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The main Fourier analysis techniques are the Fourier transform (FT),

Fourier Series (FS), Discrete Fourier transform (DFT), and the Fast Fourier

Transform (FFT). The FT is used to determine the spectrum of an

aperiodic continuous signal and the FS is used for periodic signals. The

DFT computes the spectrum of discrete signals and the FFT is the

algorithm to compute the DFT.
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[ -T/2, T/2 ]
INTERVAL

On the interval [−T/2, T/2 ], the limits of integration for the Fourier series

can be changed from [−π, π ] by assigning to the integration variable t the

value 2πt/T . The period of the function is thus T .

Assuming that f(t) is continuous on the interval −T/2 ≤ t ≤ T/2, the

coefficients an and bn can be computed by the formulas

a0 =
2

T

∫ T/2

−T/2

f(t) dt,

an =
2

T

∫ T/2

−T/2

f(t) cos

(

2nπt

T

)

dt,

bn =
2

T

∫ T/2

−T/2

f(t) sin

(

2nπt

T

)

dt, (1.1)

where n = 1, 2, . . . is any positive integer.

The Fourier series on the interval [−T/2, T/2 ] is thus

f(t) =
a0

2
+

∞
∑

n=1

[

an cos

(

2nπt

T

)

+ bn sin

(

2nπt

T

)]

. (1.2)

The dc term is written
a0

2
so that the equation for the an coefficients holds

for n = 0, 1, 2, . . ..1

Frequency Components Assuming the variable t represents time, the

function f(t) repeats every T seconds. The frequency associated with the

fundamental sinusoid in the series of Equation 1.2 is f0 = 1/T , measured in

cycles per second, or hertz. The parameter

ω0 = 2πf0 =
2π

T

is the frequency in radians per second.

Since 2nπ/T = 2nπf0 = nω0, the series in Equation 1.2 can be written

f(t) =
a0

2
+

∞
∑

n=1

[an cos(2πnf0t) + bn sin(2πnf0t)]

=
a0

2
+

∞
∑

n=1

[an cos(nω0t) + bn sin(nω0t)], (1.3)

which emphasizes the components in terms of their frequencies.

1Sometimes the series is written with A0 as the dc term. In this case, the constant multiplying the integral
for a0 replaced by A0 would be multiplied by 1/T .
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The first term in cosine or sine is called the fundamental component,

and the other terms are the harmonics with frequencies that are integer

multiples of the fundamental component’s frequency. Thus, the frequencies

of the Fourier series terms are

f0, 2f0, 3f0, . . . ,

although some of the components may be zero for a particular Fourier

series. However, f(t) is a continuous function of time, and this aspect of

the Fourier series is emphasized when the series is used to approximate

f(t). In other applications, the frequencies of the components are of

primary interest.

The Fourier series can also be written in cosine with phase or

shifted-cosine form as

a0

2
+

∞
∑

n=1

cn cos(2πnf0t + θn) (1.4)

where for n = 1, 2, ...

cn =
√

a2
n + b2

n, θn = tan−1

(

−
bn

an

)

when an > 0.

Sometimes a function of a spatial variable x is of interest. If the

function has period λ meters, the function repeats as

f(x + λ) = f(x).

Then, the variable t in Equation 1.3 is replaced by x, and the frequency

components are defined by replacing f0 with 1/λ. The spatial equivalent of

ω0 is

k =
2π

λ
,

measured in inverse units of length. Such a formulation of Fourier series is

used frequently in problems involving optics. In optical applications, the

values nk are called spatial frequencies. Thus, λ represents the wavelength

of the light wave being analyzed.
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COMPLEX
SERIES

The trigonmetric Fourier series contains a series of sines and cosines and

thus involves real functions. It is often convenient to write the series for a

function f(t) with period T as a sum of exponential functions in the form

f(t) =

∞
∑

n=−∞

αneinω0t, (1.5)

where ω0 = 2π/T as before and the coefficients αn are the complex Fourier

coefficients.

By substituting the identities

cos(nω0t) =
einω0t + e−inω0t

2
,

sin(nω0t) =
einω0t − e−inω0t

2i
, (1.6)

in the trigonometric form of the series, the relationship between the

trigonometric and exponential coefficients is found to be

α0 =
a0

2
,

αn =
an − ibn

2
for n > 0 ,

α−n =
an + ibn

2
. (1.7)

Notice that α−n is the complex conjugate of the term αn and

|αn| = |α−n|.
2 Thus, the series in Equation 1.5 becomes

f(t) = α0 +

∞
∑

n=1

[αneinω0t + α−ne−inω0t]. (1.8)

Also, note that a0 in the trigonmetric series is twice the value of α0. When

the series is written in either form, the dc component represented by a0/2

or α0 must be the same number.

When the positive frequency spectrum is plotted, the magnitude of the

frequency component at fn = nf0, n = 1, 2... must be

cn =
√

a2
n + b2

n, c0 =
a0

2

from the shifted cosine form of Equation 1.4. If the complex spectrum is

plotted at frequencies −nf0 ,−(n + 1)f0, ...,−f0, 0, f0, 2f0, ..., nf0 , the

spectral values are

|αn| = |α−n| =
1

2
cn =

1

2

√

a2
n + b2

n

2These results hold when f(t) is a real-valued function.
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EXAMPLE 1.1 Fourier series square wave example

A square wave of amplitude A and period T shown in Figure 1.1 can be
defined as

f(t) =







A, 0 < t <
T

2
,

−A, −
T

2
< t < 0,

with f(t) = f(t + T ), since the function is periodic.

f(t)

t

... ...

0

A

–A

–T
2

––
T
2

––

FIGURE 1.1 Square wave of Example 1.1

The first observation is that f(t) is odd, which yields the result that
a0 = 0 and ai = 0 for every coefficient of the cosine terms. Letting ω0 = 2π/T ,
the coefficients bn are

bn = 2
(

2

T

)

∫ T/2

0

A sin(nω0t) dt.

The result is

f(t) =
4A

π

∞
∑

n=1

sin[(2n − 1)ω0t]

(2n − 1)
,

where (2n − 1) is introduced to assure that only odd terms are included in the
summation. The sine waves that make up the Fourier series for the odd square
wave are

f(t) =
4A

π

[

sin(ω0t) +
sin(3ω0t)

3
+ · · ·

]

,

so the series consists not only of sine terms, as expected, but also odd

harmonics appear. This is due to the rotational symmetry of the function

since the wave shapes on alternate half-cycles are identical in shape but

reversed in sign. Such waveforms are produced in certain types of rotating

electrical machinery.
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EXAMPLE 1.2 Complex Series Square Wave Example

Consider the odd square wave of Example 1.1 and the complex Fourier
coefficients

αn =
1

T

∫ 0

−T/2

(−A)e−inω0t dt +
1

T

∫ T/2

0

(A)e−inω0t dt, (1.9)

which leads to the series

f(t) =
2A

iπ

∞
∑

n=−∞

ei(2n−1)ω0t

(2n − 1)
, (1.10)

as defined in Equation 1.5.

This form contains complex coefficients, but the series can be written in
terms of sine waves by combining the corresponding terms for positive and
negative arguments. To determine the coefficients, the amount of difficulty is
about the same for the trigonometric series and the complex series. However,
the complex series perhaps has an advantage when the magnitude of the
coefficients are of interest.

Each Fourier Series (FS) coefficient has the form

αn = F [n] =
2A

inπ
=

2A

nπ
e−iπ/2, n = ±1,±3, . . . ,

and the coefficients for even values, n = 0,±2, . . ., are zero. Notice that the
coefficients decrease as the index n increases. The use of these coefficients to
compute the frequency spectrum of f(t) is considered later. The trigonometric
series is derived from the complex series by expanding the complex series of
Equation 1.10 as

f(t) =

∞
∑

n=−∞

αneinω0t

= · · · −
2A

3πi
e−i3ω0t −

2A

πi
e−iω0t +

2A

πi
eiω0t +

2A

3πi
ei3ω0t + · · ·

and recognizing the sum of negative and positive terms for each n as
2 sin(nω0t). The trigonometric series becomes

f(t) =
4A

π

(

sin(ω0t) +
sin(3ω0t)

3
+ · · ·

)

=
4A

π

∞
∑

n=1

sin[(2n − 1)ω0t]

(2n − 1)
,

which is the result of Example 1.1.
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Orthogonality To find the coefficients in Equation 1.5, each side is

multiplied by e−imω0t and integrated over the period to yield

∫ T/2

−T/2

f(t)e−imω0 t dt =

∞
∑

n=−∞

αn

∫ T/2

−T/2

ei(n−m)ω0t dt. (1.11)

Since the terms with different exponents are orthogonal, all terms but that

for which m = n are zero for the integral on the right-hand side. Thus,

∫ T/2

−T/2

f(t)e−imω0 t dt =

∫ T/2

−T/2

e−inω0teinω0t dt = αnT,

so that dividing both sides T yields the coefficients

αn =
1

T

∫ T/2

−T/2

f(t)e−inω0t dt. (1.12)

The coefficients of the exponential series yield the frequency components at

each discrete frequency nω0 = n2πf0 = n2π/T . Comparing the Fourier

Transform FT if the Fourier transform of f(t) exists

F [f(t)] = F (iω) =

∫

∞

−∞

f(t)e−iωt dt. (1.13)

we see that the integral is very similar to the one for αn but the variable ω

in the FT is continuous. The transform F (iω) represents the frequency

spectrum of f(t), and it may be complex even though f(t) is real. The

magnitude |F (iω)| is called the amplitude spectrum of F (iω). Using the

notation F (iω) emphasizes the fact that the Fourier transform is a function

of a complex variable.

By comparing the two results, it is clear that designating the transform

F (iω) = F [f(t)],

F (nω0)

T
= αn. (1.14)

Thus, we conclude that the Fourier series coefficients are obtained by

sampling the Fourier transform at the points nω0 and dividing by the

period T of the time function. However, the Fourier series itself is a

continuous function of time, but the Fourier transform is a function of ω in

the frequency domain.
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Comparing the coefficients of the Fourier series of Harman Example 8.7

for a periodic pulse train of even rectangular pulses of width τ , amplitude

A, and period T and the Fourier transform of Example 8.11 for a single

even pulse of width τ , amplitude A, shows that the series coefficients are

αn =
1

T

∫ τ/2

−τ/2

f(t)e−inω0t dt =
Aτ

T

sin(nω0τ/2)

nω0τ/2

and the transform is

F [f(t)] = F (iω) =

∫ τ/2

−τ/2

f(t)e−iωt dt = Aτ
sin(ωτ/2)

ωτ/2
.

Thus, for a given f(t) such as a pulse and its periodic version fp(t), the FS

coefficients for fp(t) are samples of the FT spectrum scaled by the period

T = 1/f0 as

F [k] =
1

T
F (f)|f=kf0

where F [k] represents the Fourier Series coefficient at the frequency kf0

with f0 = 1/T and F (f) represents the Fourier Transform with f = ω/2π .
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SAMPLED DATA
AND FOURIER
ANALYSIS

When a signal is sampled and the DFT is used to compute the spectrum,

the first question is how does the DFT (FDFT[k]) result relate to the FT

(F (f)) or FS (F [k]) results? When the FFT algorithm is used to compute

the DFT, the second is how to determine the FT or FS from the FFT result?

Two important points must be kept in mind when signal sampling and

the DFT are used to analyze the spectrum of the signal as follows:

1. Sampling in time of the signal results in a periodic spectrum for the

frequency result.

2. The DFT or FFT do not include any information about ”real world”

time or frequencies.

Definition of DFT and IDFT Assume that a function f(t) is

defined at a set of N points, f(nTs) for n = 0, . . . , N − 1 values, as shown

in Figure 1.2. The DFT yields the frequency spectrum at N points by the

formula

Fk = F

(

k

NTs

)

=

N−1
∑

n=0

f(nTs)e
−i2πnk/N (1.15)

for k = 0, . . . , N − 1. Thus, N sample points of the signal in time lead to

N frequency components in the discrete spectrum spaced at intervals

fs = 1/(NTs). The Inverse DFT (IDFT) is defined as

fn = f(nTs) =
1

N

N−1
∑

k=0

F

(

k

NTs

)

ei2πnk/N (1.16)

for n = 0, . . . , N − 1. The IDFT is used to re-create the signal from its

spectrum.

f(t)

t

f(nTs)

0

∆ t =
T

N
= Ts

T = NTs

FIGURE 1.2 Approximation of a signal by sampling
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The FFT algorithms take advantage of the symmetry in the exponential

functions exp(−i2πnk/N) to reduce the number of computations while

computing the DFT. For example, a direct calculation of the DFT requires

N2 multiplications. The basic FFT requires approximately N log2 N

multiplications. If N = 4096 points, the FFT reduces the number of

multiplications from more than 16 million to less than 50,000.

Figure 1.3 shows the important parameters for the DFT and the

common FFT algorithms when applied to physical signals. In the figure, the

magnitude of the spectrum computed by the FFT is plotted as

|F (f)| =
√

[Fr(f)]2 + [Fi(f)]2

since the FFT yields N complex values. In the upper plot, the DFT

components are plotted for the index k = 0 to k = N − 1 which emphasizes

the symmetry about the index value k = N/2. The k-th positive digital

frequency has the value F = k/N .

Positive
Frequencies

Negative
Frequencies

Positive
frequencies

Negative
frequencies

Frequency

Harmonic

0

N

Fmax

N/2

0

012 ...

Harmonic

Fmax

N/2

– fs fs0

0

|FFT|

FIGURE 1.3 Discrete Fourier transform spectrum

The output of most FFT algorithms is folded in frequency, as shown in

the upper plot of Figure 1.3 and the DFT spectrum is symmetrical around

the frequency Fmax. This is called the folding frequency when the

symmetry of the spectrum is being discussed.
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Folding Frequency The theory of the folding shown in Figure 1.3 is

that N points in time produce N points in the frequency domain. However,

for a real signal, there are N complex numbers in the transform with N real

parts and N imaginary parts. The real part is even and the imaginary part

is odd around the folding point. Including the component at f = 0, there

are really only N/2 + 1 unique points on the positive frequency axis.

Symmetry about the origin It is often convenient to plot the DFT

spectrum showing the symmetry about the origin as in the lower plot of

Figure 1.3. In terms of the components, the DFT of a real sequence

possesses conjugate symmetry about the origin.

The procedure for plotting is to shift the upper half of the spectral

components from k > N/2 to k = N − 1 to negative values k − N so that

the origin represents the zero of frequency. The results for k > N/2 are

thus negative frequency results. The component at N/2 corresponds to the

maximum positive frequency.

DFT summary Table 1.1 summarizes the DFT or FFT parame-
ters when a real signal is sampled every Ts seconds for (N−1)Ts seconds.

TABLE 1.1 DFT parameters

Parameter Notation

Time domain:

Sample interval ∆t Ts (s) = 1/S; S is the sampling rate samp/sec
Sample size N points
Length (N − 1)Ts (s)
Period (from IDFT) T = NTs (s)

Frequency domain:

Frequency Spacing fs =
1

T
=

1

NTs
(Hz)

Spectrum size N components

Maximum frequency
N

2
fs = Fmax =

1

2Ts
(Hz)

Frequency period Fp = Nfs =
1

Ts
(Hz)

Note that the important parameters for sampling a signal are the

sampling interval Ts and the length of time the signal is sampled T with the

11



result that only two of the three parameters can be selected in the equation

T = NTs.

The digital frequency, described in Section 10.9 of Harman, is defined

by the ratio of the analog frequency of the signal being sampled to the

sampling frequency as

F =
fanalog

fsample
=

fanalog

S

where S samples per second is often quoted in Hertz and is defined by the

sampling time as

S =
1

Ts
.

To avoid aliasing, S in Hertz must be greater than twice the highest

frequency signal being sampled so that the maximum allowable digital

frequency is

Fmax =
1

2
.

Looking now at the frequency domain results in Table 1.1, the time

parameters determine the results in the frequency spectrum of the signal as

follows:

1. The frequency Resolution is given by the inverse of the total

sampling time 1/T just as in a Fourier series

2. The Maximum frequency is given by one-half the sampling

frequency as

Fmax =
1

2Ts
=

S

2

SAMPLING Thus the two most important questions in the specification of a data

acquisition system are the following:

1. How often should the analog signal be sampled?

2. How long should the signal be sampled?

12 Chapter 1 FOURIER ANALOG & DIGITAL SUMMARY



EXAMPLE 1.3 Sampling Example

This example defines the relationship between sampling interval,
frequency resolution, and number of samples for the DFT. In terms of previous
notation, Ts is the sampling interval in seconds, ∆f = fs is the frequency
resolution, and N is the number of sample points in time and in frequency.

Consider an analog signal with frequencies of interest up to 1200 Hertz.
The desired frequency resolution is 0.5 Hertz. Thus, the signal should be
filtered so that frequencies above 1200 Hertz are eliminated from the signal.
This filtering removes frequencies and noise in the signal above 1200 Hertz.
The noise consists of unwanted signals added to the desired signal that are the
result of environmental effects as the signal is transmitted to the data
acquisition system.

By the sampling theorem, the sampling interval in time must be

Ts <
1

2 × 1200
=

1

2400
seconds,

so that at least 2400 samples per second are needed. This corresponds to

F =
1200

2400
= 0.5.

For a resolution of 0.5 Hertz, T = 1/0.5 = 2 seconds. The total number of
points required is thus

N =
T

Ts
=

2

(2400)−1
= 4800.

If N is to be a power of 2 for the FFT algorithm, 213 = 8192 samples would

be taken. The sampling rate could be increased to 4096 samples per second,

which is sampling at a rate corresponding to about 3.4 times the highest

frequency of interest or F = 1200/4096.
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Fourier Series and DFT To get the FS values from the DFT or FFT

of f(t) with period T sampled at times nTs = n/S, n = 0, 1, . . . , N − 1

F [k] =
1

N
FDFT[k] (1.17)

where N = T/Ts = TS.

Fourier Transform and DFT The DFT can be used to approximate
the continuous Fourier transform. The continuous Fourier transform is

F [f(t)] = F (f) =

∫

∞

−∞

f(t)e−i2πft dt. (1.18)

The frequency f in hertz is used as the parameter in this integral. The
function F (iω), where ω = 2πf is the frequency in radians per second,
could be calculated as well.

Using the sampled f(t) with t = nTs and replacing f by the dis-
crete frequencies fs = k/(NTs) leads to the approximation of the Fourier
transform as

F

(

k

NTs

)

= Ts

N−1
∑

n=0

f(nTs)e
−i2πnk/N (1.19)

for k = 0, . . . , N − 1. The factor ∆t = Ts replaced dt in the integral and
is used as a multiplier of the DFT defined by Equation 1.15 in order to
approximate the continuous Fourier transform.

Finally, to get the Fourier transform values from the DFT or FFT,

F (f)|f=kS/N=k/T =
1

S
FDFT[k] = Ts FDFT[k]. (1.20)

To get the positive spectrum of a periodic signal, the result is

F [k] =
2

N
FDFT[1 : N/2].

Note the factor 2. Comparing Equation 1.17 and Equation 1.20 and
noting that the Fourier Transform can be derived for the Fourier Series
by multiplying by the period T as in Equation 1.14, the derivation of the
Fourier Transform from the Fourier Series computed by the DFT is

F (f)|f=kS/N=k/T = T × FDFT[k] =
T

N
FDFT[k] = Ts FDFT[k] (1.21)

as given in Equation 1.20.
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TABLE 1.2 Relations

Type Time Signal Spectrum

Fourier Transform F (f) = F (x(t)) Continuous in t-Aperiodic Continuous in f

Fourier Series Continuous in t Discrete with Spacing

F [k]|k=0,1,··· Period T sec kf0 = k
1

T

Discrete Fourier Transform Sampled S = (1/Ts) Discrete with Spacing1,2

FDFT[k]|k=0,1,···,N−1 Period T = NTs kf0 = k
1

T
= k

1

NTs
= k

S

N

Fast Fourier Transform Sampled S = (1/Ts) Discrete with Spacing1,2

FDFT[k]|k=0,1,···,N−1 Period T = NTs kf0 = k
1

T
= k

1

NTs
= k

S

N

Notes:
1 For real f(t), conjugate symmetry about point k = N/2.

Highest frequency is FMAX =
1

2Ts
= k

S

2
, i.e. FDFT[k]|k=N/2. The

values for k > N/2 up to k = N − 1 are negative frequency components.

2 The two-sided spectrum of f(t) will show one-half magnitude of each
frequency component in the positive frequency spectrum.
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