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1 CONTROL

APPLICATIONS FOR

ROBOTICS

PREVIEW

We show that the transfer function and conditions of stability for linear

systems can be studied using Laplace transforms.

Table 1.1 summarizes example applications of Laplace transform

techniques. This chapter emphasizes control applications but briefly

describes the other application areas.

TABLE 1.1 Applications of Laplace transforms

Area Application

Stability Stability of a linear system can be determined by analyzing
the transfer function given by the Laplace transform.

Control Control systems can be analyzed and designed using
Laplace transforms.
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THE TRANSFER

FUNCTION

The transfer function is defined for linear systems with zero initial condi-
tions called relaxed systems. Let h(t) be the impulse response and H(s)
its Laplace transform. For an input f(t) with transform F (s) and a re-
sponse y(t) with transform Y (s), the transfer function can be defined in
two equivalent ways:

1. in the Laplace domain as the ratio of the output Y (s) to the input
F (s);

2. as the transform of the impulse response h(t).

Since the convolution y(t) = f(t) ∗ h(t) describes the response of the
relaxed system, the transformed equivalent is

Y (s) = F (s)H(s) or H(s) = Y (s)/F (s).

The transfer function H(s) can be analyzed in many ways. Analyzing
the pole-zero model is an approach often taken in stability and control
applications.

THE POLE-ZERO

MODEL

Consider a transfer function that can be written in the form

H(s) =
Y (s)

X(s)
=

bmsm + bm−1s
m−1 + · · ·+ b0

sn + an−1sn−1 + · · ·+ a0

= K
(s − z1) · · · (s− zm)

(s − p1) · · · (s − pn)
. (1.1)

Notice that if this transfer function describes a linear time-invariant sys-
tem, the poles define the impulse response of the system since Y (s) = 1
and all the bi = 0 except for b0 = 1. Thus, the inverse transform yields
the impulse response for the system in the form

h(t) =

n
∑

i=1

Ai exp(pit) t ≥ 0

where the coefficients Ai can be found from the partial fraction expansion
of H(s).

EXAMPLE 1.1 Pole-Zero Analysis
Consider the transform

Y (s) =
2s(s + 1)

(s + 3)(s2 + 4s + 5)

with zeros at s = 0 and s = −1. The poles are at s = −3 and s = −2± i. These
poles and zeros are sometimes called the finite poles and finite zeros respectively.
Also, there is a zero at ∞ since Y (s) = 0 as s → ∞ because the degree of the
denominator is one greater than that of the numerator. In most applications,
we consider only the finite poles and zeros.
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THEOREM 1.1 Stability from Laplace transform

For the function

y(t) = L−1

{

P (s)

Q(s)

}

to be stable, it is necessary and sufficient that the equation Q(s) = 0 have no

roots to the right of the imaginary axis in the complex s plane and that any

roots on the imaginary axis be unrepeated.

Considering the values of the poles of Y (s) and Theorem 1.1, we conclude

that the function y(t) = L−1[Y (s)] is stable since the poles have negative real

parts.

1.1 MATLAB AND LAPLACE APPLICATIONS

MATLAB has commands that can be used to apply Laplace transforms to
analyze linear systems for control systems problems. The Control System

Toolbox has additional commands for this purpose. Table 1.2 lists a few
such commands that are useful for applications of Laplace transforms to
continuous linear systems. To see the complete list of commands available
use the command help control.

TABLE 1.2 MATLAB commands for control applications

Command Result

Control System Toolbox:

bode Bode plot (Frequency response)
impulse Impulse response
lsim Response to arbitrary inputs
pole Poles
pzmap Pole zero plot
rlocus Root locus plot
step Step response
tf Transfer function
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EXAMPLE 1.2 MATLAB System Analysis
This example shows how to use MATLAB commands to aid in determining

the characteristics including the step response of the system

Y (s) =
F (s)

(s + 1)(s + 2)
.

It is easily shown that the impulse response for the system is

yimpulse(t) = e−t − e−2t t ≥ 0

and the step response is the integral of the impulse response,

ystep(t) =
1

2
− e−t +

1

2
e−2t t ≥ 0.

You can check these results using the initial and final value theorems.
The M-file for this example first defines the system characteristics from the

coefficients of the numerator and denominator polynomial using the command
transfer function tf. This command creates the transfer function for the system
for other commands. The command pole computes the poles of the transfer
function (s = −1,−2).

Then, the transform of the step response is defined. The call to pzmap

plots the poles of the function corresponding to the poles of the step response
including the pole at s = 0 as shown in Figure 1.1. In this case, there are no
zeros in the function. Finally, the command step plots the step response of the
system as Figure 1.2.

The first figure shows the pole-zero plot of the step response with poles at
s = 0,−1,−2. The second figure is the step response. The differential equation
for the system step response is given by

(s2 + 3s + 2)Y (s) = 1/s

or ÿ(t)+3ẏ(t)+ 2y(t) = 1. Note that as t → ∞, y(t) = 1/2 in steady state. By
the Final Value Theorem y(t) = lim

s→0

sY (s) = 1/2.

MATLAB Script

Example 1.2

% PZEXAMP.M Example of pole-zero plot and step response of the

% system with response H(s)F(s)=F(s)/(s^2+3s+2).

% CALLS: pole, pzmap, step, tf in the Controls System Toolbox

%

clear,clf

num=[1]; % Numerator coefficients F(s)=1

den=[1 3 2]; % Denominator coefficients for system

sys=tf(num,den); % Define system for pole, step.

pole(sys) % Compute poles and display results

% Poles and zeros of step response F(s)=1/s

figure(1)

denstep=[1 3 2 0]; % Denominator for step input

sysstep=tf(num,denstep) % Compute and display transform

pzmap(sysstep) % Plot the poles and zeros

title(’Pole-zero plot for step response’)
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% Step response

figure(2)

step(sys) % Compute and plot step response
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FIGURE 1.1 Pole-zero plot for step response
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FIGURE 1.2 Step response
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1.2 PHYSICAL SYSTEMS AND THEIR RESPONSE

In this section, we consider the response of linear time-invariant systems
using the Laplace transform approach. In particular, first- and second-
order systems are considered in some detail. Such systems are important
as models of physical systems and also the response of higher-order sys-
tems often can be analyzed as the sum of the responses of first- and
second-order systems.

FIRST ORDER

SYSTEMS

Consider the system described by the first-order differential equation

dy(t)

dt
+

1

τ
y(t) =

K

τ
f(t) (1.2)

with τ and K constants with the Laplace transform

sY (s) − y(0) +
1

τ
Y (s) =

K

τ
F (s).

For the relaxed system, y(0) = 0 so that

Y (s) =
(K/τ )F (s)

s + (1/τ )
(1.3)

with the step response (F (s) = 1/s),

y(t) = K(1 − e−t/τ ) t ≥ 0. (1.4)

For control applications, the step response and the frequency response
of the system are of fundamental importance. First, we present these
characteristics analytically and then use MATLAB to analyze first-order
systems.

Step Response of First-Order Systems The parameter τ in Equa-
tion 1.4 is called the time constant of the system and has units of seconds
if t is in seconds. Calculation of the magnitude of the step response verses
multiples of the time constant shows that the response rises from zero to
about 63% of the final value in time t = τ . After t = 4τ , the response is
within 98.12% of the value K.

EXAMPLE 1.3 Time Constants for First-Order Systems
Given the transform of the step response of the system

Y (s) =
(K/τ)

s[s + (1/τ)]
, (1.5)

the pole at s = −1/τ corresponds to a time constant of τ . The accompanying
MATLAB script creates the system parameters for three values of τ and plots
the step responses in Figure 1.3 for a system with K = 5. The poles at s =
−4,−2,−0.2 correspond to the values τ = 0.25, 0.5, 5.0, respectively.
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MATLAB Script

Example 1.3

% TSTSTEP.M Plot of step response for several systems

% Test case Y(s)= (5/tau)/[s(s+(1/tau))] for tau = .25,.5, 5

%

clear, clf

num=[5/.25 5/.5 5/5] % K/tau

den1=[1 4] % tau =.25

den2=[1 2] % tau = .5

den3=[1 .2] % tau = 5

%

sys1=tf(num(1),den1);sys2=tf(num(2),den2);sys3=tf(num(3),den3)

step(sys1,sys2,sys3,0:.01:10)

grid

gtext(’\tau = 5.0’);gtext(’\tau = 0.5’);gtext(’\tau = 0.25’)
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FIGURE 1.3 Step responses

The conclusion from the figure is that as the time constant of the
system increases, the time to steady state increases proportionally. Steady
state is sometimes defined as the time at which the response is 95% of the
final value. This is about 3 time constants when 1 − e−t/τ = .05.

Frequency Response of First-Order Systems The frequency re-

sponse of a system is determined by using a sinusoid as the input func-
tion and computing (or measuring) the output for a range frequencies of
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interest. In terms of the transfer function for a first-order system

H(s) =
Y (s)

F (s)
=

(K/τ )

s + (1/τ )
, (1.6)

the frequency response is given by G(s), evaluated at s = iω. Thus, the
frequency response of a system with transfer function H(s) is defined as

H(iω) 0 ≤ ω < ∞. (1.7)

From the first-order transfer function of Equation 1.6, we find that

H(iω) =
K

τ (iω) + 1
= |H(iω)| eiφ(ω)

so that the magnitude and phase of the frequency response can be written

|H(iω)| =
K

[1 + τ2 ω2]1/2
φ(ω) = − tan−1 τ ω. (1.8)

EXAMPLE 1.4 Bandwidth of First-Order Systems
Let ωB be the frequency at which the magnitude of the first-order trans-

fer function is 1/
√

2 = 0.707 times the amplitude at very low frequencies.1

Equating the first-order transfer function of Equation 1.8 at ω = ωB to K/
√

2
yields

|H(iωB)| =
K

[1 + τ2ω2
B
]1/2

=
K√
2

so that

ωB =
1

τ

is the bandwidth in radians per second of a first-order system with time constant
τ seconds.

To visualize the frequency response, the magnitude and phase of H(iω)
can be plotted versus frequency on linear scales. Another representation is the
Bode plot or diagram, named for H. W. Bode, who plotted the magnitude on a
logarithmic scale with the logarithm of frequency as the ordinate. On a Bode
diagram, the phase of the transfer function is also plotted versus the logarithm
of frequency.

The plot of the magnitude is in units of decibels for which

dB = 20 log A

where A is the value to be converted to dB. To examine H(iω) in dB, use the
property of logarithms

log
(

ab

cd

)

= log(ab) − log(cd) = log a + log b − log c − log d.

1This is often called the half-power point since if |H | is measured in volts, the associated power is propor-

tional to |H |2. This is also called the −3dB point for |H |.
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The magnitude of the first-order transfer function defined by Equation 1.8 in
dB is

20 log |H(iω)| = 20 log K − 20 log

[

1 +
(

ω

ωB

)2
]

1/2

(1.9)

if τ is replaced with 1/ωB.

For our numerical example, let K = 1 in Equation 1.9 so that at ω = 0,

|H(0)| = 0 dB.

Then, at ω = ωB,

|H(iωB)| = −3.01 dB

and at ω = 10ωB,

|H(i10 ωB)| = −20.04 dB.

The magnitude of the transfer function is reduced by approximately 3 dB at
the frequency defining the bandwidth and by about 20 dB a decade higher in
frequency.

The MATLAB script and the plots of magnitude and phase show that the
bandwidth (-3 dB point) occur where ω = 1/τ . The phase is then −45 degrees.

MATLAB Script

Example 1.4

% BODETST.M Bode plots for first-order systems

% Test case Y(s)= (1/tau)/[s(s+(1/tau))] for tau = .25,.5, 5

%

clear, clf

num=[1/.25 1/.5 1/5] % K/tau

den1=[1 4] % tau =.25

den2=[1 2] % tau = .5

den3=[1 .2] % tau = 5

%

sys1=tf(num(1),den1);sys2=tf(num(2),den2);sys3=tf(num(3),den3)

bode(sys1,sys2,sys3)

grid

gtext(’\tau = 5.0’);gtext(’\tau = 0.5’);gtext(’\tau = 0.25’)
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FIGURE 1.4 Bode plots for first-order system

Notice that for the equation

ẏ(t) + ay(t) = f(t), y(0) = 0 (1.10)

where a is a constant, the solution can be written

y(t) =

∫ t

0

f(λ) e−a(t−λ) dλ. (1.11)

If f(t) = δ(t), using the sifting property of δ(t) we find

y(t) =

∫ t

0

δ(λ) e−a(t−λ) dλ = e−at t ≥ 0

as the impulse response of the system. Note that a is the inverse of the
time constant of the system in these equations. Using this result shows
that Equation 1.11 is the convolution with f(t) and the impulse response
of the system. Chapter 5 in Harman presents another approach to finding
the solution of the differential equation.

SECOND ORDER

SYSTEMS

Consider the system described by the second-order differential equation

d2y(t)

dt2
+ 2ζωn

dy(t)

dt
+ ωn

2y(t) = ωn
2f(t) (1.12)
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where ζ is the damping ratio and ωn
2 is the natural or undamped fre-

quency. Both of these parameters are assumed positive constants in our
discussion. The transfer function for this second-order system is

H(s) =
ωn

2

s2 + 2ζωns + ωn
2

(1.13)

which when written in this form has the dc gain H(0) = 1. The poles of
the transfer function are

s1,2 = −ζωn ± iωn

√

1 − ζ2.

If ζ = 0, there is no damping and the inverse transform yields a sinusoidal
impulse response of sustained amplitude. For 0 < ζ < 1, the impulse
response is a damped sinusoid. For ζ ≥ 1, there is no oscillation in the
response. The step response is explored in Example 1.5.

EXAMPLE 1.5 Second-Order Step Response

The accompanying script computes and plots the step response for a second-
order system of Equation 1.12 using the value ωn = 1 with the different damping
ratios

ζ = 0.25, 0.5, 1.0, 5.0.

MATLAB Script

Example 1.5

% TSTSTEP2.M Plot of step response for several systems

% Test case Y(s)= (1)/[s(s+2*zeta*+1)] for zeta=0.25,.5,1,5

%

clear, clf

zeta=[0.25 0.5 1 5];

for k=1:4

num=[1]; %

den=[1 2*zeta(k) 1]; %

step(num,den) % Plot the result

hold on

end

%

grid

gtext(’\zeta = .25’);gtext(’\zeta = 0.5’);

gtext(’\zeta = 1.0’);gtext(’\zeta = 5.0’);
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FIGURE 1.5 Step response for second-order system

Frequency Response of Second-Order Systems The frequency re-
sponse function for the second-order system of Equation 1.13 is

H(iω) =
ωn

2

(iω)2 + 2ζωn(iω) + ωn
2
. (1.14)

The magnitude of H(iω) becomes

|H(iω)| =

∣

∣

∣

∣

∣

∣

∣

1
(

i ω
ωn

)2

+ 2ζ
(

i ω
ωn

)

+ 1

∣

∣

∣

∣

∣

∣

∣

=
1

√

(

1 − ω2

ω2
n

)2

+
(

2ζ ω
ωn

)2
(1.15)

From the result, we find that if ω << ωn, the low-frequency asymp-
tote is

−20 log 1 = 0dB

and the high-frequency response is a line having a slope of −40dB/decade
since for ω >> ωn,

−20 log
ω2

ω2
n

= −40 log
ω

ωn
.
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EXAMPLE 1.6 Second-Order Frequency Response
The accompanying MATLAB script calculates and plots the magnitude of

the frequency response of the second-order system of Equation 1.15 for various
values of damping.

MATLAB Script
Example 1.6

% FREQ2ORD.M Frequency response of second order system for values

% of damping zeta=[0.25 0.5 0.707 1]

%

clear;clf

w=0:.05:3; % Frequency points (rad/sec)

zeta=[0.25 0.5 0.707 1] % Values of damping

for k=1:4

Hnum=[0 0 1];

Hden=[1 2*zeta(k) 1];

Hiomega=freqs(Hnum,Hden,w);

Hmag=abs(Hiomega);

plot(w,Hmag)

title(’Frequency response of second-order system’)

xlabel(’\omega/\omega_n’)

ylabel(’|H(i \omega)|’)

hold on

end

grid

gtext(’\zeta = .25’);gtext(’\zeta = 0.5’);

gtext(’\zeta = .707’);gtext(’\zeta = 1.0’);
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FIGURE 1.6 Frequency response for second-order system
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1.3 CONTROL APPLICATIONS OF LAPLACE TRANSFORMS

This section introduces feedback control systems and their analysis by
application of Laplace transform techniques. For our purposes, a feedback

control system is a system that maintains a prescribed relationship be-
tween the output and some reference input. When the control action is
based on the difference between the desired output and the actual output,
the system is often called a closed-loop control system. For comparison,
a control system without feedback is called an open-loop control system.
Table 1.3 compares these and presents examples of each.

TABLE 1.3 Comparison of control systems

Open-loop system Closed-loop system

Output is not measured Controller brings output to
or compared to input. desired value.

Stability is inherent. Must be designed to be stable.

Calibration necessary. Relatively insensitive to internal
changes or external disturbances.

Examples

Timed traffic lights Thermostatic control

Washing machine Automobile cruise control

BLOCK

DIAGRAM

MODEL

The block diagram of Figure 1.7 shows a closed-loop control system. The
designation within the blocks indicate the transfer functions for various
components of the system. For example, G(s) can represent the transfer
function of the portion of the system to be controlled, sometimes called
the plant , and the controller or compensator that varies the input to the
plant to obtain the desired output. For our present purposes, it is not
necessary to further define G(s) in terms of its components. The function
Hf(s) is the transfer function of the feedback element, usually a sensor
that measures the output Y (s). In this simple diagram, E(s) is called the
error signal and R(s) is the reference input signal.
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FIGURE 1.7 Feedback control model

If the input R(s) is constant, we say the control system is a regulator

since the object is to maintain the output at some constant value in the
presence of disturbances. Temperature control or speed-control closed-
loop systems are of this type. Other control systems are designed to
allow the output to follow some time function as input. Such systems
that control mechanical position or motion are called servomechanisms.

The transfer function Y (s)/R(s) for the system in Figure 1.7 is de-
rived by observing that

Y (s) = G(s)E(s)

E(s) = R(s) − Hf(s)Y (s)

and eliminating E(s) from these equations to yield

Y (s) = G(s)[R(s) − Hf(s)Y (s)]

so that
Y (s)

R(s)
=

G(s)

1 + G(s)Hf (s)
. (1.16)

This is the closed-loop transfer function.

EXAMPLE 1.7 First-Order Feedback Response
Consider the transfer function of a first-order system in the form

G(s) =
Ka

s + a

where a is the reciprocal of the time constant for the system and K is a positive
constant. According to Example 1.4, this parameter a is the bandwidth of
the system. The dc gain for this system is K as seen by letting s = 0 in the
expression for G(s). One characteristic of the system that is of interest in some
problems is the gain-bandwidth product which is

GainBW = Ka.
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For purposes of comparison, this will be called the open-loop system.
In Figure 1.7, let G(s) be the first-order transfer function and let the system

have unity feedback Hf(s) = 1 so that the closed-loop transfer function is

Y (s)

R(s)
=

G(s)

1 + G(s)
=

Ka

s + a(1 + K)
.

according to Equation 1.16. In this case, the gain-bandwidth product is

GainBW =
K

1 + K
a(1 + K) = Ka,

the same as for the open-loop system. The conclusion is that the closed-loop

gain is decreased by 1 + K and the bandwidth is increased by the same factor

as compared to the system without feedback. However, for first-order systems,

the gain-bandwidth product is constant.

CONTROL

METHODS

Consider the system shown in Figure 1.8. This represents a control loop
with a compensator or controller that serves to produce a control signal
that reduces the error to zero or a small value.

FIGURE 1.8 Feedback control model with compensator

In the figure, Gc(s) is the transfer function of the compensator and
Gp(s) is the transfer function of the plant or process to be controlled.
Using Equation 1.16, the closed-loop transfer function for the system is
found to be

Y (s)

R(s)
=

Gc(s)Gp(s)

1 + Gc(s)Gp(s)Hf (s)
. (1.17)
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Many control systems can be modeled this way and the design problem is
to select Gc(s) to get the desired system response. Our approach in this
section is to analyze systems with different forms of Gc(s).

PID Controllers Perhaps the most common form of compensator
used in feedback control systems is the proportional-plus-integral-plus-
derivative (PID) compensator. In Figure 1.8, consider e(t) the input
signal to the compensator and m(t) the output in the time domain. The
PID compensator or controller is defined by the equation

m(t) = KP e(t) + KI

∫ t

0

e(τ ) dτ + KD
de(t)

dt
. (1.18)

The Laplace transform of m(t) yields the transfer function is

Gc(s) =
M(s)

E(s)
= KP +

KI

s
+ KDs. (1.19)

In practice, all three terms may not be implemented in a control
systems. For example, a PI compensator is commonly used with the
characteristics described by Equation 1.18 after setting KD = 0. We will
study several types of compensators in this section.

Proportional Control If Gc(s) = KP , a non-zero positive constant, in
Figure 1.8, the control method is called gain compensation or more com-
monly proportional control . To study the effect of proportional control, we
analyze the response of a first-order system controlled by a compensator
with constant gain. The transfer function for the first-order system

Gp =
K/τ

s + 1/τ

with unity feedback is

T (s) =
Y (s)

R(s)
=

KP Gp(s)

1 + KP Gp(s)

=
KP K/τ

s + (1 + KP K)/τ

The dc gain is

T (0) =
KP K

1 + KP K
=

K

K + 1/KP

so that the dc gain is reduced from the open-loop gain of Gp since KP ≥ 0.
The accompanying MATLAB script computes the step function re-

sponse for the values of the proportional constant KP = 0.1, 0.3, 0.5.
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MATLAB Script

% PROCNTL1.M Proportional control example for the plant
% Gp(s)=K/[s(s+1)(s+2)] for three values of Kp.
%
clear, clf
t=0:.01:20; % Time steps
Kp=[0.1 0.3 0.5];
for I=1:3

Gpnum=[0 0 0 4*Kp(I)]; Gpden=[1 3 2 0];
Tnum=Gpnum; Tden=Gpnum+Gpden;step(Tnum,Tden,t)
hold on

end; hold off
gtext(’K_{p}= 0.1’);gtext(’K_{p} = 0.3’);gtext(’K_{p}= 0.5’)
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FIGURE 1.9 Responses for proportional control

In Figure 1.9 notice that the overall system response becomes more
oscillatory as the proportional gain is increased. This implies that even
an overdamped plant or process may become underdamped (oscillatory)
with proportional control and an appropriate value of KP .

To analyze the system in more detail we could consider the system
characteristic equation given by Equation 1.17 as

1 + KP G(s)Hf(s) = 0.

The roots of this equation could be plotted for various values of KP to
form a root locus. The MATLAB command rlocus computes the root
locus and plots the result.
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Comparison of Control Methods Each term in the controller equa-
tion

Gc(s) =
M(s)

E(s)
= KP +

KI

s
+ KDs.

has a different effect on the response of a system to an input signal.

EXAMPLE 1.8 Control of First-Order System

Using the first-order system of Example 1.3, the accompanying MATLAB
script computes and plots the step response for the plant

Gp(s) =
K/τ

s + 1/τ
=

2

s + 2

for which the plant gain is 1 and the time constant is τ = 0.5. The step response
is computed for the open-loop plant, then in a closed-loop with proportional
compensation, and then with integral compensation.

MATLAB Script

Example 1.8

% PID1.M Plot of step response for several control methods

% Test case Open-loop Y(s)= (K/tau)/[s+(1/tau)]

%

clear, clf

tau=0.5;

K=1; % Plant Gain

KP=1.5; % Proportional Gain

KI=2.0;

numopen=[0 K/tau]; % K/tau

denopen=[1 1/tau]; % tau = 5

%

sysopen=tf(numopen,denopen);

% Proportional Control

numpro=KP*numopen; denpro=[1 (1+KP*K)/tau];

syspro=tf(numpro,denpro)

% Integral Control

numint=KI*numopen;

denint=[1 1/tau KI*K/tau];

sysint=tf(numint,denint)

%

step(sysopen,’-’,syspro,’--’,sysint,’:’,0:.005:6)

grid

legend(’Open-loop’)

gtext(’\tau =0.5’);gtext(’KP=2.0’);gtext(’KI = 2.0’)

%

% Note: Many of the expressions can be simplified
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FIGURE 1.10 First-order step responses for various control methods

EXAMPLE 1.9 Control of First-Order System
A simpler way to find the transfer function of a closed loop system is to

use the commands feedback after the transfer function for GcGp is computed
by the command series.

MATLAB Script

Example 1.9

% PIDCNTL1.M Plot of step response for several control methods

% Test case Open-loop Y(s)= (K/tau)/[s+(1/tau)]

% Use Control System Toolbox - Call feedback and series

%

clear, clf

tau=0.5

K=1 % Plant Gain

KI=2.0 % Integral Gain

numopen=[0 K/tau] % K/tau

denopen=[1 1/tau] % tau = 0.5

sysopen=tf(numopen,denopen);

% Integral Control KI/s

numintc=[KI]

denintc=[1 0]

sysintc=tf(numintc,denintc)

% Form feedback loop

syscp=series(sysintc,sysopen)

clsys=feedback(syscp,1,-1)
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step(sysopen,’-’,clsys,’--’,0:.005:6)

grid

legend(’Open-loop’,’Integral’)

gtext(’\tau =0.5’);gtext(’KI = 2.0’)
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FIGURE 1.11 First-order step response for PI control
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