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8 FOURIER ANALYSIS

PREVIEW

The next two chapters are devoted primarily to the study of Fourier

techniques. Collectively, these techniques form a branch of applied

mathematics called Fourier analysis. The field of study is named for Jean

Baptiste Fourier (1768–1830), who showed that any periodic function can

be represented as the sum of sinusoids with integrally related frequencies.

This observation leads to the study of Fourier series, which will be

presented first in this chapter. The purpose of the Fourier series is to express

a given function as a linear combination of sine and cosine basis functions.

In many cases, the series is simpler to analyze than the original function.

Most importantly for some applications, the components of the series allow

physical interpretation of the function in terms of its frequency spectrum.

The Fourier transform provides an extension of Fourier series to the

analysis of nonperiodic functions. As with the series, the point of the

transform is to represent a function in a manner that is easier to analyze

and understand. Properties and applications of this important transform

will be considered in the chapter.

The present chapter concentrates on techniques and transforms that

apply to a continuous function f(t). These include Fourier series and

Fourier transforms. In Chapter 11, the discrete Fourier transform for
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functions f(ti) defined at discrete points and other transforms are

considered.

It may be helpful to review the sections on orthogonal functions in

Chapter 2 and Chapter 7 before studying the details of Fourier series in this

chapter.

8.1 FOURIER SERIES

In 1807, Fourier astounded many of his contemporary mathematicians
and scientists by asserting that an arbitrary function could be expressed
as a linear combination of sines and cosines. These linear combinations of
the trigonometric sine and cosine functions, now called a Fourier trigono-

metric series, are applied to the analysis of periodic phenomena including
vibrations and wave motion.

FOURIER SERIES
FORMULA

The Fourier series approximates a function f(t) by using a trigonometric

polynomial of degree N as follows:

f(t) ≈
a0

2
+

N
∑

n=1

[an cos(nt) + bn sin(nt)] = sN (t), (8.1)

where sN (t) denotes the nth partial sum. Assuming that f(t) is con-
tinuous on the interval −π ≤ t ≤ π, the coefficients an and bn can be
computed by the formulas

a0 =
1

π

∫ π

−π

f(t) dt (8.2)

for the constant term and

an =
1

π

∫ π

−π

f(t) cos(nt) dt, bn =
1

π

∫ π

−π

f(t) sin(nt) dt, (8.3)

for n = 1, 2, . . . , N . If f(t) is continuous on the interval and the derivative
of f(t) exists, the series converges to f(t) at the point t when N → ∞.
Although the convergence properties of the series in Equation 8.1 will be
discussed later, we will use the equality sign in Fourier series expansions,
as is commonly done when the sum contains an infinite number of terms.

The series sN (t) is the Fourier approximation to the function f(t) on
the interval [−π, π]. From the periodicity of the trigonometric terms, it
follows that

sN(t + 2kπ) = sN (t) (8.4)
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for all t and all integers k.
Notice that the constant term a0/2 in the series of Equation 8.1 is

the average value of f(t) on the interval −π ≤ t ≤ π since a0 calculated
by Equation 8.2 is twice the average value of f(t) over the interval. The
integrals in Equation 8.3 are twice the average value of f(t) cos(nt) and
f(t) sin(nt), respectively. When the series is written using a0/2 as the
constant term, Equation 8.3 can be used for all the coefficients an by
letting n vary from 0 to N .

EXAMPLE 8.1 Fourier Series Example
Consider the periodic function

f(t) =

{

0, −π < t < 0,
t, 0 < t < π,

with period 2π, as shown in Figure 8.1.

– π π

π

f(t)

t

... ...

FIGURE 8.1 Periodic function f(t) for Example 8.1

Using Equation 8.2, the Fourier coefficient a0 is

a0 =
1

π

∫ π

−π

f(t) dt =
1

π

∫ π

0

t dt =
π

2
,

which yields a constant term of a0/2 = π/4. The coefficients of the cosine terms
are computed from Equation 8.3 as

an =
1

π

∫ π

−π

f(t) cos(nt) dt

=
1

π

∫ 0

−π

0 cos(nt) dt +
1

π

∫ π

0

t cos(nt) dt.

Integrating by parts yields

an =
1

π

[

t

n
sin(nt) +

1

n2
cos(nt)

]π

0
=

1

πn2
[cos(nπ) − 1] (8.5)

for n = 1, 2, . . ..
Similarly, the sine terms are computed as

bn =
1

π

∫ π

−π

f(t) sin(nt) dt

=
1

π

∫ 0

−π

0 sin(nt) dt +
1

π

∫ π

0

t sin(nt) dt,
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which yields

bn =
1

π

[

− t

n
cos(nt) +

1

n2
sin(nt)

]π

0
= − 1

n
[cos(nπ)] (8.6)

for n = 1, 2, . . ..
The series approximation can be rewritten using the identity relationship

cos(nπ) = (−1)n and noticing that an = 0 when n is an even integer. The
result is

f(t) =
π

4
− 2

π

∞
∑

n=1

cos(2n − 1)t

(2n − 1)2
−

∞
∑

n=1

(−1)n sin(nt)

n
, (8.7)

where the (2n − 1) is introduced in the first sum to assure that only odd terms
are included in that summation.

Writing out a few terms yields the series for f(t) as

f(t) =
π

4
− 2

π
cos(t) − 2

9π
cos(3t) − · · ·

+ sin(t) − 1

2
sin(2t) +

1

3
sin(3t) + · · · , (8.8)

where the equality holds at points at which f(t) is continuous. At points of

discontinuity t = nπ, the series converges to π/2, as explained later.

EXAMPLE 8.2 MATLAB Fourier Series Example
The accompanying MATLAB script and plots show the Fourier approxi-

mation to the function of Example 8.1 for 5 and 20 terms of the series.

MATLAB Script

Example 8.2

% EX8_2.M Plot the Fourier series of the function f(t)

% f(t)=0 -pi < t < 0

% f(t)=t 0 < t < pi

% Plot f(t) for 5 and 20 terms in the series

clear

t =[-pi:.031:pi]; % Time points for plotting

sizet=size(t);

fn = pi/4*(ones(sizet)); % Fourier approximation at each t

yplt=zeros(sizet); % for plot of f(t)

% 5 terms

for n=1:5

fn=fn+ (1/pi)*(-2*cos((2*n-1)*t)/(2*n-1)^2)-((-1)^n*sin(n*t)/n);

end

%

for k=1:length(t) % Create f(t)

if t(k) < 0

yplt(k)=0;

else

yplt(k)=t(k);

end

end
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clf % Clear any figures

subplot(2,1,1),plot(t,fn,t,yplt,’--’);

xlabel(’t’)

ylabel(’f(t)’)

title(’Fourier series approximation to f(t)’)

legend([’N=’,num2str(n)],’f(t)’) % Annotate the graph

% Add 15 more terms

for n=6:20

fn=fn+ (1/pi)*(-2*cos((2*n-1)*t)/(2*n-1)^2)-((-1)^n*sin(n*t)/n);

end

subplot(2,1,2),plot(t,fn,t,yplt,’--’);

xlabel(’t’)

ylabel(’f(t)’)

legend([’N=’,num2str(n)],’f(t)’)
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Fourier series approximation to f(t)

N=5 
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FIGURE 8.2 Fourier series approximation for Example 8.1

Five terms shown in the first plot of Figure 8.2 do not give a very
good approximation, particularly near the endpoints of the function. The
second plot showing a 20-term series is much closer to the actual function.
Both approximations are converging to π/2 at the endpoints.

ORTHOGONAL
FOURIER TERMS

From the discussion of orthogonal functions in Chapter 2, Chapter 6, and
Chapter 7, the integrals for the Fourier coefficients in Equation 8.3 can
be viewed as the normalized inner product of the function f(t) and the
sine and cosine trigonometric functions.
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Recall that in Chapter 2, the inner product of the trigonometric func-
tions on the interval [−π, π] was defined as

〈f, g〉 =
1

π

∫ π

−π

f(t)g(t) dt, (8.9)

where the factor 1/π was introduced to normalize the inner product for
the Fourier trigonometric functions.

Then, the trigonometric terms in the Fourier series consist of functions
that form an orthonormal set, since for integers k and m

〈cos(kt), cos(mt)〉 =

{

1, k = m 6= 0,
0, k 6= m,

〈sin(kt), sin(mt)〉 =

{

1, k = m 6= 0,
0, k 6= m,

〈cos(kt), sin(mt)〉 = 0, for all k, m. (8.10)

Thus, the Fourier coefficients in the expansion of a function f(t) from
Equation 8.3 can be written as

ak = 〈 f(t), cos(kt)〉, k = 0, 1, . . . ,

bk = 〈 f(t), sin(kt)〉, k = 1, 2, . . . . (8.11)

Notice that the constant term a0 is computed as

a0 = 〈f(t), 1〉 =
1

π

∫ π

−π

f(t) dt, (8.12)

which is the inner product of f(t) and the cos(kt) term in Equation 8.11
for k = 0.

EVEN AND ODD
FUNCTIONS

The Fourier approximation of even and odd functions can be computed
with significantly less effort than that needed for functions without such
symmetry. The properties that define an even or odd function are as
follows:

1. An even function has a graph that is symmetric with respect to
the vertical axis (t = 0) and satisfies the equation

f(−t) = f(t). (8.13)

2. An odd function is symmetric with respect to the origin and satis-
fies the equation

f(−t) = −f(t). (8.14)
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For the even function fe(t), a range of integration that is symmetrical
about the vertical axis, where t = 0, yields the result

∫ π

−π

fe(t) dt = 2

∫ π

0

fe(t) dt.

The integral over a symmetrical range about the vertical axis for an odd

function fo(t) is zero; that is,

∫ π

−π

fo(t) dt = 0.

Based on these results, if f(t) is an even function,

f(t) =
a0

2
+

∞
∑

n=1

[an cos(nt)], (8.15)

where

a0 =
2

π

∫ π

0

f(t) dt, (8.16)

an =
2

π

∫ π

0

f(t) cos(nt) dt. (8.17)

If f(t) is an odd function,

f(t) =

∞
∑

n=1

[bn sin(nt)], (8.18)

where

bn =
2

π

∫ π

0

f(t) sin(nt) dt. (8.19)

EXAMPLE 8.3 Fourier Series Odd Function Example
Consider the Fourier series for the odd periodic function

f(t) = t, −π < t < π,

shown in Figure 8.3. Each term ai = 0, since there is no constant term or terms
in cos(nt).

π

π

f(t)

t– π

FIGURE 8.3 Odd periodic function for Example 8.3
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Applying Equation 8.19, the coefficients of the sine terms are

bn =
2

π

∫ π

0

t sin(nt) dt, n = 1, 2, . . . ,

which can be integrated by parts to yield

bn =
2

π

[−t

n
cos(nt) +

1

n2
sin(nt)

]π

0
= − 2

n
cos(nπ).

Using the fact that cos(nπ) = (−1)n, the resulting series can be written as

f(t) = −2

∞
∑

n=1

(−1)n

n
sin(nt).

The result is a series of sine terms as expected for the approximation of an odd

function. Note that f(0) = 0, as required, and f(nπ) = 0 for any integer n. At

the discontinuities, the series converges to the midpoint.

[ -T/2, T/2 ]
INTERVAL

On the interval [−T/2, T/2 ], the limits of integration for the Fourier series
can be changed from [−π, π ] by assigning to the integration variable t
the value 2πt/T . The period of the function is thus T .

Assuming that f(t) is continuous on the interval −T/2 ≤ t ≤ T/2,
the coefficients an and bn can be computed by the formulas

a0 =
2

T

∫ T/2

−T/2

f(t) dt,

an =
2

T

∫ T/2

−T/2

f(t) cos

(

2nπt

T

)

dt,

bn =
2

T

∫ T/2

−T/2

f(t) sin

(

2nπt

T

)

dt, (8.20)

where n = 1, 2, . . . is any positive integer.
The Fourier series on the interval [−T/2, T/2 ] is thus

f(t) =
a0

2
+

∞
∑

n=1

[

an cos

(

2nπt

T

)

+ bn sin

(

2nπt

T

)]

. (8.21)

Frequency Components Assuming the variable t represents time, the
function f(t) repeats every T seconds. The frequency associated with the
fundamental sinusoid in the series of Equation 8.21 is f0 = 1/T , measured
in cycles per second, or hertz. The parameter

ω0 = 2πf0 =
2π

T
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is the frequency in radians per second.

Since 2nπ/T = 2nπf0 = nω0, the series in Equation 8.21 can be writ-
ten

f(t) =
a0

2
+

∞
∑

n=1

[an cos(2πnf0t) + bn sin(2πnf0t)]

=
a0

2
+

∞
∑

n=1

[an cos(nω0t) + bn sin(nω0t)], (8.22)

which emphasizes the components in terms of their frequencies.

The first term in cosine or sine is called the fundamental component,
and the other terms are the harmonics with frequencies that are integer
multiples of the fundamental component’s frequency. Thus, the frequen-
cies of the Fourier series terms are

f0, 2f0, 3f0, . . . ,

although some of the components may be zero for a particular Fourier
series. However, f(t) is a continuous function of time, and this aspect of
the Fourier series is emphasized when the series is used to approximate
f(t). In other applications, the frequencies of the components are of
primary interest.

Sometimes a function of a spatial variable x is of interest. If the
function has period λ meters, the function repeats as

f(x + λ) = f(x).

Then, the variable t in Equation 8.22 is replaced by x, and the frequency
components are defined by replacing f0 with 1/λ. The spatial equivalent
of ω0 is

k =
2π

λ
,

measured in inverse units of length. Such a formulation of Fourier series is
used frequently in problems involving optics. In optical applications, the
values nk are called spatial frequencies. Thus, λ represents the wavelength
of the light wave being analyzed.

EXAMPLE 8.4 Fourier series square wave example
A square wave of amplitude A and period T shown in Figure 8.4 can be

defined as

f(t) =







A, 0 < t <
T

2
,

−A, −T

2
< t < 0,

with f(t) = f(t + T ), since the function is periodic.
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f(t)

t

... ...

0

A

–A

–T
2

––
T
2

––

FIGURE 8.4 Square wave of Example 8.4

The first observation is that f(t) is odd, which yields the result that a0 = 0
and ai = 0 for every coefficient of the cosine terms. Letting ω0 = 2π/T , the
coefficients bn are

bn = 2
(

2

T

)

∫ T/2

0

A sin(nω0t) dt.

The result is

f(t) =
4A

π

∞
∑

n=1

sin[(2n − 1)ω0t]

(2n − 1)
,

where (2n − 1) is introduced to assure that only odd terms are included in the
summation. The sine waves that make up the Fourier series for the odd square
wave are

f(t) =
4A

π

[

sin(ω0t) +
sin(3ω0t)

3
+ · · ·

]

,

so the series consists not only of sine terms, as expected, but also odd harmonics

appear. This is due to the rotational symmetry of the function since the wave

shapes on alternate half-cycles are identical in shape but reversed in sign. Such

waveforms are produced in certain types of rotating electrical machinery.

SYMMETRIES Symmetry in a function f(t) should be exploited to reduce the computa-
tional effort of finding the Fourier coefficients. Generally, the symmetry
exists either about a vertical line or a horizontal line. Several types of
symmetry are presented in Table 8.1. Even and odd symmetry were dis-
cussed previously. Rotational symmetry exists about the zero axis, and
the waveshape of alternate half-cycles is identical but reversed in sign.
This symmetry is also called half-wave symmetry since the integrals for
the Fourier coefficients need be taken over only half a period.

There is no constant term when rotational symmetry exists. If the
function is also odd, only odd-harmonic sine terms will appear in the
Fourier series, as was the case for the odd square wave of Example 8.4.
An even function with rotational symmetry will have a Fourier series
consisting of odd-harmonic cosine terms.
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TABLE 8.1 Symmetry of the function f(t)

Symmetry Fourier Series

Even function Cosine terms only
f(−t) = f(t)

Odd function Sine terms only
f(−t) = −f(t)

Rotational Odd harmonics only
f(t) = −f(−t + T/2)

COMPLEX
SERIES

The Fourier series of Equation 8.1 contains a series of sines and cosines
and thus involves real functions. It is often convenient to write the series
for a function f(t) with period T as a sum of exponential functions in the
form

f(t) =

∞
∑

n=−∞

αneinω0t, (8.23)

where ω0 = 2π/T as before and the coefficients αn are the complex Fourier
coefficients.

By substituting the identities

cos(nω0t) =
einω0t + e−inω0t

2
,

sin(nω0t) =
einω0t − e−inω0t

2i
, (8.24)

in the trigonometric form of the series in Equation 8.21, the relationship
between the trigonometric and exponential coefficients is found to be

α0 =
a0

2
,

αn =
an − ibn

2
for n > 0 ,

α−n =
an + ibn

2
. (8.25)

Notice that α−n is the complex conjugate of the term αn.1 Thus, the
series in Equation 8.23 becomes

f(t) = α0 +

∞
∑

n=1

[αneinω0t + α−ne−inω0t]. (8.26)

1These results hold when f(t) is a real-valued function. For complex-valued functions, the real and
imaginary parts can be treated separately as real functions.
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Orthogonality To find the coefficients in Equation 8.23, each side is
multiplied by e−imω0t and integrated over the period to yield

∫ T/2

−T/2

f(t)e−imω0 t dt =

∞
∑

n=−∞

αn

∫ T/2

−T/2

ei(n−m)ω0t dt. (8.27)

Since the terms with different exponents are orthogonal, all terms but
that for which m = n are zero for the integral on the right-hand side.
Thus,

∫ T/2

−T/2

f(t)e−imω0 t dt =

∫ T/2

−T/2

e−inω0teinω0t dt = αnT,

so that dividing both sides T yields the coefficients

αn =
1

T

∫ T/2

−T/2

f(t)e−inω0t dt. (8.28)

EXAMPLE 8.5 Complex Series Square Wave Example
Consider the odd square wave of Example 8.4 and the complex Fourier

coefficients

αn =
1

T

∫ 0

−T/2

(−A)e−inω0t dt +
1

T

∫ T/2

0

(A)e−inω0t dt, (8.29)

which leads to the series

f(t) =
2A

iπ

∞
∑

n=−∞

ei(2n−1)ω0t

(2n − 1)
, (8.30)

as defined in Equation 8.23.
This form contains complex coefficients, but the series can be written in

terms of sine waves by combining the corresponding terms for positive and
negative arguments. To determine the coefficients, the amount of difficulty is
about the same for the trigonometric series and the complex series. However, the
complex series perhaps has an advantage when the magnitude of the coefficients
are of interest.

Each coefficient has the form

αn =
2A

inπ
=

2A

nπ
e−iπ/2, n = ±1,±3, . . . ,

and the coefficients for even values, n = 0,±2, . . ., are zero. Notice that the
coefficients decrease as the index n increases. The use of these coefficients to
compute the frequency spectrum of f(t) is considered later.

The trigonometric series is derived from the complex series by expanding
the complex series of Equation 8.30 as

f(t) =

∞
∑

n=−∞

αneinω0t

= · · · − 2A

3πi
e−i3ω0t − 2A

πi
e−iω0t +

2A

πi
eiω0t +

2A

3πi
ei3ω0t + · · ·
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and recognizing the sum of negative and positive terms for each n as 2 sin(nω0t).
The trigonometric series becomes

f(t) =
4A

π

(

sin(ω0t) +
sin(3ω0t)

3
+ · · ·

)

=
4A

π

∞
∑

n=1

sin[(2n − 1)ω0t]

(2n − 1)
,

which is the result of Example 8.4.

FOURIER
SPECTRUM FOR
PERIODIC
FUNCTIONS

In general, the Fourier series of a periodic function with period T seconds
contains the fundamental sinusoid and numerous harmonics some of which
may be zero. The plot of the magnitude of the frequency components is
called the amplitude, or frequency spectrum. The frequency components
are spaced f0 = 1/T hertz apart. On a graph, the spectrum is a series
of points (or lines) and is called a discrete spectrum. A discrete Fourier
spectrum is characteristic of all periodic functions.

Spectrum of Trigonometric Series An alternative method of ex-
pressing the trigonometric Fourier series of Equation 8.22 is to write the
series with terms of the form

cn cos(2πnf0t + θn), (8.31)

which we will call a shifted cosine series due to the phase shift θn in
each term. To derive the relationship between the coefficients cn and the
coefficients of the complete cosine and sine series, we set the nth term in
the cosine expansion equal to the nth component of the original series as
follows:

cn cos(nt + θn) = an cos(nt) + bn sin(nt), (8.32)

where an, bn, and θn are known.
Using the identity

cn cos(nt + θn) = cn cos(nt) cos(θn) − cn sin(nt) sin(θn), (8.33)

and expanding the left-hand side of Equation 8.32 leads to the relation-
ships,

cn cos(θn) = an,

cn sin(θn) = −bn,

to be solved for cn and θn. Squaring these equations and adding them
together yields the solution for cn, and taking the ratio determines θn.
The result is

cn =
√

a2
n + b2

n and θn = tan−1

(

−
bn

an

)

.

Notice that the sign of the argument of the tangent is negative.
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In terms of the fundamental frequency f0, the shifted cosine series
equivalent to Equation 8.22 can be written

f(t) =
a0

2
+

∞
∑

n=1

[cn cos(2πnf0t + θn)], (8.34)

in which the numerical value of cn is the amplitude and the angle θn is
the phase of the nth harmonic. In many problems, physical units are
associated with the coefficients. For example, if f(t) represents a voltage
wave that varies with time, the components yield the values of the voltages
at each frequency that must be combined to reproduce f(t). The phase
indicates how the individual components must be shifted from the t = 0
axis before they are combined.

When plotted versus frequency, the magnitudes of the constant (a0/2)
and the set of harmonic amplitudes, cn, n = 1, 2, . . ., are referred to as
the amplitude spectrum, and the plot of phase shifts (θn) is the phase

spectrum. The constant a0/2 corresponding to zero frequency is often
called the dc (direct current) component in problems involving electrical
circuits.

Spectrum of Complex Series The complex series presented as Equa-
tion 8.23,

f(t) =

∞
∑

n=−∞

αneinω0t =

∞
∑

n=−∞

αnei2πnf0t,

has coefficients αn that are in general complex. Thus, the actual real
sinusoidal terms are composed of terms that have both positive and “neg-
ative” frequency components. This use of the negative frequencies should
not be disturbing and is given no physical interpretation. After all, the
basis functions as complex exponentials have no physical meaning either.
The spectrum is usually plotted as αn and θn versus n or frequency nf0

for both negative and positive values of n.
Since the complex series coefficients are complex, they can be written

αn = |αn| e
iθn ,

α∗

n = |αn| e
−iθn .

The sum of two terms for the nth harmonic yields the term fn as

fn = |αn| e
iθneinω0t + |αn| e

−iθne−inω0t

= |αn|
[

ei(nω0t+θn) + e−i(nω0t+θn)
]

= 2 |αn| cos(2πnf0t + θn).

Comparing this result with the coefficients for the shifted cosine se-
ries of Equation 8.34 shows that cn = 2 |αn| if the complex series is to
be converted to the shifted cosine series. Thus, the one-sided amplitude
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spectrum (n = 1, 2, . . .) for the complex series consists of the terms 2 |αn|.
The phase is given by the terms θn just as for the trigonometric series.
If both positive and negative frequency components are shown, the terms
|αn| are plotted. The zero frequency term is the same for any represen-
tation.

Real Functions If f(t) is a real and even function of t, the coefficients
αn are real and even functions of n. If f(t) is a real and odd function of
t, then the coefficients αn are imaginary and odd functions of n. In either
case, plotting |αn| results in a real and even discrete frequency spectrum
for the amplitudes.

Power in the signal It is an important result of alternating current
theory that the power associated with a periodic wave of voltage or current
f(t) is proportional to the mean-square value of f(t). The mean-square
formula is

f2(t) =
1

T

∫ T/2

−T/2

[f(t)]2 dt, (8.35)

which is seen to be the average of the square of f(t). For a pure sinusoid,
the average value of its square is one-half the peak value. Thus, for the
nth harmonic cn cos(nω0t), the result is cn

2/2.

Applying the mean-square formula to any of the Fourier series rep-
resentations leads to the power spectrum for the function. The power is
computed by squaring the appropriate series and dividing the integral over
the period by the period itself to compute the mean-square value of each
component. All the cross terms average to zero since the trigonometric
functions are orthogonal.

The average power in the time signal must equal the power computed
by the Fourier series. A rigorous statement of this fact is called Parseval’s
theorem. This important result was presented in Chapter 7.

Comment: If the function f(t) represents a voltage signal (volts) or a
current (amperes), the power is not strictly given by Equation 8.35 when
the signal is applied to a circuit. For example, the average power dissi-

pated in a resistor of R ohms would be P (t) = f(t)
2
/R watts when f(t)

represents the voltage across the resistor. Generally, when no confusion
would result, the power in a periodic signal is considered to be given by
Equation 8.35.
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FOURIER SERIES
SUMMARY

For a periodic signal f(t) with period T , the various forms of the Fourier
series and the power associated with the signal are shown in Table 8.2.

TABLE 8.2 Fourier Series Representation

Series Power

Sine and cosine series:

a0

2
+

∞
∑

n=1

[an cos(2nπf0t) + bn sin(2nπf0t)]
(

a0

2

)2

+
1

2

∞
∑

n=1

(a2
n + b2n)

where

an =
2

T

∫ T/2

−T/2

f(t) cos(2nπf0t) dt

bn =
2

T

∫ T/2

−T/2

f(t) sin(2nπf0t) dt

Shifted cosine:

a0

2
+

∞
∑

n=1

cn cos(2πnf0t + θn)
(

a0

2

)2

+
1

2

∞
∑

n=1

c2
n

where

cn =
√

a2
n + b2n, θn = tan−1

(

− bn

an

)

Complex series:
∞

∑

n=−∞

αnei2πnf0t

∞
∑

n=−∞

|αn|2

where

αn =
1

T

∫ T/2

−T/2

f(t)e−i2nπf0t dt

Comparing the power relations in the table, the coefficients of the
shifted cosine series are related to those for the sine and cosine series as

c2
n = a2

n + b2
n,

with c0 = a0/2. The complex series coefficients are related to the coeffi-
cients of the trigonometric series as

α2
n =

1

2
(a2

n + b2
n)

with α0 = a0/2.
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EXAMPLE 8.6 MATLAB Fourier Spectrum Example
The spectrum for the square wave of Figure 8.4 can be derived from the

complex series of Equation 8.30 in Example 8.5,

f(t) =
2A

iπ

∞
∑

n=−∞

ei(2n−1)ω0t

(2n − 1)
.

The coefficients of the series consists of the terms

αn =
2A

nπ
e−iπ/2, n = ±1,±3,

since i−1 = e−iπ/2. Thus, the amplitude is (2A/nπ) with phase +90◦ for each
negative frequency component and −90◦ for each positive frequency compo-
nents. Figure 8.5 shows the one-sided amplitude spectrum as computed by
the M-function CLSPEC1.M. This MATLAB script creates the spectrum. To
specify the power in the signal, the series

P = |α0|2 + 2

∞
∑

n=1

|αn|2

would be computed. The function clptdscf actually plots the line spectrum.
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FIGURE 8.5 Spectrum of square wave of Example 8.4

The MATLAB command stem also plots discrete data sequences. We
created clptdscf because it gives more control over the output format.
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MATLAB Script

Example 8.6

% CLSPEC1.M Plot positive frequency spectrum of square wave

% The components are 2/(n pi); n odd.

% Plot 10 components of the discrete spectrum [f F]

% by calling function clptdscf

%

clear

xunit=’Hertz’; % Units of frequency

f=[0:1:10]; % Frequency scale

Fn=zeros(1,11); % Row vector of 11 elements

% Frequency spectrum

for n=1:5 % Compute 5 positive components

Fn(2*n-1)=2/((2*n-1)*pi);

end

Fn=[0 Fn]; % Add the zero value

%

clptdscf(f,Fn,xunit) % Call for plot

The function clptdscf plots a discrete function (f,F) in f units specified
by the input xunit and the units will be displayed. The title of the graph must
be input from the keyboard when the function executes.

MATLAB Script

Example 8.6

function clptdscf(f,F,xunit)

% CALL: clptdscf(f,F,xunit) Plot a discrete spectrum [f F]

% Input to function is

% f - frequencies

% F - spectral values

% xunit - units of frequency (Hz or rad/sec)

% Input title of graph from keyboard

nl=length(f); % Number of f points

fmin=min(f); % and range

fmax=max(f);

Fmax=max(F);

% Plotting range, lengthen axes by 10%

Fmaxp=Fmax+.1*Fmax;

fminp=fmin-.1*fmax;

fmaxp=fmax+.1*fmax;

%

title1=input(’Title ’, ’s’ );

clf % Clear any figures

axis([fminp fmaxp 0 Fmaxp]) % Manual scaling

for I=1:nl,

fplots=[f(I) f(I)];

Fplot=[0 F(I)];

plot(fplots,Fplot) % Plot one line at a time

hold on

end
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title(title1)

ylabel(’Amplitude’)

xlabel([’Frequency in ’, xunit])

EXAMPLE 8.7 Fourier spectrum
Consider the even, periodic pulse train in Figure 8.6. This is an important

test signal in electronics and the signal is also of interest because of the char-
acteristics of its Fourier components. The period is T , the amplitude is A, and
the pulse has duration τ in each period. The function is an even function with
average value over a period of Aτ/T .

f(t)

t

...

A

2
–– –τ

2
–– τ

2
––

2
––

3T

2
––

–3T

2
––

...

–T T

FIGURE 8.6 Periodic train of rectangular pulses

Letting ω0 = 2π/T , the coefficients of the complex series are

αn =
1

T

∫ T/2

−T/2

Ae−inω0t dt =
1

T

∫ τ/2

−τ/2

Ae−inω0t dt.

Integrating and substituting −2 sin(nω0τ/2) for the resulting exponentials and
then multiplying and dividing by the term ω0τ/2 yields

αn =
Aτ

T

sin(nω0τ/2)

nω0τ/2
.

The coefficient α0 is determined as Aτ/T by l’Hôpital’s rule. Notice that
the coefficient

α0 =
Aτ

T
=

area of pulse

period
.

Defining the function

sincx ≡ sin x

x
(8.36)

with x = nω0τ/2 leads to the series

f(t) =
Aτ

T
+ 2

Aτ

T

∞
∑

n=1

sinc(nω0τ/2) cos(nω0t)

since the coefficients of the cosine series are twice the values of those in the
complex series.

Comment: The sinc function is frequently defined as

sinc t =
sin πt

πt
.
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This is the convention used in the MATLAB Signal Processing Toolbox for the
function sinc. Letting t = x/π converts the MATLAB version to the form in
Equation 8.36.

The sinc function determines the magnitude of the frequency components
when it is evaluated at the points nω0τ/2. This function will be studied later
as it plays an important role in Fourier analysis using Fourier transforms.

As a specific example, let A = 1, ω0 = 1 radian/second and τ = π/2
seconds for the pulse train of Figure 8.6. Thus, the period T = 2π seconds
and Aτ/T = 1/4. The accompanying MATLAB script computes and plots the
spectrum and the Fourier series representation of pulse train for 20 components
in the series.

MATLAB Script

Example 8.7

% CLSPEC2.M Plot the positive amplitude spectrum and the

% Fourier series representation for the pulse train with

% A=1, period T=2*pi, and pulse width tau=pi/2.

n=1:10; % Number of components

Wn=zeros(size(n));

Wn=2*(1/pi)*(sin(n*pi/4)./n); % Frequency spectrum n=1,2,...

Wn=[1/4,Wn]; % Add dc term

n=[0,n];

%

t=[-3*pi:.02:3*pi]; % Range of t

f=zeros(size(t));

for k=1:1:20; % f(t) with 20 terms

f=f+(2/(k*pi))*sin(k*pi/4)*cos(k*t); % in series

end

f=1/4+f; % Add dc value A*tau/T

% Put in a zero line and plot frequency

fzero=zeros(size(n));

clf % Clear any figures

subplot(2,1,1),plot(n,Wn,’*’,n,fzero,’-’);

xlabel(’w radians per second’)

ylabel(’(2/pi)*sinc(n*pi/4)’)

title(’Fourier Series of Pulse Train’)

% Plot f(t)

subplot(2,1,2),plot(t,f)

xlabel(’t time in seconds’)

ylabel(’f(t)’)

Figure 8.7 shows the Fourier series spectrum for positive frequencies and
the approximation to the pulse train using 20 terms. If a two-sided spectrum
were plotted, the terms α1, . . . , αn, . . ., would be divided by 2.
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FIGURE 8.7 Spectrum and approximation for periodic pulse train of Example 8.7

You should analyze the effect on the spectrum of varying T and the effect

on the reconstructed f(t) of varying the number of terms in the series.

8.2 PROPERTIES OF FOURIER SERIES

This section treats properties of Fourier series that are useful for practical
and theoretical purposes. Topics include the time shift property, condi-
tions for convergence, and the Gibbs phenomenon. Theorems define the
relationship between the Fourier series and its derivative and integral.

TIME SHIFT For a periodic function f(t) with period T , the complex Fourier series is

f(t) =
∞
∑

n=−∞

αneinω0t, (8.37)

with ω0 = 2π/T . If the function is shifted to the right along the t-axis by
an amount τ > 0, the shifted function can be represented as

g(t) = f(t − τ ). (8.38)

8.2 Properties of Fourier Series 393



Thus, a shifted version of f(t) is obtained by substituting the variable
(t− τ ) for t. Let the coefficients of the Fourier series expansion of g(t) be
α̂n, so that

g(t) =

∞
∑

n=−∞

α̂neinω0t.

With the substitution of t − τ , Equation 8.37 becomes

g(t) = f(t − τ ) =

∞
∑

n=−∞

αneinω0(t−τ)

=

∞
∑

n=−∞

αne−inω0τeinω0t. (8.39)

Thus, the Fourier coefficients for the shifted function are obtained as

α̂n = αne−inω0τ ,

indicating the coefficients of the shifted function have the same magnitude
as those for the original function, but the phase of each component is
shifted by −nω0τ radians if τ is in seconds. Also, if τ < 0, the function
is considered to be shifted to the left from the origin t = 0. In effect,
in either case of a shift left or right, τ becomes the new origin for f(t)
since g(τ ) = f(0) in Equation 8.38. Figure 8.14 of Problem 8.5 shows an
example of a shifted pulse.

CONVERGENCE
OF FOURIER
SERIES

The general conditions for existence and convergence of the Fourier series,

f(t) =
a0

2
+

∞
∑

n=1

[an cos(nt) + bn sin(nt)], (8.40)

are fairly complicated, and several references listed in the Annotated Bib-
liography at the end of the chapter present a rigorous discussion of Fourier
series. For example, a strong condition for convergence is that if f(t) is
a periodic function with continuous derivatives through the second order
for all t, the Fourier series of f(t) converges uniformly to f(t) for all t.
However, many functions of interest are not so smooth, and we even wish
to consider functions with discontinuities.

For engineering applications, the sufficient conditions for convergence
of the Fourier series considering only the function and its first derivative
are usually appropriate. Assume that f(t) is piecewise continuous and at
t0, f ′(t0) exists. Then, the series converges to f(t0) when t = t0. At each
point of discontinuity, assume the function takes the average value

f(t) =
1

2
[f(t+) + f(t−)], (8.41)
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where f(t+) means the limit of the function from the right and f(t−) is
the limit from the left. Then, the Fourier series for f(t) converges to f(t)
at every value of t.

In summary, the Fourier series for the functions f(t) considered in
this text will converge to the function at points in an interval where f(t)
is continuous and f ′(t) exists. At points of discontinuity where there is
a finite jump in the function, the series converges to the average value
of the right-hand and left-hand limits as defined in Equation 8.41. This
behavior is obvious in the Fourier series approximation of Figure 8.2.

Gibbs Phenomenon Convergence of the Fourier series as previously
discussed assumed that infinitely many terms in the Fourier series were
used to approximate a function. In practice, the Fourier series of Equa-
tion 8.40 is summed with a finite number of terms as

f(t) =
a0

2
+

N
∑

n=1

[an cos(nt) + bn sin(nt)]. (8.42)

When the Fourier series converges, we expect the series to approximate the
function in the sense that the square error is minimized by the Fourier
coefficients, as discussed in Chapter 7. This error tends to zero as the
number of terms n → ∞ if f(t) is continuous in the interval of interest.

An interesting and apparently strange behavior, called the Gibbs phe-

nomenon of the Fourier series, occurs near a point of discontinuity. When
a finite number of terms of the series is summed, the series shows an
oscillatory error, particularly near the discontinuity. This is evident in
Figure 8.2 and Figure 8.7. Taking more terms in the series shows that
the error does not greatly decrease very close to the points of discontinu-
ity. However, as more terms are taken, the oscillations move closer to the
point of discontinuity. In theory, the Gibbs phenomenon would occur at
the point of discontinuity, even if an infinite number of terms is taken in
the series.2

One other feature of a Fourier series that approximates a function
with discontinuities is that the nth coefficient is divided by n. For contin-
uous functions, the coefficients decrease as 1/n2, as stated in Problem 8.8.
In general, the smoother the function, the more rapidly the coefficients
decrease with increasing n.

Integration and Differentiation of Fourier Series Consider the
integral of f(t) in terms of its Fourier series

∫ t2

t1

f(t) dt =
a0

2

∫ t2

t1

dt +

∫ t2

t1

∞
∑

n=1

[an cos(nt) + bn sin(nt)] dt. (8.43)

2The Gibbs phenomenon is not just a mathematical curiosity. Any real system attenuates the high-
frequency components of an input signal higher in frequency than a certain value. For example, a rapidly
switched signal approximating a square wave viewed on an oscilloscope that cannot pass all the frequency
components of the signal as determined by Fourier analysis will appear to exhibit the Gibbs phenomenon in
the displayed signal.
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If f(t) is piecewise continuous on the interval [t1, t2], the Fourier series of
f(t) can be integrated term by term and the resulting series will converge
to the integral of f(t) in the interval. Notice that integration will have
the effect of dividing the coefficients in the original series by n and hence
increases the rate of convergence. In terms of frequency, integration tends
to smooth the function by reducing the magnitudes of higher harmonics.

Differentiation of the Fourier series, in effect, multiplies the original
series by n and thus increases the magnitude of the coefficients. Using
the complex series, the derivative is

df(t)

dt
=

d

dt

∞
∑

n=−∞

αneinω0t

=

∞
∑

n=−∞

(inω0)αneinω0t. (8.44)

At higher frequencies as n increases, each term in the series is multiplied
by a large number and the higher frequency components increase rapidly.
However, if f(t) is continuous and f ′(t) is piecewise continuous, then the
Fourier series for f ′(t) can be obtained by differentiating the series for
f(t).

APPLICATIONS
OF FOURIER
SERIES TO
DIFFERENTIAL
EQUATIONS

Consider the nth-order differential equation with constant coefficients
subject to a harmonic series of sinusoids input as the forcing function.
The differential equation is thus

dny(t)

dtn
+ an−1

dn−1y(t)

dtn−1
+ · · ·+ a1

dy(t)

dt
+ a0y(t) =

N
∑

n=1

Aneinω0t. (8.45)

Following the discussion in Chapter 5, if the frequencies nω0 are not those
of the characteristic equation, the assumed solution is

y(t) =

N
∑

n=1

αneinω0t, (8.46)

using the method of undetermined coefficients. Substituting the kth term
in the differential equation leads to the relationship

αk[(iωk)n + an−1(iωk)n−1 + · · ·+ a1(iωk) + a0] = Ak.

Letting H−1(ikω0) designate the term in brackets, the solution for the
kth coefficient of the solution is

αk = H(ikω0)Ak,

and the complete particular solution is

y(t) =

N
∑

n=1

H(inω0)Aneinω0t. (8.47)
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EXAMPLE 8.8 Fourier Series DE Example
Consider the simple circuit of Figure 8.8 consisting of a resistor R and

capacitor C. The input voltage is designated f(t) and the output voltage across
the capacitor is y(t).

C

R

VC

Input
f(t)

VR

Output
y (t)

+ –

+

–

FIGURE 8.8 RC circuit

To derive the differential equation for the circuit, apply Kirchhoff’s voltage
law, with the result

f(t) = VR(t) + VC(t).

Using Ohm’s law, VR = Ri(t), where i(t) is the current through the circuit.
Since the current is proportional to the change in voltage across the capacitor,

i(t) = C
dVC(t)

dt
,

and Kirchhoff’s law can be written

f(t) = RC
dVC(t)

dt
+ VC(t).

Letting y(t) = VC (t) leads to the resulting equation

dy(t)

dt
+

1

RC
y(t) =

1

RC
f(t).

If the input voltage can be written as

f(t) =

N
∑

n=1

Aneinω0t,

the solution according to Equation 8.47 is

y(t) =

N
∑

n=1

H(inω0) × Aneinω0t,

and the function H(inω0) is

H(inω0) =
1

1 + inω0RC
.

In this context, the function H(inω0) for a given frequency ω = nω0 is called
the frequency response function for the circuit being modeled by the differential
equation. The magnitude |H(inω0)| defines the amplification (or attenuation)
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factor at frequency nω0. The angle of H(inω0), designated arg[H(inω0)], gives
the phase shift of the input. For this circuit, the results are

|H(inω0)| =
1

√

1 + (nω0RC)2
,

arg[H(inω0)] = − tan−1(nω0RC). (8.48)

Problem 8.9 at the end of the chapter further explores this approach to deter-
mining the response of a system to a Fourier series input.

The RC circuit can be used to model (approximately) the input circuits

of many instruments. Given the values of R and C, a frequency analysis of

the circuit shows that at the radian frequency ω = 1/RC, the input frequency

component is attenuated by the factor 1/
√

2. The value f = ω/2π hertz defines

the bandwidth of the instrument. Although an input circuit does not completely

cut off frequencies above a specific value, frequency components higher in fre-

quency than the bandwidth are considered to be eliminated from the signal for

the purposes of a simple analysis.

8.3 FOURIER TRANSFORMS

Fourier series, as previously presented, were used to represent arbitrary
periodic functions as a linear combination of a set of complete, orthogonal

functions, namely, the set of harmonic sines and cosines or exponentials.
These functions are ideal for periodic functions. The frequencies present
in the series are integer multiples of 2π/T , where T is the period of the
function being expanded. However, the application of Fourier series goes
much further, since the harmonic functions are eigenfunctions of deriva-
tive and integral operators. Thus, the Fourier series can be used to solve
differential equations and to describe the response of time-invariant linear
systems.

We now turn to functions that are not periodic. A Fourier analysis of
such functions requires all frequencies, so the sum of functions of discrete
frequencies must be replaced by an integral. The result is the Fourier

transform. As with Fourier series, the transform has a wide range of
applications. A few are listed in Table 8.3. Even if the reader is not
familiar with every area of application, it is clear from the examples in
the table that Fourier transforms play a very important role in engineering
and physics.
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TABLE 8.3 Applications of Fourier transforms

Area Application

Linear systems The Fourier transform of the output of a linear system is the
product of the system transfer function and the Fourier
transform of the input signal.

Optics A Fourier transform relationship exists between the light
distribution on the object and image focal planes of a lens.

Random process The power density spectrum of a random process is the Fourier
transform of the auto correlation function of the process.

Quantum mechanics The momentum and position of a particle are related
by the Fourier transform.

Partial differential Fourier series and Fourier transforms are used to solve
equations various equations.

DEFINITION OF
THE FOURIER
TRANSFORM

Let the function f(t) be piecewise continuous for −∞ < t < ∞, and
let

∫

∞

−∞
|f(t)| dt exist in the sense that the result is finite. This latter

condition is called absolute convergence of the integral. Then, the Fourier
transform of f(t) exists and is defined as

F [f(t)] = F (iω) =

∫

∞

−∞

f(t)e−iωt dt. (8.49)

The transform F (iω) represents the frequency spectrum of f(t), and it may
be complex even though f(t) is real. The magnitude |F (iω)| is called the
amplitude spectrum of F (iω). Using the notation F (iω) emphasizes the
fact that the Fourier transform is a function of a complex variable.

EXAMPLE 8.9 Fourier Transform Example
Consider the piecewise continuous function f(t) defined as

f(t) =

{

0, t < 0,

|A|e−αt, t ≥ 0,

with α > 0.

The function has a Fourier transform since
∫

∞

−∞

|f(t)| dt =

∫

∞

0

|A|e−αt dt =
|A|
α

is finite for α > 0.
The Fourier transform is thus

F [f(t)] =

∫

∞

−∞

|A|e−αte−iωt dt
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=

∫

∞

0

|A|e−(α+iω)t dt

= −|A|e
−(α+iω)t

α + iω

∣

∣

∣

∣

∞

0

=
|A|

α + iω
= F (iω). (8.50)

The amplitude spectrum is determined by computing |F (iω)|, and the
phase spectrum is tan−1(ω/α). For this example,

|F (iω)| =
|A|

|α + iω| =
|A|√

α2 + ω2
.

The Fourier transform represents a function of time in terms of its
frequency content. The energy associated with the signal can also be
determined from its Fourier transform.

EXAMPLE 8.10 MATLAB Fourier Transform Example
The Fourier spectrum of

f(t) =

{

0, t < 0,

e−t, t ≥ 0.

is

|F (iω)| =
1√

1 + ω2
,

as shown in Example 8.9, with A = 1 and α = 1. Figure 8.9 shows the plot of
f(t) and |F (iω)| created by the accompanying MATLAB script. The spectrum
is always symmetric around ω = 0 when f(t) is real.
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FIGURE 8.9 Fourier transform for Example 8.10
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MATLAB Script
Example 8.10

% EX8_10.M Plot f(t)=exp(-t), t=[0,4] and

% the magnitude of the Fourier transform

%

t=[0:.1:4]; % Range in time

foft=exp(-t); %

% Plot magnitude of F(w)

w=[-4:.1:4];

Fw=1./(sqrt(1+w.^2)); % Fourier transform

%

clf % Clear any figures

subplot(2,1,1), plot(t,foft)

xlabel(’t’)

ylabel(’f(t)’)

title(’Fourier Transform of f(t)=exp(-t)’)

subplot(2,1,2), plot(w,Fw)

axis([-4 4 0 1.1])

xlabel(’Radian frequency w’)

ylabel(’|F(w)|’)

Try the MATLAB symbolic command fourier or int to perform the Fourier

integration of f(t).

Energy in a Signal The energy E in a signal is given by the relation-
ship E = P × T where P is the power and T is the time interval. For a
periodic signal f(t) with period T , the power is given by

P =
1

T

∫ T/2

−T/2

[f(t)]2 dt =

∞
∑

n=−∞

|αn|
2,

as discussed previously in connection with Fourier series. The Fourier
series also provides a direct measure of the power by virtue of Parseval’s
theorem. In this case, the αn are the coefficients for the complex series.

For the Fourier transform as previously defined to exist, the signal
must have a finite energy over the interval of interest. Thus, if the signal is
defined on the interval [−∞, ∞], the power would be zero since P = E/T
and T goes to infinity. Instead of power, the energy in the signal is
calculated for signals with Fourier transforms. The relationship between
the signal energy in the time domain and the frequency domain is again
given by Parseval’s theorem in the form

E =

∫

∞

−∞

[f(t)]2 dt =
1

2π

∫

∞

−∞

|F (iω)|2 dω.

Integrating |F (iω)|2 between ω1 and ω2 gives the energy contributed by
the frequency components between ω1 and ω2 to the total energy of the
signal.
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Properties of the Fourier transform Various important properties
of the Fourier transform will be stated as theorems.

THEOREM 8.1 Linearity
Assume that F [f(t)] = F (iω) and F [g(t)] = G(iω). The Fourier transform

is linear since

F [αf(t)+ βg(t)] = αF (iω) + βG(iω).

THEOREM 8.2 Time Shifting
Shifting f(t) in time simply changes the phase of the Fourier transform, so

that

F [f(t− t0)] = e−iωt0F (iω).

Notice that the Fourier spectrum of the time-shifted function is not
changed from that of the unshifted function.

THEOREM 8.3 Time and Frequency Scaling
Scaling the time axis by a nonzero axis yields

F [f(at)] =
1

|a|F (
ω

a
)

for the Fourier transform, where a is a real, nonzero constant.

If a < 1, the time function is spread out on the time axis, and the
spectrum of F (iω) is compressed by a similar amount.

EXAMPLE 8.11 Fourier Pulse Example
The even rectangular pulse of height A and width τ is defined as

P (t) =







A, − τ

2
≤ t ≤ τ

2
,

0, |t| >
τ

2
.

The Fourier transform is

F [P (t)] =

∫

∞

−∞

P (t)e−iωt dt = A

∫ τ/2

−τ/2

e−iωt dt

= −A
e−iωt

iω

∣

∣

∣

∣

τ/2

−τ/2

= −A
e−iωτ/2 − eiωτ/2

iω
.

This result expressed in terms of the sine function is (2A/ω) sin(ωτ/2). Mul-
tiplying the numerator and denominator by τ/2 yields the Fourier transform
as

P (iω) = Aτ
sin(ωτ/2)

ωτ/2
= Aτ sinc(ωτ/2). (8.51)
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This is the product of the area under the pulse times sin(ωτ/2)/(ωτ/2).

EXAMPLE 8.12 MATLAB Pulse Example
Figure 8.10 shows the Fourier transform for two pulses as described in Ex-

ample 8.11. The positive frequencies of the transform are shown for different
pulse widths. The accompanying MATLAB script was used to plot the trans-
forms for the two pulses. Each pulse has amplitude A = 1. One pulse has a
pulse width of 16 seconds and the other 4 seconds.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
−4

−2

0

2

4

6

8

10

12

14

16
One−sided spectrum of a pulse

Frequency in Hertz

F
(w

)

Tau=16
Tau=4 

FIGURE 8.10 Fourier transform of two pulses with different pulse widths

A number of conclusions about the Fourier transform can be drawn from
comparing the two transforms in the figure. Using Equation 8.51 with A = 1,
the transform of a pulse is

P (iω) = τ
sin(ωτ/2)

ωτ/2
,

and the argument of the sine is ωτ/2 = πfτ . First, considering the definition
of the Fourier transform, it is obvious that at f = 0,

P (0) =

∫

∞

−∞

f(t) dt,

which is the area under the pulse.
Also, at the points

ωτ

2
= πfτ = nπ, or f = n

(

1

τ

)

,

the transform has zeros. For the 16-second pulse, the first zero of the transform
occurs at f = 1/16 or 0.0625 hertz. The transform of the 4 second pulse crosses
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zero first at f = 0.25 hertz. Another important feature is that as the time pulse
becomes shorter, the Fourier transform spreads out in frequency and decreases
in amplitude. Although it can be proven rigorously for certain functions, we
simply state that if Wt is the width of the time function and Wf is the width
of the frequency spectrum in hertz, then

WtWf ≥ K,

where K is a constant that would depend on the function being considered.
The width of a function that is not a pulse is usually taken to be the distance
between points where the function has a value of at least 1/

√
2, or 0.707, of its

peak value. More important than the exact details, which must be worked out
for an individual problem, is the fact that if the function in time or frequency
becomes more narrow, the function in the other domain becomes broader. In the
present example, as the pulse is shortened by a factor of 4, we expect the range
of significant frequencies in the transform to be increased by approximately 4.
This is shown in the figure.

MATLAB Script
Example 8.12

% EX8_12.M Plot the Fourier transform (w>0) of a pulse for various

% widths. Pulse width is tau = 16 and 4 seconds.

f=[0:.005:.75]; % Frequency

f=f + eps; % Avoid a divide by zero

F1=zeros(size(f));

F2=zeros(size(f));

F3=zeros(size(f));

tau=16 % Pulse width in seconds

F1=(1/pi)*(sin(pi*f*tau))./f;

tau=tau/4; % Pulse width = 4 seconds

F2=(1/pi)*(sin(pi*f*tau))./f;

plot(f,F1,’-’,f,F2,’--’)

title(’One-sided spectrum of a pulse’)

xlabel(’Frequency in Hertz’)

ylabel(’F(w)’)

grid

legend(’Tau=16’,’Tau=4’)

RELATIONSHIP
TO FOURIER
SERIES

Comparing the coefficients of the Fourier series of Example 8.7 for a pe-
riodic pulse train of rectangular pulses and the Fourier transform of Ex-
ample 8.11 for a single pulse shows that the series coefficients are

αn =
1

T

∫ τ/2

−τ/2

f(t)e−inω0t dt =
Aτ

T

sin(nω0τ/2)

nω0τ/2

and the transform is

F [f(t)] = F (iω) =

∫ τ/2

−τ/2

f(t)e−iωt dt = Aτ
sin(ωτ/2)

ωτ/2
.

404 Chapter 8 FOURIER ANALYSIS



By comparing the two results, it is clear that designating the trans-
form F (iω) = F [f(t)],

F (nω0)

T
=

Aτ

T

sin(nω0τ/2)

nω0τ/2
.

Thus, we conclude that the Fourier series coefficients are obtained by
sampling the Fourier transform at the points nω0 and dividing by the
period T . However, the Fourier series itself is a continuous function of
time, but the Fourier transform is a function of ω in the frequency domain.

APPLICATIONS
TO
DIFFERENTIAL
EQUATIONS

The Fourier transform is often used to solve differential equations and
also to analyze linear time-invariant systems. As the following theorem
states, the Fourier transform of the derivative of a function is simply a
constant times the Fourier transform of the function.

THEOREM 8.4 Differentiation
Assume that f(t) is piecewise continuous and that f(t) and its derivative

f ′(t) have absolutely convergent integrals for all t. Then,

F [
df

dt
] = (iω)F (iω).

By extension, the nth derivative f (n)(t) has the Fourier transform

F [f (n)(t)] = (iω)nF (iω)

if f(t) is piecewise continuous and the derivatives of f(t) have absolutely con-

vergent integrals.

The theorem is proven by substituting df/dt in the Fourier transform
and integrating by parts using the fact that f(t) → 0 as t → ±∞ since
we assume that the Fourier transform exists.

Applying the differentiation theorem to the differential equation,

dny(t)

dtn
+ an−1

dn−1y(t)

dtn−1
+ · · ·+ a1

dy(t)

dt
+ a0y(t) = f(t) (8.52)

by forming the Fourier transform of both sides of the equation, we find
that

[ (iω)n + an−1(iω)n−1 + · · ·+ a1(iω) + a0 ]Y (iω) = F (iω).

The solution for y(t) could be found by solving the transformed equation
as

Y (iω) =
F (iω)

[ (iω)n + an−1(iω)n−1 + · · ·+ a1(iω) + a0 ]

and taking the inverse Fourier transform. An example will demonstrate
this application to the solution of differential equations.
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EXAMPLE 8.13 Fourier Solution of Differential Equation
Consider the second-order equation

mÿ(t) + βẏ(t) + ky(t) = f(t), (8.53)

for which it is desired to compute the output frequency spectrum. The equation
can be rewritten as

ÿ(t) + 2ζωnẏ(t) + ωn
2y(t) =

f(t)

m
(8.54)

using the substitutions ωn
2 = k/m and 2ζωn = β/m. This form of the equation

is written in terms of the natural frequency of oscillation ωn that would be
obtained if the damping factor β were zero. The factor ζ is a measure of the
damping and thus can range from zero in an ideal undamped system to any
positive value in a physical system.

Taking the Fourier transform of Equation 8.54 yields the result

(−ω2 + i2ζωnω + ωn
2 )Y (iω) =

F (iω)

m
.

Dividing both sides by ω2
n to normalize the frequency and solving for Y (iω)

gives the frequency response of the output as

Y (iω) =
F (iω)/ω2

nm

[ 1 − (ω/ωn)2 ] + i[ 2ζω/ωn ]
.

Using the relationship ω2
nm = k, the amplitude of the output spectrum is thus

|Y (iω)| =
1/k

√

[ 1 − (ω/ωn)2 ]2 + [ 2ζω/ωn ]2
|F (iω)| . (8.55)

If φF (iω) is the phase of F (iω), the phase of the output is

arg(|Y (iω)|) = −tan−1

[

2ζω/ωn

1− (ω/ωn)2

]

+ φF (iω).

Frequency Response (Optional) The term frequency response is of-
ten used to describe the steady-state response to a sinusoidal input by a
linear, time-invariant system with zero initial conditions. Such systems
are described by linear differential equations with constant coefficients,
as previously discussed in Chapter 5. The frequency response at one fre-
quency is computed as the ratio of the amplitudes of the Fourier transform
of the output signal to the Fourier transform of the input signal at the
specified frequency. If the frequency of the input signal is varied from zero
to the highest frequency of interest, the equation or plot of the output
responses versus frequency is often called the frequency response for the
system.

The importance of the frequency response stems from the fact that
sinusoidal inputs or combinations of sinusoidal inputs to systems arise in
many applications. In particular,
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1. Any periodic signal of interest can be represented as a linear com-
bination of sinusoidal components (Fourier series).

2. Many natural phenomena are sinusoidal such as the simple har-
monic motions or signals generated in mechanical and electrical
systems.

3. Sinusoidal signals are important in communications and in the gen-
eration of electrical power.

The frequency response of a system governed by a differential equation
can be determined by applying the Fourier transform to the equation and
taking the ratio of the output and input transforms. If the input function
is f(t) with transform F (iω) and the response is y(t) with transform
Y (iω), the input/output relationship Y (iω) = H(iω)F (iω) is shown in
Figure 8.11. The function H(iω) is called the transfer function for the
system. As a function of ω, the transfer function defines the frequency
response of the system. If F (iω) and Y (iω) are known, then the transfer
function can be determined as

H(iω) =
Y (iω)

F (iω)
,

where H(iω) is in general a complex function of ω that describes the
amplitude and phase of the system response at each radian frequency ω
to a sinusoidal input at that frequency.

H(iω)F(iω) Y(iω) = H(iω) F(iω)

FIGURE 8.11 Frequency analysis of a linear system

EXAMPLE 8.14 MATLAB Frequency Response of Differential Equation
Writing the differential equation of Example 8.13 as

ÿ + 2ζωnẏ + ωn
2y =

f(t)

m
,

the magnitude of the transfer function for the system is

|H(iω)| =
|Y (iω)|
|F (iω)|

=
1/k

√

[ 1 − (ω/ωn)2 ]2 + [ 2ζω/ωn ]2
, (8.56)

according to our previous discussion of frequency response. Plotting the mag-
nitude of the transfer function of Equation 8.56 and the phase angle would
determine the frequency response of the system to the input of a sinusoidal
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wave of radian frequency ω. Obviously, as ω is varied over a range of inter-
est, the transfer function gives the frequency response to any sinusoid in that
frequency range. Also, the product

Y (iω) = H(iω)F (iω)

determines the effect of the system on the frequency spectrum of the input
function f(t).

As a specific example, consider the differential equation

d2y(t)

dt2
+ 3

dy(t)

dt
+ 2y(t) = P (t), (8.57)

where P (t) is the pulse

P (t) =

{

A, 0 ≤ t ≤ 1,
0, elsewhere.

Using our previous results, the system parameters are

2ζωn = 3,

ωn
2 = 2,

m = 1,

so that k = mωn
2 = 2.

Using the result of Equation 8.55, the transform of the output is

|Y (iω)| =
1/2

√

[ 1 − (ω/
√

2)2 ]2 + [ 2ζω/
√

2 ]2
|P (iω)| ,

where P (iω) is the transform of the pulse.
The Fourier transform of the pulse in this example is computed as the

Fourier transform of the even pulse as given in Equation 8.51. The input pulse
has amplitude A = 1, pulse width τ = 1 second, and is shifted to the right by
t0 = 1/2 second. Using the shift theorem,

P (iω) =
sin(ω/2)

ω/2
e−iω/2.

The result for the magnitude of the spectrum of the pulse is

|P (iω)| =

∣

∣

∣

∣

sin(ω/2)

ω/2

∣

∣

∣

∣

,

because the magnitude of the phase shift exp(−iω/2) exp(iω/2) = 1.
Combining these results, the output signal has a frequency spectrum

|Y (iω)| =
1/2

√

[ 1 − (ω/
√

2)2 ]2 + [ 2ζω/
√

2 ]2

∣

∣

∣

∣

sin(ω/2)

ω/2

∣

∣

∣

∣

.

Setting ζ = 3/(2ωn), the response can be simplified to the form

|Y (iω)| =
1√

ω4 + 5ω2 + 4

∣

∣

∣

∣

sin(ω/2)

ω/2

∣

∣

∣

∣

,
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which is suitable for plotting.
The results from the accompanying MATLAB script are shown in Fig-

ure 8.12. It is evident that the output response of the system has a much
narrower frequency spread than that of the input pulse. The system cannot
respond to the higher frequencies in the input signal, and these are attenuated
in the output.
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FIGURE 8.12 Frequency response of the system of Example 8.14

MATLAB Script

Example 8.14

% EX8_14.M Plot frequency response of a system with pulse input

% y’’ +3 y’ +2 y=P(t); Pulse width is tau = 1 second.

w=[-4*pi:.1:4*pi]; % Frequency range

w=w + eps; % Avoid a divide by zero

Y=zeros(size(w));

P=zeros(size(w));

H=zeros(size(w));

%

A=1; % Pulse amplitude

tau =1; % Pulse width in seconds

alp=w*tau/2;

P=(A*tau)*abs((sin(alp))./alp); % Transform of pulse

H=1./(sqrt(w.^4+w.^2+4)); % Transform of system

Y=P.*H; % Transform of output

%

clf

subplot(2,1,1),plot(w,P,’-’,w,H,’--’)

axis([-15 15 0 1.1])

title(’Spectrum of a pulse and the system - Figure 8.12’)
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xlabel(’Frequency in radians/sec’)

ylabel(’F(w) and H(w)’)

legend(’Pulse’,’System’)

subplot(2,1,2), plot(w,Y);

axis([-15 15 0 1])

xlabel(’Frequency in radians/sec’)

ylabel(’Output Y(w)’)

8.4 REINFORCEMENT EXERCISES AND EXPLORATION PROBLEMS

In these problems, do the computations by hand unless otherwise indicated and then check those
that yield numerical or symbolic results with MATLAB.

REINFORCEMENT EXERCISES

P8.1. Fourier series of odd function Compute the Fourier series for the odd function

f(x) = Ax, −λ/2 < x < λ/2.

P8.2. Fourier series of clock signal Consider the computer clock signal shown in
Figure 8.13, with a pulse rate of 8 million pulses per second (fc = 8 Megahertz) and amplitude of 4
volts and a pulse width of 0.05 microseconds. Find the Fourier series.

f(t)

t

...

4V

...

t0 = 0

FIGURE 8.13 Clock signal

P8.3. Fourier series Compute the complex Fourier series for the following periodic function:

g(t) =

{

1, 0 ≤ t ≤ π,
−1, −π ≤ t < 0.

(8.58)

P8.4. Fourier series Compute the Fourier series for the function

y(t) = sin5t.

Hint: Expand in terms of exponentials.
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P8.5. Fourier shift theorem The shifted pulse train of Figure 8.14 consists of a pulse of
width d in each period of length T . Each pulse is shifted by t0 from the center of the period. Using
the Fourier time shift theorem, find the Fourier series for the pulse train.

f(t)

t

...

t0 

...
A

–T
––
2

T
––
2

0

d

FIGURE 8.14 Shifted periodic pulse train

P8.6. Power series sum Using the Fourier series of the function

f(t) =

{

0, −π < t < 0,
t, 0 < t < π,

determine the sum of the series
∞

∑

n=1

1

(2n − 1)2
.

P8.7. Power in Fourier series The average power dissipated in a resistor of R ohms is

P̄ =
V̄ 2

R
watts,

where V̄ is the root-mean-square (rms) value of voltage in volts.

a. Compute the average power that an odd square wave with amplitude A volts
dissipates in a 1-ohm resistor by computing the rms value.

b. Compute the power by summing the components of the Fourier series.

c. Suppose the repetition rate of the pulses is 10,000 times a second, so that the
fundamental frequency is 10 kilohertz and the signal is filtered by a system that passes
only frequencies up to 60 kilohertz. Find the power in the 1-ohm resistor at the output
of the system if the amplitude of the square wave is A = 1 volt.

P8.8. Convergence of Fourier series Let f(t) be a continuous, even function. Show that
the Fourier series coefficients an decrease as 1/n2.

P8.9. Fourier series solution of differential equations Consider the mass, spring,
damper system governed by the following differential equation:

ÿ + 4ẏ + 40y = P (t),

where P (t) is a periodic function. Solve for y(t) when the input function is defined as follows:

P (t) =







9.81, 0 ≤ t ≤ T

2
,

−9.81,
T

2
< t < T.

Let y(0) = ẏ(0) = 0.0 and T = 1 second. Express the solution as a Fourier series.
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P8.10. Fourier transform and series Consider the period pulse train with a pulse of width τ
centered in a period T with T > τ . Compare the Fourier series coefficients of the complex series
with the Fourier transform of a pulse of width τ centered at t = 0. Derive a relationship between
the Fourier transform magnitude and the magnitude of the Fourier coefficients.

P8.11. Fourier transform of triangular pulse Compute the Fourier transform of the
triangular pulse shown in Figure 8.15.

f(t)

t

A

–T T

FIGURE 8.15 Triangular pulse

Express the answer as magnitude and phase functions and plot the result.

P8.12. Fourier transform and rise time Compute the Fourier transform of the pulse with a
finite rise time shown in Figure 8.16.

f(t)

t

A

t3t2t1

FIGURE 8.16 Pulse with finite rise time

P8.13. Fourier transform of double gate Compute the Fourier transform of the double gate

function shown in Figure 8.17.

f(t)

tD

T

D + T
––
2

D

1

FIGURE 8.17 Double-gate function

The pulse train consists of two pulses, each of width T , separated by a distance 2D.

P8.14. Energy spectrum Using the results of Example 8.10 for the signal f(t) = exp(−t),
t ≥ 0 and zero elsewhere, compute the following:

a. The energy in the signal using f(t) and F (iω);
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b. The magnitude of the component of the signal at 1 hertz.

P8.15. Differential equation Solve the differential equation of Equation 8.57 and show how
the input pulse is changed in time by the system.

P8.16. MATLAB Fourier series Plot the Fourier spectrum of the clock pulse in Problem 8.2
up to 48 Megahertz.

P8.17. MATLAB Fourier series Plot the series for Problem 8.3 over the interval (−π, π) for
the following approximations:

a. 1 term;

b. 5 terms;

c. 10 terms.

EXPLORATION PROBLEMS

P8.18. MATLAB Fourier Series Plot the input function P (t) and the response y(t) on the
same graph versus time for the equation of Problem 8.9.

P8.19. MATLAB Fourier transform Plot the Fourier transform for positive frequencies for
the pulse of width τ centered at the origin. On the same plot, compare the transforms for
τ = 4, 8, 16 seconds.

P8.20. Physical systems Draw the mechanical and electrical systems that are equivalent to the
system described in Example 8.14 and explain Figure 8.12 in terms of the response of the systems.

P8.21. MATLAB Fourier Series Determine the Fourier series of the sawtooth function

f(x) = |x| for |x| ≤ P/2

and f(x + P ) = f(x).

a. Write the Fourier series for f(x) in terms of L = P/2, the half-period.

b. Using MATLAB, plot the exact function over several periods for P = 16 from [−P,P ]
and show the approximation for various number of non-constant terms in the series on
one figure, say, n = 3, 5, 7, 9, 11.

c. Pause 2 seconds between plots and annotate the graph with the number of
non-constant terms shown.

d. Use the zoom command and comment on the accuracy of the approximation for the
final plot.

Note: To plot the graphs on one figure, it will be necessary to experiment with MATLAB commands

such as hold, pause(m) and text.

P8.22. MATLAB Bode plot The Signal Processing Toolbox in the student edition of
MATLAB has a function (bode) that plots the magnitude of the frequency response and phase for
a transfer function. The MATLAB function to plot the frequency response requires that the
equation be written in state-space form.

The state-space equation for Equation 8.54 is

ẋ1(t) = x2(t),

ẋ2(t) = −ωn
2 x1(t) − 2ζωn x2(t) +

f(t)

m
,
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as explained in Chapter 5. The MATLAB command bode will plot the frequency response of the
system

ẋ = Ax + Bu,

y = Cx + Du,

where u is a vector of input functions, x is the state vector for the system, and y is the vector of
output functions. In our case, B = [0 1]T , u = f(t)/m and y = x1 so C = [1 0]T and D = 0.

The resulting plot represents the magnitude of the frequency response in decibels [20log10(|H(iω)|)]
versus radian frequency on a logarithmic scale. The phase is plotted in degrees. Make a Bode plot
of the frequency response of the system treated in Example 8.14. The plot should use ωn =

√
2,

ζ = 1.06, and m = 1.

Comment: The Bode plot was developed by H. W. Bode to analyze the characteristics of
amplifiers using feedback. Although it is primarily used by electrical engineers to analyze circuits
and control systems, the Bode plot is convenient to define the frequency response of any system
since it indicates the change in amplitude and phase of the frequency components of any input that
can be represented in the frequency domain.

8.5 ANNOTATED BIBLIOGRAPHY

1. Bracewell, Ronald N., The Fourier Transform and Its Applications,
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of applications for the Fourier series, Fourier transform, and a variety of re-

lated transforms.

2. Kaplan, Wilfred, Operational Methods For Linear Systems , Addison
Wesley Publishing Company, Reading, MA, 1962. A fairly rigorous treatment

of linear systems in general, and Fourier methods in particular.
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panion Series, this text covers Fourier methods with numerous MATLAB exam-

ples.
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8.6 ANSWERS

8.1 Fourier series of odd functions Since the function f(x) = x centered at zero with
period λ is an odd function, the coefficients of the sine series are

bm =
2A

λ

∫ λ/2

−λ/2

x sinmkx dx

=
2A

λ

[

sin(mkx)

(mk)2
− x

cos(mkx)

mk

]λ/2

−λ/2

= − 2A

mk
cos mπ,

where k = 2π/λ. The series is

f(x) =
−2A

k

∞
∑

m=1

(−1)m

m
sin mkx =

Aλ

π

[

sin kx − 1

2
sin 2kx + · · ·

]

.

8.3 Fourier series Using the results of Example 8.5, the complex series is

f(t) =
2A

iπ

∞
∑

n=−∞

ei(2n−1)ω0t

(2n − 1)

with ω0 = 1 and A = 1.

8.5 Fourier shift theorem Notice that if the pulse train of Figure 8.14 was shifted by t0 to
the left, the function would be even. Hence, the Fourier series can be written

f(t) =
a0

2
+

∞
∑

n=1

an cos[nω0(t − t0)]

with ω0 =
2π

T
.

The series coefficients are

an =
2

T

∫ d/2

−d/2

A cos(nω0t) dt, n = 0, 1, . . . ,

considering the pulse train as an even function.

The coefficients become

a0

2
=

Ad

T
=

area of pulse

period
,

an =
2Ad

T
sinc(nω0d/2).

Thus, the complete series is

f(t) =
Ad

T
+

2Ad

T

∞
∑

n=1

sinc(nω0d/2) cos[nω0(t − t0)].
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8.7 Power in Fourier series

a. The average power in a signal is

P =
1

T

∫ T/2

−T/2

|f(t)|2 dt,

so for the square wave

P̄ =
1

T

∫ T/2

−T/2

A2dt/R = A2 watts,

with R = 1 ohm;

b. The Fourier series of the square wave is

f(t) =
4A

π

∞
∑

n=1

sin[(2n − 1)ω0t]

(2n − 1)
.

Thus, the power dissipated by a 1-ohm resistor by Parseval’s theorem is

P̄ = (
a0

2
)
2

+
1

2

∞
∑

n=1

(an
2 + bn

2)

=
1

2

∞
∑

n=1

bn
2

=
1

2

(

4A

π

)2 ∞
∑

n=1

1

(2n − 1)2
watts.

Using the result of Problem 8.6, the sum of the odd series is π2/8 so the result is A2

watts, as in Part a.

c. Since the system passes frequencies up to 60 kHz, only the first three terms of the
Fourier series of frequencies 10, 30 and 50 kHz are present in the output. The average
power dissipated in a 1-ohm resistor at the output is thus

P̄0 =
1

2

(

4A

π

)2 [

1 +
1

9
+

1

25

]

= 0.933 watts.

Thus, comparing this power with the result of Part a with A = 1, we see that the first,
third, and fifth harmonic contain 93.3% of the average power associated with a square
voltage wave.

8.9 Fourier series solution of differential equations To find the steady-state forced
motion of the system, it is necessary only to determine the change in amplitude and phase shift for
each component of the input forcing function. If the input is written as a Fourier series, the
response will be another Fourier series with different coefficients. The frequencies in the output
series are identical to those in the input since the frequencies are unchanged by a linear system.
Thus, multiplying the coefficients of the input series by the transfer function of the system
evaluated at the appropriate frequency will yield the output coefficients.

The transfer function of the system is given by Equation 8.56 as

|H(iω)| =
1/k

√

[ 1− (ω/ωn)2 ]2 + [ 2ζω/ωn ]2
,
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where

ζ =
β

2
√

km
=

4

2
√

40
=

1√
10

.

for this particular system. This transfer function must be evaluated at ω = i(2n − 1)ω0 as
described in Example 8.8.

The Fourier series of the input square wave is

f(t) =
4A

π

∞
∑

n=1

sin[(2n − 1)ω0t]

(2n − 1)

according to the results of Example 8.4. In this case, A = 9.81 and ω0 = 2π/1.

The output series can be written

y(t) =

∞
∑

n=1

|ρn| sin[(2n − 1)ω0t]

(2n − 1)
.

Since the coefficients of the input series are 4A/π(2n − 1),

ρn =

1

k

(

4A

π(2n − 1)

)

√

[ 1 − (ω/ωn)2 ]2 + [ 2ζω/ωn ]2
eiφ,

and the phase angle is

φ = − tan−1 2ζω/ωn

1 − (ω/ωn)2
.

8.11 Fourier transform of triangular pulse The analytic expression describing the
triangular pulse is

PT (t) =







A

(

1 − |t|
T

)

, t < |T |,

0, otherwise.

Then, the Fourier transform is

F (ω) =

∫ 0

−T

A
(

1 +
t

T

)

e−iωt dt +

∫ T

0

A
(

1 − t

T

)

e−iωt dt.

After integrating, a little algebra shows that

F (ω) = AT sinc2
(

ωT

2

)

.

8.13 Fourier transform of double gate The double gate function is simply two pulses of
width T . One is shifted by t = D and the other, by −D. Thus, the Fourier transform is

F (ω) = e−iωDAT sinc
(

ωT

2

)

+ eiωDAT sinc
(

ωT

2

)

= 2AT cos(ωD) sinc
(

ωT

2

)

.
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8.15 Differential equation For the equation

d2y(t)

dt2
+ 3

dy(t)

dt
+ 2y(t) = P (t)

the solution is

y(t) =







1

2
− e−t +

1

2
e−2t, 0 ≤ t ≤ 1,

e−t(e − 1) +
1

2
e−2t(1 − e2), t > 1.

assuming y(0) = 0 and ẏ(0) = 0. The solution to the pulse input is thus a rising exponential until
t = 1 and then a decaying exponential for t > 0. In terms of frequency, the frequency spectrum of
the input pulse with sharp changes in amplitude has been filtered by the system so that higher
frequencies are attenuated. The resulting output is a much smoother function of time.
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