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Introduction to Z-Transforms We now turn to a transform that is called
the Z-transform due to the use of the complex variable z = x + iy in the
transform. The Z-transform plays the same role for discrete systems as the
Laplace transform does for continuous systems. The table summarizes some of
the applications of the Z- transform.

Definition The Z-transform is defined as a sum that transforms discrete
signals to the complex frequency (Z) domain.

System analysis The Z-transform converts convolutions to a product
and difference equations to algebraic equations.

Stability Stability of a discrete linear system can be determined by analyzing
the transfer function H(z) given by the Z-transform.

Frequency response The transfer function H(z) can be evaluated to determine
the frequency response of a discrete system.

Digital filters Digital filters can be analyzed and designed using
the Z-transform.

Control Digital control systems can be analyzed and designed using
Z-transforms.

We shall see that there is a close connection between the Z and Laplace
transforms.

The Z-plane and the s-plane Laplace and Z-Transforms In this sec-
tion, the term sampling refers to replacement of a function f(t) by the func-
tion f(nT ). Here we consider sampled-data systems in which input and out-
put functions are considered at only discrete values of t, usually at values
nT, n = 0, 1, 2, . . ., where T is a positive constant.

By sampling the continuous function f(t) at every Ts seconds, we obtain the
discrete function fd(t) with values defined at t = 0, Ts, 2Ts, . . .. This discrete
function can be written in terms of the unit impulse function

δ(t − nTs) =

{

1, t = nTs

0, t 6= nTs

(1)

where n = 0, 1, . . . in the following manner:

fd(t) =

∞
∑

n=0

f(nTs)δ(t − nTs). (2)

The discrete time function fd(t) has as its Laplace transform

L[fd(t)] =

∫ ∞

0

∞
∑

n=0

f(nTs)δ(t − nTs)e
−st dt

=

∞
∑

n=0

f(nTs)e
−nTss (3)
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using the definition of the one-sided Laplace transform and the properties of the
impulse function.

Defining a new complex variable

z = eTss

leads to the definition of the Z-transform as the Laplace transform of the discrete
function f(nTs)

L[f(nTs)] =

∞
∑

n=0

f(nTs)z
−n = F (z). (4)

ZtoS From the relationship

z = esTs = e(σ+iω)Ts = eσTseiωTs (5)

we map the s-plane into the z-plane. The iω axis maps into the unit circle

z = eıωTs

which has magniude |z| = 1. The values of iωTs determine the position on the
circle. As the argument increases in the positive direction , points on the circle
wrap around starting at z = 1 when ωTs = 0 corresponding to ω = 0 in the
s-plane. At the angle ωTs = π, z = −1. The region of the jω in the s-plane axis
from ω = 0 to −ωTs = −π map to the lower half of the unit circle and again
z = −1 when −ωTs = −π.

In terms of sampling theory, the limits used to preserve the uniqueness of
the mapping correspond to the Nyquist frequencies ωs = ±π/Ts.

Damping and the z-plane The left-hand side of the s-plane, for values s =
σ + iω with σ < 0 and |ω| < π/Ts maps into the interior of the unit circle in
the z-plane. Since poles in the left-hand s-plane correspond to a BIBO stable
continuous system, the corresponding poles for stable discrete systems must lie
within the unit circle in the z-plane. Note that the negative real axis in the s-
plane maps into the real axis from 0 to 1 in the z-plane. Thus, a digital system
with a pole at −0.5, for example, has no corresponding continuous system.
(Shahian p 263).

If σ > 0, the points in the right-hand s-plane map to the exterior of the unit
circle in the z-plane.

Vertical lines in the s-plane such that π/Ts ≤ ω ≤ π/Ts and σ < 0, map
into a circle in the z-plane centered at z = 0 with radius r = exp(σTs).
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Mapping the s-plane to the z-plane Consider the s-domain function

G(s) =
1

(s + 1)(s + 2)(s2 + 1)

with poles at s = −1,−2,±i. For Ts = 1, the poles in the z-plane given by
exp(sTs) appear at

z = 0.3679, 0.1353, 0.5403+ 0.8415i, 0.5403− 0.8415i

as computed by the MATLAB script below and shown in Figure ??.
The inverse Laplace transform of G(s) leads to time functions such as e−t,e−2t

and e±it or cos t and sin t. Thus, the oscillations have frequency f = 1/2π Hertz
or 1 rad/sec. With Ts = 1, ωs = 2π and the maximum digital frequencies are
F = .5 or Ω = π radians.

In the z-plane, the pole at 0.5403 + 0.8415i has magnitude 1 since it lies on
the unit circle and angle

θz = tan−1 0.8415

0.5403
= 1 radian.

With Ts = 1, the maximum digital frequency Ω = π rad occurs at the point
z = −1.

If Ts = 0.1, the poles in the z plane are changed as indicated in the results of
the MATLAB calculation. The maximum digital frequency is F = 5 or Ω = 10π
radians. The angle of the pole z = 0.9950 + 0.0998i is θz = 0.1000 radians as
expected.

%s2zplane.m

% Plot z-plane poles for G(s)=1/[(s+1)(s+2)(s^2+1)

% See Taylor p252

%

% Let Ts=1.0

Ts=1.0

poless=[-1 -2 +i -i]

polesz=exp(poless*Ts)

%

% Define zeros and poles as column vectors

zplane(polesz’) % There are no zeros

title(’Z-plane for s-plane poles -1,-2,+1=-i’)

grid

%

% Results

%

%Ts = 1

%poless =-1.0000 -2.0000 0 + 1.0000i 0 - 1.0000i

%polesz =0.3679 0.1353 0.5403 + 0.8415i 0.5403 - 0.8415i

%
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% Change sampling time

%

%Ts1 = 0.1000

Ts1=0.1

poless1=[-1 -2 +i -i]

polesz1=exp(poless1*Ts1)

% poless1 =-1.0000 -2.0000 0 + 1.0000i 0 - 1.0000i

% polesz1 = 0.9048 0.8187 0.9950 + 0.0998i 0.9950 - 0.0998i
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Figure 1: z-plane poles from s-plane

Second-order systems Consider the second-order system

G(s) =
ω2

n

s2 + 2ζωns + ω2
n

with poles at

s1 = −ζωn + iωn

√

1 − ζ2 s2 = −ζωn − iωn

√

1 − ζ2.

The term σ = −ζωn is the real part of a pole in the s-domain that corre-
sponds to damping of the time response of the system G(s). The pole in the
z-plane lies on a circle centered at z = 0 with radius

|z| = exp(−ζωnTs).

Z-transforms and Frequency ResponseWe wish to determine the frequency
response from the transfer function given by the Z-transform of y(n).

If the transfer function H(z) is evaluated for values of

z = exp(i2πF ) = exp(iΩ) (6)

we obtain the frequency response, H(i2πF ), of the system. This is equivalent
to evaluating H(z) on the unit circle in the z-plane. Note that the function

4



H(i2πF ) is periodic with period 1 since exp(i2πF ) is periodic with period 1.
The digital frequency is defined as

F =
f

fs

= fTs,

where Ts is the sampling time or time between samples. The sampling rate
S = fs = 1/Ts samples per second is often quoted in Hz since then it is easier
to compare to the analog frequency given in Hertz.

The analog frequency f = 1/Ts corresponds to the digital frequency F = 1
or Ω = 2π. However considering sampling theory, the range of F is limited as

−0.5 ≤ F ≤ 0.5 and − π ≤ Ω ≤ π

since F = 0.5 indicates that the sampling rate is twice the analog frequency
being sampled. From Equation 6, we have the following correspondences

f=dc F = 0 z = 1
f = S/4 F = 1/4 z = i
f = S/2 F = 1/2 z = −1

Note for the equation

H(z) =
0.1z

z − 0.9
(7)

for example,
H(z = 1) = 0.1(1)/0.1 = 1

is the attenuation at the dc value of f = 0. Notice that S is not relevant here.
However, if f = S/2, the result becomes

H(z = −1) =
0.1(−1)

−1 − 0.9
= 0.0526

which indicates a low-pass filter characteristic. Writing Equation 7 as

H(z) =
Y (z)

X(z)
=

0.1

1 − 0.9z−1
,

the difference equation becomes

y[n] = 0.9 y[n − 1] + 0.1x[n].

Check this with x[n] = 1 for n ≥ 0 comparing the step response of H(z) as

y[n] = 1 − (0.9)n+1 (8)

with the difference equation solution Equation 8 for various values of n as for
example

y[0] = 0.9y[−1] + 0.1x[0] = 0.1 (9)

y[1] = 0.9[0.1]+ 0.1 = 0.19 (10)
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