Sensors, Errors, A2D Theory and Sampling CENG 5437, CENG 4391 SPRING 2023

SENSORS Sampling and A2D

Classes of Sensors Characterization of Sensors

Connect Sensors to the Computer – A2D converters, etc. RESOLUTION VS. ACCURACY

Accuracy and errors: Types of Errors – Statistical and Random

Odometry Errors - Example

Sampling Theory and Video Aliasing

Navigation Errors for Moving Robot

Sensors

Proprioceptive Sensors

(monitor state of robot)

- IMU (accels & gyros)
- Wheel encoders
- Doppler radar ...

Exteroceptive Sensors

(monitor environment)

- Cameras (single, stereo, omni, FL 🧕
- Laser scanner
- MW radar
- Sonar
- Tactile...

1980-82 – ROBART-I Sentry Robot – H. R. Everett

RESOLUTION OF A DIGITAL REGISTER OR A2D CONVERTER

https://spectrum-instrumentation.com/support/knowledgebase/hardware_features/ADC_and_Resolution.php

Digitizers convert the samples of an analog signal into digital values using analog to digital converters (ADCs). The **resolution of the ADC is the number of bits it uses to digitize the input samples.**

For an n bit ADC the number of discrete digital levels that can be produced is 2ⁿ. Thus, a 12 bit digitizer can resolve 2¹² or 4096 levels.

The least significant bit (lsb) represents the smallest interval that can be detected and in the case of a 12 bit digitizer is 1/4096.

To convert the lsb into a voltage, we take the input range of the digitizer and divide by 2 raised to the resolution of the digitizer.

Table 1 shows the lsb for a 1 Volt input range for digitizers with resolutions of 8 to 16 bits.

Digitizer step size vs. resolution

8 Bit	256:1	3.92 mV
10 Bit	1024:1	0.98 mV
12 Bit	4096:1	0.244 mV
14 Bit	16384:1	61 µV
16 Bit	65536:1	15 μV

Resolution determines the precision of a measurement. (NOT THE ACCURACY)! The greater the digitizer resolution, the more **precise** the measurement values.

A digitizer with an 8-bit ADC divides the vertical range of the input amplifier into 256 discrete levels. With a vertical range of 1 V, the 8 bit ADC cannot ideally resolve voltage differences smaller than 3.92 mV; while a 16 bit ADC, with 65,656 discrete levels, can ideally resolve voltage differences as small as 15 μ V.

Example: systematic and random errors

Accuracy and errors

. Systematic errors

- Result from a variety of factors
 - . Interfering or modifying variables (i.e., temperature)
 - . Drift (i.e., changes in chemical structure or mechanical stresses)
 - . The measurement process changes the measurand (i.e., loading errors)
 - . The transmission process changes the signal (i.e., attenuation)
 - . Human observers (i.e., parallax errors)

Systematic errors can be corrected with COMPENSATION methods (i.e., feedback, filtering)

. Random errors

- Also called NOISE: a signal that carries no information
- True random errors (white noise) follow a Gaussian distribution
- Sources of randomness:
 - . Repeatability of the measurand itself (i.e., height of a rough surface)
 - . Environmental noise (i.e., background noise picked by a microphone)
 - . Transmission noise (i.e., 60Hz hum)
- Signal to noise ratio (SNR) should be >>1
 - . With knowledge of the signal characteristics it may be possible to interpret a signal with a low SNR (i.e., understanding speech in a loud environment)

• **Resolution:** Resolution is the minimum step size within the range of measurement of the sensor. In a wire-wound potentiometer, it will be equal to the resistance of one turn of the wire. In a digital device with *n* bits, the resolution will be

Resolution = Full Range/ 2ⁿ

For example, an absolute encoder with 4 bits can report positions up to $2^4 = 16$ different levels. Thus, its resolution is $360/16 = 22.5^{\circ}$.

Accuracy: Accuracy is defined as how close the output of the sensor is to the expected value. If for a given input, the output is expected to be a certain value, the accuracy is related to how close the sensor's output is to this value.

1. Measurement and Correction of Systematic Odometry Errors in Mobile Robots By Johann Borenstein and Liqiang Feng (It would be difficult to get more information on Odometry)

http://www-personal.umich.edu/~johannb/Papers/paper58.pdf

THERE IS HOPE TO ELIMINATE (REDUCE) THE SYSTEMATIC ERRORS BY CALIBRATION!

REDUCING RANDOM ERRORS FROM THE SENSORS IS ANOTHER STORY! (TO BE TOLD LATER IN COURSE)

This graph shows the position error of fused odometry with gyro, when robot moves along a square path. Robot moved with 0.1 m/s on the line segment and rotated with 30 deg/s on the corner.

MODIFIED TLH

DSP First, 2/e Sampling & Aliasing

CHAPTER 4 PRESENTATION 2

SAMPLING THEOREM THE BIG DEAL!!

• HOW OFTEN DO WE NEED TO SAMPLE?

- DEPENDS on FREQUENCY of SINUSOID
- ANSWERED by SHANNON/NYQUIST Theorem
- ALSO DEPENDS on "<u>RECONSTRUCTION</u>"

Shannon Sampling Theorem

A continuous-time signal x(t) with frequencies no higher than f_{max} can be reconstructed exactly from its samples $x[n] = x(nT_s)$, if the samples are taken at a rate $f_s = 1/T_s$ that is greater than $2f_{\text{max}}$.

• ANALOG/ELECTRONIC:

Circuits: resistors, capacitors, op-amps

- DIGITAL/MICROPROCESSOR
 - Convert x(t) to numbers stored in memory

SAMPLING x(t)

• SAMPLING PROCESS

- Convert x(t) to numbers x[n]
- "n" is an <u>integer index</u>; x[n] is a sequence of values
- Think of "n" as the storage address in memory

• UNIFORM SAMPLING at $t = nT_s$

• IDEAL: $x[n] = x(nT_s)$

© 2003-2016, JH McClellan & RW

SAMPLING RATE, f_s

- SAMPLING RATE (f_s)
 - $f_s = 1/T_s$

NUMBER of SAMPLES PER SECOND SOMETIMES GIVEN IN Hz

- $T_s = 125$ microsec $\rightarrow f_s = 8000$ samples/sec
 - UNITS of f_s ARE HERTZ: 8000 Hz

- Thus Fmax = 4000 Hz
- UNIFORM SAMPLING at $t = nT_s = n/f_s$
 - IDEAL: $x[n] = x(nT_s)=x(n/f_s)$

STORING DIGITAL SOUND

- *x*[*n*] is a SAMPLED SISIGNAL
 - A list of numbers stored in memory
- EXAMPLE: audio CD
- CD rate is 44,100 samples per second
 - 16-bit samples

THUS – Frequency range of 22,050 Hz

• Stereo uses 2 channels

is beyond (most) humans hearing range.

- Number of bytes for 1 minute is
 - 2 X (16/8) X 60 X 44100 = 10.584 Mbytes

Relationship of Nyquist frequency & rate (example)

Basic Sampling at 2x Highest Frequency in Band (B)

Nyquist Limit

The absolute limiting resolution of a sensor is determined by its Nyquist limit. This is defined as being one half of the sampling frequency, a.k.a **the number of pixels/mm** (Equation 3). For example, the Sony ICX285 is a monochrome CCD sensor with a horizontal active area of 9mm containing 1392 horizontal pixels each 6.45µm in size. This represents a horizontal sampling frequency of 155 pixels/mm (1392 pixels / 9mm = 1mm / 0.00645 mm/pixel = 155).

https://www.edmundoptics.com/knowledge-center/application-notes/imaging/camera-resolution-for-improved-imagingsystem-performance/

Video Aliasing Why car wheels rotate backwards in movies 4:25

https://www.youtube.com/watch?v=SFbINinFsxk&feature=youtu.be

 $May~2016 \ensuremath{\,\odot\,}$ 2003-2016, JH McClellan & RW Schafer 3

INCORRECT SAMPLING LEADS TO "FUNNY THINGS" IN VIDEOS ALSO.

Navigation Errors

IF YOU DO NOT CALIBRATE CAREFULLY!

IF YOU DO NOT UNDERSTAND RANDOM ERRORS IN ROBOT NAVIGATION

LOST ROOMBA !!!

His name is "Higgins". 35cm / 9cm high / 2.8Kg DOES NOT BITE !!!

Roomba app info: Battery: 3% Dust bin: 190%

My husband left our bungalow door open and our Roomba escaped !!! We followed his cleaning track for 4 Km down to the beach where we lost his trail. **HIGGINS CAN NOT SWIM !!!** Please help us to bring Higgins back!

#TEARMEOFF

That's All Folks