
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
60	
61	
62	
63	
64	
65	

Formation Control Implementation Using Kobuki
TurtleBots and Parrot Bebop Drone*

Nicolas Gallardo, Karthik Pai, Berat A. Erol, Patrick Benavidez and Mo Jamshidi
Department of Electrical and

Computer Engineering
The University of Texas at San Antonio

San Antonio, TX 78249
Email: hbq744@my.utsa.edu, dxq821@my.utsa.edu, berat.erol@utsa.edu, patrick.benavidez@utsa.edu, moj@wacong.org

Abstract—Formation control of a collection of vehicles is
a topic that has generated a lot of interest in the research
community. This interest primarily stems from the increased
performance and robustness that is provided by a swarm of
agents as compared to an individual member. Formation control
can be achieved through many approaches. The approach used by
this paper is based on a leader-follower premise. A network of
agents can be controlled by assigning a leader for each agent
in the formation. The group as a whole will be capable of
following either a Virtual Leader (VL) or an agent within the
group. The algorithm applied to a test-bed consisting of three
Kobuki TurtleBot2 robots. Each Turtlebot2 is programmed to
follow a pre-defined virtual point in the formation. The test space
is monitored by a Parrot Bebop drone hovering overhead that
identifies agents uniquely through image processing techniques.
The agents can then move in the test space, based on the leader’s
position, while maintaining a formation.

Index Terms—formation control, virtual leader, robot, drone,
UGV, UAV, turtlebot, parrot bebop

I. INTRODUCTION

Groups of autonomous vehicles provide additional perfor-
mance and functionality beyond the capabilities of individuals.
A group can solve problems and achieve objectives which
are difficult for individual robots to achieve in a reasonable
time frame. In a target identification scenario, for example,
the probability of targets being missed in a highly cluttered
environment is much greater for a single surveillance vehicle
than it is for a formation [1]. Environmental exploration is
another area in which a formation of agents will have increased
performance as compared to a single agent. Simultaneous
Localization and Mapping (SLAM) is an algorithm used
in environmental exploration that uses a graph-based map
method. In [2], an implementation of SLAM is presented that
represents nodes as the current pose of a robot and graph edges
as constraints between each pose. In this example, a map of the
robot’s environment according to its position and pose can be
easily communicated to collaborating agents. The additional
sources of data from the members of the formation will only
help with accuracy of the generated maps. Incremental and
personal map data from multiple agents can be merged to get

* This work was supported by Grant number FA8750-15-2-0116 from Air
Force Research Laboratory and OSD through a contract with North Carolina
Agricultural and Technical State University.

a complete map of the whole area. New data only needs to be
inserted into the graph by connecting them to the correct nodes
[3]. In a formation case, agents require methods to isolate
detected features of their peers from that of the environmental
landmarks.

Distributed group motion and control was first identified
by Craig Reynolds through his study on schooling fishes
and flocking birds [4]. Since then, attempts have been made
to model swarm behavior based on rules of attraction and
repulsion between neighbors in the swarm [5]–[7]. Such rules
of attraction and repulsion can be used to guide groups of
autonomous vehicles together in a controlled formation.

We were inspired by the formation control approach out-
lined in [8] mainly because the method has light computational
requirements and has not yet been implemented on hardware.
This approach requires that we know the current position of the
agents, such that the attractive and repulsive forces between
them can be calculated real-time and an initial formation
can be maintained. Information regarding the current position
of the agents can be obtained by several different methods.
Finding coordinates of the agents through GPS is an attractive
solution because of its high accuracy [9], so we wanted our
approach to be expandable in order to make use of GPS in
future real-world applications. In our GPS-denied laboratory
setup, we use an overhead camera with color identification
and tracking as an efficient solution to obtaining the coordinate
data of each Unmanned Ground Vehicle (UGV) in the system.
Color tracking is implemented using a video feed from a
drone hovering overhead. UGV coordinate data is used to
calculate the forces applied to the UGV to maintain the desired
formation. The forces are applied as to modify the UGV’s
speed and orientation. This entire process is outlined in the
following sections.

The underlying software architecture is an important part of
our work. We use Robot Operating System (ROS), a robust
message passing infrastructure, to pass all of the navigation
data mentioned above back and forth between each sub-
process that may need this data. For example, the coordinates
of each UGV are obtained by a C++ program running the
color identification and tracking algorithm. In parallel, another
C++ program calculates all the forces needed to maintain

WAC 2016 1570250515

1

the formation according to the coordinate data from the
color tracking program. This situation, where one program
depends on incoming data from another program, is a key
strength of ROS’s message passing architecture. It utilizes
a publisher/subscriber relationship between parallel programs
to share data. In the example above, once coordinate data is
published as a topic in ROS, this topic is subscribed to by the
program that needs this information. Not only is ROS a robust
message passing platform, it is also open source, allowing
collaborative development and sharing of software packages.
This minimizes the need to rewrite a software package for
common functions that have already been addressed.

The rest of the paper will be organized as follows: The
architecture of the system will be highlighted in Section II,
with the hardware setup in Section III, followed by a detailed
explanation of the software processes in Section IV. Finally,
experimental data will be discussed in Section V along with
conclusions drawn from this experiment in Section VI.

II. ARCHITECTURE OF THE SYSTEM

The ROS Master is the Central Command Station, it can be
executed on any piece of hardware that is running ROS. In
our experiment we assigned the ROS Master role to a laptop.
Each Agent and the Drone communicates with the ROS Master
through Wireless Networks. The ROS Master gets real-time
Video from the Drone, identifies and tracks each agent from
the video feed using the HSV Algorithm, and calculates the
forces between the agents based on the Algorithm explained
in further sections. This Force value is then translated into
linear and Angular data to the agents, so that they can move in
formation. This structure is shown in Fig. 1. The orientation of
each agent is also collected real-time to keep track of error in
movement, so that further commands can be issued to maintain
formation.

Fig. 1: System Architecture

III. EXPERIMENTAL SETUP

A. The Test Space

The Test Space consists of three Kobuki TurtleBot Un-
manned Ground Vehicles, each distinctly identified through
an assigned color on the top of the TurtleBot, such that they
are in visual range of the Parrot Bebop UAV.

(a) Parrot Bebop UAV (b) Kobuki TurtleBot
UGV

Fig. 2: UAV and UGVs used in the experimental test bed.

A Kobuki TurtleBot is a low-cost, open source differential
drive robot. It consists of a mobile base, an RGB-D sensor and
an Arduino processor making it a perfect entry-level mobile
robot platform. The Kobuki was chosen because it is an open
source UGV platform, making it perfect for research and
development. The Kobuki SDK is based off ROS, which is the
preferred development platform for ACE researchers because
of its intuitive publisher/subscriber message passing structure
that allows robust and simple communication within multiple
facets of a robotic system.

Fig. 3: Representation of the TurtleBot2 UGV in the Coordi-
nate System

The Turtlebot uses a differential drive to steer, and Cook
provides a clear approach in order to obtain and simulate
the robots movement [10]. The following are the kinematic
equations, as shown in the Figure 3, R is the instantaneous
radius of curvature of the robot’s trajectory, and W stands for
the distance between the wheels.

vl = θ̇(R− W

2
), vr = θ̇(R+

W

2
) (1)

where:
vl: velocity of the left wheel

2

vr: velocity of the right wheel

θ̇: angular rate

Next, the Angular Rate of the robot is calculated:

vr − vl = θ̇(R+
W

2
−R+

W

2
) = θ̇W

θ̇ =
vr − vl
W

(2)

Next the instantaneous radius of curvature is calculated
using (1):

R =
vl

θ̇
+
W

2

Using (2) we have:

R =
vl

vr−vl
W

+
W

2
=

2Wvl +W (vr − vl)
2(vr − vl)

R =
W

2
∗ vr + vl
vr − vl

(3)

Velocity along the robot’s longitudinal axis is calulated
using (2) and (3):

vy = θ̇R =
vr − vl
W

∗ W
2
∗ vr + vl
vr − vl

=
vr + vl

2
(4)

Representing the robot’s velocity on earth coordinates we
have:

ẋ = −vycos(90− θ) = −vy(cos(90)cos(θ) + sin(90)sin(θ))

ẏ = vycos(θ)

Using equation (4) we have:

ẋ = −vr + vl
2

sin(θ) (5)

ẏ =
vr + vl

2
cos(θ) (6)

For this reason the control variables will be:

v̇r = u1

v̇l = u2

The colors for the UGV identification are distinct colors
with a white background with very different HSV windows,
so that mis-identification is avoided.

The Parrot Bebop Drone is a lightweight yet robust quad
copter with a 1080p ”fish-eye” camera and 3-axes image
stabilization. This allows the drone to be able to pan its camera
in-flight to be able to access the location of the agents at all
times. For this test setup in lab, we fixed the drone in a static
”hover position” on top of a long pole, in order to maximize
the battery life. The ROS-Bebop driver was used in order to
obtain data from the Bebop and make it available in ROS.

B. Data from the UGV TurtleBots and the Bebop Drone

a) Bebop Drone: The Bebop drone primarily sends in
the video feed from the test space to the ROS master. The
HSV algorithm is run on this input video to detect objects
within the specified HSV values for red, yellow and green.
For the identified objects in the video feed (the mobile
agents) the HSV algorithm calculates the coordinates of the
geometric center of each object in reference to the Camera
Frame as shown in Fig. 4. From the coordinates obtained
by the HSV algorithm, we can calculate a Virtual Leader
position for the formation. The Virtual Leader is essentially the
geometric center of the formation, calculated from the agent’s
coordinates.

Fig. 4: The Test Space from the UAV’s perspective

b) UGV TurtleBots: The UGVs publish their current
heading and state to the ROS Master. This data is essential as
their current heading is with reference to their own body frame.
So, as the formation control algorithm outputs commands to
the UGVs with reference to the world frame, the body frame
data from the UGVs is required in order to obtain the right
output data after the necessary translation and rotation. The
ROS topics of interest published by the UGVs are current
orientation, current linear velocity, and current angular velocity
data as feedback.

C. Color Identification and Tracking

The developed color tracking ROS software package is a
ROS compatible version of the open source C++ color tracking
software in [11]. This program uses OpenCV to detect the
HSV values of objects in an image frame. Each UGV was
equipped with a color tag (see Fig. 6) and when viewed by
the UAV’s camera from above the color tracking software can
extract both the color and the (x, y) coordinate of the center
point of the tag as per the algorithm shown in Fig. 5. The
coordinate data is made available for all other ROS nodes to
use. The formation control ROS package is our experimental
implementation of the controller presented in [8]. Written in
C++, it utilizes incoming UGV coordinate values to calculate
a force magnitude that translates into the desired speed and
direction of the robot.

3

Fig. 5: Color Detection and Tracking

D. Formation Control Algorithm

In this process, potential functions between the agents are
used to implement group cohesion and separation. With such
a methodology, navigation of the swarm is a process of
harnessing the various potentials between the agents. A lot of
research in Swarm behavior has been done proposing various
formation control and coordination techniques [12]. However,
as the algorithms become more complex, computational re-
quirements are increased and the communication demands
from each agent become very prohibitive. The implemented
algorithm is based off [8] and [13]. The methodology uses
energy potential between agents called ’Agent Forces’ and
between an ’artificial’ virtual leader called ’Leader Forces’.
This Virtual leader is used in order to advance the group
through its environment. The Virtual Leader is not one of
the agents or a physical vehicle, but an imaginary point
calculated from the agents’ positions. It is used as a guide for
movement of the group. The goal of using potential energy
functions between agents is to repel or attract vehicles from
and to each other as the Virtual leader is moved through
the environment.The dependence on the Virtual leader motion
enables us to plan only the motion of the virtual leader, thereby
reducing the task planning requirements.

a) Virtual Leader Forces: Once the Agents are in their
initial positions, an initial Virtual leader can be calculated by
finding the center of mass for the whole group.

xcm =
1

N

N∑
i=1

xi

ycm =
1

N

N∑
i=1

yi

where xcm and ycm are the coordinates of the center of mass,
or the geometric center of the formation.

The initial distance between each agent determines the
position of the Virtual Leader and the distance between the

agents and the Virtual leader dV L
0 is the equilibrium distance

between each agent and the Virtual leader. The Virtual leader
forces FV L can be defined as:

FV L
x = KV L[d

V L
x − dV L

x0]

FV L
y = KV L[d

V L
y − dV L

y0]

dV L
x = xV L − xi
dV L
y = yV L − yi

where KV L is the Gain Constant, which can be adjusted
as per the required elasticity of the forces between the agents
and the virtual leader.

Fig. 6: The Formation forces

b) Inter-Agent Forces: Inter-Agent forces are required so
that the agents maintain their equilibrium distance dij0 from
each other as they follow the Virtual Leader, and the formation
is maintained. The inter-agent forces Fij can be defined as:

F ij
x = Kij [d

ij
x − d

ij
x0]

F ij
y = Kij [d

ij
y − d

ij
y0]

dijx = xij − xi
dijy = yij − yi

Fig. 6 shows a pictorial representation of the position of the
Virtual leader and the various forces acting on the agents.

IV. OUTPUT DATA TO THE UGVS

After the algorithm computes the various forces acting on
the agents, a single ”Sum of all Forces” is sent as output to
the UGVs. As the Total force output to the UGV is a vector,
both the magnitude and direction needs to be translated for the
UGV. Therefore, from the algorithm described in the earlier
section, the x-component of the Force and Y-Component of the
Force are calculated separately using the X and Y distances
separately. Once we know the values of Fx and Fy , we can
translate them into commands that can be understood by the
UGV, namely ”Linear Command” and ”Angular command”.

4

Fig. 7: Force Vector for the UGV

a) Inter-Agent Forces: The Formula for the direction of
the forces is:

θ = tan−1Fy

Fx

The Magnitude of the force in the direction θ is:

|~F | = |Fx|
cosθ

or |~F | = |Fy|
sinθ

It is to be noted that the reference frames for the UAV
and UGVs are different as can be seen from Fig. 4. That
is one aspect of the translation that needs to be carried out.
Also, the real-time orientation of the UGV is important to
understand which quadrant the angle of the UGV is in, so that
the necessary translation can be done as per Fig. 8. Special
cases such as when the θ is very close to 0 deg or 30 deg are
taken care of separately, in order to avoid unnecessary rotation
of the UGVs.

Also, if the final target θ is smaller than 180 deg, the UGV
rotates anti-clockwise towards its target, and if greater than 10
deg, turns clockwise towards the target. This is essentially for
optimization of the movement of the UGVs.

Thus, the UGV knows where it is currently located and
pointed, and the ”Sum of all Forces” from the algorithm is
converted to a linear force magnitude and the corrected angle
of the force and they are given to the UGV as its linear and
angular commands respectively.

V. EXPERIMENTAL RESULTS

The UGV’s successfully maintain formation for simple
trajectories. However, two major factors come into play in
the implementation of the algorithm. Disturbance-free color
tracking in varied lighting conditions and the update rate of
the commands sent to the UGV. We are working on fine
tuning the parameters to minimize the probability of unde-
sirable movements of the UGV when for example, tracking
of one UGV is suddenly lost during movement, or when the
UGVs attain their formation but the feedback is lost due to
update rate factors. Due to such factors, when we attempt
to apply a more complex trajectory, the formation sometimes

Fig. 8: Angle Translation

exhibits undesirable behavior. Work is ongoing in this front to
have more predictable behavior under various circumstances.
The following experimental plots show the behavior of the
formation control algorithm. In Fig. 9 the Virtual Leader is
varied about the image frame, and the Inter-agent (Fig. 10) and
Agent-Leader (Fig. 11) Equilibrium Error respond accordingly.
The sudden changes seen in Fig. 11 correspond to the variation
in the Virtual Leader’s position. The plots show that the
formation control algorithm is capable of driving the error
back close to zero.

Fig. 9: Virtual Leader Position vs. Time

5

Fig. 10: Inter-agent Equilibrium Error vs. Time

Fig. 11: Leader-Agent Equilibrium Error vs. Time

VI. CONCLUSION

Formation control can be accomplished using a variety of
methods, with each one having pros and cons compared to
the other. In our case, the controller we decided to implement
was both straightforward theoretically and programming wise
and was initially advertised as computationally lightweight.
From the results obtained in Section V, it is reasonable to

say that the proposed controller is in fact implementable and
can be used to control a formation of N number of agents in
the system. Future planned work involves moving the decision
making process to the cloud so that a large number of agents
can successfully hold formation. Better methods of detection
and tracking of the agents are currently being researched as
well.

REFERENCES

[1] J. A. Sauter, R. S. Mathews, A. Yinger, J. S. Robinson, J. Moody,
and S. Riddle, “Distributed pheromone-based swarming control of
unmanned air and ground vehicles for rsta,” in SPIE defense and security
symposium. International Society for Optics and Photonics, 2008, pp.
69 620C–69 620C.

[2] G. Grisetti, R. Kümmerle, C. Stachniss, and W. Burgard, “A tutorial on
graph-based slam,” Intelligent Transportation Systems Magazine, IEEE,
vol. 2, no. 4, pp. 31–43, 2010.

[3] M. Pfingsthorn, B. Slamet, and A. Visser, “A scalable hybrid multi-robot
slam method for highly detailed maps,” in RoboCup 2007: Robot Soccer
World Cup XI. Springer, 2008, pp. 457–464.

[4] C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral
model,” in ACM Siggraph Computer Graphics, vol. 21, no. 4. ACM,
1987, pp. 25–34.

[5] A. Okubo, “Dynamical aspects of animal grouping: swarms, schools,
flocks, and herds,” Advances in biophysics, vol. 22, pp. 1–94, 1986.

[6] K. Warburton and J. Lazarus, “Tendency-distance models of social
cohesion in animal groups,” Journal of Theoretical Biology, vol. 150,
no. 4, pp. 473–488, 1991.

[7] G. Flierl, D. Grünbaum, S. Levins, and D. Olson, “From individuals to
aggregations: the interplay between behavior and physics,” Journal of
Theoretical Biology, vol. 196, no. 4, pp. 397–454, 1999.

[8] G. H. Elkaim and R. J. Kelbley, “A lightweight formation control
methodology for a swarm of non-holonomic vehicles,” in Aerospace
Conference, 2006 IEEE. IEEE, 2006, pp. 8–pp.

[9] A. R. Conway, “Autonomous control of an unstable model helicopter
using carrier phase gps only,” Ph.D. dissertation, stanford university,
1995.

[10] G. Cook, Mobile robots: navigation, control and remote sensing. John
Wiley & Sons, 2011.

[11] A. Kaifi, H. Althobaiti, and Z. Rentiya,
“akaifi/multiobjecttrackingbasedoncolor.” [Online]. Available:
https://github.com/akaifi/MultiObjectTrackingBasedOnColor

[12] W. M. Spears, D. F. Spears, J. C. Hamann, and R. Heil, “Distributed,
physics-based control of swarms of vehicles,” Autonomous Robots,
vol. 17, no. 2-3, pp. 137–162, 2004.

[13] G. H. Elkaim and R. J. Kelbley, “Extension of a lightweight formation
control methodology to groups of autonomous vehicles,” in Proc.
ISAIRAS, 2005, pp. 5–9.

6

