COURSE Review 2 MOBILE ROBOTICS

CENG 5437-01, CENG 4391-02 SPRING 2022

Wheeled Robots and Differential Drive Steering Basic Kinematics and Math Basic
Turtlebot and Gazebo
Python program – Move Turtlebot.
Physics of Wheeled Robots

SENSORS Classes of Sensors Characterization of Sensors Types of Errors – Statistical and Random

Specific Sensors Position- Absolute and Relative Range

Connect Sensors to the Computer – A2D converters, etc.

PG 84 Text Pose of a Turtlebot Robot and its Topics (Sensors, etc.)

Turtlebot 2

DIFFERENTIAL DRIVE ROBOT

TurtleBot simulated with axes shown

\$ rosservice call gazebo/get_model_state '{model_name: mobile_base}'

The output of the preceding command is similar to the following if TurtleBot is at the origin:

pose:

position:

- x: 0.00161336508139
- y: 0.0091790167961
- z: -0.00113098620237
- orientation:
- x: -5.20108036968e-05
- y: -0.00399736084462
- z: -0.0191615228716
- w: 0.999808408868
- twist:
- linear:
- x: 9.00012388429e-06
- y: 6.54279879125e-05
- z: -1.4365465304e-05
- angular:
- x: -0.000449167550145
- y: 0.000197996689198
- z: -0.000470014447946
- success: True
- status message: GetModelState: got properties

With ROS commands, you can move the TurtleBot, as we did with the turtle in Turtlesim in *Chapter 1, Getting Started with ROS*. First, find the topic that will control the mobile_base link since that is the name given in Gazebo's left panel:

```
$ rostopic list | grep mobile_base
```

The output is as follows:

/mobile_base/commands/motor_power

/mobile_base/commands/reset_odometry

/mobile_base/commands/velocity

/mobile_base/events/bumper

/mobile_base/events/cliff

/mobile_base/sensors/bumper_pointcloud

/mobile_base/sensors/core

/mobile_base/sensors/imu_data

/mobile_base_nodelet_manager/bond

To cause the robot to turn in a circle requires some forward velocity and angular velocity, which the following command shows:

\$ rostopic pub -r 10 /mobile_base/commands/velocity \geometry_msgs/Twist
'{linear: {x: 0.2}, angular: {x: 0, y: 0, z: 1.0}}'

The linear speed is 0.2 meters/second and the rotation is 1.0 radian (about 57 degrees) per second.

To view the messages sent, type the following command in a separate terminal window:

\$ rostopic echo /mobile_base/commands/velocity

DIRECT MESSAGE ON NETWORK TO TURTLEBOT

```
#!/usr/bin/env python
# Execute as a python script
# Set linear and angular values of TurtleBot's speed and turning.
import rospy  # Needed to create a ROS node
from geometry msgs.msg import Twist # Message that moves base
classControlTurtleBot():
 def init (self):
   # ControlTurtleBot is the name of the node sent to the #master
   rospy.init node('ControlTurtleBot', anonymous=False)
   # Message to screen
   rospy.loginfo("Press CTRL+c to stop TurtleBot")
   # Keys CNTL + c will stop script
   rospy.on shutdown(self.shutdown)
   # Publisher will send Twist message on topic
   # cmd vel mux/input/navi
   self.cmd vel = rospy.Publisher('cmd vel mux/input/navi',
   Twist, queue size=10)
```

[103] --

```
# TurtleBot will receive the message 10 times per second.
                rate = rospy.Rate(10);
                # 10 Hz is fine as long as the processing does not exceed
RATE
                    1/10 second.
                #
                # Twist is geometry msgs for linear and angular velocity
                move cmd = Twist()
                # Linear speed in x in meters/second is + (forward) or -
                # (backwards)
                move cmd.linear.x = 0.3
                # Modify this value to change speed
                # Turn at 0 radians/s
                move cmd.angular.z = 0
                # Modify this value to cause rotation rad/s
                # Loop and TurtleBot will move until you type CNTL+c
                while not rospy.is shutdown():
                  # publish Twist values to TurtleBot node /cmd vel mux
                  self.cmd vel.publish(move cmd)
                  # wait for 0.1 seconds (10 HZ) and publish again
                  rate.sleep()
              def shutdown(self):
                # You can stop turtlebot by publishing an empty Twist
                # message
                rospy.loginfo("Stopping TurtleBot")
                self.cmd vel.publish(Twist())
                # Give TurtleBot time to stop
                rospy.sleep(1)
            if name == ' main ':
              try:
                ControlTurtleBot()
              except:
                rospy.loginfo("End of the trip for TurtleBot")
```

Χ, ω

CONTROL – WHEEL VELOCITY, ROTATION

MAGNUS

https://www.youtube.com/watch?app=desktop&v=aE7RQNhwnPQ&sns=em

Sensors

Proprioceptive Sensors

(monitor state of robot)

- IMU (accels & gyros)
- Wheel encoders
- Doppler radar ...

Exteroceptive Sensors

(monitor environment)

- Cameras (single, stereo, omni, FL 🧶
- Laser scanner
- MW radar
- Sonar
- Tactile...

1980-82 – ROBART-I Sentry Robot – H. R. Everett

Example: systematic and random errors

Accuracy and errors

. Systematic errors

- Result from a variety of factors
 - . Interfering or modifying variables (i.e., temperature)
 - . Drift (i.e., changes in chemical structure or mechanical stresses)
 - . The measurement process changes the measurand (i.e., loading errors)
 - . The transmission process changes the signal (i.e., attenuation)
 - . Human observers (i.e., parallax errors)
- Systematic errors can be corrected with COMPENSATION methods (i.e., feedback, filtering)

. Random errors

- Also called NOISE: a signal that carries no information
- True random errors (white noise) follow a Gaussian distribution
- Sources of randomness:
 - . Repeatability of the measurand itself (i.e., height of a rough surface)
 - . Environmental noise (i.e., background noise picked by a microphone)
 - . Transmission noise (i.e., 60Hz hum)
- Signal to noise ratio (SNR) should be >>1
 - With knowledge of the signal characteristics it may be possible to interpret a signal with a low SNR (i.e., understanding speech in a loud environment)

1. Measurement and Correction of Systematic Odometry Errors in Mobile Robots By Johann Borenstein and Liqiang Feng (It would be difficult to get more information on Odometry)

http://www-personal.umich.edu/~johannb/Papers/paper58.pdf

THERE IS HOPE TO ELIMINATE (REDUCE) THE SYSTEMATIC ERRORS BY CALIBRATION!

REDUCING RANDOM ERRORS FROM THE SENSORS IS ANOTHER STORY! (TO BE TOLD LATER IN COURSE)

This graph shows the position error of fused odometry with gyro, when robot moves along a square path. Robot moved with 0.1 m/s on the line segment and rotated with 30 deg/s on the corner.

Robot Odometry Calibration

9,586 views Jun 2, 2013 6:57

https://www.youtube.com/watch?v=qsdilZncgqo

• **Resolution:** Resolution is the minimum step size within the range of measurement of the sensor. In a wire-wound potentiometer, it will be equal to the resistance of one turn of the wire. In a digital device with *n* bits, the resolution will be

Resolution = Full Range/ 2ⁿ

For example, an absolute encoder with 4 bits can report positions up to $2^4 = 16$ different levels. Thus, its resolution is $360/16 = 22.5^{\circ}$.

Accuracy: Accuracy is defined as how close the output of the sensor is to the expected value. If for a given input, the output is expected to be a certain value, the accuracy is related to how close the sensor's output is to this value.

() Toleran e
No

$$R_1 = 68 \times 520$$
 Vour = Vin $\frac{R_2}{R_1 + R_2}$
() If $R_1 = R_2 = 68 \times 10 = 5.00$ volts
(2) Let $R_1 = 68 \times (.95) = 64.6 \times 10 = 5.00$ volts
(2) Let $R_1 = 68 \times (.95) = 71.4 \times 100$
Thus if $R_2 = 68 \times 1550$, low voltage rot
 $V_0 = 10 \times \frac{64.6}{64.6 \times 114} = 4.75$ volts
If $R_2 = 71.4 \times 100$
 $V_0 = 10 \times \frac{71.4}{R_1 + R_2} = 5.25$ volts

YOU COULD MEASURE EACH RESISTOR AND SELECT THE BEST – OR DESIGN A FEEDBACK SCHEME TO REDUCE THE EFFECT OF THE VARIABILITY. https://electronics.stackexchange.com/questions/98357/is-the-error-in-a-5-resistorconsistent-across-measurements

What I'm really saying is that if a given resistor is "off" by 3.5% I don't really care... as long as it's **always** off by the same 3.5%. But if from one measurement (voltage? current?) to another it might be +2% one time and -3% another time, then I need to get higher quality components ?

The answer to your questions is mostly covered in the data sheets. A 5% tolerance resistor will also have a specification for temperature drift, "load life" (drift with time under certain environmental conditions) and so on. It's possible to make a 1% resistor that is just as crappy as a 5% resistor in stability, it's just trimmed closer to begin with (and at a certain temperature). Calibration can reduce the initial inaccuracy, but it won't reduce the other kinds of drift. The drift will determine whether you can make a 0.1% circuit with 1% resistors or a 0.5% circuit with 5% resistors.

M Temperature Coefficient	$ \Omega \leq R \leq 0 \Omega $	±200 ppm/°C
	$10 \ \Omega < R \le 10 \ M\Omega$	±100 ppm/°C
	$10 \text{ M}\Omega < \text{R} \le 22 \text{ M}\Omega$	±200 ppm/°C

Why Punching a Robot Is a Bad Idea (Go for the Sensors Instead)!

https://www.theatlantic.com/video/index/257060/why-punching-a-robot-is-abad-idea-go-for-the-sensors-instead/

SAMPLING THEOREM THE BIG DEAL!!

• HOW OFTEN DO WE NEED TO SAMPLE?

- DEPENDS on FREQUENCY of SINUSOID
- ANSWERED by SHANNON/NYQUIST Theorem
- ALSO DEPENDS on "<u>RECONSTRUCTION</u>"

Shannon Sampling Theorem

A continuous-time signal x(t) with frequencies no higher than f_{max} can be reconstructed exactly from its samples $x[n] = x(nT_s)$, if the samples are taken at a rate $f_s = 1/T_s$ that is greater than $2f_{\text{max}}$.

Relationship of Nyquist frequency & rate (example)

Basic Sampling at 2x Highest Frequency in Band (B)

Nyquist Limit

The absolute limiting resolution of a sensor is determined by its Nyquist limit. This is defined as being one half of the sampling frequency, a.k.a the number of pixels/mm (Equation 3). For example, the Sony ICX285 is a monochrome CCD sensor with a horizontal active area of 9mm containing 1392 horizontal pixels each 6.45µm in size. This represents a horizontal sampling frequency of 155 pixels/mm (1392 pixels / 9mm = 1mm / 0.00645 mm/pixel = 155).

https://www.edmundoptics.com/knowledge-center/application-notes/imaging/camera-resolution-for-improved-imagingsystem-performance/

Video Aliasing Why car wheels rotate backwards in movies 4:25

https://www.youtube.com/watch?v=SFbINinFsxk&feature=youtu.be

May 2016 \odot 2003-2016, JH McClellan & RW Schafer 3

INCORRECT SAMPLING LEADS TO "FUNNY THINGS" IN VIDEOS ALSO.

Navigation Errors

IF YOU DO NOT CALIBRATE CAREFULLY!

IF YOU DO NOT UNDERSTAND RANDOM ERRORS IN ROBOT NAVIGATION

LOST ROOMBA !!!

His name is "Higgins". 35cm / 9cm high / 2.8Kg DOES NOT BITE !!!

Roomba app info: Battery: 3% Dust bin: 190%

My husband left our bungalow door open and our Roomba escaped !!! We followed his cleaning track for 4 Km down to the beach where we lost his trail. **HIGGINS CAN NOT SWIM !!!** Please help us to bring Higgins back!

#TEARMEOFF

That's All Folks

Tolerance Errors Resistors

Capacitance and RC circuits

Data Acquisition Resolution, Accuracy, Dynamic Range

Temperature Sensor to Voltage to Digital

Smoothing – filtering – MATLAB

Least Squares Curve Fitting