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Chapter 4

122 System Responses

The inverse Laplace transform is not derived here (see Problem 4.8); however, assuming for
the moment that the poles of G(s) are complex, the result is

L

c(t) = 1_1e"-"’~'sin([3mnz+e) (4-20)

B
where B = ﬁ- ¢* and 6 = tan™' (B/C). In this response, T = 1/{, is the time constant of
the exponentially damped sinusoid in seconds (we can usually ignore this term after approx-
imately four time constants). Also, P, is the frequency of the damped sinusoid.

We wish now to show typical step responses for a second-order system. The step
response given by (4-20) is a function of both { and ®,. If we specify {, we still cannot plot
c(f) without specifying ®,. To simplify the plots, we give ¢(7) for a specified { as a function
of w,z. A family of such curves for various values of { is very useful and is given in Figure
4.4 for 0 < { < 2. Note that for 0 < { < 1, the response is a damped sinusoid. For { =0, the
sinusoid is undamped, or of sustained amplitude. For { 2 1, the oscillations have ceased. It
is apparent from (4-20) that for { < 0, the response grows without limit. We consider only
the case that 2 0 in this chapter. A MATL.AB program that calculates some of the step
responses of Figure 4.4 is given by

zeta = {0.2 0.5 1 2];

for k = 1:4

G =tf ([1],[1 2*zeta(k) 11);:
step(G)
hold on

end
hold off

The two poles of the transfer function G(s) in (4-18) occur at

s = _g(’*)nij("‘)rx“J ] _§2

For { > 1, these poles are real and unequal, and the damped sinusoid portion of ¢ (¢) is
replaced by the weighted sum of two exponential functions; that is,

c(t) = 14k 4 kpe'™ (4-21)

where 1, = 1/ (Lo, + (o"«/CZ— 1), t,= 1/(C mn—m"AlC_,z— 1) are the two system
time constants. For { = 1, the poles of G(s) are real and equal, so that

() = 1+ke ™+ kyte 1= 1/0,

For 0 < { < 1, the system is said to be underdamped, and for { = 0 it is said to be undamped.
For { = 1, the system is said to be critically damped, and for { > 1, the system is over-
damped.
For a linear time-invariant system,
C(s) = G(s)R(s) (4-22)
For the case that r(z) is a unit impulse function, R(s) = 1 and
c(t) = £7GH)] = g() (4-23)

where g (¢) is the unit impulse response, or weighting function, of a system with the
transfer function G(s). Then, by the convolution integral (see Appendix B), for a general
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Figure 4.4 Step response for second-order system (4-20).

input r(1),

H
c(r) = j g(nr(t-1)dt (4-24)

0
from (4-22). {In (4-24), 1 is the variable of integration and is not related to the time con-
stant.] Hence, all response information for a general input is contained in the impulse
response g(f).

Recall also from Section 4.1 that an initial condition on a first-order system can be
modeled as an impulse function input. While the initial condition excitation of higher-order
systems cannot be modeled as simply as that of the first-order system, the impulse response
of any system does give an indication of the nature of the initial-condition response, and
thus the transient response, of the system. The unit-impulse response of the second-order
system (4-18) is given in Figure 4.5. This figure is a plot of the function

@ty = ,c-‘(——-‘”g—) = S LotgGoBar = g(t) (4-25)
52+ 28w, + w? p §

Compare Figure 4.4 with Figure 4.5 and note the similarity of the information. In fact, the

unit impulse response of a system is the derivative of the unit step response (see Problem

4.9). The impulse response of the second-order system can also be considered to be the

response to certain initial conditions, with r(r) = 0 (see Problem 4.9).
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