ON TURTLEBOT 2 Camera and Mapping

1. Unplug POWER CORD TO NETBOOK - Make sure it is charged.

2. LOG ON NETBOOK PASS: TB

3. Connect ASUS camera to Netbook - USB

4. POWER ON BASE (Button to right of base)

4. CONNECT NETBOOK TO BASE (lower left of base) Connector not available yet.

5. CONNECT TO BUFFALO ROUTER

ON WORKSTATION FOR KEYBOARD TELEOP

1. CONNECT TO BUFFALO ROUTER (System settings > Network)

2. Terminal 1: \$...turtlebot2 (Set up Netbook as ROS MASTER) #This makes TurtleBot the Master through the Buffalo Router 9/29/2015 export ROS_MASTER_URI=http://192.168.11.110:11311 # TurtleBot 2 IP as MASTER export ROS_IP=192.168.11.120 # Wireless IP on Workstation uNCommented out 1/25/2016

3. Terminal 1 \$ ssh turtlebot-0877@192.168.11.110

Enter Password turtlebot@192.168.11.123's password: xxxxxxx

4. \$ roslaunch turtlebot_bringup minimal.launch

TO TEST CAMERAS

(RVIZ and Mapping below)

NEW TERMINAL-2 \$. .turtlebot2

\$ ssh turtlebot-0877@192.168.11.110 Enter Password

\$ roslaunch openni2_launch openni2.launch ASUS Camera Driver

NEW TERMINAL -3

 $\$. .turtlebot2

\$ rosrun image_view image_view image:=/camera/rgb/image_raw

Cntl+c to exit or Open a New Terminal Window to see raw and depth.

\$. .turtlebot2

\$ rosrun image_view image_=/camera/depth/image depth view (??) Check other topics

RVIZ - Start Over CONNECT TO BUFFALO ROUTER (System settings > Network) Terminal 1: \$. .turtlebot2 (Set up Netbook as ROS MASTER) #This makes TurtleBot the Master through the Buffalo Router 9/29/2015 export ROS_MASTER_URI=http://192.168.11.110:11311 # TurtleBot 2 IP as MASTER export ROS_IP=192.168.11.120 # Wireless IP on Workstation uNCommented out 1/25/2016 Terminal 1 \$ ssh turtlebot-0877@192.168.11.110 Enter Password turtlebot@192.168.11.110's password: xxxxxxxx \$ roslaunch turtlebot_bringup minimal.launch

\$...turtlebot2

\$ ssh turtlebot-0877@192.168.11.110

\$ roslaunch turtlebot_bringup 3dsensor.launch

(Start camera nodelet manager - no picture)

New Terminal 3 \$. .turtlebot2 \$ roslaunch turtlebot_rviz_launchers view_robot.launch

rviz working Look at screen

As shown in the next screenshot we choose the following:

- Under Global Options in the left panel for Fixed Frame, change base_link or base_footprint to camera_link.
- To select the view Check box under Displays DepthCloud or Registered Depth or Image or Registered Point Cloud (as here)

New Terminal 3New Terminal 4 MOVE TURTLEBOT AND WATCH RVIZ

\$. .turtlebot2
(We need to move TurtleBot so that odom topic feeds TF information to Rviz)
\$ roslaunch turtlebot_teleop keyboard_teleop.launch OR

\$ roslaunch turtlebot_teleop xbox360_teleop.launch (Joystick)
(Hold Deadman Button – Left Upper Button
* /turtlebot_teleop_joystick/axis_deadman: 4

(Be patient for Updates to RVIZ)

MAPPING

Teminal 1 \$. .turtlebot2 **\$ ssh turtlebot-0877@192.168.11.110 \$ roslaunch turtlebot_bringup minimal.launch**

Enter Password

Terminal 2

\$. .turtlebot2
\$ ssh turtlebot-0877@192.168.11.110
\$ roslaunch turtlebot_navigation gmapping_demo.launch
Password

(Wait for [INFO] [1456876362.958566171]: odom received!)

Terminal 3

\$...turtlebot2

\$ roslaunch turtlebot_rviz_launchers view_navigation.launch

Shows initial location of TurtleBot (Black) – arbitrary position.

MAKE MAP - KEYBOARD OR JOYSTICK OR INTERACTIVE MARKERS

Terminal 4 tlharmanphd@D125-43873:~\$. .turtlebot2 tlharmanphd@D125-43873:~\$ roslaunch turtlebot_teleop xbox360_teleop.launch

SAVE THE MAP

Terminal 5

tlharmanphd@D125-43873:~\$. .turtlebot2

tlharmanphd@D125-43873:~\$ ssh turtlebot-0877@192.168.11.110

turtlebot-0877@Turtlebot-0877:~\$ rosrun map_server map_saver -f /home/turtlebot-0877/Map1_3_1_2016

[INFO] [1456877398.685189702]: Waiting for the map

[INFO] [1456877398.914801040]: Received a 576 X 608 map @ 0.050 m/pix

[INFO] [1456877398.914871463]: Writing map occupancy data to /home/turtlebot-0877/Map1_3_1_2016.pgm

[INFO] [1456877398.928638227]: Writing map occupancy data to /home/turtlebot-0877/Map1_3_1_2016.yaml

[INFO] [1456877398.928874901]: Done

turtlebot-0877@Turtlebot-0877:~\$ ls

Desktopexamples.desktoplaptopMusicTemplatesDocumentsframes.gvMap1_3_1_2016.pgmPicturesVideosDownloadsframes.pdfMap1_3_1_2016.yamlPublic

NOW WE HAVE A MAP - HAVE TURTLEBOT NAVIGATE WITH RVIZ

Have Minimal Launch running

New Terminal 2

tlharmanphd@D125-43873:~\$. .turtlebot2 tlharmanphd@D125-43873:~\$ ssh turtlebot-0877@192.168.11.110 Password

turtlebot-0877@Turtlebot-0877:~\$ ls (Remember Map's name) Desktop examples.desktop laptop Music Templates Documents frames.gv Map1_3_1_2016.pgm Pictures Videos Downloads frames.pdf Map1_3_1_2016.yaml Public

turtlebot-0877@Turtlebot-0877:~\$ roslaunch turtlebot_navigation amcl_demo.launch map_file:=/home/turtlebot-0877/Map1_3_1_2016.yaml

Terminal 3

\$. .turtlebot2

\$ roslaunch turtlebot_rviz_launchers view_navigation.launch

1. Select 2D Pose Estimate on the menu bar- Left Click and keep pressing on TB's approximate location on the map and move mouse in direction that TB is pointing. (TB in map will appear to his location)

2. Select 2D Nav Goal on menu bar - Left Click on goal location and drag mouse so that Big Green Arrow point in the direction that you want TB to face when TB reaches the goal.