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TRANSFORMING DIFFERENTIAL EQUATIONS

o

• THEOREM 5.8

In this section, the nth-order linear differential equation

with initial conditions

y(to), y(to), ... , y(n-l) (to)

will be converted into a set of n first-order differential equations. The
main reason for the conversion to a first-order system is that a number
of methods are available to solve the problem completely using numerical
techniques. Under fairly general conditions, we are certain that a solution
to Equation 5.79 exists and is unique.

Uniqueness
Let the coefficients a,(t), i = 0, 1, ... , ti - 1 and f (t) be continuous in some

common interval containing the point to. If y( t) is found that satisfies the
equation and the initial conditions for

y(to), y(to), ... ,y(n-l) (to),

the resulting solution is unique.

•
As has been the case for the other equations studied in this chapter,

the problem will be first formulated assuming the coefficients in Equa-
tion 5.79 are variable. Then, the equation with constant coefficients will
be studied.

To convert Equation 5.79 into a first order system, we replace the
variable y(t) and its derivatives by n new variables defined as follows:

Xl (t) y(t),
X2(t) XI(t) = y(t),
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The key to writing the n first-order equations is to notice that

i = 1,2, ... ,n - 1,

and that xn(t) = y(n)(t). Rearranging the nth-order equation yields the
last equation in terms of the coefficients and the forcing function f (t) in
the form

Xn y(n)
-an-l (t)y(n-l) - an-2 (t)y(n-2) - ... - al (t)y - ao( t)y + f(t)
-an-l(t)Xn - an-2(t)Xn-1 - ... - al(t)x2 - aO(t)xI + f(t).

In matrix form, the equations become

Xl (t) 0 1 a Xl (t) 0

X2 (t) a 0 a X2(t) 0
X3(t) + 0 f(t).

Xn (t) 0 0 1
-ao(t) -al (t) -an-l (t) xn(t) 1

These equations can be written as

x = A(t)x + f(t), (5.80)

where f(t) is understood to be the scalar function f(t) multiplied by the
column vector with zero entries except for the last entry which is 1.

Thus, the system of Equation 5.80 is equivalent to Equation 5.79 in
the sense that if x is a solution of Equation 5.80, then the first component
Xl (t) = y(t) is a solution of Equation 5.79. The initial conditions result
in the equation x(to) = c, where c is the constant vector

c=

y(to)
y(to)

Reduction of a Second-Order Equation
Consider the second-order equation

mx(t) + b±(t) + kx(t) = f(t). (5.81)
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SOLUTION
METHODS

Using the principles just defined, set Xl (t)
first-order system becomes

X(t) and X2(t) x (t), so the

o

252

b

X2 (t),
k b f(t)

--Xl(t) - -X2(t) +-.
m m m

The matrix equation is

x(t) ~ [
o
k
m

This method could be applied to convert the second-order equations that were
discussed in Example 5.3 and Example 5.6.

If the system represented by Equation 5.81 is a mechanical system, as pre-
viously discussed, we associate x(t) = Xl (t) as the position of a mass. Then, the
variables Xl (t) and X2 (t) represent the velocity. Thus, the first matrix equation
defines the velocity of the mass. The second equation is the acceleration.

Assuming that m, b, and k are positive values, the eigenvalues of the matrix
determine the frequency of oscillation (or rate of decay) of the complementary
solution. If b = 0, there is no damping, and the frequency of the harmonic
motion caused by any initial conditions would be w = Jk/m.

W HAT IF? Compare Example 5.6 with Example 5.13. These two
examples solve the second-order differential equation without damping.

If the equation has constant coefficients, the homogeneous solution of
x(t) = Ax(t) could be found by using the eigenvalues and eigenvectors for
the matrix of coefficients, as previously discussed. A particular solution to
the equation x(t) = Ax(t) + f(t) could also be found by various methods
presented earlier in the text.

Another approach is to use an algorithm to perform numerical inte-
gration to solve x(t) = Ax(t) + f(t). As stated before, MATLAB employs
a technique called Runge-Kutta integration to solve such problems. The
details of the algorithm will be discussed in Chapter 6.

Linear differential equations were introduced in this chapter by writ-
ing the equation as an nth-order differential equation. When the coeffi-
cients are constant, the homogeneous solution was found by first solving
for the roots of the nth degree characteristic equation. These roots led
to the homogeneous solution as a linear combination of exponential func-
tions with n arbitrary constants. The particular solution, called the forced
solution, could be found by various methods, such as undetermined co-
efficients or variation of parameters. The complete solution is formed by
adding the homogeneous solution and a particular solution.

It is important to remember that the values of the arbitrary constants
that occur in the homogeneous solution must be determined by applying
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A typical example of a linearized equation is Ohm's approximation
describing the voltage E across the terminals of a resistor due to a current
1 flowing through the resistor. For a constant current,

E=R1,

where R is the resistance. Mathematically, the voltage is proportional to
current, with R as the proportionality constant. In fact, the resistance of
resistors made of carbon and similar substances varies with temperature.
The temperature of the resistor is, in turn, a function of the current flow-
ing through it since the power involved is P = 12R and the temperature
increases with the power. Fortunately, the dependence of resistance on
current is slight in most electronic devices as long as the current does not
cause an excessive temperature rise in the resistor. Therefore, a linea~
relationship between E and 1is justified in many cases.

Even though Ohm's approximation is usually called Ohm's law, such
approximations are not fundamental in physics, as are Newton's laws.
Newton's laws are a general statement about nature. Ohm's law is an
approximation to the behavior of resistors subject to a limited range of
voltage and current.i'

Hooke's law is a fundamental approximation in mechanics. A spring
with a restoring force governed by the equation F = kx is called a linear
spring since the displacement is proportional to the force involved. An
actual spring force may be governed by a more complicated equation, such
as

F(x) ~ kx + k1x3,

where a cubic nonlinear term is used since we expect that F(x) = - F( -x)
if the spring is symmetric. Notice that the motion of the spring will be
approximately linear if k1x3 « kx. If either kl or the displacement x is
small enough, the second term can be neglected compared with the linear
term. The expression dF = k dx + 3k1x2 dx shows the dependence of F
on displacement for small displacements dx.

o EXAMPLE 12.6 Linearization
Suppose the acceleration of an automobile can be described by the equation

of motion
dv(t) 2

M d.t = cu(t) - av (t),

where the first term represents the acceleration caused by the engine at a throt-
tle setting u and the second term is the drag caused by air resistance. Si~ce
this force is proportional to the square of the speed, the equation is nonhn-
ear. Solving this by numerical techniques would not be difficult if the constants

of
3The purist may comment that Newton's laws are also approximations. This is so, but the range jd

applicability is enormous. Only at velocities approaching the speed of light (relativity), in the quantum VlO\e
(quantum mechanics), or in other very special cases would we abandon Newton's laws and substitute a rJlo
complicated theory.

(12.33)

----------------------------------------------------~
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were known. However, we can analyze the motion of the car for small changes
in throttle position by linearizing the equation.

Take (Uo, Vo) to be the "operating point," so that the car travels at a
constant speed Vo for a constant throttle position Uo. Inserting this condition
into Equation 12.33 yields

dVo 2Mdt = cUo - aVo (t) = 0,

or Vo = JcUo/a. Let us assume that a small change in the throttle position
leads to a small change in speed. Thus, we set

u(t) = Uo + llu, v(t) = Vo + llv

and substitute again into the equation of motion. The result is

d 2M dt [Vo+ llv] = c[Uo + llu] - a[1lo + llv] .

Using the result that cUo = aV02 and expanding the terms but neglecting the
second-order term -allv2 leads to the approximation

dM- [llv] ~ c[llu] - 2aVollv.
dt

Writing llv = va(t) and llu = ua(t) to indicate the linearized variables, the
original differential equation of motion described by Equation 12.33 becomes
the linear differential equation

dVa(t)
M~ + 2aVova(t) = cua(t). (12.34)

This is a linear differential equation with constant coefficients, which can be
solved by the techniques presented in Chapter 5.

o

TWO-DIMENSIONAL TAYLOR SERIES

The notion of sequences and series of functions of a single variable as
described in Chapter 6 can be extended to functions of several variables.
For example, the power series expansion for a function of two variables
F(x, y) is

(X)

F(x, y) = L !n(x, y) = !o(x, y) + II(x, y) + ... + !n(x, y) + ... , (12.35)
n=O

with the terms

f ( ) - n + n-l + - + n-l - nn x, Y -- cn,o X Cn,l X Y . . . Cn,n-l xy + cn,n y .

12.4 Two-Dimensional Taylor Series 565



Control of Mobile Robots | Week 3

https://www.youtube.com/watch?v=Tsc5q-jQwfY

State Space – Play first about 10 Minutes. 

Control of Mobile Robots 
Dr. Magnus Egerstedt  Professor School of Electrical and Computer Engineering 
Module 3  Linear Systems

https://kot.rogacz.com/Science/Studies/14/Conrob/lecture/Module3.pdf

Control of Mobile Robots | Week 3
https://www.youtube.com/watch?v=Tsc5q-jQwfY
https://www.youtube.com/watch?v=Tsc5q-jQwfY


1(Nt-,,;~'~J v..J~\"~1v =.T,:c.5~-~G...wl-'f

'lV\-ltfNU5 .LeC;+v,e~~ YtrtJTu&=-
\ , GAt -U..-t<!.. l-

___ lA =:zs::a=. p' -;:::::;/A A ~ rrv+~ ~l,

l
-S- s: -It? YV""

\r'\ "l~
M ~ F.. ~ ( z: ~L X z:S~I
'/.. 7... C P X L x.u

-----
1- ~ ~~:1~)~]~l~~1~:~l~2 ~7u

'J -.:.f' ~ t- I -=- ~I b J X

~ 7~ f -=-{If>'f f,)
~~ z<.,/ x~) X'>7Xl{

"9 o 5C( w-R-
~ I (0 C

A ~ l.? l) o 0

o 0 &> I
o C; o 0

X~4'"1i-8G

~ ~ C"

D 0
'6:; { 0

o 0
o (




