern. This command will start the
process for calibrating the color camera. Notice the output on the screen:

[INFO] [main] Start settings:

Mode: record

Source: color

Board: chess

Dimensions: 5 x 7

Field size: 0.03

Dist. model: 5 coefficients

Topic color: /kinect2/hd/image_mono

Topic ir: /kinect2/sd/image_ir

Topic depth: /kinect2/sd/image_depth

Path: ./

[INFO] [main] starting recorder...

[INFO] [Recorder::startRecord] Controls:

[ESC, q] - Exit

[SPACE, s] - Save current frame

[l] - decrease min and max value for IR value range

[h] - increase min and max value for IR value range

[1] - decrease min value for IR value range

[2] - increase min value for IR value range

[3] - decrease max value for IR value range

[4] - increase max value for IR value range

[INFO] [Recorder::store] storing frame: 0000

As the screen instructions indicate, after you have positioned the pattern board in the
image frame, hit the spacebar (or S) key on the keyboard to take a picture. Be sure
that the cursor is focused on the terminal window. Every time you hit the spacebar, a
.png and .yaml file will be created in the current directory (~/kinect_cal_data).

Flying a Mission with Crazyflie

[406]

The following screenshot shows a rainbow-colored alignment pattern that overlays
the camera image when the pattern is acceptable for calibration. If this pattern does
not appear, hitting the spacebar will not record the picture. If the complete pattern is
not visible in the scene, the rainbow colors will all turn red because part of the board
pattern cannot be observed in the image frame:

Calibration alignment pattern

We recommend that you run the following command in another terminal window:

$ rosrun kinect2_viewer kinect2_viewer sd image

The image viewer will show the image frame for the combined color/depth image.
This frame has smaller dimensions than the RGB camera frame in Full HD, and it is
important to keep all your calibration images within this frame. If not, the calibration
process will try to shrink the depth data into the center of the full RGB frame and
your results will be unusable.

Move the pattern from one side of the image to the other, taking pictures from
multiple spots. Hold the board at different angles to the camera (tilting the board) as
well as rotating it around its center. The rainbow-colored pattern on the screen will
be your clue as to when the image can be captured. It is suggested to take pictures
of the pattern at varying distances from the camera. Keep in mind that the Kinect's
depth sensor range is from 0.5 to 4.5 meters (20 inches to over 14 feet). In total, a set
of 100 or more calibration images is suggested for each calibration run.

Chapter 9

[407]

When you have taken a sufficient number of images, use the Esc key (or Q) to exit
the program. Execute the following command to compute the intrinsic calibration
parameters for the color camera:

$ rosrun kinect2_calibration kinect2_calibration chess5x7x0.03 calibrate
color

Be sure to substitute your type of pattern in the command. Next, begin the process
for calibrating the IR camera by typing in this command:

$ rosrun kinect2_calibration kinect2_calibration chess5x7x0.03 record ir

Follow the same process that you did with the color camera, taking an additional
100 pictures or more. Then, compute the intrinsic calibration parameters for the IR
camera using the following command:

$ rosrun kinect2_calibration kinect2_calibration chess5x7x0.03 calibrate
ir

Now that the color and IR cameras have been calibrated individually, it is time to
record images from both the cameras synchronized:

$ rosrun kinect2_calibration kinect2_calibration chess5x7x0.03 record
sync

Take an additional 100 or more images. The extrinsic calibration parameters are
computed with the following command:

$ rosrun kinect2_calibration kinect2_calibration chess5x7x0.03 calibrate
sync

The following command calibrates depth measurements:

$ rosrun kinect2_calibration kinect2_calibration chess5x7x0.03 calibrate
depth

At this point, all of the calibration data has been computed and the data must be
saved to the appropriate location for use by the kinect2_bridge software. Recall
the serial number of your Kinect that you noted earlier from the kinect2_bridge
screen output. Create a directory with this serial number under the kinect2_
bridge/data directory:

$ roscd kinect2_bridge/data

$ mkdir <Kinect serial #>

Copy the following calibration files from ~/kinect_cal_data to the kinect2_
bridge/data/<Kinect serial#> directory you just created:

$ cp ~/kinect_cal_data/c*.yaml <Kinect serial#>

Flying a Mission with Crazyflie

[408]

Your kinect2_bridge/data/<Kinect serial#> directory should look similar to
the following screenshot:

Kinect v2 calibration data files

Running kinect2_viewer again should show an alignment of the color and depth
images with strong edges at the corners and on the outlines. The kinect2_bridge
software will automatically check for the Kinect's serial number under the data
directory and use the calibration data if it exists.

Setting up the mission
For the Kinect, our workstation computer requires us to run Protonect prior to using
the kinect2_bridge software. If you have trouble launching the kinect2_bridge
software, use the following command before you begin:

$./libfreenect2/build/bin/Protonect

Verify that Protonect shows color, depth, and IR images and that none of the screens
are black. Be aware that Protonect has three optional parameters: cl (for OpenCL),
gl (for OpenGL) or cpu (for CPU support). These options can be useful for testing
the Kinect v2 operation.

If Protonect has successfully brought up the Kinect image, then press Ctrl + C to close
this window. The kinect2_bridge and kinect2_viewer should then work properly
until the system is restarted.

Next, we must determine how to identify our robots within the frame of the
Kinect image.

Chapter 9

[409]

Detecting Crazyflie and a target
For our Crazyflie and target location, we have prepared markers to uniquely identify
them in our lab environment. For the Crazyflie, we have placed a lightweight green
ball on top of its battery and attached it with a sticky mounting tab. For the target,
we have placed a pink paper rectangle at the target location. The first step is to find a
unique way to identify these markers and find their locations within the Kinect image.

OpenCV offers over 150 color conversion options for processing images. For object
tracking, the simplest and recommended method is to convert the blue-green-red
(BGR) image to hue-saturation and value (HSV). This is an easy and effective
method for selecting an object of a desired color. An OpenCV tutorial on object
tracking can be found at http://opencv-python-tutroals.readthedocs.io/en/
latest/py_tutorials/py_imgproc/py_colorspaces/py_colorspaces.html.

A complete method for object tracking is described in the following sections.

Identifying markers in a color image
The color of these identifiers will be used in our software to pinpoint the location of
the quadrotor and the target. First, we must determine the numerical values of the
HSV components of their colors. This is done by grabbing an image of the marker
with the Kinect and using the GNU Image Manipulator Program (GIMP) software
on Ubuntu to classify the HSV numbers.

Start by running the kinect2_bridge launch file and kinect2_viewer in separate
terminal windows:

$ roslaunch kinect2_bridge kinect2_bridge.launch

$ rosrun kinect2_viewer kinect2_viewer

Adjust the Kinect to find an image of your Crazyflie and/or your target on your
computer screen. For this exercise, these robots can be in the same view, or you can
perform these steps one at a time for each of the markers. Use the Alt + Print Screen
keys or your favorite screen-capture program to snap a picture of the scene and save
it to a file. Click on the Dash tool in the Ubuntu Launcher and type in GIMP to find
the GIMP application software.

After starting the GIMP software, open the image and select the following two
options from the top menu bar:

•	 Under the Tools options, select Color Picker (notice the cursor changes to an
eyedropper)

•	 Under the Windows options, select Toolbox (or New Toolbox)

http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_colorspaces/py_colorspaces.html
http://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_colorspaces/py_colorspaces.html

Flying a Mission with Crazyflie

[410]

Move the eyedropper cursor to the center of the identifier (green ball in our case) and
click the mouse button. This color will appear in the color rectangle at the bottom of
the Toolbox window. Click on this colored rectangle and the Change Foreground
Color window will appear with the color marked with crosshairs in the color image
on the left side. On the right side are the hue, saturation, value, red, green, and blue
values that correspond to that color. The following screenshot illustrates the results
of this process:

Using GIMP to find HSV numbers

For our green ball, the HSV numbers were H = 137, S = 30, and V = 96, as shown in
the previous screenshot. These values apply to the scales for GIMP integer ranges of
Hue (0 - 360), Saturation (0 - 100), and Value (0 - 100).

Now we must convert these values to the OpenCV integer ranges of Hue (0 - 179),
Saturation (0 - 255), and Value (0 - 255). Therefore, our HSV numbers are computed
as follows:

Hue: 137 / 2 ≈ 69

Saturation: 30 * 255 / 100 ≈ 77

Value: 96 * 255 / 100 ≈ 245

Chapter 9

[411]

Now, to pick range values for the software, we will apply the following rules:

Hue: use range ± 10

Saturation: use range ± 50

Value: use range ± 50

Using these as guidelines, we arrive at the range values for our green ball as follows:

Hue: (59 - 79)

Saturation: (27- 127)

Value: (195- 255)

The HSV numbers for the pink rectangle target were H = 298, S = 28, and V = 96
when the target was directly facing the Kinect. Initially, we chose the following
ranges in the code:

Hue: (139 - 159)

Saturation: (21 - 121)

Value: (240 - 255)

We modified these values later as we tested the tracking of these objects in the
Kinect image viewer. The Saturation (or whiteness) value ranges from white (0) to
full saturated color (100), and the Value (or lightness) ranges from black (0) to the
lightest color (100) in GIMP.

Problems with target detection
Tracking the target was especially tricky. As the target was placed in a horizontal
position, the light reflecting off the top of the target changed the Saturation and
Value components of its HSV. It is extremely important to test the object detection
capability from one side of the Kinect image to the other, and for different
orientations of the object. Selecting the appropriate range for HSV values is crucial to
the success of the mission. For the target, we decreased the lower range of Saturation
to improve target detection in our lighting conditions.

Flying a Mission with Crazyflie

[412]

Detecting and viewing markers with OpenCV
OpenCV is used to detect these identifiers in the Kinect image, and we use the
following code to verify that we have captured the correct identifier for the
green ball:

#!/usr/bin/env python
import cv2
import numpy

read png image and convert the image to HSV
image = cv2.imread("<path>/<png filename>", cv2.IMREAD_COLOR)
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)

find green objects in the image
lower_green = numpy.array([68, 42, 182], numpy.uint8)
upper_green = numpy.array([88, 142, 255], numpy.uint8)
mask = cv2.inRange(hsv, lower_green, upper_green)

cv2.imwrite("hsv_mask.png", mask)

This code is contained in the view_mask.py file. The kinect2_viewer_green_ball.png
file is provided with the code so that you can duplicate our steps and reproduce a file
with the HSV mask of the green ball.

To briefly explain this code, we will examine the lines in relative groupings. First, the
packages needed for this code are imported:

#!/usr/bin/env python
import cv2
import numpy

The cv2 package is the OpenCV 3.0 wrapper for Python and provides access to a
variety of vision processing functions. The numpy package is an extension of Python
that handles numerical manipulations for large multidimensional arrays and matrices.

The next section of code handles the reading of the image from a file and processes it
for HSV:

image = cv2.imread("<path>/<png filename>", cv2.IMREAD_COLOR)
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)

Chapter 9

[413]

The first command loads the image from the file using the cv2.imread function.
The first argument is the image file to be loaded, which can be any image file type.
We are using .png files. The second argument for cv2.imread specifies loading the
color image. In OpenCV, the red-green-blue (RGB) values are identified in reverse
order as BGR. This loaded image is converted from BGR to HSV using the cv2
function cvtColor.

Next, two arrays are created to contain the lower bounds and the upper bounds of
the HSV values for the green ball. The values in these arrays were identified and
calculated in the previous section, Identifying markers in a color image. These arrays are
used to find pixels in the image that fit within those bounds:

find green objects in the image
lower_green = numpy.array([68, 42, 182], numpy.uint8)
upper_green = numpy.array([88, 142, 255], numpy.uint8)
mask = cv2.inRange(hsv, lower_green, upper_green)

cv2.imwrite("hsv_mask.png", mask)

A numpy array is created with unsigned integer values for the lower bounds of H, S,
and V. A second array is created to contain the upper bounds for these elements. The
cv2 function inRange compares each pixel of the image to determine whether it falls
within these bounds. If it does, a white pixel is placed in the mask image; otherwise,
a black pixel is placed in the image. The last command imwrite stores the binary
image to the hsv_mask.png file. The following screenshot shows the resulting HSV
mask image of the green ball:

HSV mask image of green ball

Flying a Mission with Crazyflie

[414]

This code is implemented in the detect_crazyflie.py and detect_target.py
scripts described in the next sections.

Using Kinect and OpenCV
Using Kinect to locate the position of the Crazyflie provides only a (pixel) location
relative to the image frame of the Kinect. Relating this location to the world
coordinate frame cannot be accurately accomplished.

Advanced camera systems, such as the VICON motion capture system, provide the
object location in world coordinates. In a VICON system, it is possible to establish
Crazyflie's position as (0, 0, 0) in x, y, and z and relate the movement in terms of
meters. If you have this type of system available, check out Wolfgang Hoenig's ROS
Crazyflie code at http://wiki.ros.org/crazyflie. The crazyflie_controller
package provides simple navigation to goal using VICON. The crazyflie_demo
package contains sample scripts and launch files to perform teleoperation, hovering,
and waypoint navigation. The controller within our crazyflie_autonomous
package was created based on concepts used in Mr. Hoenig's packages.

For our mission, the Python script detect_crazyflie.py creates the crazyflie_
detector node to handle the process of identifying the location of the Crazyflie
within the Kinect image frame and the publishing of its location. This node
subscribes to three topics published by the kinect2 node, specifying the qhd
resolution (960 x 540). The code for subscribing to these topics is as follows:

rospy.wait_for_message('/kinect2/qhd/camera_info', CameraInfo)

rospy.Subscriber('/kinect2/qhd/camera_info', CameraInfo, self.camera_
data, queue_size=1)
rospy.Subscriber('/kinect2/qhd/image_color_rect', Image, self.image_
callback, queue_size=1)
rospy.Subscriber('/kinect2/qhd/image_depth_rect', Image, self.depth_
callback, queue_size=1)

The rospy call to wait_for_message will ensure that the kinect2 node is
publishing topics. Then, the crazyflie_detector node will subscribe to the three
topics: camera_info, image_color_rect, and image_depth_rect. The /kinect2/
qhd/camera_info topic will contain a sensor_msgs/CameraInfo message that is
processed by the callback function camera_data. The camera_data function will
extract the camera height and width fields from the CameraInfo message and set the
parameters on the Parameter Server for camera_height and camera_width. For the
qhd resolution, these parameters are 540 and 960, respectively.

http://wiki.ros.org/crazyflie

Chapter 9

[415]

The /kinect2/qhd/image_color_rect and /kinect2/qhd/image_depth_rect
topics subscribe to sensor_msgs/Image messages. For the rectified color Image
message, the function image_callback is called to handle image processing. The
rectified depth Image message is processed by the depth_callback function. The
message queue size is limited to one, so that only the latest Image message will be
processed.

The image_callback function processes the color image similar to the object
detection method described in the Detecting and viewing markers with OpenCV section.
The green objects in the image are detected, and a binary mask image is created. The
cv2.morphologyEx function is called to first dilate and then erode the image with an
11 x 11 kernel. This process removes the small pixels within the white objects and the
surrounding black background. More than one white object may be present in the
binary image. The next step is to find all the objects and order them by size. The cv2
function findContours finds all the pixels within the contour objects in the binary
image. A hierarchy of nested contours is created. A check is made to assure that
there is at least one contour in this hierarchy, then the area of each of the contours is
calculated. The largest contour area is selected as the green ball on top of Crazyflie.

Since we know that this object is round, the cv2 function minEnclosingCircle
is used to find the object's center and radius. The horizontal center of the object is
saved as cf_u, and the vertical center is saved as cf_v. The object center and radius
values are used by the cv2.circle function to draw a blue circle outline around the
object in the original color Image message. This image message is then displayed in a
terminal window using the cv2.imshow function.

We verified the operation of this code using the following commands:

$ roslaunch kinect2_bridge kinect2_bridge.launch

$ python detect_crazyflie.py

Flying a Mission with Crazyflie

[416]

The resulting image is shown in the following screenshot:

Crazyflie detected

When a /kinect2/qhd/image_depth_rect topic arrives, the depth_callback
function will be called to process this sensor_msgs/Image message. For this rectified
depth Image message, the cf_u and cf_v values will be used as the pixel coordinates
to access the depth value cf_d, at the center of the circle. Sometimes, an erroneous
value is returned for the depth at this location. If the depth value returned is zero,
the last depth value will be reused.

Chapter 9

[417]

Next, the update_cf_transform function is called to publish the tf transform of
Crazyflie. The cf_u, cf_v, and cf_d values are passed to this function to be used as
the x, y, and z values of Crazyflie's transform. A tf.TransformBroadcaster object is
created to publish transforms from the crazyflie_detector node. The update_cf_
tranform function uses the sendTransform function (from the tf package) so that
the transform broadcaster can publish a transform for the Crazyflie relative to the
Kinect. Details of this transform are described in the next section.

How to track Crazyflie
Using ROS tf transforms to identify the location of the Crazyflie in an image frame
is a variation of the concept of ROS tf. Typically, tf transforms relate the coordinate
frame of a robot's component to the rest of its system and the environment (world)
in which it is operating. The tf transform keeps all the robot's coordinate frames in
a tree-like structure that relates them to the world environment. In addition, these
coordinate frames are tracked by tf with relation to time. The tf transform provides
functions to transform from one coordinate frame to any other frame in the tf
structure at a desired point in time. For more information on this implementation of
tf, refer to the Understanding tf section in Chapter 6, Wobbling Arms Using Joint Control.

For our mission, Crazyflie's tf transforms are limited to operations within the 2D image
plane of the Kinect's color image, and the third dimension of depth from the Kinect's
depth image. Crazyflie's position, with respect to the image's horizontal position
u and its vertical position v, is used to identify its location with respect to the color
image frame. Its 3D position can be completed by accessing the depth value from the
depth frame for the (v, u) location. These values are used as the x, y, z of Crazyflie's
translation fields for the transform message. The rotation fields are fixed with values to
change the orientation of Crazyflie from the Kinect's camera orientation.

Flying a Mission with Crazyflie

[418]

For the Kinect coordinate frame, the x axis is horizontal from the upper-left corner of
the camera image to the right, the y axis is vertical from this same corner downward,
and the z axis is from the front face of the camera out to the scene. The Kinect
coordinate frame is represented in the following rviz image, using the convention of
x (red), y (green), and z (blue). The position of this coordinate frame is at the origin of
the Kinect and does not represent the location on the image frame:

tf coordinate frames in rviz

For Crazyflie, a rotation of this Kinect coordinate frame must be made to adhere
to the ROS conventional orientation of x forward, y left, and z up, standardized in
REP 103 Coordinate Frame Conventions. Therefore, for rotation fields in Crazyflie's tf
transform, values are fixed to the set of Euler angles:

•	 Roll of -π/2
•	 Pitch of 0
•	 Yaw of –π

Chapter 9

[419]

These values are used to compute a quaternion with the tf.transformations.
quaternion_from_euler function. The transform pose is published using the
sendTransform function (from the tf package) as a transform from the kinect2_
ir_optical_frameto the crazyflie/baselink. The kinect2_ir_optical_frame is
the parent frame of crazyflie/baselink. A diagram of the tf frames broadcast for
this mission is shown as follows:

Crazyflie mission tf frames

To implement yaw control of Crazyflie, additional markers could be added to
Crazyflie's structure to determine its yaw position around its vertical z axis. We have
selected not to implement yaw control at this time, but plan to control Crazyflie in x,
y, and z, placing the quadrotor so that its x axis aligns parallel to the Kinect's -x axis.
The value for yaw control will be set to 0.

Flying a Mission with Crazyflie

[420]

How to control Crazyflie
As you have seen throughout this book, the cmd_vel topic (the geometry_msgs/
Twist message) is the common control method for ROS robots, whether driving on
the ground or flying in the air. For TurtleBot, mobile_base_commands/velocity
and cmd_vel_mux/input/navi are used to move around the base. For Crazyflie, the
crazyflie/cmd_vel topic is published to control the flight of the quadrotor.

Within the crazyflie_autonomous package, the crazyflie_controller node
(control_crazyflie.py) determines the Crazyflie's control state and publishes
the crazyflie/cmd_vel topic. To launch the crazyflie_controller node,
the control_crazyflie.launch file is used. This launch file also launches the
crazyflie_window node that observes the Crazyflie and takes action when it flies
near the edge of the Kinect image frame. The function of this node is described in the
subsequent section, using an observer mode.

Crazyflie control states
The crazyflie_controller node has five states of flight control: idle, takeoff,
hover, flight, and land. The private variable _cf_state is used to indicate the current
control state. Regardless of the control state, the cmd_vel topic is published at a rate
of 50 hertz (20 milliseconds). This rate is obtained as the frequency parameter from
the Parameter Server and can be changed by either adding this parameter and a new
value to the crazyflie_controller node in the control_crazyflie.launch file, or
using the rosparam set command in the terminal window command line. The main
launch file for this mission is hover_kinectv2.launch.

With respect to the state of control, the fields for the cmd_vel topic (the
geometry_msgs/Twist message) are assigned linear velocity values of x, y, and z,
and the angular velocity values are left at zero. Recall from Chapter 7, Making a Robot
Fly, that the data fields for the Crazyflie cmd_vel topic are as follows:

•	 linear.x: The pitch value is from -30 to 30 degrees
•	 linear.y: The roll value is from -30 to 30 degrees
•	 linear.z: The thrust value is from 10,000 to 60,000 (for pulse-width

modulation (PWM) output)
•	 angular.z: This field is not currently used by the crazyflie_controller

node

Chapter 9

[421]

The contents of these data fields and the operation of the control states are described
in detail throughout the following sections.

Using ROS services to control takeoff and land
The control states of takeoff and land are activated using ROS service calls. Within
the crazyflie_controller node, two ROS services are created with callback
functions to be invoked by a client when a request for the service is sent. The services
for /crazyflie/land and /crazyflie/takeoff are created by the following
statements in control_crazyflie.py:

s1 = rospy.Service("/crazyflie/land", Empty, self._Land)
s2 = rospy.Service("/crazyflie/takeoff", Empty, self._Takeoff)

Note that the /crazyflie namespace has been appended to these services to identify
that they are specific for the quadrotor. Land and Takeoff are private callback
functions that handle the service requests.

These services are of the type Empty, one of the service types provided by the ROS
std_srvs package. The std_srvs package contains common service patterns for
signals to a ROS node. The Empty service definition contains no actual data, but is
used only to cause the execution of a function.

For the land service, the following function is executed:

def _Land(self, req):
 rospy.loginfo("Landing requested!")
 self._cf_state = 'land'
 return ()

When the /crazyflie/land service is requested, the loginfo function writes a log
message to stdout (the terminal window) and to the /rosout topic. The message
also appears in the ~/.ros/log file for the crazyflie_controller node. The next
statement changes the Crazyflie control state to land. An Empty service response
message is returned to the client node.

The takeoff service is handled by a function similar to _Land. It also writes a log
message and changes the Crazyflie control state to takeoff. An Empty service
response is sent back to the client node.

Flying a Mission with Crazyflie

[422]

Activating takeoff and land
The services of takeoff and land can be activated using the Xbox 360 joystick
controller. The hover_kinectv2.launch file launches the node for joystick_
controller, which contains requests for Crazyflie takeoff, land, and emergency.
These service requests are activated by pressing the blue (takeoff), green (land),
or red (emergency) buttons on the Xbox 360 controller. The emergency service
request is handled by the crazyflie_server node (crazyflie_server.cpp in the
crazyflie/crazyflie_driver package). The code for the joystick_controller
node is found in controller.py in the crazyflie/crazyflie_demo package.

What makes takeoff and land work?
The flight controls for takeoff and land are part of the state-based logic of the
iteration function of control_crazyflie.py. When _cf_state is idle, the linear
velocity values of x, y, and z (pitch, roll, and thrust, respectively) are set to 0.0. The
thrust variable is also set to 0.0. The location of the Crazyflie received as a transform
is saved in the takeoff_position variable. This takeoff_position variable is used
during the takeoff control state.

When the _cf_state control state is takeoff, the cmd_vel linear velocity values
of x and y are set to 0.0. The vertical value y of the takeoff_position variable
(takeoff_position[1]) is used to compute an upper takeoff height of 25 pixels in y,
above its takeoff y value. When Crazyflie's position in the Kinect's image frame has
achieved that height, the _cf_state control state will transition to flight. If the value
of the thrust variable exceeds 50,000, this condition will also transition the _cf_
state from takeoff to flight.

During takeoff, the value of the cmd_vel linear z velocity (thrust) is incremented
by 10,000 multiplied by a delta time dt and a fudge factor ff. The delta time is
computed as the time between the last iteration cycle and the present iteration cycle,
which is typically 0.02 seconds (based on 50 hertz). The fudge factor is an easy way
to vary the amount of thrust increase applied. When the value of the thrust reaches
36,000, the increments of the additional thrust decrease by approximately one-third
to slow the ascent of the Crazyflie.

When the upper takeoff height is achieved, or the thrust is greater than 50,000, the
previous error and time values for the PID controllers are reset to zero. The initial
integral value for the z PID controller is set to the following:

(current thrust value - 1500) / (ki for the z PID controller)

Success messages are sent to the log file and the /rosout topic to indicate takeoff
is achieved. Info messages are also sent to log the data being published in the
cmd_vel messages.

Chapter 9

[423]

Using PID control for hover and flight
The control states of hover and flight utilize the PID class constructor, attributes, and
methods from pid.py, and data from crazyflie2.yaml. There are three PID objects
created to provide proportional, integral, and derivative control for Crazyflie's
linear x, y, and z (pitch, roll, and thrust) values. The crazyflie_controller
node instantiates a separate flight PID controller for X, Y, and Z, as shown in the
following statements:

from pid import PID # for PID class, attributes and methods

object instances of type PID with initial attributes assigned
self.m_pidX = PID(rospy.get_param("~PIDs/X/kp"),
 rospy.get_param("~PIDs/X/kd"),
 rospy.get_param("~PIDs/X/ki"),
 rospy.get_param("~PIDs/X/minOutput"),
 rospy.get_param("~PIDs/X/maxOutput"),
 rospy.get_param("~PIDs/X/integratorMin"),
 rospy.get_param("~PIDs/X/integratorMax"))
self.m_pidY = PID(rospy.get_param("~PIDs/Y/kp"),
 rospy.get_param("~PIDs/Y/kd"),
 rospy.get_param("~PIDs/Y/ki"),
 rospy.get_param("~PIDs/Y/minOutput"),
 rospy.get_param("~PIDs/Y/maxOutput"),
 rospy.get_param("~PIDs/Y/integratorMin"),
 rospy.get_param("~PIDs/Y/integratorMax"))
self.m_pidZ = PID(rospy.get_param("~PIDs/Z/kp"),
 rospy.get_param("~PIDs/Z/kd"),
 rospy.get_param("~PIDs/Z/ki"),
 rospy.get_param("~PIDs/Z/minOutput"),
 rospy.get_param("~PIDs/Z/maxOutput"),
 rospy.get_param("~PIDs/Z/integratorMin"),
 rospy.get_param("~PIDs/Z/integratorMax"))
self.m_pidYaw = PID(rospy.get_param("~PIDs/Yaw/kp"),
 rospy.get_param("~PIDs/Yaw/kd"),
 rospy.get_param("~PIDs/Yaw/ki"),
 rospy.get_param("~PIDs/Yaw/minOutput"),
 rospy.get_param("~PIDs/Yaw/maxOutput"),
 rospy.get_param("~PIDs/Yaw/integratorMin"),
 rospy.get_param("~PIDs/Yaw/integratorMax"))

Flying a Mission with Crazyflie

[424]

A PID controller is also created for yaw control but is not used at this time. The
values of the parameters kp, kd, ki, minOutput, maxOutput, integratorMin,
and integratorMax are loaded from the crazyflie2.yaml file as part of the
control_crazyflie.launch process. This arrangement of loading the parameters
from the YAML file has made it quick and easy to change parameters while testing
flight control.

The PID class has several methods to perform operations for the PID controller
object instance. A method to reset the controller is provided by the reset method.
This method sets the m_integral and m_previousError values to zero and the m_
previousTime to the current time. The setIntegral method sets the m_integral
value to a value passed to the function. The third method update performs the PID
calculations between the current location and the target location, as shown in the
following statements:

def update (self, value, targetValue):

 time = float(rospy.Time.to_sec(rospy.Time.now()))
 dt = time - self.m_previousTime

 error = targetValue - value
 self.m_integral += error * dt
 self.m_integral = max(min(self.m_integral, self.m_integratorMax),
self.m_integratorMin)

 p = self.m_kp * error
 d = 0
 if dt > 0:
 d = self.m_kd * (error - self.m_previousError)/dt
 i = self.m_ki * self.m_integral

 output = p + d + i

 self.m_previousError = error
 self.m_previousTime = time

 return max(min(output, self.m_maxOutput), self.m_minOutput)

Note that rospy.loginfo statements have been removed to enhance clarity.

Chapter 9

[425]

In the update method, the current time in seconds is determined by a call to the
rospy routines, Time.now and Time_to_sec. The variable dt is set to the number
of seconds elapsed between the last call to the controller and the current time. The
difference between value and targetValue is stored as the variable error. This
error value is multiplied by m_kp to obtain the proportional variable p. The difference
in this error value and the last error value is calculated and divided by the delta time
dt. This value is multiplied by m_kd to find the derivative term d. The last term, the
integral i, is calculated as the value of m_ki times m_integral. The three terms p,
i, and d are added to compute the output variable. This variable is compared to
the m_minOutput and m_maxOutput values to determine whether it falls within this
range. If it does, then the value of output is returned. Otherwise, if the output value
is larger than m_maxOutput, m_maxOutput is returned. If it is less than m_minOutput,
m_minOutput is returned.

Using an observer node
Throughout the testing phase for this mission, Crazyflie exhibited some erratic
behavior. Due to the modular nature of ROS, we decided to implement an observer
node that would keep track of the location of Crazyflie. The crazyflie_window node
(in watcher.py) listens to the tf transforms, publishing the location of Crazyflie. In a
loop that runs at 10 times a second, the following statements are executed:

if listener.frameExists(camera_frame) and listener.
frameExists(crazyflie_frame):
 t = listener.getLatestCommonTime(camera_frame, crazyflie_frame)
 trans, rotate = listener.lookupTransform(camera_frame,
 crazyflie_frame, t)

This code checks the transforms that are buffered by the listener for the existence of
a transform between crazyflie/baselink and kinect2_ir_optical_frame. When
this specific transform is found, the data fields for translational and rotational data
are extracted into the trans and rotate variables. The trans variable contains the
location in the x, y, and z of the Crazyflie. This location is compared to the edge of
the Kinect image:

if (trans[0] < 100) or (trans[0] > (camera_width - 100)) or (trans[1]
< 20) or (trans[1] > (camera_height - 20)):

 # Crazyflie is going outside the frame
 rospy.loginfo("Crazyflie outside of window %f %f %f",
 trans[0], trans[1], trans[2])
 rospy.loginfo("Landing requested")

Flying a Mission with Crazyflie

[426]

 # wait until land service is available, then create handle for it
 rospy.wait_for_service('/crazyflie/land')
 try:
 _land = rospy.ServiceProxy('/crazyflie/land', Empty)
 _land()
 except rospy.ServiceException, e:
 rospy.loginfo("Service call failed: %s", e)

If the position of Crazyflie is within 100 pixels of the left or right edge of the image
frame, or within 20 pixels of the upper or lower edge, a service request is made for
Crazyflie to land. A private local proxy _land is used to make the service call with
an Empty service request. The land service request is handled by the crazyflie_
controller node as described in the previous section, Using ROS services to control
takeoff and land.

Messages are sent to the log file and the /rosout topic to identify the location of
the Crazyflie that caused the crazyflie_window node to send the service request.
These messages are important when determining the events of Crazyflie's flight. The
Kinect's depth data trans[2] is too erratic to use for this monitoring instance.

The next sections describe how the Crazyflie operates when the _cf_state variable
is set to flight. The Crazyflie will either hover in place or fly to a target depending
on whether any target_pose messages have been received.

Flying Crazyflie
Now we are finally ready to fly our mission. Making Crazyflie fly to a target requires
that the quadrotor be controllable to hover in place. Once this task is successful, the
next step is to fly to a stationary target. We will introduce the steps to accomplish
these tasks in the next sections.

Hovering in place
The first step to control Crazyflie's flight is the ability to demonstrate control of the
quadrotor hovering in one location. To start the process, use the launch command:

$ roslaunch crazyflie_autonomous hover_kinectv2.launch

Then, turn on Crazyflie and let it run through its startup routine. When it is
complete, type the following in a second terminal window:

$ roslaunch crazyflie_autonomous control_crazyflie.launch

Chapter 9

[427]

The hover mission can be started by pushing the Takeoff (blue) button on the Xbox
360 controller. After Crazyflie has achieved takeoff, the quadrotor will begin to
receive cmd_vel (geometry_msgs/Twist) messages telling it to stay in its same
location with respect to the Kinect image frame. Crazyflie will try to maintain this
location until the Land (green) button on the controller is pressed. If Crazyflie drifts
to the edge of the Kinect image, a land service request will be generated by the
crazyflie_window node to (hopefully) safely land the quadrotor.

What makes hover work?
As described in the What makes takeoff and land work? section of this chapter, the
_cf_state variable changes from takeoff to flight when one of the two takeoff
conditions is met. These conditions are that the Crazyflie's position in y changes by
25 pixels or that the thrust value is over 50,000. When one of these conditions is met,
the initial values for the PID controllers are reset, and the initial integral variable for
the Z PID controller is set.

The initial check in flight mode is to determine whether the target flag has been
set to True. This flag is set by the _update_target_pose function if a target pose
(geometry_msgs/PoseStamped) message has been received. If this message has
not been received, then the target flag is False and _cf_state is set to hover.
The current x, y, and z position of Crazyflie is captured as the three element list
hover_position.

As described in the Using Kinect and OpenCV section of this chapter, the crazyflie_
detector node publishes the Crazyflie's tf transform as its x, y, and z position in
the Kinect image frame. The crazyflie_controller node calls the _getTransform
function every 20 milliseconds to get this transform and uses it for processing both
flight and hover control.

In hover mode, the PID controllers are used to calculate the linear values of x, y, and
z for the cmd_vel message. Crazyflie's (x, y, z) position in the Kinect frame is altered
so that the direction of control corresponds to Crazyflie's coordinate frame
(x forward, y left, and z up). First, the value of Crazyflie's location in its x axis
needs to increase as it flies to the left in the image. The value in its z axis needs to
increase as Crazyflie flies up in the image. For Crazyflie's y axis, the values need
to decrease as it flies closer to the Kinect camera. The following lines of code show
the remapping of Crazyflie's positions (current and hover) in the camera frame to
Crazyflie's coordinate axes:

camera -x position
self.fly.linear.x = self.m_pidX.update(
 (self.camera_width - cf_trans[0]),
 (self.camera_width -
 self.hover_position[0]))

Flying a Mission with Crazyflie

[428]

camera -z position
if cf_trans[2] == 0.0:
 self.fly.linear.y = self.m_pidY.update(self.hover_position[2],
 self.last_depth)
else:
 self.fly.linear.y = self.m_pidY.update(self.hover_position[2],
 cf_trans[2])
 self.last_depth = cf_trans[2]

camera -y position
self.fly.linear.z = self.m_pidZ.update(
 (self.camera_height - cf_trans[1]),
 (self.camera_height -
 self.hover_position[1]))

Note that rospy.loginfo statements have been removed to enhance clarity.

The m_pidX.update method is called to calculate the correction needed in x to
maintain the hover position. The x position values for both current and hover are
subtracted from the camera image width to achieve the correct difference. The value
returned is used as the cmd_vel linear.x (pitch) control.

The camera's z position (depth) maps to the y axis control for Crazyflie. Sometimes,
Kinect publishes bad depth values for Crazyflie's current position. For this case, the z
(depth) value is checked for a zero value. If a zero value is found, the last good depth
value is used. The m_pidY.update method is called to handle these z (depth) values,
and the resulting value is assigned to the cmd_vel linear.y (roll) control.

The Kinect y position corresponds to the z axis control for Crazyflie. The camera
height value is used to make the current location and the hover location values
increase as Crazyflie moves closer to the top of the image frame. The m_pidZ.
update method is called to process the y values and provides the resulting cmd_vel
linear.z (thrust) control.

Now we will look at how the Crazyflie is automatically controlled as it flies
to a target.

Flying to a stationary target
Each step in this mission builds on the previous step. To get Crazyflie to fly to a
particular location, a separate node was created and named target_detector to
handle the operation of locating the target and publishing its location. The code
for this node is contained in the detect_target.py script in the crazyflie_
autonomous package. To perform this phase of the mission, begin by typing the
following launch command:

$ roslaunch crazyflie_autonomous hover_kinectv2.launch

Chapter 9

[429]

Then turn on Crazyflie and let it run through its startup routine. When it is complete,
start the crazyflie_controller node by typing the following into a second
terminal window:

$ roslaunch crazyflie_autonomous control_crazyflie.launch

Then, in a third window, execute the following command to start the
target_detector node:

$ rosrun crazyflie_autonomous detect_target.py

The target_detector node will begin to transmit messages containing the location
of the target marker with respect to the Kinect image frame.

Begin the mission by pushing the Takeoff button on the joystick controller. After
Crazyflie has achieved takeoff, the quadrotor will begin to receive cmd_vel
(geometry_msgs/Twist) messages to fly towards the target marker. Since the target
is stationary, the location message is only published at 1 hertz. The quadrotor will
hover above the target until the Land button on the joystick controller is pressed.

The following image shows our mission setup. The Crazyflie is positioned on
the table with a blue circle around its ball marker, and the pink target (on top of
TurtleBot in the lower left corner of the screenshot) has a red rectangle around it:

Crazyflie and target positions located

Flying a Mission with Crazyflie

[430]

Using the software described in this chapter, Crazyflie was able to take off from a
position, hover, and then fly and land at a second position identified by a target marker.

The next section elaborates on the target detection method.

What makes target detection work?
The target_detector node works similar to the crazyflie_detector node. The
node subscribes to the Image messages from the Kinect specifying the qhd quality.
Images of both image_color_rect and image_depth_rect are requested. When a
color image (image_color_rect) is received, the callback function image_callback
will use the same object detection techniques described for the Crazyflie to find the
target within the Kinect color image frame. The u and v pixel coordinates of the
center of the target are saved by this function. These pixel coordinates are used by
the callback function depth_callback for the depth image (image_depth_rect) to
access the depth value at that location.

These values of u, v, and depth are used as x, y, and z respectively by the update_
target_pose function. This function assigns these values to a PoseStamped message
and publishes the message.

When _cf_state changes to flight from takeoff, the target flag is checked to
determine whether a target PoseStamped message has been received. If the target
flag is true, the target message has been received and _cf_state will stay in flight
mode. The x, y, and z PID controllers are used to calculate the control values for
the cmd_vel message. Similar to the processing described for hover, the Crazyflie's
location in the Kinect image frame must be changed to correspond to the direction of
control for the Crazyflie's coordinate frame. The previous section What makes hover
work? describes this remapping of Crazyflie's position in the camera frame to its
coordinate axes. The following lines of code show this remapping:

camera -x position
self.fly.linear.x = self.m_pidX.update(
 (self.camera_width - cf_trans[0]),
 (self.camera_width –
 self.target_position.pose.position.x))

camera -z position
self.fly.linear.y = self.m_pidY.update(cf_trans[2],
 self.target_position.pose.position.z)

camera -y position
self.fly.linear.z = self.m_pidZ.update(
 (self.camera_height - cf_trans[1]),
 (self.camera_height –
 self.target_position.pose.position.y + 25))

Chapter 9

[431]

The update methods of the m_pidX, m_pidY, and m_pidZ object instances are used
to obtain the values for the cmd_vel message, as explained in the previous section.
The difference is the hover values have been replaced by the PoseStamped position
values of the target coordinates.

Learned lessons
This chapter would not be complete without documenting a few of the lessons we
have learned along the way and would like to pass on to you. These are as follows:

•	 Weight is important: Even for a 27 gram quadrotor, the position of the
battery, the weight, and the position of a lightweight ball make a big
difference to the pitch and roll control of the Crazyflie.

•	 PID parameters are hard to select: Testing and changing parameters for the
PID control of a quadrotor is a never-ending cycle. If you can get the weight
and balance problem mentioned previously fixed, you have a chance at
establishing more stable PID control parameters.

•	 Don't fly in a cluttered environment: Sometimes problems are created
because the camera detects erroneous things in the environment, and this
fluctuation in data can wreak havoc on your mission.

Logging messages with rosout and rospy
The use of logging messages was critical to the development of this mission.
ROS provides a number of ways to gain insight into the output of nodes through
publishing information and debugging messages to rosout. These messages can
be viewed while processes are active with rqt_console or via stdout (a terminal
window). Messages can also be examined afterwards through log files written for
each ROS node under the ~/.ros directory.

There are several levels of logging messages that can be written to rosout. These
levels include the following:

•	 DEBUG: For information needed when the system is not working, but should
not be seen when the system is working correctly

•	 INFO: For information useful to the user
•	 WARN: To caution the user regarding less than optimal results
•	 ERROR: To warn the user of a serious condition
•	 FATAL: To warn the user of an unrecoverable condition

Flying a Mission with Crazyflie

[432]

The use of rospy.loginfo and rospy.debug messages have been scattered
throughout the code developed for this mission. We encourage the use of these
logging methods as you adapt this software for your purposes.

Now, we wrap up this adventure!

Summary
The aim of this chapter was to stretch your knowledge of ROS by implementing
an advanced practical experience to identify and highlight some of the ROS
advantages. A ROS system of nodes was created to visualize the environment in
which a Crazyflie quadrotor was seen and controlled. The Kinect for Windows v2
depth camera was used to visualize this environment, and ROS nodes handled the
detection of markers on the Crazyflie and the target. The location of the Crazyflie
was identified in Cartesian coordinates (x, y, z), with the x and y values referring to
the quadrotor's position in the image frame and z referring to its distance from the
camera. These coordinates were converted into a tf transform and published. The
target location was published in a message by a separate ROS node.

The advantage of ROS layers of tf and message passing leaves lower-level details to
be handled by another dedicated node. The tf transform for the Crazyflie was used
by a controller node to apply PID control to Crazyflie's flight. This controller node
implemented a state machine to control the Crazyflie based on its state of flight.
These states included idle, takeoff, hover, flight, and land. PID controllers were
implemented to determine the control command based on the position errors for
hover and flight to the target. Crazyflie control commands included pitch, roll, and
thrust components to accomplish the feat of hovering or navigating the quadrotor
accurately to a target location.

The next chapter, Chapter 10, Controlling Baxter with MATLAB©, will introduce the
MATLAB Robotics System Toolbox. The Robotics System Toolbox enables MATLAB
to communicate with ROS robots giving the user the advantage of MATLAB tools for
image processing, path planning, motor control and more. Baxter will be added to
MATLAB and controlled with ROS commands through the Robotics System Toolbox.

[433]

Controlling Baxter
with MATLAB©

In Chapter 6, Wobbling Robot Arms Using Joint Control, Baxter the two-armed robot
was described. The purpose of this final chapter is to spark your imagination by
presenting control of Baxter using the MathWorks© MATLAB Robotics System
Toolbox. The MathWorks corporation produces the popular MATLAB software that
is widely used in industry and academia. In addition to the MATLAB software for
mathematical operations and visualization, modules called add-ons can be added to
the software.

The Robotics System Toolbox add-on considered in this chapter allows us to use
MATLAB scripts using ROS commands to control robots. For users of MATLAB, this
capability opens up new possibilities to design and implement sophisticated robotic
programs for applications.

In this chapter, we will introduce the following:

•	 Installing the MATLAB Robotics System Toolbox
•	 Using MATLAB and ROS with the Robotics System Toolbox
•	 Controlling Baxter with the Robotics System Toolbox

References for MATLAB software and the Robotics System Toolbox can be found at
the following websites:

https://www.mathworks.com/

https://www.mathworks.com/products/robotics.html

https://www.mathworks.com/
https://www.mathworks.com/products/robotics.html

Controlling Baxter with MATLAB©

[434]

Installing the MATLAB Robotics System
Toolbox
Versions of MATLAB and its add-on toolboxes are updated as often as twice a
year. For example, the version for our Linux operating systems is using MATLAB
R2017b and version 1.5 of the Robotics System Toolbox. To add the toolbox, visit the
following website:

https://www.mathworks.com/help/robotics/ug/install-robotics-system-
toolbox-support-packages.html?s_tid=srchtitle

After MATLAB is installed and running, do the following to load the Robotics
System Toolbox:

•	 Go the Home tab of MATLAB and the Environment section
•	 Click Add-Ons on the menu and choose Get Add-Ons from the

dropdown menu

There appears a screen with a number of possible add-ons including the Robotics
System Toolbox. If you have paid for the toolbox, simply choose it and download it.

MATLAB and the toolboxes are not open source. They must be purchased from
the MathWorks corporation. In some cases, trial versions or reduced price student
versions of the software are available.

Check the MATLAB and Robotics System
Toolbox versions
In the MATLAB Command window, type the following command:

>> ver

Then, check from the output the version of MATLAB that is present and the
toolboxes that are installed.

View the Robotics System Toolbox
commands for ROS
In the MATLAB Command window, type the following command:

>> help robotics

https://www.mathworks.com/help/robotics/ug/install-robotics-system-toolbox-support-packages.html?s_tid=srchtitle
https://www.mathworks.com/help/robotics/ug/install-robotics-system-toolbox-support-packages.html?s_tid=srchtitle

Chapter 10

[435]

This allows you to see the version of the toolbox and a list of the ROS commands and
other commands useful for robotics.

Clicking on View Examples in the Command window brings up a window showing
the Robotics System Toolbox examples, including several using a real TurtleBot and
TurtleBot in simulation using Gazebo.

For a shortened version with just ROS commands, type the following in the
command window:

>> help robotics.ROS

Using MATLAB Robotics System Toolbox
and Baxter Simulator
In these next sections, we will explore using MATLAB to publish and subscribe to
the Baxter Simulator and control some primary functions of his arms and grippers.

Installing Baxter messages in MATLAB
Baxter has a unique set of ROS messages that are used to communicate with a real
Baxter and Baxter Simulator in Gazebo. MATLAB requires that these custom Baxter
message and service definitions be processed into ROS custom messages understood
by MATLAB.

Locate the ROS packages for Baxter on your computer. If you followed the
installation instructions in Chapter 6, Wobbling Robot Arms Using Joint Control, these
packages will be located in your Baxter workspace, ~/baxter_ws.

In the MATLAB command window, type the following command:

>> rosgenmsg('~/baxter_ws/src/baxter_common')

This is the location of Baxter's message files. If your Baxter workspace is in another
location, use the absolute path name to the baxter_common package.

For our computer, Baxter's packages were placed with the system
files at /opt/baxter_ws/src/baxter_common. Be aware
that the following screen text and screenshots reflect this location
instead of ~/baxter_ws/src/baxter_common.

Controlling Baxter with MATLAB©

[436]

You may see a warning message like the one following, but the process should still
be able to build the MATLAB message files.

Warning: The folder /opt/baxter_ws/src/baxter_common/.git does not
contain a valid ROS package, because the 'package.xml' file is missing.
Create the 'package.xml' file in this folder.

The following message should appear on the screen to show that all of Baxter's
packages have been searched for message files:

Building custom message files for the following packages:

baxter_common

baxter_core_msgs

baxter_description

baxter_maintenance_msgs

rethink_ee_description

After additional screen output, the following instructions will appear:

To use the custom messages, follow these steps:

1. Edit javaclasspath.txt, add the following file locations as new lines,
and save the file:

/opt/baxter_ws/src/baxter_common/matlab_gen/jar/baxter_common-1.2.0.jar

/opt/baxter_ws/src/baxter_common/matlab_gen/jar/baxter_core_msgs-
1.2.0.jar

/opt/baxter_ws/src/baxter_common/matlab_gen/jar/baxter_description-
1.2.0.jar

/opt/baxter_ws/src/baxter_common/matlab_gen/jar/baxter_maintenance_msgs-
1.2.0.jar

/opt/baxter_ws/src/baxter_common/matlab_gen/jar/rethink_ee_description-
1.2.0.jar

2. Add the custom message folder to the MATLAB path by executing:

addpath('/opt/baxter_ws/src/baxter_common/matlab_gen/msggen')

savepath

3. Restart MATLAB and verify that you can use the custom messages.

Type rosmsg list and ensure that the output contains the generated custom
message types.

Chapter 10

[437]

To follow these instructions, click on the link in the screen instructions preceding, on
the word javaclasspath.txt. Cut and paste the five /opt/baxter_ws/src/baxter_
common… lines from instruction 1 to the javaclasspath.txt file but add the <before>
tag on the first line. The <before> token at the front of the JAR file will tell MATLAB
to use this file, instead on any built-in messages. Our javaclasspath.txt is shown
in the following screenshot. Be sure your file contains the absolute path names to
your .jar files:

Contents of jarclasspath.txt file

As described in instruction 2, cut and paste the addpath and savepath commands
into MATLAB's command window. After these commands have executed, restart
MATLAB and these new ROS Baxter messages should be available in MATLAB.
Type the command rosmsg list to verify that Baxter's messages have been added
to the entire list of ROS messages in MATLAB.

Running Baxter Simulator and MATLAB
To start Baxter Simulator, open a terminal window and go to the baxter_ws
workspace; then, run the Baxter shell script with the sim parameter specified:

$ cd ~/baxter_ws

$./baxter.sh sim

Controlling Baxter with MATLAB©

[438]

Important:
Check the ROS environment variables with the following command:
$ env | grep ROS

Within the output screen text, look for the following result:
ROS_MASTER_URI=http://localhost:11311

ROS_IP= <your workstation's IP address>

Alternatively, it may show the following output:
ROS_HOSTNAME=<your workstation's hostname>or
"localhost"

The ROS_HOSTNAME field need not be present.
If the ROS_IP or ROS_HOSTNAME environment variable does
not match the IP address of your workstation, type exit to stop
communication with the simulated Baxter. Then, edit the
baxter.sh script to change the your_ip variable (near line 26)
to the current IP address of your workstation or change the
your_hostname variable (near line 28) to localhost. Save
and exit the baxter.sh script.
To continue, repeat the preceding steps for a final check.

Next, call the roslaunch command to start the simulation:

$ roslaunch baxter_gazebo baxter_world.launch

These are the same commands used in Chapter 6, Wobbling Robot Arms Using Joint
Control. You should see Baxter appear on the Gazebo screen with its BaxterIO
window open to show the navigator buttons and cuff buttons.

Now, MATLAB should be started from the icon or command line. After it is up and
running you should have screens similar to the following screenshot:

Chapter 10

[439]

MATLAB and Baxter Simulator running

All of the code for Chapter 10, Controlling Baxter with MATLAB©, is available online
at the Packt Publishing website at http://www.PacktPub.com, or from GitHub at
https://github.com/FairchildC/ROS-Robotics-By-Example-2nd-Edition.
Download the .m files from the Chapter10_code to a location on your computer.

These MATLAB .m files were originally written by Carlos Santacruz-Rosero of
MathWorks. Carlos developed the MATLAB classdef of BaxterCommWithSim to
have Baxter to play checkers with a human opponent (2014). The code has been
modified to work with Baxter's latest version of software v1.2.0 by this book's
authors for use in this chapter.

After you have downloaded the code to your computer, locate the .m files for the
Chapter10_code. These files include:

•	 BaxterCommWithSim.m

•	 ExampleScript.m

•	 armUpdateTimerForRobot.m

•	 armUpdateTimerForSim.m

http://www.PacktPub.com
https://github.com/FairchildC/ROS-Robotics-By-Example-2nd-Edition

Controlling Baxter with MATLAB©

[440]

Add the path to these files using the Set Path menu option on the MATLAB HOME
menu bar. Now you are ready to start communicating with and moving Baxter.

Troubleshooting tip
When running the BaxterCommWithSim functions in MATLAB,
infrequently errors may appear on the screen. At this point, it is
best to shutdown both MALAB and Gazebo and restart from the
instructions above in Running Baxter Simulator and MATLAB.

Making Baxter move
The ExampleScript.m file can be used as an example of the functions possible with
the BaxterCommWithSim class as defined in the BaxterCommWithSim.m file. These
functions are explained in the order they appear in ExampleScrip.m:

rosshutdown;

The rosshutdown command is issued as the first command in the script to assure
that MATLAB is disconnected from any ROS network and that the global node and
the ROS Master are not running.

rosinit;

The rosinit command starts the global ROS node and connects to the ROS Master
running on localhost and port 11311. This communication will be with the ROS
Master started by Baxter Simulator on Gazebo, as it should already be up and
running.

bc = BaxterCommWithSim(true);

This command instantiates a class for communicating with the Baxter robot in the
Gazebo simulation. The BaxterCommWithSim class provides data structures and
methods to support enabling Baxter and moving Baxter's head, arms and grippers.
The object bc is created as an instance of BaxterCommWithSim to allow the use of
these data structures and methods.

enable(bc);

The enable command enables the Baxter robot to move. The robot must be put in an
enabled state before any movement commands will move Baxter's joints.

handles.bc = bc;

timer1 = timer('TimerFcn',{@armUpdateTimerForSim,handles},'Period',0.1,
'ExecutionMode','fixedSpacing');

start(timer1);

Chapter 10

[441]

These three commands start a timer to periodically send Baxter's joint commands.
The timer object timer1 is created and specifies a callback the function
armUpdateTimerForSim with a handle to the bc object. This armUpdateTimeForSim
function calls the function updateArms passing the handle to the bc object
indicating that both arms should be updated. The updateArms function will publish
ArmCmdLeftMsg and ArmCmdRightMsg messages to set the positions of each of the
joints on both of Baxter's left and right arms. The publication of these messages is
performed periodically at 10 Hz.

In the following commands, the commands to control the arms and grippers have
a value that is passed as an argument that indicates whether the left, right, or both
arm(s) or gripper(s) should be activated. These values correspond to the selections:

•	 1 = left
•	 2 = right
•	 3 = both

untuck(bc, 3);

This untuck command sets the fields in the ArmCmdLeftMsg and ArmCmdRightMsg
messages specifying the arm joint positions for Baxter's untuck position.

calibrateGrip(bc, 3);

This calibrateGrip command calibrates both of Baxter's grippers. The grippers
must be calibrated before use.

grip(bc, 2);

This grip command closes Baxter's right (2) gripper. The GripRightMsg message is
set with the position 0.0 which is the gripper closed position.

release(bc, 2);

This release command opens Baxter's right (2) gripper. The GripRightMsg message
is set with the position 100.0 which is the gripper open position.

panHead(bc, 1.0);

panHead(bc, 0.0, 0.2);

These panHead commands are used to move Baxter's head to a set angular position.
The first command moves the head to a 1.0 radian (57 degrees) position to Baxter's
left side. The second command moves the head to the 0.0 radian position which is
straight ahead facing forward. The second argument in this command sets the speed
to 0.2 which is slow. The speed setting is a percentage that ranges from 0.0 to 1.0.

pose_Y(bc);

Controlling Baxter with MATLAB©

[442]

The pose_Y command is an example of a function that moves Baxter's arms to a
specific pose. This function sets each of the joint positions in both the right and left
arms to create a pose for Baxter where his arms form the letter Y. The following
screenshot shows Baxter in a Y pose:

Baxter's Y pose

enableEndpointDisplay(bc,3);

The enableEndpointDisplay command enables the display of endpoint information
for both (3) of Baxter's arms.

currPose = bc.RightArmEndpoint;

disp(currPose.Pos);

disp(currPose.Orientation);

The variable currPose is set to the current endpoint_state information of Baxter's
right arm. The disp function is called to print the information on the endpoint
position and orientation to the screen as shown in the following screenshot:

Chapter 10

[443]

Display of Baxter's endpoint position and orientation

untuck(bc, 3);

The untuck command resets both (3) of Baxter's arms into the untuck position.

tuck(bc, 3);

The tuck command sets both (3) of Baxter's arms to the tuck configuration that is
used for storing Baxter.

disable(bc);

The disable command disables Baxter's movement. No movement commands will
move Baxter's joints until an enable command is issued.

stop(timer1);

delete(timer1);

The stop command will stop the timer1 timer from incrementing and the delete
command will delete timer1.

rosshutdown;

The rosshutdown command shuts down the global node and the ROS Master, if it is
running. MATLAB will no longer be connected to the Baxter Simulator in Gazebo.

Controlling Baxter with MATLAB©

[444]

Summary
In this chapter, we introduced MATLAB and the Robotics System Toolbox and
described how to install the toolbox. The toolbox connects MATLAB software and
the Robot Operating System.

Baxter the robot simulator, introduced in Chapter 6, Wobbling Robot Arms Using Joint
Control, was used with MATLAB to control the simulated Baxter in Gazebo. Before
the simulator could connect with Baxter, it was necessary to install a unique set of
ROS messages used to communicate with Baxter as described in the section Installing
Baxter messages in MATLAB.

Once the messages are installed, Baxter's limbs can be moved with the Robotics
System Toolbox commands and the .m files listed in the section Running Baxter
Simulator and MATLAB. These files are found on the book's website.

For more information about the Robotics System Toolbox, see the excellent webinar
Developing Robotics Applications with MATLAB, Simulink, and Robotics System Toolbox
by Carlos Santacruz-Rosero of MathWorks at the website:

https://www.mathworks.com/videos/developing-robotics-applications-
with-matlab-simulink-and-robotics-system-toolbox-108696.html?elqsid=1
510619981837&potential_use=Education

Now, it is time to consider other aspects of ROS that will extend your learning to the
more advanced features that ROS provides. There are a number of additional books
and web resources available on ROS. ROS has an extensive community of users that
develop, use, and support the open source software that we all access. We hope that
you enjoy becoming a part of this community. We have enjoyed providing you with
a glimpse into some of the many aspects and advantages of ROS.

https://www.mathworks.com/videos/developing-robotics-applications-with-matlab-simulink-and-robotics-system-toolbox-108696.html?elqsid=1510619981837&potential_use=Education
https://www.mathworks.com/videos/developing-robotics-applications-with-matlab-simulink-and-robotics-system-toolbox-108696.html?elqsid=1510619981837&potential_use=Education
https://www.mathworks.com/videos/developing-robotics-applications-with-matlab-simulink-and-robotics-system-toolbox-108696.html?elqsid=1510619981837&potential_use=Education

[445]

Index
Symbols
3D sensors

ASUS 149-151, 159, 160
camera software structure 161
comparison 147
Hitachi-LG LDS 157, 158
Intel RealSense 153-156, 160
Kinect 159
Microsoft Kinect 147, 148
obstacle avoidance drawbacks 158
PrimeSense 159, 160
PrimeSense Carmine 152
reference 147
software, installing 158
terms, defining 161
testing, in standalone mode 162

3D vision systems 146

A
adaptive monte carlo localization (amcl) 146
add-ons 433
Android 366
Android packages

references 371
Ant 370
application programming interface

(API) 241
application-specific integrated circuit

(ASIC) 153
Arduino

references 372
Arduino applications, using rosserial

references 386

arm control modes, Baxter
joint position control 247
joint torque control 248
joint velocity control 248
raw joint position control 248
reference 282

arm sensors, Baxter
references 250

articulated robot arm
controlling, in Gazebo 220
controlling, with ROS

command line 229-231
controlling, with rqt 232-234
controls, adding to Xacro 225
fixing 222, 223
rqt, exploring 234
viewing, in Gazebo 223, 224

articulated robot arm URDF
building, with Xacro 203
namespace, specifying 203
Xacro property tag, using 204, 207

ASUS 149, 151, 159

B
banking 314
base coordinate system 246
Baxter

about 238, 240
arm sensors 249
Baxter arm 243, 244
Baxter Simulator 242
bend joints 244, 245
controlling 294
control modes, for arm 247
coordinate frame 246, 247

[446]

examples 297
grasping 297
grippers 248
joint position waypoints, commanding 295
joint torque springs, commanding 295, 296
joint velocity, demonstrating 297
references 240, 292, 297
research robot 241
setup, configuring 292-294
twist joints 245, 246
visual servoing 297, 298

Baxter Arm Specifications
reference 244

Baxter on-robot workspace setup
reference 241

Baxter's 7-DOF arms
reference 243

Baxter's arm
about 273
moving, to zero angle position 279-281
moving, with Inverse

Kinematic (IK) 299-301
rviz tf frames 282, 283
tf tree, viewing of robot elements 283

Baxter's arm, flexing
about 263
arm movements, recording 272, 273
arm movements, replaying 272, 273
arms, controlling with

Python script 270, 271
arms, wobbling 265, 266
controlling, with joystick 267-269
controlling, with keyboard 266
grippers, controlling with joystick 267-269
grippers, controlling with keyboard 266
untucking 263, 264

Baxter Simulator
Baxter, animating 440-443
Baxter's arm, flexing 263
executing 437-439
implementing 261-263
initiating 256-260
installing 252, 253
launching, in Gazebo 255, 256
references 252, 261
using 435

Baxter Simulator cheat sheet 260
Baxter Simulator ROS packages

references 242
Baxter software

Baxter Simulator, installing 252, 253
loading 250
MoveIt!, installing 254, 255
reference 250
SDK software, installing 250, 251
shell, configuring 253, 254

Baxter's untuck operations
reference 264

Baxter troubleshooting
references 256, 294

Bebop
about 347, 348
bebop_autonomy software,

loading 349-351
commands, used for flying 352
communications, testing 351, 352
landing 353
reference 351
take off 352

Bitcraze
references 335

Bitcraze VM
reference 336

blue-green-red (BGR) 409
Bluetooth Low Energy (BLE) 334

C
catkin_create_pkg 42
catkin workspace

creating 9, 10
reference 9

check_urdf tool 59
clockwise (CW) 79, 315
color parameters

modifying, for Turtlesim 29
rosparam get 29
rosparam set 30

Complementary Metal-Oxide-
Semiconductor (CMOS) 146

Compressed Real-Time Protocol
(CRTP) 334

counterclockwise (CCW) 79, 315

[447]

Crazyflie
controlling 420
control states 420
detecting 409
flying 426
messages, logging with rosout

and rospy 431, 432
observer node, using 425
operation 392
PID control, using for hover

and flight 423-425
reference 336
ROS services, using to control land 421
ROS services, using to control takeoff 421
takeoff and land, activating 422
takeoff and land, working 422
target, detecting 409

Crazyflie 2.0
about 334, 335
controlling, without ROS 336
Crazyflie ROS software, loading 338, 339
Crazyradio PA, used for

communication 337
flying, with teleop 342, 343
motion capture system, flying 346
multiple Crazyflies, flying 346, 347
pre-flight check 341
reference 335
udev rules, setting up for Crazyradio 340

Crazyflie, flying
about 426
hovering, in place 426
hover, working 427, 428
stationary target, flying to 428-430
target detection, working 430, 431

Crazyflie PC
references 336

Crazyradio firmware
reference 337

Crazyradio PA
reference 337

custom ROS Android device interface
Android Studio, installing 367, 368
Android tools, installing 367, 368
creating 366
ROS-Android development 370, 371
ROS-Android development environment,

installing 368, 369
custom ROS game controller interface

creating 356
game controller, alternative test 358, 359
game controller, testing 357, 358
ROS joy package, using 360
terms, defining 370
Turtlesim, controlling 360-366

D
degrees of freedom (DOF) 238
Depth Camera Manager (DCM)

references 155
depth cloud 161
depth registration image 402
differential drive robot URDF

building 42, 43
caster, adding 51, 52
collisions, adding 54, 55
color, adding 52-54
physical properties, adding 57, 58
robot chassis, creating 43, 44
robot_state_publisher node 57
roslaunch, using 44-48
tf package 57
wheels, adding 48-50
wheels, moving 55, 56

Digital Asset Exchange (dae) file 216
display types, rviz

reference 38
drones 321
Dynamic Animation and Robotics

Toolkit (DART) 60
Dynamic Host Configuration

Protocol (DHCP) 90

E
environment toolbar, Gazebo 64, 65
Extensible Markup Language (XML) 11

F
Federal Aviation Administration (FAA) 321
field of view (FOV) 391
Field Service Menu (FSM)

reference 293
fixed-pitch 313

[448]

focusing 87
forward kinematic analysis

about 273
joint angles, commanding 281
joints 273-278
joint state publisher 273-278
tf 278

Full High Definition (Full HD) 403

G
Gazebo

about 60, 61
articulated robot arm, controlling 220
Baxter Simulator , launching 255, 256
environment toolbar 64, 65
Hector Quadrotor, launching 325
Insert panel 67
installing 61, 62
Joints panel 67
launching 61, 62
Layers panel 67
main window menu bar 68
references 61, 62, 69
robot arm, viewing 223, 224
ROS commands 84-86
roslaunch, using with 62
Simulation panel 68
specific elements, adding 221
TurtleBot 2 simulator, launching 81, 82
TurtleBot 3 simulation, launching 126-128
URDF, viewing in 70-72
World panel 66

Gazebo GUI 63, 64
Gazebo installation instructions

reference 62
Gazebo keyboard shortcuts

reference 63
Gazebo model

verifying 70
Gazebo Troubleshooting

reference 258
Global Positioning System (GPS) 311
GPS system

reference 317
Gradle 370
Graphical User Interface (GUI) 36

graphics processing unit (GPU) 387, 391

H
Head Action Client Example

reference 263
hectopascals (hPa) 346
Hector Quadrotor

about 322
flying indoors 330-333
flying outdoors 325-330
launching, in Gazebo 325
loading 323, 325
packages 322
reference 323

Hitachi-LG LDS 157, 158
hue-saturation and value (HSV) 409

I
iai_kinect2

installing 399-401
using 402

Image Viewer
using, for data visualization 163-165

Inertial Measurement Unit (IMU) 110
infrared (IR) sensor 146, 401
input/output (I/O) 372
Integrated Development

Environment (IDE) 367
Intel Euclid Developer Kit

references 154
Intel RealSense

about 153, 160
Intel Euclid Developer Kit 154
Intel RealSense Camera R200 153
Intel RealSense Camera SR300 153
Intel RealSense Camera ZR300 154

Intel RealSense SDK
reference 155

International Civil Aviation
Organization (ICAO)

about 321
reference 321

Internet Protocol (IP) 15, 91
Inverse Kinematic (IK)

about 298, 299
references 298

[449]

used, for moving Baxter arm 300, 301
used, for moving Baxter's arm 299

J
Java Archive (JAR) 370
Java Development Kit (JDK) 366
joint control modes

reference 248
joint_position_waypoints

reference 295
joints

transmission elements, defining 225, 226
joint types, URDF

continuous 48
fixed 48
floating 48
planar 48
prismatic 48
revolute 48

jstest-gtk package
references 357, 358

K
Kinect

about 159
calibrating 404-408

kinect2_bridge 402, 403
kinect2_calibration 403, 404
kinect2_viewer 402, 403
Kinect coordinate frame 418
Kinect Software Development Kit

(SDK) 147
Kobuki

references 88, 96, 116
Kobuki base

reference 183

L
Laser Distance Sensor (LDS) 121
Libfreenect 159
libfreenect2

installing 396-399
librealsense API

reference 155
Line-of-sight(LOS) 337

Linux-Supported Joystick, with ROS
reference 359

localization 170

M
map

about 170
building 170-174

MATLAB
Baxter messages, installing 435-437
executing 437-439
installing 434
references 433
using 435
versions, checking 434

MATLAB ROS examples
reference 74

MATLAB with Simulink 74
Maven 370
Megabits per second (Mbps) 337
mesh

adding, to robot arm 214-220
micro air vehicle (MAV) 334
Microcontroller Unit (MCU) 334
Microsoft Kinect 147, 148
millibars (mbar) 346
milliseconds (ms) 345
mission

about 390
Crazyflie, controlling 420
Crazyflie, control states 420
Crazyflie, tracking 417-419
iai_kinect2, installing 399-401
iai_kinect2 metapackage, using 402
kinect2_bridge 402, 403
kinect2_calibration 403, 404
kinect2_viewer 402, 403
Kinect and OpenCV, using 414-417
Kinect, calibrating 404-408
libfreenect2, installing 396-398
markers, detecting with OpenCV 412, 414
markers, identifying in color image 409-411
markers, viewing with OpenCV 412, 414
setting up 408
software, loading for mission 395
target detection, issues 411

[450]

mission, components
about 391
Crazyflie, operation 392
Kinect v2, for Windows v2 391
OpenCV and ROS 394, 395
software structure 392-394

Model Aircraft
reference 321

modifications, robot URDF
<collision> elements 69
<gazebo> tag, adding 69
<visual> elements 69
about 68
color, specifying 69

moment of inertia tensors
reference 57

MoveIt!
about 284, 285
Baxter's arm, moving 286, 287
installing 254, 255
objects, adding to scene 288, 289
objects, position 290
references 254, 284
used, for avoiding obstacles 290-292

N
namespace (ns) 352
navigation 145
netbook

network connection, troubleshooting 94
networking 90
network setup 92
network setup, summary 93
reference 93
Secure Shell (SSH) connection 93

nodes
reference 102

O
Object-Oriented Graphics Rendering

Engine (OGRE) 60
observer node

using 425
Occupancy Grid Map (OGM) 170

odometry
about 110-113, 170
displaying, in rviz 117
reference 110
simulated TurtleBot 2, using 114-116

Open Computing Language (OpenCL) 397
OpenCV 394, 395
Open Dynamics Engine (ODE) 60
Open Graphics Library (OpenGL) 396
Open Natural Interaction

(OpenNI2) 149, 397
OpenSlam's GMapping

reference 174
Open Source Computer Vision

(OpenCV) 147
Open-Source Control module for ROS

(OpenCR) 121
Open Source Robotics Foundation

(OSRF) 3, 298

P
packages, Hector Quadrotor

hector_quadrotor_controller_gazebo 323
hector_quadrotor_controllers 323
hector_quadrotor_demo 323
hector_quadrotor_description 322
hector_quadrotor_gazebo 322
hector_quadrotor_gazebo_plugins 322
hector_quadrotor_model 323
hector_quadrotor_teleop 323

panels, ROS visualization (rviz)
Displays panel 38, 39
Time panel 39
Views panel 39

Parameter Server
about 17
of Turtlesim 28
rosparam help 28
rosparam list, for /turtlesim node 29

Parrot
reference 348

PID controller
reference 316

Pitch 314
point cloud 161
Point Cloud Library (PCL) 161

[451]

pose 273
PrimeSense 159
PrimeSense Carmine 152
Printed Circuit Board (PCB) 342
proportional-integral-derivative (pid) 227
PS3 joystick controller

reference 268
pulse-width modulation (PWM) 345
pulse-width modulation (PWM) output 420
puppet response, Baxter

reference 297
Python client (PC) 336
Python script

used, for navigating waypoints
with map 186

writing, to control TurtleBot 2 101, 102

Q
quadrotors

about 312
bluetooth 317
characteristics 313
communications 317
components 316
flight, precautions 320
flight, preparation 319
flying 314-316
GPS 317
pitch, defining 313, 314
pre-flight checklist 320
Radio Frequency (RF) 318
references 313, 317, 319
roll, defining 313, 314
rules and regulations 321
sensors, adding 317
testing 319
Wi-Fi 317
yaw, defining 313, 314

quadrotor sensors
accelerometer 318
altimeter 318
barometer 318
condition sensors 318
gyroscope 318
inertial measurement unit (IMU) 318

quaternion 85

R
Radio Frequency (RF) 318
radio signal strength indicator (RSSI) 343
range data 384
Raspberry Pi

ROS, installing 387
reference 388
reference, for loading ROS Kinetic 387
using 387

Raspbian 387
red, green, and blue (rgb) color

about 25
reference link 25

Registered DepthCloud 161
Registered PointCloud 161
remote computer

network addresses 91
network connection, troubleshooting 94
networking 90, 135, 136
network setup 92, 136
networks types 90
TurtleBot 2 system, testing 94, 95

REP
about 103
reference 247

Rethink Robotics
references 241

robot chassis
creating 43, 44

Robotics System Toolbox
about 433
commands, viewing for ROS 435
installing 434
reference 434
using 435
versions, checking 434

robot model
moving 73, 74
tweaking 72

Robot Operating System (ROS)
about 1
benefits 2
controlling 3
environment, setup 8
functions 2
installing 5

[452]

keys, setting up 7
kinetic, installing 7
launching 5
manifest 11
references 3, 9, 18
rosdep, initializing 7
rosinstall command, obtaining 8
sources.list file, setting up 6, 7
troubleshooting 8, 9
Ubuntu repositories, configuring 6
usage, checking for robots 3, 5

robots
Baxter 3
Crazyflie 3
TurtleBot 3

robot URDF
modifications 68

Roll 314
ROS

about 394, 395
references 321, 388
using, with UAVs 321

ROS-Android Development Environment
references 369

ROS command line
robot arm, controlling 229, 231

ROS commands
reference 32
roscore command 17, 32
rosmsg command 32
rosnode command 32
rosnode list command 17
rosparam command 32
rosrun command 32
rosservice command 32
rostopic command 32
rostopic list command 17
summarizing 32
used, for determining nodes 17, 18
used, for determining topics 17, 18
used, for shifting TurtleBot 2 100

ROS components
reference 15

ROS controllers
reference 225

roscore command
reference 16

ROS filesystem
reference 13

ROS Freenect
reference 159

rosinstall command
about 8
obtaining 8

ros java packages
reference 369

ROS Kinetic
reference 370

ROS Kinetic, Debian packages
reference 5

ROS-Kinetic installation instructions
reference 62

ROS Kinetic Kame 5
ROS Kinetic source code

reference 5
roslaunch

reference 202
using 44-48
using, for rrbot 208-210
using, with Gazebo 62

ROS Master
about 15
invoking, roscore command used 16, 17
Parameter Server 17

ROS messages 13, 15
ROS metapackage

reference 337
ROS navigation

exploring 199
references 199

ROS networking requisites
references 91

ROS nodes
about 13, 14
creating, on Arduino 371
creating, on Raspberry Pi 371
data visualization, with

Image Viewer 163-165
data visualization, with rviz 165-169
executing, for visualization 163
other applications 386

ROS OpenNI2 software
reference 160

[453]

ROS packages
about 10
building 41, 42
creating 41, 42
exploring 11, 12
loading 133
reference link 10
rospack find packages 12
rospack list 12, 13

ROS packages, Crazyflie metapackage
crazyflie_controller 339
crazyflie_cpp 339
crazyflie_demo 339
crazyflie_description 339
crazyflie_driver 340
crazyflie_tools 339

rosparam command 20, 21
ROS Python scripts

references 102
ROS sensor messages

reference 319
Rosserial

about 372
Arduino IDE software, installing 372
Arduino, using 372
references 372, 388
ROS-Arduino software, installing 373-377
ultrasonic sensor control,

Arduino using 378
ultrasonic sensor control, ROS using 378

rosserial_arduino package
reference 377

ROS services
for animating turtle 30
rosservice call 31

ROS simulation environments 74
ROS software, using for Bebop

references 349
ROS Terminal commands

rosmsg command 19
rosrun command 19
rosservice command 19

ROS topics 13, 14
ROS transform reference frames 237
ROS tutorial

reference 105

ROS visualization (rviz)
about 36
installing 36-38
launching 36-38
main window menu bar 41
mouse controls 40
panels 38
reference 36, 41

rotocrafts 312
rqt_reconfigure 197, 198
rqt tools

about 104
reference 105
rqt_graph 105, 106
rqt message publisher 107-110
topic monitor 107-110

rviz
odometry, displaying 117
TurtleBot 3 simulation software,

launching 123-125
using, for data visualization 165-169

rviz user guide
reference 38

S
SBC software

installing 130
reference 130
ROS packages, loading 133
TurtleBot 3 packages, loading 134
Ubuntu MATE, loading 131, 132
udev rules, setting up for TurtleBot 3 135

Screw theory
reference 86

SDF user guide
reference 72

Secure Digital (SD) 387
Secure Shell (SSH) connection 93
semiconductor laser diode light source

reference 157
sensors

about 317
adding 317

series-elastic actuators (SEAs) 238
service 30

[454]

simulated TurtleBot 2
using, for odometry 114-116

Simulation Description Format (SDF) 35
Simultaneous Localization and Mapping

(SLAM) 142, 146
single-board computer (SBC) 121
Skycontroller

reference 348
SLAM

used, for TurtleBot 3 193-195
SMACH

references 303
using 303

SSH connection 138, 139
Stage

about 74
reference 74

state machine
used, for performing YMCA 303, 307, 308

system on a chip (SOC) 387

T
tab-completion features 27
telemetry 316
teleop

Crazyflie, flying 342, 343
teleop_xbox360.launch 344, 345

tf
about 237, 278
references 278, 284

throttle 314
topic 13, 14
Transmission Control Protocol/Internet

Protocol (TCP/IP) 15
transmission elements

defining, for joints 225, 226
reference 226

TurboJPEG
installing 396

turtle
animating, with joystick 28
animating, with keyboard 28
animation, by publishing /turtle1/

cmd_vel 26, 27
TurtleBot

configuring 158

references 80, 88
TurtleBot 2

about 78, 79
controlling, with Python script 101-103
control, setting up 87
dashboard 96, 97
hardware specifications 96
map, building 170-174
mapping, with ROS gmapping

package 174, 175
reference 79
reference, for dashboard 97
reference, for manufacturers 78
shifting 98
shifting, with keyboard teleoperation 98, 99
shifting, with ROS commands 100
standalone test 88, 89
system, testing 94, 95
used, for room mapping 170

TurtleBot 2 automatic docking
about 118-120
reference 118

TurtleBot 2 autonomous navigation
about 175-178
Amcl 176
global costmap 176
global navigation 176
local costmap 176
local navigation 176
rviz control 178-180
task, accomplishing 181-183

TurtleBot 2, building 170
TurtleBot 2 simulator

keyboard teleoperation 86, 87
TurtleBot 2 simulator software

launching, in Gazebo 81, 82
loading 80
problems 83, 84
troubleshooting 83

TurtleBot 3
about 121
hardware assembly 129
network connection,

troubleshooting 139, 140
networking 135, 136
network setup 137
reference, for hardware assembly 129

[455]

references 121, 129, 130
remote computer software,

installing 129, 130
SBC software, installing 130
shifting 140
shifting, with keyboard

 teleoperation 141-143
software, loading 129
SSH communication, testing 139
SSH connection 138, 139
udev rules, setting up 135

TurtleBot 3 autonomous navigation 195-197
TurtleBot 3 packages

loading 134
TurtleBot 3 simulation software

launching, in Gazebo 125-128
launching, in rviz 123-125
loading 122

TurtleBot navigation
about 169
designated location 183-185
final goal point 191-193
position, defining on map 187
Python code, used for shifting

TurtleBot 189-191
Python script, used for navigating way-

points with map 185, 186
room, mapping with TurtleBot 2 170
ROS navigation, exploring 199
rqt_reconfigure 197, 198
SLAM, for TurtleBot 3 193-195
terms, defining 170
TurtleBot 2 autonomous navigation 176
TurtleBot 3 autonomous

navigation 195-197
waypoints, defining on map 188

TurtleBot ROS
reference 170

Turtlesim
about 19
color parameters, modifying for 29
controlling, with custom game controller

interface 360-366
Parameter Server 28
reference 366
ROS services, for animating turtle 30

turtle, animation by publishing /turtle1/
cmd_vel 26, 27

turtle, animation with keyboard and
 joystick 28

Turtlesim messages
about 23
rosmsg list 24
rosmsg show 25

Turtlesim nodes
about 21-23
rosrun command 20, 21
starting with 19

Turtlesim simulator
about 1, 19
using 19

Turtlesim topics
about 23
rostopic echo 25
rostopic list 24
rostopic type 24

U
Ubuntu MATE

loading 131, 132
reference 131

Ubuntu repositories
configuring 6

udev
rules, setting up for Crazyradio 340

udev rules
setting up, for TurtleBot 3 135

ultrasonic sensor control
Arduino, connecting to HC-SR04 ultrasonic

sensor 380
Arduino, programming to sense

distance 380
Arduino, using 378, 379
executing 382-386
ROS, using 378, 379

Unified Robot Description Format
 (URDF)

about 35
joint types 48
viewing, in Gazebo 70-72

Uniform Resource Identifier (URI) 17, 342

[456]

University of Southern California (USC)
reference 337

Unmanned Aerial Vehicles (UAVs) 312
urdf_to_graphiz tool 59, 60
URDF tools

about 59
check_urdf 59
urdf_to_graphiz 59, 60

V
Video Acceleration API (VAAP) 397
Video Graphics Array (VGA) 153
virtual machine (VM) 336
Virtual-Reality Peripheral Network

 (VRPN) 346
Virtual Robot Experimentation Platform

(V-REP) 74
visual servoing control

about 297
reference 297

W
Wobbler Example

reference 266

X
Xacro

about 42
control launch file, creating 228
controls, adding 225
expanding 207
features 202
Gazebo ROS control plugin, adding 226
include tag, using 211-214
macro tag, using 211-214
mesh, adding to robot arm 214-220
reference 203
roslaunch, using for rrbot 208, 209
transmission elements, defining for

joints 225, 226
used, for building articulated robot arm

URDF 203
YAML configuration file, creating 227

Y
YAML syntax

reference 27
Yaw 314

Z
Zero Force Gravity (Zero-G) 240

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Getting Started with ROS
	What does ROS do and what are the benefits of learning ROS?
	Who controls ROS?

	Which robots are using ROS?
	Installing and launching ROS
	Configuring your Ubuntu repositories
	Setting up your sources.list file
	Setting up your keys
	Installing ROS Kinetic
	Initialize rosdep
	Environment setup
	Getting rosinstall
	Troubleshooting – examining your ROS environment

	Creating a catkin workspace
	ROS packages and manifest
	ROS manifest
	Exploring the ROS packages
	rospack find packages
	rospack list

	ROS nodes, topics, and messages
	ROS nodes
	ROS topics
	ROS messages
	ROS Master
	Invoking the ROS Master using roscore

	ROS commands to determine the nodes and topics

	Turtlesim – the first ROS robot simulation
	Starting turtlesim nodes
	rosrun command

	Turtlesim nodes
	Turtlesim topics and messages
	rostopic list
	rostopic type
	rosmsg list
	rosmsg show
	rostopic echo

	Move the turtle by publishing /turtle1/cmd_vel
	Move the turtle using the keyboard or joystick
	Parameter Server of Turtlesim
	rosparam help
	rosparam list for the /turtlesim node
	Change parameters for the color of the turtle's background

	ROS services to move turtle
	rosservice call

	ROS commands summary
	Summary

	Chapter 2: Creating Your First
Two-Wheeled ROS Robot
(in Simulation)
	Introducing rviz
	Installing and launching rviz
	Getting familiar with rviz
	Displays panel
	Views and Time panels
	Toolbar
	Main window menu bar

	Creating and building a ROS package
	Building a differential drive robot URDF
	Creating a robot chassis
	Using roslaunch
	Adding wheels
	Adding a caster
	Adding color
	Adding collisions
	Moving the wheels
	A word about tf and robot_state_publisher
	Adding physical properties
	Trying URDF tools
	check_urdf
	urdf_to_graphiz

	Gazebo
	Installing and launching Gazebo
	Using roslaunch with Gazebo
	Getting familiar with Gazebo
	Environment toolbar
	World, Insert and Layers panels
	Joints panel
	Main window menu bar
	Simulation panel

	Modifications to the robot URDF
	Adding the Gazebo tag
	Specifying color in Gazebo
	A word about the <visual> and <collision> elements in Gazebo

	Verifying a Gazebo model
	Viewing the URDF in Gazebo
	Tweaking your model
	Moving your model around
	Other ROS simulation environments

	Summary

	Chapter 3: Driving Around with TurtleBot
	Introducing TurtleBot 2
	Loading TurtleBot 2 simulator software
	Launching TurtleBot 2 simulator
in Gazebo
	Problems and troubleshooting
	ROS commands and Gazebo
	Keyboard teleoperation of TurtleBot 2 in simulation

	Setting up to control a real TurtleBot 2
	TurtleBot 2 standalone test

	Networking the netbook and remote computer
	Types of networks
	Network addresses
	Remote computer network setup
	Netbook network setup
	Secure Shell (SSH) connection
	Summary of network setup
	Troubleshooting your network connection
	Testing the TurtleBot 2 system

	TurtleBot 2 hardware specifications
	TurtleBot 2 dashboard

	Moving the real TurtleBot 2
	Using keyboard teleoperation to move TurtleBot 2
	Using ROS commands to move TurtleBot 2 around
	Writing your first Python script to control TurtleBot 2

	Introducing rqt tools
	rqt_graph
	rqt message publisher and topic monitor

	TurtleBot's odometry
	Odom for the simulated TurtleBot 2
	Real TurtleBot 2's odometry display in rviz

	TurtleBot 2 automatic docking
	Introducing TurtleBot 3
	Loading TurtleBot 3 simulation software
	Launching TurtleBot 3 simulation
in rviz
	Launching TurtleBot 3 simulation in Gazebo
	Hardware assembly and testing
	Loading TurtleBot 3 software
	Installing remote computer software
	Installing SBC software
	Loading Ubuntu MATE
	Loading ROS packages
	Loading TurtleBot 3 packages
	Setting up udev rules for TurtleBot 3

	Networking TurtleBot 3 and the remote computer
	Remote computer network setup
	TurtleBot 3 network setup
	SSH connection

	Testing the SSH communication
	Troubleshooting your network connection

	Moving the real TurtleBot 3
	Using keyboard teleoperation to move TurtleBot 3

	Summary

	Chapter 4: Navigating the World with TurtleBot
	3D vision systems for TurtleBot
	How these 3D vision sensors work
	Comparison of 3D sensors
	Microsoft Kinect
	ASUS
	PrimeSense Carmine
	Intel RealSense
	Hitachi-LG LDS
	Obstacle avoidance drawbacks

	Configuring TurtleBot and installing the 3D sensor software
	Kinect
	ASUS and PrimeSense
	Intel RealSense
	Camera software structure
	Defining terms

	Testing the 3D sensor in standalone mode
	Running ROS nodes for visualization
	Visual data using Image Viewer
	Visual data using rviz

	Navigating with TurtleBot
	Mapping a room with TurtleBot 2
	Defining terms
	Building a map
	How does TurtleBot accomplish this mapping task?

	Autonomous navigation with TurtleBot 2
	Defining terms
	Driving without steering TurtleBot 2
	rviz control
	How does TurtleBot accomplish this navigation task?

	Navigating to a designated location
	Navigating to waypoints with a Python script using a map
	Defining TurtleBot’s position on a map
	Defining waypoints on a map
	Using Python code to move TurtleBot
	TurtleBot at final goal point

	SLAM for TurtleBot 3
	Autonomous navigation with TurtleBot 3
	rqt_reconfigure
	Exploring ROS navigation further

	Summary

	Chapter 5: Creating Your First Robot Arm (in Simulation)
	Features of Xacro
	Building an articulated robot arm URDF using Xacro
	Specifying a namespace
	Using the Xacro property tag
	Expanding Xacro
	Using roslaunch for rrbot

	Using the Xacro include and macro tags
	Adding mesh to the robot arm

	Controlling an articulated robot arm in Gazebo
	Adding Gazebo-specific elements
	Fixing the robot arm to the world
	Viewing the robot arm in Gazebo
	Adding controls to Xacro
	Defining transmission elements for joints
	Adding a Gazebo ROS control plugin
	Creating a YAML configuration file
	Creating a control launch file

	Controlling your robot arm with the ROS command line
	Controlling your robot arm with rqt
	Trying more things in rqt

	Summary

	Chapter 6: Wobbling Robot Arms Using Joint Control
	Introducing Baxter
	Baxter, the research robot
	Baxter Simulator

	Baxter's arms
	Baxter's bend joints
	Baxter's twist joints
	Baxter's coordinate frame
	Control modes for Baxter's arms
	Baxter's grippers
	Baxter's arm sensors

	Loading Baxter software
	Installing Baxter SDK software
	Installing Baxter Simulator
	Configuring the Baxter shell
	Installing MoveIt!

	Launching Baxter Simulator in Gazebo
	Bringing Baxter Simulator to life
	Warm-up exercises
	Flexing Baxter's arms
	Untucking Baxter's arms
	Wobbling arms
	Controlling arms and grippers with a keyboard
	Controlling arms and grippers with a joystick
	Controlling arms with a Python script
	Recording and replaying arm movements

	Baxter's arms and forward kinematics
	Joints and joint state publisher
	Understanding tf
	A program to move Baxter's arms to a zero angle position

	Commanding the joint angles directly
	rviz tf frames
	Viewing a tf tree of robot elements

	Introducing MoveIt!
	Planning a move of Baxter's arms with MoveIt!
	Adding objects to a scene
	Position of objects

	Planning a move to avoid obstacles with MoveIt!

	Configuring a real Baxter setup
	Controlling a real Baxter
	Commanding joint position waypoints
	Commanding joint torque springs
	Demonstrating joint velocity
	Additional examples
	Visual servoing and grasping

	Inverse kinematics
	Moving Baxter's arms with IK

	Using a state machine to perform YMCA
	Summary

	Chapter 7: Making a Robot Fly
	Introducing quadrotors
	Why are quadrotors so popular?
	Defining roll, pitch, and yaw
	How do quadrotors fly?
	Components of a quadrotor
	Adding sensors
	Quadrotor communications

	Understanding quadrotor sensors
	Inertial measurement unit
	Quadrotor condition sensors

	Preparing to fly your quadrotor
	Testing your quadrotor
	Pre-flight checklist
	Precautions when flying your quadrotor
	Following the rules and regulations

	Using ROS with UAVs
	Introducing Hector Quadrotor
	Loading Hector Quadrotor
	Launching Hector Quadrotor in Gazebo
	Flying Hector outdoors
	Flying Hector indoors

	Introducing Crazyflie 2.0
	Controlling Crazyflie without ROS
	Communicating using Crazyradio PA
	Loading Crazyflie ROS software
	Setting up udev rules for Crazyradio

	Pre-flight check
	Flying Crazyflie with teleop
	Details of teleop_xbox360.launch

	Flying with a motion capture system
	Flying multiple Crazyflies

	Introducing Bebop
	Loading bebop_autonomy software
	Testing Bebop communications

	Flying Bebop using commands
	Take off
	Landing

	Summary

	Chapter 8: Controlling Your Robots with External Devices
	Creating a custom ROS game controller interface
	Testing a game controller
	Alternative test of a game controller

	Using the ROS joy package
	Controlling Turtlesim with a custom game controller interface

	Creating a custom ROS Android device interface
	Installing Android Studio and tools
	Installing a ROS–Android development environment
	Defining terms
	Introducing ROS–Android development

	Creating ROS nodes on Arduino or Raspberry Pi
	Using Arduino
	Installing Arduino IDE software
	Installing ROS–Arduino software
	Ultrasonic sensor control using ROS and Arduino
	Other applications using ROS and Arduino

	Using Raspberry Pi
	Installing ROS on the Raspberry Pi

	Summary

	Chapter 9: Flying a Mission with Crazyflie
	Mission components
	Kinect for Windows v2
	Crazyflie operation
	Mission software structure
	OpenCV and ROS

	Loading software for the mission
	Installing libfreenect2
	Installing iai_kinect2
	Using the iai_kinect2 metapackage
	kinect2_bridge and kinect2_viewer
	kinect2_calibration

	Setting up the mission
	Detecting Crazyflie and a target
	Identifying markers in a color image
	Detecting and viewing markers with OpenCV

	Using Kinect and OpenCV
	How to track Crazyflie

	How to control Crazyflie
	Crazyflie control states
	Using ROS services to control takeoff and land
	Using PID control for hover and flight
	Using an observer node

	Flying Crazyflie
	Hovering in place
	What makes hover work?

	Flying to a stationary target
	What makes target detection work?

	Learned lessons
	Logging messages with rosout and rospy

	Summary

	Chapter 10: Controlling Baxter
with MATLAB©
	Installing the MATLAB Robotics System Toolbox
	Check the MATLAB and Robotics System Toolbox versions
	View the Robotics System Toolbox commands for ROS

	Using MATLAB Robotics System Toolbox and Baxter Simulator
	Installing Baxter messages in MATLAB
	Running Baxter Simulator and MATLAB
	Making Baxter move

	Summary

	Index

