
Ch25 configuration management
1. Chapter 25 – Configuration Management Chapter 25 Configuration management 111/12/2014
2. Topics covered ″ Version management ″ System building ″ Change management ″ Release management

Chapter 25 Configuration management 211/12/2014
3. Configuration management ″ Software systems are constantly changing during development and use. ″

Configuration management (CM) is concerned with the policies, processes and tools for managing
changing software systems. ″ You need CM because it is easy to lose track of what changes and component
versions have been incorporated into each system version. ″ CM is essential for team projects to control
changes made by different developers Chapter 25 Configuration management 311/12/2014

4. CM activities ″ Version management ♣ Keeping track of the multiple versions of system components and
ensuring that changes made to components by different developers do not interfere with each other. ″
System building ♣ The process of assembling program components, data and libraries, then compiling
these to create an executable system. ″ Change management ♣ Keeping track of requests for changes to
the software from customers and developers, working out the costs and impact of changes, and deciding
the changes should be implemented. ″ Release management ♣ Preparing software for external release and
keeping track of the system versions that have been released for customer use. Chapter 25 Configuration
management 411/12/2014

5. Configuration management activities Chapter 25 Configuration management 511/12/2014
6. Agile development and CM ″ Agile development, where components and systems are changed several

times per day, is impossible without using CM tools. ″ The definitive versions of components are held in a
shared project repository and developers copy these into their own workspace. ″ They make changes to
the code then use system building tools to create a new system on their own computer for testing. Once
they are happy with the changes made, they return the modified components to the project repository.
11/12/2014 Chapter 25 Configuration management 6

7. Development phases ″ A development phase where the development team is responsible for managing
the software configuration and new functionality is being added to the software. ″ A system testing phase
where a version of the system is released internally for testing. ♣ No new system functionality is added.
Changes made are bug fixes, performance improvements and security vulnerability repairs. ″ A release
phase where the software is released to customers for use. ♣ New versions of the released system are
developed to repair bugs and vulnerabilities and to include new features. 11/12/2014 Chapter 25
Configuration management 7

8. Multi-version systems ″ For large systems, there is never just one ‘working’ version of a system. ″ There
are always several versions of the system at different stages of development. ″ There may be several teams
involved in the development of different system versions. 11/12/2014 Chapter 25 Configuration
management 8

9. Multi-version system development Chapter 25 Configuration management 911/12/2014
10. CM terminology Term Explanation Baseline A baseline is a collection of component versions that make

up a system. Baselines are controlled, which means that the versions of the components making up the
system cannot be changed. This means that it is always possible to recreate a baseline from its constituent
components. Branching The creation of a new codeline from a version in an existing codeline. The new
codeline and the existing codeline may then develop independently. Codeline A codeline is a set of
versions of a software component and other configuration items on which that component depends.
Configuration (version) control The process of ensuring that versions of systems and components are
recorded and maintained so that changes are managed and all versions of components are identified and
stored for the lifetime of the system. Configuration item or software configuration item (SCI) Anything
associated with a software project (design, code, test data, document, etc.) that has been placed under
configuration control. There are often different versions of a configuration item. Configuration items have a

unique name. Mainline A sequence of baselines representing different versions of a system. Chapter 25
Configuration management 1011/12/2014
11. CM terminology Term Explanation Merging The creation of a new version of a software component

by merging separate versions in different codelines. These codelines may have been created by a
previous branch of one of the codelines involved. Release A version of a system that has been released
to customers (or other users in an organization) for use. Repository A shared database of versions of
software components and meta- information about changes to these components. System building
The creation of an executable system version by compiling and linking the appropriate versions of the
components and libraries making up the system. Version An instance of a configuration item that
differs, in some way, from other instances of that item. Versions always have a unique identifier.
Workspace A private work area where software can be modified without affecting other developers
who may be using or modifying that software. Chapter 25 Configuration management 1111/12/2014

12. Version management Chapter 25 Configuration management 1211/12/2014
13. Version management ″ Version management (VM) is the process of keeping track of different versions

of software components or configuration items and the systems in which these components are used.
″ It also involves ensuring that changes made by different developers to these versions do not interfere
with each other. ″ Therefore version management can be thought of as the process of managing
codelines and baselines. Chapter 25 Configuration management 1311/12/2014

14. Codelines and baselines ″ A codeline is a sequence of versions of source code with later versions in
the sequence derived from earlier versions. ″ Codelines normally apply to components of systems so
that there are different versions of each component. ″ A baseline is a definition of a specific system. ″
The baseline therefore specifies the component versions that are included in the system plus a
specification of the libraries used, configuration files, etc. Chapter 25 Configuration management
1411/12/2014

15. Baselines ″ Baselines may be specified using a configuration language, which allows you to define
what components are included in a version of a particular system. ″ Baselines are important because
you often have to recreate a specific version of a complete system. ♣ For example, a product line may
be instantiated so that there are individual system versions for different customers. You may have to
recreate the version delivered to a specific customer if, for example, that customer reports bugs in
their system that have to be repaired. Chapter 25 Configuration management 1511/12/2014

16. Codelines and baselines Chapter 25 Configuration management 1611/12/2014
17. Version control systems ″ Version control (VC) systems identify, store and control access to the

different versions of components. There are two types of modern version control system ♣ Centralized
systems, where there is a single master repository that maintains all versions of the software
components that are being developed. Subversion is a widely used example of a centralized VC system.
♣ Distributed systems, where multiple versions of the component repository exist at the same time. Git
is a widely-used example of a distributed VC system. 11/12/2014 Chapter 25 Configuration
management 17

18. Key features of version control systems ″ Version and release identification ″ Change history recording
″ Support for independent development ″ Project support ″ Storage management 11/12/2014 Chapter
25 Configuration management 18

19. Public repository and private workspaces ″ To support independent development without
interference, version control systems use the concept of a project repository and a private workspace.
″ The project repository maintains the ‘master’ version of all components. It is used to create baselines
for system building. ″ When modifying components, developers copy (check- out) these from the
repository into their workspace and work on these copies. ″ When they have finished their changes, the
changed components are returned (checked-in) to the repository. 11/12/2014 Chapter 25
Configuration management 19

20. Centralized version control ″ Developers check
21.

Centralized version control ″ Developers check out components or directories of components
from the project repository into their private workspace and work on these copies in their
private workspace. ″ When their changes are complete, they check-in the components back to
the repository. ″ If several people are working on a component at the same time, each check
it out from the repository. If a component has been checked out, the VC system warns other
users wanting to check out that component that it has been checked out by someone else.
11/12/2014 Chapter 25 Configuration management 20

22. Repository Check-in/Check-out 11/12/2014 Chapter 25 Configuration management 21
23. Distributed version control ″ A ‘master’ repository is created on a server that maintains the

code produced by the development team. ″ Instead of checking out the files that they need, a
developer creates a clone of the project repository that is downloaded and installed on their
computer. ″ Developers work on the files required and maintain the new versions on their
private repository on their own computer. ″ When changes are done, they ‘commit’ these
changes and update their private server repository. They may then ‘push’ these changes to
the project repository. 11/12/2014 Chapter 25 Configuration management 22

24. Repository cloning 11/12/2014 Chapter 25 Configuration management 23
25. Benefits of distributed version control ″ It provides a backup mechanism for the repository. ♣

If the repository is corrupted, work can continue and the project repository can be restored
from local copies. ″ It allows for off-line working so that developers can commit changes if
they do not have a network connection. ″ Project support is the default way of working. ♣
Developers can compile and test the entire system on their local machines and test the
changes that they have made. 11/12/2014 Chapter 25 Configuration management 24

26. Open source development ″ Distributed version control is essential for open source
development. ♣ Several people may be working simultaneously on the same system without
any central coordination. ″ As well as a private repository on their own computer, developers
also maintain a public server repository to which they push new versions of components that
they have changed. ♣ It is then up to the open-source system ‘manager’ to decide when to
pull these changes into the definitive system. 11/12/2014 Chapter 25 Configuration
management 25

27. Open-source development 11/12/2014 Chapter 25 Configuration management 26
28. Branching and merging ″ Rather than a linear sequence of versions that reflect changes to the

component over time, there may be several independent sequences. ♣ This is normal in
system development, where different developers work independently on different versions of
the source code and so change it in different ways. ″ At some stage, it may be necessary to
merge codeline branches to create a new version of a component that includes all changes
that have been made. ♣ If the changes made involve different parts of the code, the
component versions may be merged automatically by combining the deltas that apply to the
code. Chapter 25 Configuration management 2711/12/2014

29. Branching and merging 11/12/2014 Chapter 25 Configuration management 28
30. Storage management ″ When version control systems were first developed, storage

management was one of their most important functions. ″ Disk space was expensive and it
was important to minimize the disk space used by the different copies of components. ″
Instead of keeping a complete copy of each version, the system stores a list of differences

(deltas) between one version and another. ♣ By applying these to a master version (usually
the most recent version), a target version can be recreated. 11/12/2014 Chapter 25
Configuration management 29

31. Storage management using deltas Chapter 25 Configuration management 3011/12/2014
32. Storage management in Git ″ As disk storage is now relatively cheap, Git uses an alternative,

faster approach. ″ Git does not use deltas but applies a standard compression algorithm to
stored files and their associated meta-information. ″ It does not store duplicate copies of files.
Retrieving a file simply involves decompressing it, with no need to apply a chain of
operations. ″ Git also uses the notion of packfiles where several smaller files are combined
into an indexed single file. 11/12/2014 Chapter 25 Configuration management 31

33. System building Chapter 25 Configuration management 3211/12/2014
34. System building ″ System building is the process of creating a complete, executable system by

compiling and linking the system components, external libraries, configuration files, etc. ″
System building tools and version management tools must communicate as the build process
involves checking out component versions from the repository managed by the version
management system. ″ The configuration description used to identify a baseline is also used
by the system building tool. Chapter 25 Configuration management 3311/12/2014

35. Build platforms ″ The development system, which includes development tools such as
compilers, source code editors, etc. ♣ Developers check out code from the version
management system into a private workspace before making changes to the system. ″ The
build server, which is used to build definitive, executable versions of the system. ♣
Developers check-in code to the version management system before it is built. The system
build may rely on external libraries that are not included in the version management system.
″ The target environment, which is the platform on which the system executes. Chapter 25
Configuration management 3411/12/2014

36. System building Chapter 25 Configuration management 3511/12/2014
37. Build system functionality ″ Build script generation ″ Version management system integration ″

Minimal re-compilation ″ Executable system creation ″ Test automation ″ Reporting ″
Documentation generation Chapter 25 Configuration management 3611/12/2014

38. System platforms ″ The development system, which includes development tools such as
compilers, source code editors, etc. ″ The build server, which is used to build definitive,
executable versions of the system. This server maintains the definitive versions of a system. ″
The target environment, which is the platform on which the system executes. ♣ For real-time
and embedded systems, the target environment is often smaller and simpler than the
development environment (e.g. a cell phone) 11/12/2014 Chapter 25 Configuration
management 37

39. Development, build, and target platforms Chapter 25 Configuration management 3811/12/2014
40. Agile building ″ Check out the mainline system from the version management system into the

developer’s private workspace. ″ Build the system and run automated tests to ensure that the
built system passes all tests. If not, the build is broken and you should inform whoever
checked in the last baseline system. They are responsible for repairing the problem. ″ Make
the changes to the system components. ″ Build the system in the private workspace and rerun
system tests. If the tests fail, continue editing. Chapter 25 Configuration management
3911/12/2014

41. Agile building ″ Once the system has passed its tests, check it into the build system but do not
commit it as a new system baseline. ″ Build the system on the build server and run the tests.
You need to do this in case others have modified components since you checked out the
system. If this is the case, check out the components that have failed and edit these so that
tests pass on your private workspace. ″ If the system passes its tests on the build system, then
commit the changes you have made as a new baseline in the system mainline. Chapter 25
Configuration management 4011/12/2014

42. Continuous integration Chapter 25 Configuration management 4111/12/2014
43. Pros and cons of continuous integration ″ Pros ♣ The advantage of continuous integration is

that it allows problems caused by the interactions between different developers to be
discovered and repaired as soon as possible. ♣ The most recent system in the mainline is the
definitive working system. ″ Cons ♣ If the system is very large, it may take a long time to
build and test, especially if integration with other application systems is involved. ♣ If the
development platform is different from the target platform, it may not be possible to run
system tests in the developer’s private workspace. 11/12/2014 Chapter 25 Configuration
management 42

44. Daily building ″ The development organization sets a delivery time (say 2 p.m.) for system
components. ♣ If developers have new versions of the components that they are writing, they
must deliver them by that time. ♣ A new version of the system is built from these
components by compiling and linking them to form a complete system. ♣ This system is then
delivered to the testing team, which carries out a set of predefined system tests ♣ Faults that
are discovered during system testing are documented and returned to the system developers.
They repair these faults in a subsequent version of the component. Chapter 25 Configuration
management 4311/12/2014

45. Minimizing recompilation ″ Tools to support system building are usually designed to minimize
the amount of compilation that is required. ″ They do this by checking if a compiled version
of a component is available. If so, there is no need to recompile that component. ″ A unique
signature identifies each source and object code version and is changed when the source code
is edited. ″ By comparing the signatures on the source and object code files, it is possible to
decide if the source code was used to generate the object code component. Chapter 25
Configuration management 4411/12/2014

46. File identification ″ Modification timestamps ♣ The signature on the source code file is the time
and date when that file was modified. If the source code file of a component has been
modified after the related object code file, then the system assumes that recompilation to
create a new object code file is necessary. ″ Source code checksums ♣ The signature on the
source code file is a checksum calculated from data in the file. A checksum function
calculates a unique number using the source text as input. If you change the source code
(even by 1 character), this will generate a different checksum. You can therefore be confident
that source code files with different checksums are actually different. Chapter 25
Configuration management 4511/12/2014

47. Timestamps vs checksums ″ Timestamps ♣ Because source and object files are linked by name
rather than an explicit source file signature, it is not usually possible to build different
versions of a source code component into the same directory at the same time, as these would
generate object files with the same name. ″ Checksums ♣ When you recompile a component,
it does not overwrite the object code, as would normally be the case when the timestamp is

used. Rather, it generates a new object code file and tags it with the source code signature.
Parallel compilation is possible and different versions of a component may be compiled at
the same time. Chapter 25 Configuration management 4611/12/2014

48. Linking source and object code 11/12/2014 Chapter 25 Configuration management 47
49. Change management Chapter 25 Configuration management 4811/12/2014
50. Change management ″ Organizational needs and requirements change during the lifetime of a

system, bugs have to be repaired and systems have to adapt to changes in their environment.
″ Change management is intended to ensure that system evolution is a managed process and
that priority is given to the most urgent and cost-effective changes. ″ The change
management process is concerned with analyzing the costs and benefits of proposed changes,
approving those changes that are worthwhile and tracking which components in the system
have been changed. Chapter 25 Configuration management 4911/12/2014

51. The change management process Chapter 25 Configuration management 5011/12/2014
52. A partially completed change request form (a) Chapter 25 Configuration management 51

Change Request Form Project: SICSA/AppProcessing Number: 23/02 Change requester: I.
Sommerville Date: 20/07/12 Requested change: The status of applicants (rejected, accepted,
etc.) should be shown visually in the displayed list of applicants. Change analyzer: R. Looek
Analysis date: 25/07/12 Components affected: ApplicantListDisplay, StatusUpdater
Associated components: StudentDatabase 11/12/2014

53. A partially completed change request form (b) Chapter 25 Configuration management 52
Change Request Form Change assessment: Relatively simple to implement by changing the
display color according to status. A table must be added to relate status to colors. No changes
to associated components are required. Change priority: Medium Change implementation:
Estimated effort: 2 hours Date to SGA app. team: 28/07/12 CCB decision date: 30/07/12
Decision: Accept change. Change to be implemented in Release 1.2 Change implementor:
Date of change: Date submitted to QA: QA decision: Date submitted to CM: Comments:
11/12/2014

54. Factors in change analysis ″ The consequences of not making the change ″ The benefits of the
change ″ The number of users affected by the change ″ The costs of making the change ″ The
product release cycle Chapter 25 Configuration management 5311/12/2014

55. Derivation history Chapter 25 Configuration management 54 // SICSA project (XEP 6087) // //
APP-SYSTEM/AUTH/RBAC/USER_ROLE // // Object: currentRole // Author: R. Looek //
Creation date: 13/11/2012 // // © St Andrews University 2012 // // Modification history //
Version Modifier Date Change Reason // 1.0 J. Jones 11/11/2009 Add header Submitted to
CM // 1.1 R. Looek 13/11/2012 New field Change req. R07/02 11/12/2014

56. Change management and agile methods ″ In some agile methods, customers are directly
involved in change management. ″ The propose a change to the requirements and work with
the team to assess its impact and decide whether the change should take priority over the
features planned for the next increment of the system. ″ Changes to improve the software
improvement are decided by the programmers working on the system. ″ Refactoring, where
the software is continually improved, is not seen as an overhead but as a necessary part of the
development process. Chapter 25 Configuration management 5511/12/2014

57. Release management Chapter 25 Configuration management 5611/12/2014
58. Release management ″ A system release is a version of a software system that is distributed to

customers. ″ For mass market software, it is usually possible to identify two types of release:
major releases which deliver significant new functionality, and minor releases, which repair

bugs and fix customer problems that have been reported. ″ For custom software or software
product lines, releases of the system may have to be produced for each customer and
individual customers may be running several different releases of the system at the same
time. Chapter 25 Configuration management 5711/12/2014

59. Release components ″ As well as the the executable code of the system, a release may also
include: ♣ configuration files defining how the release should be configured for particular
installations; ♣ data files, such as files of error messages, that are needed for successful
system operation; ♣ an installation program that is used to help install the system on target
hardware; ♣ electronic and paper documentation describing the system; ♣ packaging and
associated publicity that have been designed for that release. Chapter 25 Configuration
management 5811/12/2014

60. Factors influencing system release planning Factor Description Competition For mass-market
software, a new system release may be necessary because a competing product has
introduced new features and market share may be lost if these are not provided to existing
customers. Marketing requirements The marketing department of an organization may have
made a commitment for releases to be available at a particular date. Platform changes You
may have to create a new release of a software application when a new version of the
operating system platform is released. Technical quality of the system If serious system faults
are reported which affect the way in which many customers use the system, it may be
necessary to issue a fault repair release. Minor system faults may be repaired by issuing
patches (usually distributed over the Internet) that can be applied to the current release of the
system. Chapter 25 Configuration management 5911/12/2014

61. Release creation ″ The executable code of the programs and all associated data files must be
identified in the version control system. ″ Configuration descriptions may have to be written
for different hardware and operating systems. ″ Update instructions may have to be written
for customers who need to configure their own systems. ″ Scripts for the installation program
may have to be written. ″ Web pages have to be created describing the release, with links to
system documentation. ″ When all information is available, an executable master image of
the software must be prepared and handed over for distribution to customers or sales outlets.
11/12/2014 Chapter 25 Configuration management 60

62. Release tracking ″ In the event of a problem, it may be necessary to reproduce exactly the
software that has been delivered to a particular customer. ″ When a system release is
produced, it must be documented to ensure that it can be re-created exactly in the future. ″
This is particularly important for customized, long-lifetime embedded systems, such as those
that control complex machines. ♣ Customers may use a single release of these systems for
many years and may require specific changes to a particular software system long after its
original release date. Chapter 25 Configuration management 6111/12/2014

63. Release reproduction ″ To document a release, you have to record the specific versions of the
source code components that were used to create the executable code. ″ You must keep
copies of the source code files, corresponding executables and all data and configuration
files. ″ You should also record the versions of the operating system, libraries, compilers and
other tools used to build the software. Chapter 25 Configuration management 6211/12/2014

64. Release planning ″ As well as the technical work involved in creating a release distribution,
advertising and publicity material have to be prepared and marketing strategies put in place
to convince customers to buy the new release of the system. ″ Release timing ♣ If releases

are too frequent or require hardware upgrades, customers may not move to the new release,
especially if they have to pay for it. ♣ If system releases are too infrequent, market share may
be lost as customers move to alternative systems. Chapter 25 Configuration management
6311/12/2014

65. Software as a service ″ Delivering software as a service (SaaS) reduces the problems of
release management. ″ It simplifies both release management and system installation for
customers. ″ The software developer is responsible for replacing the existing release of a
system with a new release and this is made available to all customers at the same time.
11/12/2014 Chapter 25 Configuration management 64

66. Key points ″ Configuration management is the management of an evolving software system.
When maintaining a system, a CM team is put in place to ensure that changes are
incorporated into the system in a controlled way and that records are maintained with details
of the changes that have been implemented. ″ The main configuration management processes
are concerned with version management, system building, change management, and release
management. ″ Version management involves keeping track of the different versions of
software components as changes are made to them. Chapter 25 Configuration management
6511/12/2014

67. Key points ″ System building is the process of assembling system components into an
executable program to run on a target computer system. ″ Software should be frequently
rebuilt and tested immediately after a new version has been built. This makes it easier to
detect bugs and problems that have been introduced since the last build. ″ Change
management involves assessing proposals for changes from system customers and other
stakeholders and deciding if it is cost-effective to implement these in a new version of a
system. ″ System releases include executable code, data files, configuration files and
documentation. Release management involves making decisions on system release dates,
preparing all information for distribution and documenting each system release. Chapter 25
Configuration management 6611/12/2014

AboutSupportTermsPrivacyCopyrightCookie PreferencesDo not sell or share my personal information

English

© 2023 SlideShare from Scribd

https://support.scribd.com/hc/en-us/articles/360038016931-Privacy-Rights-Request-Form

	Ch25 configuration management

