

https://www.youtube.com/watch?app=desktop&v=6qV3YjFppuc&t=678s

https://www.youtube.com/watch?app=desktop&v=6qV3YjFppuc&t=678s

Founded in 2003, METECS is an engineering and applied technology company. We have

a long history of providing high-fidelity simulation, software, robotics and analysis to NASA

with contributions to the Space Shuttle, International Space Station, Orion, Lunar

Gateway, and Artemis programs. Our customer base also includes clients from many other

industries including agriculture, energy, construction, and sports marketing.

We are headquartered in Houston, Texas just outside the gates of

NASA’s Johnson Space Center.

We view two short videos to define the operations to follow:

Melonie Wise explains Odometry and the IMU for Turtlebot.

4:26https://www.youtube.com/watch?v=3S8MXsnNe3U

Melonie explains Localization and AMCL 2:24

https://www.youtube.com/watch?v=Mv1mbsMfbmI

VP Robotics AutomationVP Robotics Automation
Zebra TechnologiesZebra Technologies Aug 2021 - Present · 8 mo Aug 2021 -
Present · 8 mo San Jose, California, United States

https://www.youtube.com/watch?v=3S8MXsnNe3U
https://www.youtube.com/watch?v=Mv1mbsMfbmI

Mapping & Navigating Using a RealSense R200 Camera &

TurtleBot 3:18

https://www.youtube.com/watch?v=UQT9kakt60g

Note the path lines after the map is made and the robot navigates!

Turtlebot Monte Carlo Localisation (AMCL)
Ali Nagaria Watch TurtleBot navigate with a Map. 2:29

https://www.youtube.com/watch?v=u5n2jhF3UrU

https://www.youtube.com/watch?v=UQT9kakt60g
https://www.youtube.com/watch?v=u5n2jhF3UrU

This is the Navigation process
using SLAM.

mapping localization
SLAM

active

localization

exploration

path planning

integrated

approaches

(SPLAM)

[courtesy of Cyrill and Wolfram]

In this section, we explore the TurtleBot's odometry. The general definition of
odometry is the use of data from motion sensors, such as wheel encoders, to estimate
change in Turtlebot's position over time. Odometry is used by the TurtleBot to estimate
its position and orientation relative to its starting location given in terms of an x and y
position and an orientation around the z (upward) axis as the TurtleBot moves.

Course Textbook Page 78

http://kobuki.yujinrobot.com/about2/

http://kobuki.yujinrobot.com/about2/

Driving Around with TurtleBot Chapter 3

• Loading the TurtleBot simulation software and using Gazebo with
TurtleBot

• Setting up your system to control a real TurtleBot from its
own netbook computer or wirelessly from a remote computer

• Controlling the movement of the TurtleBot with ROS
terminal commands orusing the keyboard for control in
teleoperation

• Creating a Python script which, when executed, moves TurtleBot

• Using rqt tools to provide a GUI that aids the user in
analyzing robotprograms and also monitoring and
controlling the robot

• Exploring an environment using TurtleBot's odometry data

• Executing the automatic docking program of TurtleBot

• Introducing a newer version of TurtleBot, called TurtleBot 3,
and describingthe simulation and keyboard control of a real
TurtleBot 3

FROM THE ROBOT’S
POINT OF VIEW!

https://github.com/turtlebot/turtlebo
t/blob/melodic/turtlebot_teleop/launc
h/keyboard_teleop.launch

import rospy
from geometry_msgs.msg import Twist
import sys, select, termios, tty
msg = """
Control Your Turtlebot!

Moving around:
u i o
j k l
m , .
31 32 33 34 35 36 37 38 39 40 41 42

https://github.com/turtlebot/turtlebot/blob/melodic/turtlebot_teleop/launch/keyboard_teleop.launch

http://wiki.ros.org/diff_drive_controller

https://github.com/turtlebot/turtlebot/blob/melodic/turtlebot_teleop/src/turtlebot_joy.cpp

finally:
twist = Twist()
twist.linear.x = 0; twist.linear.y = 0;
twist.linear.z = 0
twist.angular.x = 0; twist.angular.y = 0;
twist.angular.z = 0
pub.publish(twist)
166 167 168 169

https://github.com/turtlebot/turtlebot/blob/melodic/turtlebot_teleop/src/turtlebot_joy.cpp

https://github.com/turtlebot/turtlebot/blob/melodic/turtlebot_teleop/scripts/turtlebot_teleop_key

import rospy
from geometry_msgs.msg import Twist
import sys, select, termios, tty
msg = """
Control Your Turtlebot!

Moving around:
u i o
j k l
m , .
q/z : increase/decrease max speeds by 10%
w/x : increase/decrease only linear speed by 10%
e/c : increase/decrease only angular speed by 10%
space key, k : force stop
anything else : stop smoothly
CTRL-C to quit
"""

The termios functions describe a general terminal interface that is provided

to control asynchronous communications ports.

select() allows a program to monitor multiple file descriptors

https://github.com/turtlebot/turtlebot/blob/melodic/turtlebot_teleop/scripts/turtlebot_teleop_key

Odom Frame: Uncertainty

• Error canaccumulate – leading to adrift invalues

• Incorrect diameter used?

• Slippage?

• Dead Reckoning

Notice how the

uncertainty

increases

Initial Position

(A few slides borrowed.)

Introduction to Navigation using ROS

Giorgio Grisetti

The material of this slides is taken from the Robotics 2 lectures given by G.Grisetti,

W.Burgard, Cyrill Stachniss, K.Arras, D. Tipaldi and M.Bennewitz

Mudhar Behl F10 Slides

What is a Coordinate Frame?

• “set of orthogonal axes attached to a

body that serves to describe position

of points relative to that body”

• axes intersect at a point

known as the origin

x y

z

x

yx
y

In many robotics problem, the first step is to assign

a coordinate frame to all objects of interest

X

Z

Y Y

Y

Y

Y

Y

Map frame

Car frame

laser frame

Transformations and Frames
Between frames there will exist transformations thatconvert

measurements from one frame to another

There should exist arelationship

Between these frames

Transform from map to car

Transform from car to laser

Base link: What is it

• Attached to the robot itself – base_footprint;base_link;
base_stabilized

Odom Frame

• Odom frame originates where the car
starts at. In this case the car started a
meter in front of the map origin. Hence
map -> odom transform is 1m in x
direction.

• Odom frame stays fixed – it does not
move with the robot.

Base_link Frame

• Defined as the center of the car’s rear
axle

• Base_link frame moves with the car (it
is not fixed)

• You really control where to place the
base_link on the car. Just be
consistent, and be aware that
algorithms you re-use have their
assumptions (usually, center of car’s
rear axle).

Navigating the World with

TurtleBot
CHAPTER 4

In this chapter, you will learn the following topics:

• How 3D vision sensors work

• The difference between the four primary 3D sensors for TurtleBot

• Details on a 2D vision system for TurtleBot 3

• Information on TurtleBot environmental variables and the ROS software
required for the sensors

• ROS tools for the rgb and depth camera output

• How to use TurtleBot to map a room using Simultaneous Localization and
Mapping (SLAM)

• How to operate TurtleBot in autonomous navigation mode by adaptive
monte carlo localization (amcl)

• How to navigate TurtleBot to a location without a map

• How to navigate TurtleBot to waypoints with a Python script and a map

Rigid-body Transformations

• why rigid? transformation does not change

distance between points (does not deform shapes)

• translations, rotations, (reflections)

• How to transform points from one coordinate frame to another?

Given point “c” in coordinate

frame “r” what is the position of

the point in frame “w”?

Problem Setting
2
6

Map frame

Map Frame

 A map is a representation of
the environment where the
robot is operating.

 It should contain enough
information to accomplish a
task of interest.

Representations:

 Metric

 Grid Based

 Feature Based

 Hybrid

 Topological

 Hybrid

Map

Map Frame: ROS

• The tf package – tracks multiple 3D coordinate frames - maintains a tree
structure of frames – accessrelationship of any2 frames at anypoint of time

• ROSREP(ROSEnhancementProposals)105describesthe various frames involved.

• Normal hierarchy

Hasno parent

Child of world frame

world_frame

map
Note:

Tf =transformer class

A tf tree is astructure that

maintains relations between

the linked frames.

Odom Frame: Calculation

• Difference in count of ticks ofwheels – orientation

• Integrating the commandedvelocities/accelarations

• Integrating values from IMU

• Scan Matching
The laser_scan_matcher package is an incremental laser scan registration tool.
The package allows to scan match between consecutive sensor_msgs/LaserScan messages,

and publish the estimated position of the laser as a geometry_msgs/Pose2D or a tf transform.
The package can be used without any odometry estimation provided by other sensors.
Thus, it can serve as a stand-alone odometry estimator. Alternatively, you can provide several types of
odometry input to improve the registration speed and accuracy.

REMEMBER: The system must also coordinate times. If the odom position is “late”,
it should not be used with the laser distance data.

http://wiki.ros.org/laser_scan_matcher
http://docs.ros.org/en/api/sensor_msgs/html/msg/LaserScan.html
http://docs.ros.org/en/api/geometry_msgs/html/msg/Pose2D.html
http://wiki.ros.org/tf

Robot Pose and Path
 A metric map defines a

reference frame.

 To operate in a map, a
robot should know its
position in that
reference frame.

 A sequence of
waypoints or of actions
to reach a goal location
in the map is a path.

Localization
 Determine the current robot position, the

measurements up to the current instant and
a map.

Path Planning
 Determine (if it exists) a path to reach a

given goal location given a localized robot
and a map of traversable regions.

Putting Parts Together
 To navigate a robot we need

 A map

 A localization module
 A path planning module

 These components are sufficient if
 The map fully reflects the environment

 The environment is static
 There are no errors in the estimate

 However
 The environment changes (e.g. opening/closing doors)

 It is dynamic (things might appear/disappear from the perception
range of the robot)

 The estimate is “noisy”

Thus we need to complement our ideal design with other
components that address these issues, namely
 Obstacle-Detection/Avoidance
 Local Map Refinement, based on the most recent sensor reading.

ROS Navigation Stack
 Map provided by a “Map Server”
 Each module is a node
 Planner has a layered architecture (local and global planner)
 Obstacle sensing refined on-line by appropriate modules (local

and global costmap)

http://wiki.ros.org/navigation/Tutorials/RobotSetup

http://wiki.ros.org/navigation/Tutorials/RobotSetup

https://navigation.ros.org/about/ros1_comparison.html#ros1-comparison

https://navigation.ros.org/about/ros1_comparison.html#ros1-comparison

Building a Map
 There are many versions of SLAM algorithms around.

 ROS uses GMapping, which implements a particle filter to track the robot
trajectories.

 To build a map you need to
 Record the map with /odom, /scan/ and /tf while driving the robot around in the

environment it is going to operate in

 Play mapping demo and the gmapping-node (see the ros wiki and the live demo), and
then save it.

 The map is an occupancy map and it is represented as
 An image showing the blueprint of the environment

 A configuration file (yaml) that gives meta information about the map (origin, size
of a pixel in real world)

Localizing a Robot
 ROS implements the Adaptive Monte Carlo Localization algorithm

 AMCL uses a particle filter to track the position of the robot (see paper of Fox et al.)
 Each pose is represented by a particle.
 Particles are

 Moved according to (relative) movement measured by the odometry
 Suppressed/replicated based on how well the laser scan fits the map, given the position of the

particle.

 The localization is integrated in ROS by emitting a transform from a map-frame to
the odom frame that “corrects” the odometry.

 To query the robot position according to the localization you should ask the
transform of base_footprint in the map frame.

http://robots.stanford.edu/papers/fox.aaai99.pdf

http://robots.stanford.edu/papers/fox.aaai99.pdf

Localization

 AMCL relies on a laser – Or Depth Sensor

 Unless you want to spend $$, you will not get a
laser. ,

 However your robot will localize with a Kinect or
Asus or Real Sense

 The output is translated to laser scan data.

 These data can then be plugged in AMCL et voila’
you get your system running.

Our Glorious Result
Page 189

https://www.mathworks.com/campaigns/offers/next/autonomous-mobile-robots.html

https://www.mathworks.com/campaigns/offers/next/autonomous-mobile-robots.html

https://www.mathworks.com/campaigns/offers/next/autonomous-mobile-robots.html

Developing Autonomous Mobile Robots UsingMATLAB and Simulink

https://www.mathworks.com/campaigns/offers/next/autonomous-mobile-robots.html

• ON TO CHAPTER 3 DRIVING TURTLEBOT
• ON TO CHAPTER 4 NAVIGATING WITH TURTLEBOT
• DETAILS OF TRANSFORMS, PROBABILITY, STATE ESTIMATION

