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% Example 2pole butter tlh
% Analog Butterworth filter design
% design an 2-pole filter with a bandwidth of 10 rad/sec
% Prototype H(s) 1
% ----------------- wb = 1 rad/sec
% s"'2 + 2"'(l/2)s +1
%
[z,p,k) buttap(2);
[b,a) = zp2tf(z,p,k);
wb = 10;
[b,a) = lp2lp(b,a,wb);

%

% 2 pole filter
% convert the zeros and poles to polynomials

% new bandwidth in rad/sec
% transforms to the new bandwidth
By hand replace s by s/wb

% define the freq. in Hz for plottingf 0:15/200:100;
w 2*pi*f;
H = tf(b,a)
% Continuous-time transfer function.
% H 100

% wb 10 r/s
% s"'2 + 14.14 s + 100

figure(l)
bode(H,w) ;
grid, title('Bode Plot \omega_c 10 rad/sec')
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Introduction 399

Of the four classical filter types based on magnitude specifications, the Butterworth filter is monotonic
ill the passband and stopband, the ChebyshevI filter displays ripples in the passband but is monotonic in
the stopband, the Chebyshev II filter is monotonic in the passband but has ripples in the stopband, and the
ellipticfilter has ripples in both bands.

I REVIEW PANEL 13.21
Magnitude Characteristics of Four Classical Filters
Butterworth: Monotonic in both bands Chebyshev I: Monotonic passband, rippled stopband
Elliptic: Rippled in both bands Chebyshev II: Rippled passband, monotonic stopband

The design of analog filters typically relies on frequency specifications (passband and stopband edge(s))
and magnitude specifications (maximum passband attenuation and minimum stopband attenuation) to gen-
erate a minimum-phase filter transfer function with the smallest order that meets or exceeds specifications.
Most design strategies are based on converting the given frequency specifications to those applicable to a
lowpass prototype (LPP) with a cutoff frequency of 1 rad/s (typically the passband edge), designing the
lowPassprototype, and converting to the required filter type using frequency transformations.

13.1.1 Prototype Transformations
a; >JIll

Thelowpass-to-lowpass (LP2LP) transformation converts a lowpass prototype Hp(s) with a cutoff frequency
of 1 rad/s to a lowpass filter H(s) with a cutoff frequency of Wx rad/s using the transformation s =? s/wx,

as shown in Figure 13.2. This is just linear frequency scaling. L\ - \ "? J
rr,(p.") - S+l S~ ~o
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Figure 13.2 The lowpass-to-lowpasstransformation

The lowpass-to-highpass (LP2HP) transformation converts a lowpass prototype Hp(s) with a cutoff
frequencyof 1 rad/s to a highpass filter H(s) with a cutoff frequency of Wx rad/s, using the nonlinear
transformation s =? wx/ s. This is illustrated in Figure 13.3.
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Figure 13.3 The lowpass-to-highpass transformation

The lowpass-to-bandpass (LP2BP) transformation is illustrated in Figure 13.4. It converts a lowpass
prototype Hp(s) with a cutoff frequency of 1 rad/s to a bandpass filter H(s) with a center frequency of
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Wo rad/s and a passband of B rad/s, using the nonlinear, quadratic transformation

(13.1)

Here, Wo is the geometric mean of the band edges WLand WH, with WLW H = w5, and the bandwidth is given
by B = WH - WL. Any pair of geometrically symmetric bandpass frequencies Wa and Wb, with WaWb = w5,
corresponds to the lowpass prototype frequency (Wb - wa) / B. The lowpass prototype frequency at infinity
is mapped to the bandpass origin. This quadratic transformation yields a transfer function with twice the
order of the lowpass filter.
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Figure 13.4 The lowpass-to-bandpass transformation

The lowpass-to-bandstop (LP2BS) transformation is illustrated in Figure 13.5. It converts a lowpass
prototype Hp(s) with a cutoff frequency of 1 rad/s to a bandstop filter H(s) with a center frequency of
Wo rad/s and a stopband of B rad/s, using the nonlinear, quadratic transformation

Here B = WH - WL and w5 = WHWL. The lowpass origin maps to the bandstop frequency Woo Since the roles
of the passband and the stopband are now reversed, a pair of geometrically symmetric bandstop frequencies
Wa and Wb, with WaWb = w;, maps to the lowpass prototype frequency WLP = B/(Wb - wa). This quadratic
transformation also yields a transfer function with twice the order of the lowpass filter.
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Figure 13.5 The lowpass-to-bandstop transformation

13.1.2 Lowpass Prototype Specifications
Given the frequency specifications of a lowpass filter with band edges wp and ws, the specifications for a.
lowpass prototype with a passband edge of 1 rad/s are "» = 1 rad/s and I/s = ws/wp rad/s. The LP2LP
transformation is s ---t s/wp. For a lowpass prototype with a stopband edge of 1 rad/s, we would USe

"» = ws/wp rad/s and I/s = 1 rad/s instead.
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it follows from the results in Section 8.5 that the system is a lowpass filter when
C ;::: 1/V2. If C = 1/,V2, the resulting lowpass filter is said to be maximally flat, since
the variation in the magnitude IH (w ) I is as small as possible across the passband of the
filter. This filter is called the two-pole Butterworth filter.

The transfer function of the two-pole Butterworth filter is

Butterworth Filters

For the two-pole system with the transfer function

Factoring the denominator of H(s) reveals that the poles are located at,...,.......:
Wn • Wns= --±]--V2 V2

Note that the magnitude of each of the poles is equal to Wn-

Setting s = jw in H(s) yields the magnitude function of the two-pole Butterworth
filter:

~LJ\r~~2.:'D
From (8.55) it is seen that the 3-dB bandwidth of the Butterworth filter is equal to Wn;
that is, IH(wn)ldB = -3 dB. For a lowpass filter, the point where IH(w)ldB is down by
3 dB is often referred to as the cutoff frequency. Hence.eo, is the cutoff frequency of
the lowpass filter with magnitude function given by (8.55).

For the case Wn = 2 rad/sec, the frequency response curves of the Butterworth
filter are plotted in Figure 8.33. Also displayed are the frequency response curves for
the one-pole lowpass filter with transfer function H(s) = 2/(s + 2), and the two-pole

(8.55)
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FIGURE 8.33
Frequency curves of one- and two-pole lowpass filters: (a) magnitude curves; (b) phase
curves.

lowpass filter with l = 1 and with cutoff frequency equal to 2 rad/sec. Note that the
Butterworth filter has the sharpest transition of all three filters.

N-pole Butterworth filter. For any positive integer N, the N-pole Butterworth filter is
the lowpass filter of order N with a maximally flat frequency response across the pass-
band. The distinguishing characteristic of the Butterworth filter is that the poles lie on
a semicircle in the open left-half plane. The radius of the semicircle is equal to We>

where We is the cutoff frequency of the filter. In the third-order case, the poles are as
displayed in Figure 8.34.

The transfer function of the three-pole Butterworth filter is
.,... .


