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4.3 THE EFFECT OF FRICTION AND GRAVITY

As mentioned previously, one of the major goals of a robot is to move a tool or
a part from one point to another in an accurate and repeatable manner. Anything
that prevents this goal from being achieved is clearly undesirable and must, there-
fore, either be compensated for or eliminated. In practically all electromechanical,
pneumatic-mechanical, or hydraulic-mechanical systems, friction in various com-
ponents will create a position error. Also, gravity will produce a position error
of varying magnitude in one or more joints for most robots. To see more clearly
the effects of these "disturbances," it will be necessary first to consider a more
complete model of a de servomotor.

4.3.1 Modeling the DC Servomotor

One of the common methods of driving a robotic joint is through the use of a de
servomotor, a fractional-horsepower motor with a stationary magnetic field that is
generated by a permanent magnet. [For this reason it is sometimes called a
permanent-magnet (PM) motor.] No power is used in the stator structure of this
device and the field is constant over a wide range of armature currents. A PM
motor usually requires less cooling than do other types of de motors (e.g., a shunt
motor). Other advantages of the PM motor over the wound types are:

1. High stall torque. This is an important characteristic during joint acceleration
and also when the manipulator is required to keep a load stationary.

2. Smaller frame size and lighter weight for a given output power. This is
especially important in a robot, where the design may require the motor to
be moved within the joint itself.

3. The speed-torque curve of a PM motor is linear, as shown in Figure 4.3.1.
If these curves were nonlinear, a potentially significant amount of extra com-
putational effort might be required of the joint processor to ensure that a
given amount of torque (or current) was produced by the motor.

A linear circuit model of a de servomotor armature is shown in Figure 4.3.2.
Here R; is the total armature resistance (including that due to the brushes), RL is
a resistance that represents the magnetic losses in the armature (and is normally
» R; since these losses are usually small at the frequencies of interest), La is the
armature inductance, and Eg is the back EMF produced when the armature rotates
in a de magnetic field. This last term is proportional to the angular velocity wet)
of the armature (i.e., e). That is,

, _Eg = w(t)K£ (4.3.1)

where K£ is referred to as the back EMF constant of the motor. Applying ele-
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Figure 4.3.1. Speed and current versus
torque for a DC servomotor.
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mentary circuit theory to Figure 4.3.2 and using Eq. (4.3.1) gives

Varm = Rafa + Lafa + w(t)K£ (4.3.2)
fa and fa represent the armature current and its time derivative.

. As shown in Eq. (4.3.1) and Fig. (4.3.1) the torque generated by the armature
moving in a PM field is linearly related to the current. Thus

r, = Krfa (4.3.3)

where Kr-is the torque constant. This generated torque is required to accelerate
an inertia (usually consisting of the motor armature itself and an external load),
overcome any viscous damping torque due to the motion of the armature, and to

L.

+

Figure 4.3.2. Circuit model of a DC
servomotor armature.
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overcome any external load torque (e.g., due to either gravity or static tncuonr;
Thus we may write

r, = (1M + h) wet) + Bw(t) + r, + Tgr

In this equation, 1Mand 1L are the armature and reflected load inertias (which
convenience will be combined and written as 1T = 1M + 1L), B is the armatujs:
viscous damping coefficient, T, is the friction torque of the motor and the
(including the gears, etc.), and Tgr is the gravitational torque load. This m01cl¢li
assumes that all components of the rotary system turn in phase (i.e., there is
torsional resonance in the system; this topic is discussed in Section 3.5.3.1). N
that if the load has any viscous friction, this can be added to B.

Combining Eqs. (4.3.1) through (4.3.4), the model of a servomotor (including,
the friction and gravity terms) is found to be the one shown in Figure 4.3,,3. Us{«;t
block diagram reduction techniques, the transfer function of the motor becom

D(s)
Gm(s) = Vann(s)

KT/LalT= ------------------~--~~-----------------
S2 + [(RalT + LaB)/LalT]s + (KTK£ + RaB)/LalT

It is important to note that the disturbance torques T, and Tgr do not appear
this expression because they are treated as additional inputs. They will be utiliz
however, later in this section.

In developing the results above, it has been assumed that the load ine
(reflected back to the motor shaft) does not vary with time, so that 1L is a const
This nontrivial assumption is valid for a large number of applications. Unfo
nately, however, the actuation of a robotic joint is usually not one of them.
fact, the reflected inertia of most of the axes of a robot will normally fluct
significantly while the manipulator is moving. An example of such behavio
be seen in Figure 4.3.4, where the inertia variation for each of the six joints
JPL-Stanford ann is shown. It is observed that the inertia of joint 1 (i.e.,

T,(s) +TlI"(s)

Figure 4.3.3. Block diagram of DC servomotor including gravitational and friction disturb-
ance' torques.
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Figure 1.2.2. Jet Propulsion Laboratory-Stanford arm. This 6-axis, electrically
actuated robot utilizes the Scheinmann design with JPL modifications. (Courtesy
of Dr. A. K. Bejczy and Jet Propulsion Laboratories, Pasadena, CA.)
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Figure 8.6.7. Coordinate frames for the Stanford arm. (Reproduced with the permission of
SRI International, Menlo Park, CA.)
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Figure 4.3.4. Inertia variations for each of the six joints of a IPL-Stanford arm.
Both variations with and without a load (carried by the gripper) are shown. (Cour-
tesy of A.K. Bejczy and Jet Propulsion Laboratories, Pasadena, CA.)

"trunk") varies approximately 4.5 times under no load conditions andby as much
as 7 times when the manipulator is carrying a 4-1b load. Joints 2, 4; and5 are
seen to have significant variations also. Only axes 3 and 6 have relatively constant
inertias over their entire range of travel. This behavior is typical of other robots,
although the specific inertia fluctuations may be different. Despite the fact that
the inertia of a robotic joint usually does undergo dramatic changes as a function
of the manipulator position, it is common design and control practice to ignor-e
this and to assume that JL is a constant. The resultant computational simplification.
permits a "worst-case" approach to be used whereby the motor ~~Iid;associated'
mechanical linkages and gears are selected for the maximum load (i.e. ,; inertia)
conditions. It is apparent that this may not produce the lowest-cost design. Al-
ternatively, the system is "derated" under full load so that maximum -acceleration
is not permitted under this-condition. Hence, smaller, less-costly components may
be used.

Regardless of which of these design processes is selected, the control of the
individual joints of a robot is usually accomplished by assuming that there is no
time variation of the load inertia. Compromises in performance are the inevitable
consequence (e.g., reduced speed and/or payload capability of the manipulator).
It is reasonable to expect, however, that as microprocessors become more powerful
and cost-effective, adaptive schemes that compensate for the large -changes in
reflected inertia will be used. A corresponding improvement in performance will
undoubtedly result. This is discussed briefly in Section 4.5.5.
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(J Let us find the poles [i.e., the roots of the denominator polynomial of G711(sUK.,:
of a commercially available de servomotor. For example, the parameters oft
an Electrocraft Corporation E530 motor are: /'

5EE P7~q KT = 10.02 oz-in.lA "'\o"R-£x'Ut C.Dtsc.,l~
L.~C;Tel=- ~f) To R..S

j\-~ PEN Ol c- )3 K£ = 7.41 V/1000 rpm

R; = 1.64.n (including brush resistance)

La = 3.39 mH

B = 0.1 oz-in.l1000 rpm

IM = 0.0038 oz-in.vs? Ro\O~ W Y3 <?.T{A
Assuming that there is no inertialIqad coupled to the motor shaft, IT = ]
in Eq. (4.3.5). Since the gravity and friction terms do not affect the moto
poles, we may also assume that T, and Tgr are both zero, so that Eq. (4.3.5
is applicable. To utilize this equation, K£ and B first must be converted t
V/radls and oz-in.lradls, respectively, in order to have a consistent set 0

units. This is accomplished by ..Qividingeach of the given parameters b,
104.72. Thus <-----

lO\:)O ~e-J(fI\lt\,y.. l$ \~M K£ = 0.0708 V/rad/s .

hI B = 9.55 X 10-4 oz-in.zrad/s
r: I D cf (OJ'-l StA- .
"'"~ I These parameters can now be substituted into Eq. (4.3.5). The actual transf

function for the Electrocraft motor is found to be
rJ&"te- £\l.... 7.778 x 105

~~ "':- ~ Gm(s) = S2 + 484.027s+ 5.516 x 104

r: ,"" ::.~a L\ ,l-' S' As mentioned above, the roots of the denominator polynomial will give t
't: motor poles. Thus .-.-:'

It, l--- V\ .
~ ~ '3,,\ """-7 Sl = -183.621 radls - W

Tl.- --. 1.-0 rv\,> S2 = - 300.406 rad/s

both of which are observed to be negative and real. This is quite often t
case for commercial servomotors, implying that the open-loop response
such motors (to a step voltage on the armature) will be, in general, ov
damped.

The model of the motor used in Figure 4.2.2 can now be replaced by the 0

just developed in Figure 4.3.3. This is shown in Figure 4.3.5. Using stand
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% Motor Control Example Like Klafter Equation 4.3.5 example
% In this example, define the constants for numerator and denominator
% G(s)= .06Kp/[s+0.01(1 +O.lKp)]s
elear all, elf, elc
% Different values of the gain
Kp = 100; % 100
num = .06*Kp; % Numerator
den = [1 .01+.001*Kp]; % Denominator
help step % Study the step function
% Look at the G(s) as a transform
sys1=tf(num,den) % ans = 6/(s + 0.11), could plot step(sys)
t = 0:.4:50; % Define the time scale
y1 = step(num,den,t); % This creates the step function but no plot
Kp = 200; % 200
num = .06*Kp;
den = [1.01+.001*Kp];
y2 = step(num,den,t);
Kp = 500;
num = .06*Kp;
den = [l.01+.001*Kp];
% Do a Plot with three values of Kp
y3 = step(num,den,t);
figure(l)
plot(t,Y1.t,y2,t,y3),grid,titleCSimple Motor Step functions');
xlabel('Time (sec)'),ylabeICy(t),)
% the following adds a legend
hold on
plot([13 21],[39 37],[9 21J,[4S41],[5 21J,[S245)) % Draw the lines
text(22,4S,'Kp = SOO'),text(22,41,'Kp = 200'),text(22,37,'Kp = 100')
hold off
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Figure 4.3.6. Position servo with a PID controller.

The minimum value of position gain that will keep the position error due to a
torque disturbance below a certain value is seen to be

(4.3.11)

If the specified value of the hysteresis is small, the value of K; will be large.
In fact, this value may be so large that the joint response will either be unstable
or highly underdamped (recall the discussion in Sections 4.2.1 and 4.2.2). Under
these circumstances, it will be necessary to use a good deal of tach feedback in
order to improve the performance of the joint. In a later section of this chapter
it will be seen that this is not always possible to do. Thus some compromise in
response may be necessary.

There is another way to reduce or eliminate the position error, however.
This is accomplished by adding an integrator to the control structure. Such a
scheme is referred to as PID (standing for proportional, integral, derivative) con-
trol. A position servo utilizing such a controller is shown in Figure 4.3.6. In this
figure the block marked "velocity loop" will usually consist of the amplifier and
servomotor. In order to see how the addition of the integral term affects the final
value of the joint position, we consider the following example.

EXAMPLE 4.3.2

To simplify the transient response calculations, let us assume that the in-
ductance and viscous damping of the servomotor are zero and that the am-
plifier pole can be neglected (because it occurs at such a high frequency).
Then the position servo of Figure 4.3.6 becomes that shown in Figure 4.3.7.
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Figure 4.3.7. Position servo for Example 4.3.2.

Here summing junctions 2, 3, and 4 are assumed to be unity-voltage-gain
devices (e.g., noninverting op amps). Consequently, the tachometer constant
Ktach has the units of volts/rad/s. The specific parameters. of the velocity loop
are

A = lO.OVN
Ra = 1.62.n

JT =0.0067 oz-in.ss?

KT = lO.70z-in.lA

KE = 0.0754 V/rad/s = 7.8 VIlOOOrpm

Ktach = 0.056 V/rad/s = 6 V/1000 rpm

Note that J T represents the sum of the motor and reflected load inertias.
(See Section 3.3.1 for a discussion of reflected inertia calculation.)

Let the desired final position of the joint be 7T/2 radians, so that 6)s)
= 1.57/s. In Figure 4.3.8 it is observed that the joint is initially at 6 ="' .0
rad, so that the gravitational force produces no additional load on the axIS
motor. However, as 6 increases with time due to the command signal, the
gravitational disturbance also increases and is, in fact, proportional to the
sine of 6. For a particular joint geometry, we will assume that the magnitude
of this disturbance is 21 oz-in. so that the time variation of the gravitational
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j Figure 4.3.8. Joint used in Example
4.3.2. showing the effect of gravity as a
function of angle.Gravity

torque will be

Tgr(t) = 21 sin 8(t) (4.3.12)

The results of a computer simulation of the step response of the joint
modeled in Figures 4.3.7 and 4.3.8 are given in Figures 4.3.9 through 4.3.13.
The .first of these figures shows the system with proportional control only.
It is observed that as Kp increases, the overshoot increases, as expected.
Recall the discussion in Section 4.2.2. In addition, there is also a steady-
state error due to the gravitational torque disturbance. As mentioned pre-
viously, increasing Kp reduces this error but at the expense of overshoot.
This is clearly demonstrated in the figure.

The effect of adding derivative control is shown in Figure 4.3.10 for a
fixed proportional term (i.e., Kp = 20). As expected, the larger the damping
(i.e., KD), the smaller the overshoot. It is seen that it is possible to obtain
a response with practically no overshoot (i.e., critical damping), but the
steady-state error is still present and does not vary with KD.

Figure 4.3.11 demonstrates the effect of adding an integral term in the
controller. Here proportional plus integral (PI) control eliminates the steady-
state error with slightly increased overshoot. A PID controller is used in
Figure 4.3.12. In this case the step response for different values of damping
is shown for Kp = 20 and K[ = 75. It is observed that it is now possible to
obtain a zero steady-state error (i.e.;' the desired final position is actually
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Figure 4.3.9. Step response of the system in Fig. 4.3.7 for proportional control
only.

achieved) with no overshoot for KD = 0.02. For completeness, a PID con-
troller using different values of the proportional term is shown in Figure
4.3.13. --
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Figure,4.3.12. Step response of the system in Fig. 4.3.7 for proportional plus
integral plus derivative (PID) control.

It is important to note that the PIn controller can be synthesized using analog
components (e.g., op amps). Alternatively, the individual joint processors can
produce the required proportional, derivative, and integral terms with appropriate
gain factors by operating on the error signal (see Appendix C).


