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Introduction to Sampling An analog signal f(t) must be sampled before
it can be processed by a digital system. It may be hard to believe that f(t) can
be sampled to yield an accurate representation of the signal. However, there
are strict conditions for sampling that must be recognized when sampling an
analog signal. In the following, it is assumed that f(t) is a signal in time that
must be sampled. The sampled signal is called a digitized signal.

In general, an analog signal will contain a number of frequency components
given by a Fourier analysis of the signal. Only a pure sinusoid contains one fre-
quency. The highest frequency in the signal of interest determines the sampling
rate.

A few definitions and theorems are given in the table for sampling a signal
f(t):

Ts The sampling interval is the time in seconds between samples of f(t).
Fs = S The sampling frequency or rate in samples per second (Hertz).
fmax The highest frequency in the signal in Hertz.
F = f/S The digital frequency as the ratio of an analog frequency

divided by the sampling frequency.
The range of F is −0.5S ≤ F ≤ 0.5S.

Sampling The analog signal must be sampled at S > 2fmax
theorem to avoid aliasing. This is called the Nyquist rate.
Aliasing If S < 2fmax, the analog signal is aliased to a lower frequency .

We shall see that ideal sampling in time results in a periodic function of time
in both time and frequency.

The Result of Sampling in Time In this section, the term sampling refers
to replacement of a function f(t) by the function f(nTs). Here we consider
sampled-data systems in which input and output functions are considered at
only discrete values of t, usually at values nTs, n = 0, 1, 2, . . ., where Ts is a
positive time in seconds.

By sampling the continuous function f(t) at every Ts seconds, we obtain the
discrete sequency of points fd(t) with values defined at t = 0, Ts, 2Ts, . . .. This
discrete sequence can be written in terms of the unit impulse function

δ(t − nTs) =

{

1, t = nTs

0, t 6= nTs

(1)

where n = 0, 1, . . . in the following manner:

fd(t) =

∞
∑

n=0

f(nTs)δ(t − nTs). (2)

See Harman Page 481.
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1 In the frequency domain, the spectrum of f(t) is periodic with period

S =
1

Ts

Hertz

2 If the sampling rate S < 2fanalog, the signal is aliased to a lower frequency

|faliased| < 0.5S

1. The aliased frequencies are many and have values

faliased = fanalog − MS where − 0.5S < faliased ≤ 0.5S.

Example - not Aliased

A 100 Hz sinusoid is sampled at S=240 Hertz. Here

1/S = Ts = 1/240 = 0.0042 sec

so the valid range of positive frequencis goes to 120 Hertz. Thus,

fd(t) =

∞
∑

n=0

cos(2π100 nTs) δ(t−nTs) =

∞
∑

n=0

cos(2πn
100

240
) δ(t−nTs). (3)

Since F = 5/12 < 0.5, the result is a sampled sinusoid with frequency
f = (5/12) × 240 = 100 Hz. Note that the number of samples is infinite!
In theory, using the sampled points, the cosine wave could be exactly
reconstructed. In practice, the A/D converter would only sample N points
and reconstruction by a D/A converter would only use N points. This
would lead to some inaccuracies but aliasing would not be the cause of
them.

Example - Aliased

Consider the sinusoid again

f(t) = cos(200πt + θ).

The sampling frequency must be S > 200 Hz to avoid aliasing. Suppose
that

S = 140 Hz so that F = 100/140 = 0.71.

Then, the spectrun is aliased at frequencies

faliased = 100 − M × 140 Hz

where M = 1, 2, . . . as long as the aliased frequencies fall within the range
(−70, 70) Hz. The only one in the range is

faliased = 100− 140 = −40Hz.

The signal represented by this sampling is

cos(−80πt + θ) = cos(80πt − θ)

which is in error. Note the phase reversal which is the result of a negative
frequency.
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When a sampled signal has a finite range of frequencies, it may be easy to
determine the highest frequency and sample at twice that frequency. Alterna-
tively, the signal may be filtered to limit the frequency range as described in
Harman Page 523. An anti-aliasing low-pass filter restricts the freqencies in a
signal by attenuating any frequencies above the cutoff of the filter. Also, only a
finite number of points can be sampled in practice.
Thus the questions for practical sampling could be posed as follows:

Sampling of a signal Three of the most important questions in the spec-
ification of a data acquisition system such as that shown in Figure 11.7, Page
523, are the following:

1. How often should the analog signal be sampled -How to choose Ts.

2. How long should the signal be sampled - How to choose N as the number
of points?

3. What should be done if the frequency range of the signal is not limited?

See Harman Page 524 for answers to the first two questions. With proper
sampling, the frequency spectrum of the sampled signal has the following char-
acteristics using the DFT to compute the spectrum:

1. Ts determines the highest frequency in the spectrum as

Fmax =
S

2
=

1

2Ts

Hz.

2. The resolution in frequency is determined by the number of points chosen
as

F1 = ∆F =
1

NTs

(FDFT).

The frequencies in the DFT are thus

(Fdc, F1, 2F1, 3F1, . . . , Fmax =
N

2
∆F )

3. What should be done if the frequency range of the signal is not limited?

Example Harman Page 526

Consider an analog signal with frequencies of interest up to 1200 hertz. Thus,
the signal should be filtered so that fmax = 1200 hertz. This filtering removes
frequencies in the signal above 1200 hertz and noise above fmax hertz. The
noise consists of unwanted signals added to the desired signal.

By the sampling theorem, the sampling interval in time must be

Ts <
1

2fmax
=

1

2400
seconds,

so that at least 2400 samples per second are needed.
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Further, suppose that the desired digital frequency resolution is to be at least
∆F = 0.5 Hertz or less.

For a resolution of 0.5 hertz,

∆F =
1

NTs

= 0.5Hz.

The total time of sampling is thus NTs = T = 1/0.5 = 2 seconds or longer. The
total number of points required is thus

N =
T

Ts

=
2

(2400)−1
= 4800.

If N is to be a power of 2 for the FFT algorithm, 213 = 8192 samples would be
taken. With the same sampling rate, the resolution would now be ∆F = 0.2928
Hz.

The sampling rate could be increased to 4096 samples per second, which is
sampling at a rate corresponding to about 3.4 times the highest frequency of
interest. The resolution would remain the same since 8192× 1/4096 = 2 sec of
sampling time.

What should be done if the frequency range of the signal is not

limited?

In practice, there is some upper limit to the frequency spectrum of any real
signal. The solution is to sample fast enough that the aliased frequencies are so
small that they do not effect the results.

Consider the square wave (Harman P 379) of period T seconds. In the
Fourier series there is no dc term and the fundamental frequency is f1 = 1/T
Hz. The square wave is often described as a 1/T Hertz square wave, although
1/T Hz only represents the fundamental frequency.

The sine waves that make up the Fourier series for an odd square wave are

f(t) =
4A

π

[

sin(ω0t) +
sin(3ω0t)

3
+ · · ·

]

,

where ω0 = 2π/T , so the series consists not only of sine terms, as expected, but
also odd harmonics appear. For example, if T = 1 millisecond, the square wave
is often called 1 kHz square wave and the frequencies in the wave are

1, 3, 5, 7, 9, 11, 13, 15, 17, . . .Hertz

Thus, there is no sampling rate to avoid aliasing. However, the nth harmonic is
reduced by 1/n compared to the amplitude of f1. For the 1 kHz square wave,
the amplitude of the 21st harmonic is less than 5% of the amplitude of the
fundamental. Sampling at S = 42 kHz would keep the aliasing error below 5%.

To accurately sample the wave so that aliasing would not occur with the
65th would require sampling at 130, 000 samples per second!
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Fourier Transform Example The Fourier spectrum of

f(t) =

{

0, t < 0,
e−t, t ≥ 0.

is

|F (iω)| =
1√

1 + ω2
,

as shown in Example 8.9, Harman page 397, with A = 1 and α = 1. The Figure
shows the plot of f(t) and |F (iω)| created by the accompanying MATLAB
script. The spectrum is always symmetric around ω = 0 when f(t) is real.
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Figure 1: Time signal and Fourier Transform

Since the spectrum has no ”largest value”, we must approximate the results.
A reasonable approach is to consider the frequency values to be zero when they
are diminished below some percentage of the maximum value.

Suppose the maximum frequency is considered to be 5% of the maximum of
the spectrum. Thus, the sampling frequency S should be twice the frequency
at 0.5S found as

|F (2π0.5S)| =
1

√

1 + (2π0.5S)2
= 0.05 |F (0)| = .05× 1 = 1/20.

The solution for S yields 1 + π2S2 = 400 or S ≥ 7 Hz. This is ωs = 44 rad/sec.
At ωmax = 22 rad/sec, |F (iω)| = 1/22 < .05 as required.
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