R.0.B:0.T. Comics

algorithm

! Your \
- \

Global
Planner
B S 'S
. > Main CPU 4 \ m |
Local N Locatization [;:';::.~ @\ “
Planner —reite and Mapping |/ | [~ =7
\ : - N ‘\\

Ma Image pre- | \&— G
sew';r processing Cn)

machine
Enc Enc

Architecture of AMRs.

"HIS PATH-PLANNING MAY BE
SUB-OPTIMAL, BUT IT'S GOT FLAIR."

www.youtube.com/watch?a ' uc&t=678s

Understanding Sensor Fusion and Tracking, Part 1: Whatds SensorFusion?

Press to exit full screen

Perceive Plon

Se\\E~ AWOENESS . \ocal'\%m\ion omA pos'r\’ion\m_;]

de-‘»gc“‘ion o\f\(‘l ‘l‘(‘O\Cki\f\a

Il » © 3144/1234

https://www.youtube.com/watch?app=desktop&v=6qV3YjFppuc&t=678s

3/21/22, 1:04 PM Autonomous Robots | HowStuffWorks

A John Deere 8R fully autonomous tractor is displayed ahead of CES on Jan. 4, 2022, in Las Vegas. John Deere and
agricultural robot start-up Naio combined the popular 8R tractor, a plow, GPS and 360-degree cameras to create a machine a
farmer can control from a smartphone. PATRICK T. FALLON/AFP VIA GETTY IMAGES

Founded in 2003, METECS is an engineering and applied technology company. We have
a long history of providing high-fidelity simulation, software, robotics and analysis to NASA
with contributions to the Space Shuttle, International Space Station, Orion, Lunar
Gateway, and Artemis programs. Our customer base also includes clients from many other
industries including agriculture, energy, construction, and sports marketing.

We are headquartered in Houston, Texas just outside the gates of
NASA's Johnson Space Center.

We view two short videos to define the operations to follow:

Melonie Wise explains Odometry and the IMU for Turtlebot.

4:26 https://www.youtube.com/watch?v=3S8MXsnNe3U

Melonie explains Localization and AMCL 2:24

https://www.youtube.com/watch?v=Mv1mbsMfbml

VP Robotics AutomationVP Robotics Automation
Zebra TechnologiesZebra Technologies Aug 2021 - Present - 8 mo Aug 2021 -
Present - 8 mo San Jose, California, United States

https://www.youtube.com/watch?v=3S8MXsnNe3U
https://www.youtube.com/watch?v=Mv1mbsMfbmI

Mapping & Navigating Using a RealSense R200 Camera &
TurtleBot 3:18

https://www.youtube.com/watch?v=UQT9kakt60g

Note the path lines after the map is made and the robot navigates!

Turtlebot Monte Carlo Localisation (AMCL)

Ali Nagaria Watch TurtleBot navigate with a Map. 2:29
https://www.youtube.com/watch?v=u5n2jhF3UruU

https://www.youtube.com/watch?v=UQT9kakt60g
https://www.youtube.com/watch?v=u5n2jhF3UrU

This is the Navigation process
using SLAM.

SLAM

localization

mapping

integrated
approaches
(SPLAM)
active
localization
exploration

path planning

[courtesy of Cyrill and Wolfram]

In this section, we explore the TurtleBot's odometry. The general definition of
odometry is the use of data from motion sensors, such as wheel encoders, to estimate
change in Turtlebot's position over time. Odometry is used by the TurtleBot to estimate
its position and orientation relative to its starting location given in terms of anx and y
position and an orientation around the z (upward) axis as the TurtleBot moves.

Course Textbook Page 78

http://kobuki.yujinrobot.com/about2/

5V 1A

12V 1.5A

12V 5A

19V 2A

Download
Operation

z

YUJIN ROBOT

B1 B2

BO

o

Kobuki

I € L € 8B

LED1 LED2

Status

USB o>

ROBOTICS™

@ CLEARPATH

http://kobuki.yujinrobot.com/about2/

Driving Around with TurtleBot Chapter 3

Loading the TurtleBot simulation software and using Gazebo with
TurtleBot

Setting up your system to control a real TurtleBot from its
own netbook computer or wirelessly from a remote computer

Controlling the movement of the TurtleBot with ROS
terminal commands orusing the keyboard for control in
teleoperation

Creating a Python script which, when executed, moves TurtleBot

Using rqt tools to provide a GUI that aids the user in
analyzing robot programs and also monitoring and
controlling the robot

Exploring an environment using TurtleBot's odometry data
Executing the automatic docking program of TurtleBot

Introducing a newer version of TurtleBot, called TurtleBot 3,
and describing the simulation and keyboard control of a real

TurtleBot 3

$ rosservice call gazebo/get model state '{model name: mobile base}'

The output of the preceding command is similar to the following if TurtleBot is

at the origin:

pose:
position:
x: 0.00161336508139
y: 0.0091790167961
z: -0.00113098620237
orientation:
x: -5.20108036968e-05
y: -0.00399736084462
z: -0.0191615228716
w: 0.999808408868
twist:
linear:
x: 9.00012388429e-06
y: 6.54279879125e-05
Zz: -1.4365465304e-05
angular:
x: -0.000449167550145
y: 0.000197996689198
z: -0.000470014447946

success: True

status message: GetModelState:

got properties

FROM THE ROBOT’S
POINT OF VIEW!

:::ROS Control

Data flow of controllers

list controllers
load controller
urniload_controlier

switth _controller

YYvYy

Loads, unloads and calls
updates to controllers

Controller 1

Controller 2
—

‘ Controller 3

Controller Manager

Co

Components

Optional I Hardware /
{| Embedded

D CalEman
Updated Jun 24, 2013

Controller
e.g. joint_position_controller
Cvnamically allocated from loaded controller plugin.

e.g.PID
Controller

Hardware Resource |nterfs

%&\K\\\\R\\K\R\\\G‘ It ﬁk\\\\\\k\\h\\\\-}3\1\\\\\\\\1\\\\1\ “'{\

ﬁ """""""""""""""""" k I

Robot Commands
&g. joint efforts - N.m

Actuator Efforts

Robot States

€. current eq. Ethercat eg. encoder ficks
Serial, USB
Real Robot *
Embedded Controllers
€. PID loop to follow
efion setpoint
Actuators Encoders
Servos, et Sensors on the real
robot

joint states - radians

Mechanism States

https://github.com/turtlebot/turtlebo
t/blob/melodic/turtlebot teleop/launc
h/keyboard teleop.launch

import rospy

from geometry msgs.msg import Twist
import sys, select, termios, tty
msg = """

Control Your Turtlebot!

Moving around:

uio

j k1

m, .

31 32 33 34 35 36 37 38 39 40 41 42

https://github.com/turtlebot/turtlebot/blob/melodic/turtlebot_teleop/launch/keyboard_teleop.launch

http://wiki.ros.org/diff drive controller

https://github.com/turtlebot/turtlebot/blob/melodic/turtlebot teleop/src/turtlebot joy.cpp

finally:

twist = Twist()

twist.linear.x = @; twist.linear.y = 0;
twist.linear.z = ©

twist.angular.x = 0; twist.angular.y = 0;
twist.angular.z = ©

pub.publish(twist)

166 167 168 169

https://github.com/turtlebot/turtlebot/blob/melodic/turtlebot_teleop/src/turtlebot_joy.cpp

https://github.com/turtlebot/turtlebot/blob/melodic/turtlebot teleop/scripts/turtlebot teleop key

import rospy

from geometry msgs.msg import Twist

import sys, select, termios, tty

msg = """

Control Your Turtlebot!

Moving around:

uio

j k1

m,

q/z : increase/decrease max speeds by 10%

w/X : increase/decrease only linear speed by 10%
e/c : increase/decrease only angular speed by 10%
space key, k : force stop

anything else : stop smoothly

CTRL-C to quit

The termios functions describe a general terminal interface that is provided
to control asynchronous communications ports.

select () allows a program to monitor multiple file descriptors

https://github.com/turtlebot/turtlebot/blob/melodic/turtlebot_teleop/scripts/turtlebot_teleop_key

Y

Odom Frame: Uncertainty <

Initial Position

Error can accumulate — leading to adrift invalues
Incorrect diameter used?

Slippage?
Dead Reckoning

Notice how the SR
uncertainty
Increases |

(A few slides borrowed.)

Mudhar Behl F10 Slides

Introduction to Navigation using ROS

Giorgio Grisetti

The material of this slides is taken from the Robotics 2 lectures given by G.Grisetti,
W.Burgard, Cyrill Stachniss, K.Arras, D. Tipaldi and M.Bennewitz

What Is a Coordinate Frame?

*“set of orthogonal axes attached to a
body that serves to describe position
of points relative to that body”

e axes intersect at a point
known as the origin

AR M

1. -

[

I» - \-A‘ !\‘ |
> 4

| & |
o N
W L X L""“"u_ Tff;""’:

In many robotics problem, the first step is to assign
a coordinate frame to all objects of interest

Transformations and Frames

Between frames there will exist transformations thatconvert
measurements from one frame to another

, There should exist arelationship
Between these frames

~

Transform from map to car

Base link: What is it

* Attached to the robot itself — base_footprint;base _link;
base stabilized

base stabilized

base_link \

map odom base footprint

Odom Frame

* Odom frame originates where the car
starts at. In this case the car started a
meter in front of the map origin. Hence
map -> odom transformis 1min x
direction.

 Odom frame stays fixed — it does not
move with the robot.

Base link Frame

* Defined as the center of the car’s rear
axle

e Base_link frame moves with the car (it
is not fixed)

* You really control where to place the
base_link on the car. Just be
consistent, and be aware that
algorithms you re-use have their
assumptions (usually, center of car’s
rear axle).

Navigating the World with
TurtleBot

P pmove Cameca @ interact [JSelect . 20 Pose Estimate . 2DNavGoal 4 -

B Displays »

v @ Global Options
Fixed Frame camera_link
Background Color W 485; 48;
Frame Rate 30

* v Global Status: Ok

< Grid i

wh, RobotModel =3

. LaserScan

== DepthCloud

== Registered DepthCloud

& Image

% PointCloud

£ Registered PointCloud

& InteractiveMarkers

robot.rviz* - RViz

yYyvrrveroew
@

Fixed Frame
Frame into which all data is transformed before
being displayed.

Add

Reset | Left-Click: Rotate. Middle-Click: Move X/Y. Right-Click/Mouse Wheel: Zoom. Shift: More options.

31fps

CHAPTER 4

In this chapter, you will learn the following topics:

How 3D vision sensors work
The difference between the four primary 3D sensors for TurtleBot
Details on a 2D vision system for TurtleBot 3

Information on TurtleBot environmental variables and the ROS software
required for the sensors

ROS tools for the rgb and depth camera output

How to use TurtleBot to map a room using Simultaneous Localization and
Mapping (SLAM)

How to operate TurtleBot in autonomous navigation mode by adaptive
monte carlo localization (amcl)

How to navigate TurtleBot to a location without a map
How to navigate TurtleBot to waypoints with a Python script and a map

Rigid-body Transformations

« How to transform points from one coordinate frame to another?

11 7

/
.[’ /{{C/ Given point “c” in coordinate
»)\ /i frame “r’ what is the position of
‘ / SR the point in frame “w”?
| i

p) = R'p. +p”

E

W®=>

« why rigid? transformation does not change
distance between points (does not deform shapes)

« translations, rotations, (reflections)

* Problem Setting

Localization: given a

map, use sensor data

to estimate the current
pose of the robot

Mapping: given robot
pose at each time
(trajectory), use sensor
data to build map

Simultaneous
Localization and
Mapping (SLAM):.
use sensor data to

build map and

estimate robot
trajectory

Map frame

Map

A map is a representation of
the environment where the
robot is operating.

It should contain enough
information to accomplish a
task of interest.

Representations:

Metric
Grid Based

Feature Based

Hybrid
Topological
Hybrid

 — ﬁ”’“‘ [*
| ‘ + ¥ ’
{ | ‘—] .‘ { [+ +
L Yt 1 ’ "
r N [| I R
N e ¥ o rt
F) SR + +
It 11 w4 + +
K P | g + +
= N -] Lot : i
=i L L) et f#J-rr t4.4 4
™, "J] g K/ 0 5
. . (Y
O O O
C\ D r’)
o Ry p.
D i ¢
" tl](/ oy Q

Map Frame: ROS

* The tf package — tracks multiple 3D coordinate frames - maintains a tree
structure of frames—accessrelationship of any 2 frames at anypoint of time

* ROSREP (ROS Enhancement Proposals) 105 describes the various frames involved.

 Normal hierarch .
y A tf tree Is astructure that

Hasno parent | Maintains relations between
world frame .
~ the linked frames.
o Child of world frame
Note:

Tf =transformer class

Odom Frame: Calculation

» Difference in count of ticks ofwheels — orientation

* Integrating the commanded velocities/accelarations
* Integrating values from IMU

Scan Matching

The laser scan _matcher package is an incremental laser scan registration tool.

The package allows to scan match between consecutive sensor msgs/LaserScan messages,

and publish the estimated position of the laser as a geometry msgs/Pose2D or a tf transform.

The package can be used without any odometry estimation provided by other sensors.

Thus, it can serve as a stand-alone odometry estimator. Alternatively, you can provide several types of
odometry input to improve the registration speed and accuracy.

REMEMBER: The system must also coordinate times. If the odom position is “late”,
it should not be used with the laser distance data.

http://wiki.ros.org/laser_scan_matcher
http://docs.ros.org/en/api/sensor_msgs/html/msg/LaserScan.html
http://docs.ros.org/en/api/geometry_msgs/html/msg/Pose2D.html
http://wiki.ros.org/tf

Robot Pose and Path

- A metric map defines a
reference frame.

- To operate in a map, a
robot should know its
position in that
reference frame.

- A sequence of
waypoints or of actions
to reach a goal location
in the map is a path.

Localization

Determine the current robot position, the
measurements up to the current instant and
a map.

Path Planning

- Determine (if it exists) a path to reach a
given goal location given a localized robot

-i
(s

el e v‘!.ﬁ‘ﬂm

»
™~
3

Putting Parts Together

To navigate a robot we need
A map
A localization module
A path planning module
These components are sufficient if
The map fully reflects the environment
The environment is static
There are no errors in the estimate

However
The environment changes (e.g. opening/closing doors)

It is dynamic (things might appear/disappear from the perception
range of the robot)

The estimate is “noisy”

Thus we need to complement our ideal design with other
components that address these issues, namely

Obstacle-Detection/Avoidance
Local Map Refinement, based on the most recent sensor reading.

=

I/tF_static

slam_gmapping

/map

/scan

amcl

sensor transforms

ROS Navigation Stack

Map provided by a “"Map Server”
Each module is a node
Planner has a layered architecture (local and global planner)

Obstacle sensing refined on-line by appropriate modules (local
and global costmap)

http://wiki.ros.org/navigation/Tutorials/RobotSetup

"move _base simigisigosl”
geomelry msgsidgseStamped

”_i’tf" _

thitffdessaye

odometry source [_

"Oﬂﬁﬂ'i"

move_base l

global_planner <=—

/

recovery_behaviors

' N\

internal
nav_msgs/Path

- local_planner -

nav_msgsfOdometiy

[il S F

wmaya@vigation Stack Setup

Y

global_costmap

|

—— m rver
nay_rnsgs/GetMap ‘ ap_serve

sensor topics ‘

|

local_costmap

"omd vel"lgsumely msgss iwist

base controller

Sensor sources

sensor_msgsiLaserScan |
sensor_magsiPuintCloud

provided node
optional provided node
platform specific node

http://wiki.ros.org/navigation/Tutorials/RobotSetup

https://navigation.ros.org/about/rosl comparison.html#rosl-comparison

nav2_simple_navigator nav2_dijkstra_planner

\ e e Navigation Stack Setup

= 1 e Ty map_server

av msgs/GetMap
amel global_planner — global_costmap

r ’/
sensor transforms ~ + Af » internal
1 tiitfMessage nav_msgs/Path recovery_behaviors
A
odometry source - ﬂ.r,:;lv_“‘:’:.‘,l —] local_planner <}— local_costmap
nav2_controller_dwb cmd vel”| geometry_ msgs/Twist
\ provided node
optional provided node
controll
e ol platform specific node

Note: nav2_simple_navigator NO longer exists, it has been replaced by nav2_bt_navigator .

https://navigation.ros.org/about/ros1_comparison.html#ros1-comparison

Building a Map

There are many versions of SLAM algorithms around.

ROS uses GMapping, which implements a particle filter to track the robot
trajectories.

To build a map you need to

Record the map with /odom, /scan/ and /tf while driving the robot around in the
environment it is going to operate in

Play mapping demo and the gmapping-node (see the ros wiki and the live demo), and
then save it.
The map is an occupancy map and it is represented as
- An image showing the blueprint of the environment

- A configuration file (yaml) that gives meta information about the map (origin, size
of a pixel in real world)

Localizing a Robot

ROS implements the Adaptive Monte Carlo Localization algorithm
AMCL uses a particle filter to track the position of the robot (see paper of Fox et al.)
Each pose is represented by a particle.
Particles are
Moved according to (relative) movement measured by the odometry

Supprlessed/replicated based on how well the laser scan fits the map, given the position of the
particle.

The localization is integrated in ROS by emitting a transform from a map-frame to
the odom frame that “corrects” the odometry.

To query the robot position according to the localization you should ask the
transform of base_footprint in the map frame.

http://robots.stanford.edu/papers/fox.aaai99.pdf

Monte Carlo Localization: Efficient Position Estimation for Mobile Robots

Dieter Fox, Wolfram Burgard', Frank Dellaert, Sebastian Thrun

School of Computer Science TComputer Science Department TTT
Carnegie Mellon University University of Bonn
Pittsburgh, PA Bonn, Germany

http://robots.stanford.edu/papers/fox.aaai99.pdf

Localization

- AMCL relies on a laser — Or Depth Sensor

- Unless you want to spend $$, you will not get a
laser. ,

- However your robot will localize with a Kinect or
Asus or Real Sense

- The output is translated to laser scan data.

- These data can then be plugged in AMCL et voila’
you get your system running.

navigation.rviz* - RViz

® Global Options

* Grid
. RebotMadel
>
=~ Laserscan
¥ Ramper Hit
P2 Mop
& Glodal Map
& Local Map
» P Costmap
* ~ Planmer
» & Status Ok
Topic
Unrelable
Line Style
Color
Alpha
Buffer Length
s Offsct
Pose Style
» 1= Cost Clowd
v Trajectory ...
v Status Ok
Topic
Unrelable
Selectable
Style
Sae (m)
Alpha
Decay Time
Postion Tra
Cofor Transf...,
Queue Sz

PR R R T

Channel Name

Use rainbow
irvert Rainb..
Min Caloe

P

Add It

Py et act

v Global Ststus: Ok

Ldswlect

Jmave_base /WAL .

Lires

WO 12218
1

1

&0

Nane

-}

»

Jmave_base/DWARL. .

L

Flat Squaces
0ns

1

0

XYZ
Intensity

10
total_cost

L

R s

& 20 Mow pmate

Z DN ol wwMeaue § bkt rore § -

Reset Left-Click; Rotate, Middle-Click: Move X/ Right-Clicks: Zoom, Shift: More options.

(3.0,3.6)\ % &
=\

- Views
Type: TopDownOrth

Neas Clip ... 0.01

TaigelFr... «<Fimed
Scale 96.64
Anghe 6.72(]
X 1353
¥ 2043
Save Remove

Goal locations chosen in rviz

Our Glorious Result

Page 189

https://www.mathworks.com/campaigns/offers/next/autonomous-mobile-robots.html

Your
algorithm
cpuz__ |\
l
SLAM
Ethernet 2/

"

/

——
4-’/

il

Planner server processing
7

Local Localization =

siad

e

Architecture of AMRs.

https://www.mathworks.com/campaigns/offers/next/autonomous-mobile-robots.html

https://www.mathworks.com/campaigns/offers/next/autonomous-mobile-robots.html

Developing Autonomous Mobile Robots UsingMATLAB and Simulink

/ Sensors) i Simulation \ / Vehicle \

%y ’ Environment Dynamics
€< /?‘5‘ ik < <y ¢ v o —
@ S "\.A | T_./ Y /
s e ¥le © ,
PR) (=) _ LY

/ Perception \ ol Decision Making\ - Control \

« Object Detection * Route Planning + Path Following
-> . Object Tracking > . Path Planning —2> . Obstacle Avoidance [
« Localization
\- SLAM /

Autonomous mobile robot (AMR) system.

https://www.mathworks.com/campaigns/offers/next/autonomous-mobile-robots.html

\

S X System

_—

~ "~
T S

~ ™
|

Perceive

/'\
o

-
Decide
& Plan

R -

fa -
£+ Control
. a =

.
((2) Connect
[‘ OnnecJ

Control System
Toolbox™

o

Computer Vision
Toolbox™

. ’] i! g!

Automated Driving

Toolbox™

E

Communications
Toolbox™

Simulink Real-
Time™

..
e -
oo ®!

43 i B v @

Simscape™ Aerospace
" odas~
HW Support . & 4
Packages phased Array System -] &
" Toolbox™ | g
., & ' . Statistics and Machine
i 6 Learning Toolbox™ Deep Learning
; Toolbox™
Reinforcement wsriydbipas v i
™
Laniming Toolbox™ and Tracking Toolbox
e : - s
—) Model Predictive
—— Control Toolbox™
Robotics System N %
WLAN Toolbox™ Toome™ Navigation Toolbox™

1:2

MATLAB Coder™ Simulink Coder™ Embedded Coder™ HDL Coder™ PLC Coder™ GPU Coder™

* ON TO CHAPTER 3 DRIVING TURTLEBOT
* ONTO CHAPTER 4 NAVIGATING WITH TURTLEBOT
* DETAILS OF TRANSFORMS, PROBABILITY, STATE ESTIMATION

