

Software Configuration
Management Handbook

Third Edition

6518 Book.indb 1 12/30/14 1:24 PM

For a listing of recent titles in the
Artech House Computing Library,

turn to the back of this book.

6518 Book.indb 2 12/30/14 1:24 PM

Software Configuration
Management Handbook

Third Edition

Alexis Leon

a r te ch h o u se . co m

6518 Book.indb 3 12/30/14 1:24 PM

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the U.S. Library of Congress

British Library Cataloguing in Publication Data
A catalog record for this book is available from the British Library.

ISBN-13: 978-1-60807-843-1

Cover design by John Gomes

© 2015 Artech House
685 Canton Street
Norwood, MA

All rights reserved. Printed and bound in the United States of America. No part of
this book may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any information storage and
retrieval system, without permission in writing from the publisher.

All terms mentioned in this book that are known to be trademarks or service marks
have been appropriately capitalized. Artech House cannot attest to the accuracy of this
information. Use of a term in this book should not be regarded as affecting the validity
of any trademark or service mark.

10 9 8 7 6 5 4 3 2 1

6518 Book.indb 4 12/30/14 1:24 PM

To my parents Leon Alexander and Santhamma Leon
for their love, encouragement, and support

6518 Book.indb 5 12/30/14 1:24 PM

6518 Book.indb 6 12/30/14 1:24 PM

vii

Contents

Preface xxi

Changes in the Third Edition xxii
How to Use This Book xxiii
Who Should Read This Book? xxiii

CHapTEr 1
Overview of SCM 1

Introduction 1
Common SCM Myths 3

SCM Means More Work and Procedures 3
SCM Will Change Current Practices and It Will Create Product
Failures 3
SCM Is a Difficult, Monotonous, and Time-Consuming Activity 3
SCM Is the Responsibility of Management 4
SCM Is Just for Developers 4
SCM Is Just for the SCM Team 4
SCM Is Just for the Maintenance and Technical Support Team 5
SCM Will Make Many Employees Redundant and Jobless 5
SCM Slows Down the Software Development Process 6
SCM Is Just To Get Certification Like ISO and CMM 6
SCM Tools Will Take Care of Everything 6
One SCM Tool Will Suit Everybody 6
SCM Is Very Expensive 7
Once the SCM Implementation Is Complete, There Will Be No
Additional Expenses 7
SCM Is Just for the Source Code 7
SCM Is Change Management and Defect Tracking 8
Software Development Can Succeed Without SCM 8
SCM Is Just To Impress Customers 8

A Brief History of SCM 9
SCM: Concepts and Definitions 10
Importance of SCM 12
Benefits of SCM 13
Summary 13

References 14

6518 Book.indb 7 12/30/14 1:24 PM

viii Contents

CHapTEr 2
The Software Development Process 15

Introduction 15
Software Development Life Cycle (SDLC) 16
SDLC Phases 18

Project Start-up 18
Requirements Analysis and Requirements Specification 20
Systems Analysis 21
High-Level Design 23
Low-Level or Detailed Design (LLD) 24
Coding and Unit Testing 25
System Testing 26
Acceptance Testing 27
Implementation 27
Project Windup 28
Project Maintenance 28
Retirement 28

Summary 30
References 30
Selected Bibliography 31

CHapTEr 3
Pitfalls in the Software Development Process 33

Introduction 33
Communications Breakdown Problem 33
Shared Data Problem 36
Multiple Maintenance Problem 37
Simultaneous Update Problem 38
Summary 40

References 40

CHapTEr 4
Need and Importance of SCM 41

Introduction 41
Need for SCM 41

The Nature of Software Products, Projects, and Development Teams 41
Increased Complexity and Demand 42
The Changing Nature of Software and The Need for Change
Management 43

Benefits of SCM 44
Improved Organizational Competitiveness 44
Better Customer Service and Improved Customer Goodwill 45
Better Return on Investment 45
Improved Management Control Over Software Development Activities 45
Improved Software Development Productivity 46
Easier Handling of Software Complexity 46

6518 Book.indb 8 12/30/14 1:24 PM

Contents ix

Improved Security 46
Higher Software Reuse 47
Lower Maintenance Costs 47
Better QA 48
Reduction of Defects and Bugs 48
Faster Problem Identification and Bug Fixes 49
Process-Dependent Development Rather Than Person-Dependent
Development 49
Assurance That the Correct System Has Been Built 50

Summary 50
References 50

CHapTEr 5
SCM: Basic Concepts 53

Introduction 53
Overview of SCM 54
Baselines 55
Check-In and Check-Out 57
Versions and Variants 58
Parallel Development and Branching 59
Naming of Versions 61
Source and Derived Items 61
System Building 62
Releases 62
Deltas 63
SCM Database 65
SCM Activities 66
Summary 67

References 67
Selected Bibliography 67

CHapTEr 6
Configuration Identification 69

Introduction 69
Impact of CI Selection 72

Effects of Selecting Too Many CIs 72
Effects of Selecting Too Few CIs 73

Baselines 73
CI Selection 75

Checklist for Selection of CIs 75
Designation: Naming of CIS 76
CI Description 77
Acquisition of CIs 77
Summary 78

References 78
Selected Bibliography 78

6518 Book.indb 9 12/30/14 1:24 PM

x Contents

CHapTEr 7
Configuration Control 81

Introduction 81
Change 82
Proposing Changes to the Customer 82
Deviations and Waivers 83
Change and Configuration Control 83
Problems of Uncontrolled Change 84
Configuration Control 84

Change Initiation 86
Change Classification 88
Change Evaluation/Analysis 88
Change Disposition 89
Change Implementation 90
Change Verification 90
Baseline Change Control 91

File-Based versus Change-Based Change Management 91
Escalation and Notification 93
Emergency Fixes 93
Problem Reporting and Tracking 94
Problem Reports and CRs 94
Problem Identification 95
Defect Classification 96

Requirements Analysis 96
Design Phase 97
Coding and Testing Phase 98

Defect Severity 98
Defect Prevention 98

Causal Analysis 99
Defect Knowledge Base and Help Desks 99

CCB 99
CCB Composition 100
Functions of the CCB 101
Functioning of the CCB 102

Summary 103
References 104
Selected Bibliography 104

CHapTEr 8
Status Accounting 107

Introduction 107
Status Accounting Information Gathering 108
Status Accounting Database 109
Importance of Status Accounting 110
Status Accounting Reports 111

Change Log 112

6518 Book.indb 10 12/30/14 1:24 PM

Contents xi

Progress Report 112
CI Status Report 112
Transaction Log 112

Status Accounting and Automation 112
Change and Problem Tracking Reports 114
Difference Reporting 114
Ad Hoc Queries 114
Journals 114

Summary 115
References 115
Selected Bibliography 115

CHapTEr 9
Configuration Verification and Audits 117

Introduction 117
Software Reviews 119
Configuration Verification 120
The When, What, and Who of Auditing 121
FCA 122
PCA 123
Auditing the SCM System 123
Role of the SCM Team in CAs 123
CAs and SCM Tools 124
Summary 124

References 124
Selected Bibliography 125

CHapTEr 10
SCM: Advanced Concepts 127

Introduction 127
Version Control 127
System Building 128
Release Management 129
Interface Control 130
Subcontractor Control 131
Software Library 132
Summary 133

References 134
Selected Bibliography 134

CHapTEr 11
SCM Standards 137

Introduction 137
Military Standards 141

DOD-STD-2167A 141
DOD-STD-2168 141

6518 Book.indb 11 12/30/14 1:24 PM

xii Contents

MIL-STD-498 142
MIL-HDBK-61A (SE) 142
MIL-STD-2549 143
MIL-STD-480B 143
MIL-STD-481B 144
MIL-STD-482 144
MIL-STD-973 144
MIL-STD-1521B 144
MIL-STD-961E 145

International/Commercial Standards 145
EIA-649-B 146
IEEE Std-828-2012 146
ANSI/IEEE Std-1042-1987 147
ANSI/IEEE Std-730-2014 147
ANSI/IEEE Std-730.1-1995 147
ANSI/IEEE Std-1028-2008 147
ISO/IEC/IEEE 12207-2008 148
ISO/IEC/IEEE 15288:2008 148
ISO 9001:2008 149
ISO/IEC 90003: 2004 150
ISO 10007: 2003 151

Summary 151
Selected Bibliography 152

CHapTEr 12
Software Process Improvement Models and SCM 153

Introduction 153
CMM 153
CMM Interactive (CMMI) 154
ISO/IEC 15504 155
BOOTSTRAP 156
Trillium Model 157
Information Technology Infrastructure Library (ITIL) 158

Change Evaluation 160
Change Management 160
Release and Deployment Management 160
Service Asset and CM 161

Control Objectives for Information and Related Technology (COBIT) 161
Software Engineering Body of Knowledge (SWEBOK) 162
Summary 164

Selected Bibliography 164

CHapTEr 13
SCM Plans (SCMPs) 167

Introduction 167
SCMP and the Incremental Approach 168

6518 Book.indb 12 12/30/14 1:24 PM

Contents xiii

SCMPs and SCM Tools 168
SCMPs and Standards 169

ANSI/IEEE Std-828–1998 and ANSI/IEEE Std-1042–1987 170
MIL-HDBK-61A (SE)-2001 170
EIA-649-B: 2011 172
ISO 10007: 2003 172

Audit of the SCMP 174
How to Write a Good SCMP 174
Contents of a Typical SCMP 176
Sample SCMPS 181
Summary 181

Reference 182
Selected Bibliography 182

CHapTEr 14
SCM Organization 183

Introduction 183
SCM and the Organization 183
SCM Organization 186
Automation and SCM Team Size 188
Skill Inventory Database 188
CCB Organization 190
Summary 192

Reference 192
Selected Bibliography 193

CHapTEr 15
SCM Tools 195

Introduction 195
Evolution of SCM Tools 195
Reasons for the Increasing Popularity of SCM Tools 196
Advantages of SCM Tools 197

Information Integration 197
Flexibility 197
Better Analysis and Planning Capabilities 198
Use of the Latest Technology 198

Why Many SCM Tool Implementations Fail 198
SCM Tools and SCM Functions 199

Version Management 200
Change Management 201
Problem Tracking 202
Promotion Management 203
System Building 203
Status Accounting (Querying and Reporting) 204
CAs 204
Access and Security 204

6518 Book.indb 13 12/30/14 1:24 PM

xiv Contents

Customization 205
Web Enabling 205

SCM Tool Selection 206
Selection Process 207
Selection Committee 207

Working with Vendors 208
Role of Technology 208
Selection Criteria 209
Tool Implementation 212
SCM Tools: Make or Buy? 214
Summary 216

References 216
Selected Bibliography 217

CHapTEr 16
Documentation Management and Control (DMC) and Product Data
Management (PDM) 219

Introduction 219
Document Life Cycle 220

Document Creation 221
Document Storage 222
Publishing 222
Viewing 222
Modification or Change, Review and Approval 222
Records Retention 223
Document Disposal 223
Archiving 223

Documentation and SDLC Phases 223
DMC 225
PDM and DMC 227
Overview of PDM 228
Data Management 230
Process Management 230
Benefits of PDM 231

Reduced Time to Market 231
Improved Design Productivity 231
Improved Design and Manufacturing Accuracy 232
Better Use of Creative Team Skills 232
Data Integrity Safeguarded 232
Better Control of Projects 232
A Major Step Toward Total Quality Management 232

PDM and SCM 233
PDM Resources 234
Summary 234

References 234
Selected Bibliography 235

6518 Book.indb 14 12/30/14 1:24 PM

Contents xv

CHapTEr 17
SCM Implementation 237

Introduction 237
Managing the Implementation 237
Preimplementation Tasks—Getting Ready 238
Importance of Preparation 238
Before You Leap 239

Assembling the Participants 241
Feasibility Study Review 241
Project Mission and Vision Statements Creation 241
Determination of Organizational Structure 242
Determination of the Modules To Be Implemented 242
Creating the Core Team 242
Establishing the Training Needs 242
Establishing the Data Conversion or Migration Strategy 243
Establishing Interfaces 244
Determining Work Estimates 244
Cost of Consultants 244
Calculation of Implementation Time 245
Identifying Constraints 245
Establishing Policies and Guidelines 245

In-House Implementation—Pros and Cons 246
SCM Implementation Plan 247
Risk Assessment 249
Implementation Strategy 249
Budget 250
Cost 251

Cost-Benefit Analysis 252
Performance Measurement 253
SCM Implementation Team 254

Composition of the Implementation Team 256
Organization of the Implementation Team 257
How the Implementation Team Works 262

Problem Resolution 264
System Issues 264
Consultants 265

Role of the Consultants 268
Contract with the Consultants 269

Package Vendors 269
Vendors and Vendor Management 270
Role of the Vendor 272
Contract with the Vendor 273

Training and Education 275
Overview of Training 276
Training Costs 277
Need and Importance of Training 278

6518 Book.indb 15 12/30/14 1:24 PM

xvi Contents

Training Phases 280
Preimplementation Training 280
User Training (During and After Implementation) 282
Training, Assessment, and Review 283

Training Strategy 284
Success Factors 285
Employees and Employee Resistance 287
Reasons for Employee Resistance 288

Fear of Being Redundant 288
Fear of Failure 288
Fear of the Future 289

Dealing with Employee Resistance 289
Training and Education 289
Implement an Organizational Change Management Program 290
Creating SCM Champions 290
Pilot Projects 290
Involve Employees in SCM Process 291
Address Issues of Fear, Uncertainty, and Self-Esteem 291
Manage Expectations 291

Contract with the Employees 292
Company-Wide Implementation 293
SCM Implementation: The Hidden Costs 293

Training 293
Integration and Testing 294
Data Conversion or Migration 294
Data Analysis 294
External Consultants 294
Brain Drain (Employee Turnover) 295
Continuing Maintenance 295

Summary 295
Reference 296
Selected Bibliography 296

CHapTEr 18
The Different Phases of SCM Implementation 299

Introduction 299
Objectives of SCM Implementation 300

Scope 301
Resources 301
Risk 301
Complexity 301
Benefits 301

Different Phases of SCM Implementation 302
SCM System Design 305
SCMP Preparation 306
SCM Team Organization 306
SCM Infrastructure Setup 306

6518 Book.indb 16 12/30/14 1:24 PM

Contents xvii

SCM Team Training 307
Project Team Training 307
SCM System Implementation 308
Operation and Maintenance of the SCM System 308
Records Retention 309
SCM System Retirement 309

SCM Tool Retirement 309
Why Many SCM Implementations Fail 310

Lack of Top Management Buy-in, Commitment, and Support 310
Improper Planning and Budgeting 310
Use of the Wrong SCM Tool 310
Lack of Training 311
Work Culture of the Organization 311

Summary 311
Reference 312
Selected Bibliography 312

CHapTEr 19
SCM Deployment Models and Transition Strategies 313

Introduction 313
Traditional License or On-Premises Deployment 313

Advantages of On-Premises SCM System 313
Disadvantages of On-premises SCM System 314

Cloud Computing 314
Cloud Computing Models 315

IaaS 315
PaaS 316
SaaS 316

SCM and Cloud Computing 316
Hosted System Deployment 317

Advantages of a Hosted SCM System 318
Disadvantages of a Hosted SCM System 318

SaaS or On-Demand Deployment 318
Advantages of SaaS SCM Systems 319
Disadvantages of SaaS SCM Systems 320

SCM Transition Strategies 324
Big-Bang Strategy 325
Phased Implementation 326
Choosing a Strategy 327

Summary 328
References 328

CHapTEr 20
Source Code Repositories 329

Overview 329
Software Development in a Code Repository 329
How Will Repositories Help Software Companies? 331

6518 Book.indb 17 12/30/14 1:24 PM

xviii Contents

Features Available at Source Code Repositories 332
Factors to Consider When Choosing a Repository 333
Advantages and Disadvantages 334

Advantages 334
Disadvantages 334

Summary 335
Selected Bibliography 335

CHapTEr 21
Implementation Challenges 337

Introduction 337
Implementation Challenges 338

Inadequate Requirements Definition 338
Resistance to Change 338
Inadequate Resources 339
Lack of Top Management Support 339
Lack of Organizational Readiness 339
Inadequate Training and Education 340
Inaccurate Expectations 340
Poor Package Selection 340
Poor Project Management 341
Customization Issues 341
Poor Communication and Cooperation 341
Data Quality Costs 342
Hidden Implementation Costs 342
Improper Operation or Use 342

Summary 342
Reference 343

CHapTEr 22
SCM Operation and Maintenance 345

Introduction 345
Employee Relocation and Retraining 346
Organizational Structure 346
Roles and Skills 347
Knowledge Management 347
SCM Tools and Technology 348
Review 348
Operation of the SCM System 349

Interdepartmental Coordination 350
SWOT Analysis 350
Documentation 350
Training 351
Audits and Reviews 351
CCB Formation 351

6518 Book.indb 18 12/30/14 1:24 PM

Contents xix

SCM Database Management 352
Software Upgrades, Enhancements, and Modifications 352
Help Desks 353
Change and Problem Requests from Customers and In-field Emergency
Fixes 353
Reusability Improvement 354
Metrics 354

SCM Maintenance Phase 355
Summary 356

Selected Bibliography 356

CHapTEr 23
SCM in Special Circumstances 357

Introduction 357
SCM and Project Size 357
SCM in Very Large Projects 358

Performance of SCM Tools 359
Implementation Strategy 359
Distributed, Concurrent, and Parallel Development 360
Change Management 360
Status Accounting 361
System Building 361
Skill Inventory Database 361
Training 362
Help Desks and Other Knowledge-Sharing Systems 362
SCM Costs 362

Concurrent and Parallel Development 363
Web Site Management 363
SCM in Integrated Development Environments 364
SCM in Distributed Environments 364
SCM and Case Tools 365
Summary 365

References 366
Selected Bibliography 366

appEndix a
SCM Resources on the Internet 367

Organizations and Institutes 367
Resource Pages 367
Commercial Research Organizations 368
Digital/On-Line Libraries 368
Magazines and Periodicals 368
General Sites 369
Major SCM Tools 369

6518 Book.indb 19 12/30/14 1:24 PM

xx Contents

appEndix B
SCM Bibliography 371

Glossary and List of Acronyms 391

About the Author 403

Index 405

6518 Book.indb 20 12/30/14 1:24 PM

xxi

Preface

Configuration management (CM) is the art of identifying, organizing, and control-
ling modifications to the software being built by a programming team. The goal
is to maximize productivity by minimizing mistakes. Practicing CM in a software
project has many benefits, including increased development productivity, better
control over the project, better project management, reduction in errors and bugs,
faster problem identification and bug fixes, and improved customer goodwill. How-
ever, a single software CM (SCM) solution is not suited for all projects; while the
core SCM objectives and functions remain the same, the SCM system has to be
tailored to each project.

Today’s software development environment is highly complex and sophisticated.
At times, multiple companies join forces to develop a single product. Similarly, even
within one company, it might take several geographically separate teams to develop
the various subsystems of just one product or system. Managing these projects with-
out any scientific tools could result in costly product recalls or project failures. SCM
is the ideal solution for managing the chaos and confusion of software development,
as its primary objective is to bring control to the development process.

This book details the SCM discipline, starting with the basics—the defini-
tion of SCM and its objectives and functions—and explaining SCM as it should
be practiced in the software development process. Further, the book outlines the
different phases in the software development life cycle and the role SCM plays in
each phase. The book also details the pitfalls of the software development process,
including the need, importance, and benefits of SCM, and demystifies the common
misconceptions about SCM. In addition, the book clearly explains basic SCM con-
cepts such as baselines, versions, variants, delta storage, branching, merging, and
releases and provides in-depth coverage of the four pillars of SCM: identification,
control, status accounting, and audits.

After familiarizing readers with basic terminology and concepts, the book
exhaustively covers advanced topics, including the following:

•	 SCM implementation phases;
•	 Build and release management;
•	 Interface and subcontractor control;
•	 Software libraries;
•	 SCM plans and guidelines for writing good SCM plans;
•	 SCM standards;
•	 The role of SCM in software process improvement (SPI) models (e.g., CMM,

CMMI, ISO SPICE, BOOTSTRAP, Trillium, ITIL, COBIT, and SWEBOK);

6518 Book.indb 21 12/30/14 1:24 PM

xxii Preface

•	 SCM organization;
•	 Documentation management and control (DMC);
•	 Product data management (PDM).

In addition, the book covers the various SCM deployment models, from tra-
ditional to software as a service (SaaS). It also describes popular transition strate-
gies and includes a completely new chapter on the latest development in the field
of software development in the cloud, source code repositories—detailing their
features, advantages, and limitations and describing how to select one that is best
suited for an organization.

Subsequently, the book covers SCM tools, one of the most important aspects of
SCM, explaining topics like SCM automation, the advantages of SCM tools, and
pointers on tool selection so that readers can find the SCM tools best suited for
their organization or project. A salient feature of this edition is its comprehensive
coverage of the different activities required to plan, design, implement, operate,
and maintain a good SCM system. Accordingly, the book thoroughly explains
SCM system design, tool selection, implementation, and post-implementation; the
operation and maintenance of SCM systems; and how to perform SCM in different
scenarios (e.g., very large projects, website management, distributed environments,
and integrated development environments).

The book’s two appendices—the first detailing SCM resources on the Internet
and the second providing a thorough SCM bibliography—will be of immense value
for readers who want to further explore the new frontiers of SCM. The book also
features an extensive glossary and acronym list to help readers when they encounter
unfamiliar terms in the early chapters of the book.

One important aspect of this book is that it does not rely on any specific tool
or standard for explaining SCM concepts and techniques. In fact, one of the main
objectives of this book is to give the reader enough information about SCM and its
mechanics and implementation without being tool- or standard-specific. Accord-
ingly, the book gives information on how to select the right SCM tool for an orga-
nization or project and how to implement, manage, and maintain the tool so that
the organization can reap the full benefits of SCM.

Changes in the Third Edition

The book has been revised to include the latest developments in the field of SCM. It
explains the concepts of SCM, demystifies its myths and misconceptions, and gives
an overview of the technologies that work with SCM systems to make organizations
work at high efficiencies. The book comprehensively covers the implementation
of an SCM system that is best suited for an organization—starting from package
selection and continuing through tasks associated with phases such as team selec-
tion, implementation plan preparation, implementation, project management and
monitoring, training, and post-implementation.

In addition, this edition includes new chapters on implementation challenges,
deployment methodologies, transition strategies, and source code repositories and

6518 Book.indb 22 12/30/14 1:24 PM

Preface xxiii

completely revised and rewritten chapters on SCM tools, SCM implementation,
SCM standards, and SCM certifications.

How to Use This Book

The chapters in this book are organized in such a way that the concepts of SCM are
developed from the ground up. Ideally, the book should be read from start to finish.
However, since such a reading plan will not suit many busy and advanced readers,
I have tried to write individual chapters so that they can be read independently. If
readers come across a term that is not described in the chapter, they may look it
up in the glossary and continue reading. Readers who are not familiar with SCM,
or who are novices in this profession, should read the book from the beginning to
benefit most greatly from it.

Who Should read This Book?

This book is written for company managers who must support SCM efforts and
software project managers who must plan and design SCM systems for their projects.
It is also intended for those professionals who will implement the system and those
who will manage and maintain the SCM system, as well as for software develop-
ers, testers, quality assurance (QA) personnel, and all who will be affected by the
SCM system. The style and approach of the book is intended to be practical rather
than theoretical. It is written in an easy-to-understand and jargon-free style, so
that it will become an invaluable tool in understanding the discipline of SCM and
a useful guide in planning, designing, implementing, managing, and maintaining
a good SCM system.

6518 Book.indb 23 12/30/14 1:24 PM

6518 Book.indb 24 12/30/14 1:24 PM

1

C h a p t e r 1

Overview of SCM

introduction

Computers and communications are becoming integral parts of our lives. A few
decades back, communications used to be between people—one person to another.
Now, however, inanimate objects are getting into the act: Books can tell cash regis-
ters how much they cost; identity cards can tell door locks whether to open or not;
automated guided vehicles can tell their host computer where they are in the shop
floor, what they are carrying, and when they will be free; missiles can compare the
landscape with their own map and hit targets with pinpoint precision; and on the
Internet, people engage in lively discussions and play games even if they are physi-
cally in different continents.

The prime mover behind this digital revolution is computer software. Today
software touches and controls almost all aspects of our life: Software makes us more
efficient and productive; software helps people to learn and teach better; software
makes entities including our homes, banks, and organizations more secure; soft-
ware helps doctors to better diagnose diseases and find better treatments; software
controls mission-critical applications and equipment. The list is endless.

As software becomes more and more prominent, the task of developing the
software is becoming more and more difficult. Because software is used for criti-
cal applications and controlling sophisticated equipment and systems, even a small
mistake or error can have catastrophic consequences. Today’s software projects are
becoming more and more complex—in size, sophistication, and technologies used.
Now most software products cater to millions of users, support different national
languages, and come in different sizes and shapes (e.g., desktop, standard, profes-
sional, and enterprise). For example, operating systems, word processors, and even
enterprise resource planning (ERP) packages support multiple languages and mul-
tiple currencies. Almost all application software products (such as word processors,
ERP packages, and even SCM tools) support more than one hardware or software
platform. For example, we have ERP systems that run on mainframes and client-
server systems; different versions of Web browsers for the PC and Mac; and database
management systems that run on a variety of operating systems including MVS,
UNIX, Windows NT, and Linux. Competition and advancements in technology
are driving software vendors to include additional functionality and new features
in their products just to stay in business.

The emergence and growing popularity of cloud computing has created new
software development models and practices. With cloud computing, programmers
can work on a software project from anywhere in the world if they have a computer

6518 Book.indb 1 12/30/14 1:24 PM

2 Overview of SCM

and an Internet connection and they can work securely because of developments
in the field of computer security. Application development in the cloud has created
the need for newer models for software development and support functions like
SCM and software quality assurance (SQA). Since applications are being developed
in a virtual environment, the computing environment and software development
models have to scale up to face the new challenges of speed, 24/7 availability, and
security, among others.

In addition, users of software systems have matured, and the bugs and defects
in a system are detected and publicized faster than ever—thanks to the Internet.
In today’s software development environment, where communication facilities are
advanced, the news that a software product is bad and has bugs can spread very
fast. This is evident from the newsgroup postings and the news alerts that one
gets so often nowadays. as a result, if the company has to save face and prevent its
market share from dropping, it has to provide fixes and patches very quickly. The
time that a company gets to do damage control—that is, find the cause of the bug,
identify the problem area and fix the bug, ensure that the bug fixing has not created
additional bugs, do regression testing, and get the bug-fixed version of the software
to the customer—is much shorter than before. Companies must react very quickly
in order to keep their reputations intact.

Thus, today’s software development environment is very complex and the reac-
tion or response times are very short. Millions of software professionals around
the world are developing complex software systems. These systems consist of a
myriad of components, each of which evolves as it is developed and maintained.
The task of managing a software project successfully and delivering a high-quality
and defect-free product on time and without any cost overrun is nearly an impos-
sible task. To survive in this brutally competitive world, organizations need some
sort of mechanism to keep things under control, or total chaos and confusion will
result and threaten to create product or project failures and even to put organiza-
tions out of business. One such mechanism is a properly implemented SCM system.
According to Whitgift [1], SCM ensures that the development and evolution of the
different components of a system are efficient and controlled, so that the individual
components fit together as a coherent whole.

SCM is a method of bringing control to the software development process. As
Babich [2] has stated, “… On any team project, a certain degree of confusion is
inevitable. The goal is to minimize the confusion so that more work can get done.
The art of coordinating software development to minimize this particular type of
confusion is called CM. CM is the art of identifying, organizing, and controlling
modifications to the software being built by a programming team. The goal is to
maximize productivity by minimizing mistakes.”

SCM is a process used for more efficiently developing and maintaining software,
which is accomplished by improving accountability, reproducibility, traceability, and
coordination. All the functions of SCM—including the identification of configu-
ration items, the documentation of characteristics, and controlling change—is for
the purpose of assuring integrity, accountability, visibility, reproducibility, project
coordination and traceability, and formal control of system and project evolution
[3]. This chapter introduces the discipline of SCM.

6518 Book.indb 2 12/30/14 1:24 PM

Common SCM Myths 3

Common SCM Myths

There are a lot of myths that surround the discipline and practice of SCM. Very
often, people are not willing to adopt SCM because of these wrong notions. This
section discusses some of the most common myths about SCM and attempts to
demystify them.

SCM Means More Work and procedures

Properly implementing and managing an SCM system is not an easy task. The tran-
sition period from an environment with no SCM or a rudimentary manual SCM to
an SCM tool is difficult, since new skills have to be learned, and new procedures
and processes have to be followed—among other challenges. Many employees think
that SCM will add more work, make work more difficult, and force unnecessary
procedures. Implementing and transforming to an automated SCM system is a dif-
ficult process. However, if the management and the implementation teams do their
job properly, ensuring that employees are told what to expect and given proper
training, then the transition can be smooth. Once employees get used to the new
system, they will understand the potential benefits and the effort saved through
automation of tasks and jobs and elimination of errors. Today’s SCM tools auto-
mate almost all of the repetitive, monotonous, and tedious procedures, tasks, and
processes, thus making the life of employees a lot easier.

SCM Will Change Current practices and it Will Create product Failures

The SCM package comes with proven and time-tested best practices that have
been collected from the industry and integrated into the system by SCM vendors.
Some of the business practices of the organizations where the SCM packages are
implemented will be different from the best practices in the SCM system. One way
to solve this problem is with customization—changing the code to make the SCM
system function as an existing company practices. This will help an organization
to continue doing business as it was previously. The downside of customization is
that the customized code is not eligible for free upgrades from the vendor. This can
complicate and substantially increase the cost of implementation and maintenance,
making upgrades a great deal more difficult and expensive. These changes also run
the risk of making your company and solution a “community of one without any
other companies running a similar SCM system, making maintenance of the system
nearly impossible.” The better option is change the organization’s business prac-
tices and adopt the best practices from the SCM package. This way, the company
will improve its efficiency, streamline its business process, and avoid the headache
of customization.

SCM is a difficult, Monotonous, and Time-Consuming activity

Properly implementing and managing an SCM system is not an easy task. During
the early days of SCM, where all the CM tasks had to be done manually, CM was
a difficult, monotonous, and time-consuming activity. Even then, however, the

6518 Book.indb 3 12/30/14 1:24 PM

4 Overview of SCM

benefits of having an SCM system far outweighed the difficulties. Today, with the
availability of sophisticated SCM tools, managing an SCM system is a totally dif-
ferent ball game. Today’s SCM tools automate many of the repetitive, monotonous,
and tedious SCM activities, significantly simplifying the practice of SCM.

SCM is the responsibility of Management

SCM is the responsibility of all the people involved in the software development
process. Management is not responsible for the day-to-day operation of the SCM
system. Management’s main job is to create an organizational environment in which
SCM can thrive—in other words, to give SCM its full backing. Management should
also be involved in the development of SCM policies and usage guidelines, the allo-
cation of budget, the selection of tools, and the appointment of competent profes-
sionals to implement and manage the SCM system. An SCM team needs the full
backing and support of management to be able to implement the system smoothly.
Accordingly, management should monitor the implementation and operation of the
system, review the progress and status periodically, and take the necessary correc-
tive actions if required. Management should also ensure that the SCM team gets
the support and cooperation of all the departments.

SCM is Just for developers

Software development teams constitute one of the major users of SCM systems.
Moreover, developers benefit the most from a properly implemented SCM system.
Problems such as missing source code, the inability to find the latest version of a file,
corrected mistakes reappearing, programs that suddenly stop working, and miss-
ing requirements can be avoided if a good SCM system is in place. However, many
developers see SCM as a waste of time and do it only because they are forced to.
This hostility toward SCM can be eliminated if developers are properly educated
in SCM principles and made aware of the benefits of SCM systems. With today’s
SCM tools, the level of automation that is achieved is phenomenal, and performing
SCM activities is not difficult. Although the development team is one of the main
beneficiaries of a good SCM system, many others stand to profit, including testers,
QA personnel, maintenance teams, and support teams.

SCM is Just for the SCM Team

The days of full-fledged SCM teams are gone. Today, SCM tools have replaced
humans in most areas, and most of the SCM activities have been automated. Even
in cases and places where human intervention is required, the tools make the job
easier by automating tasks, providing relevant information for better and faster
decision-making, and enabling better communication between the people involved.
Currently, the major tasks SCM teams have to perform include SCM plan prepara-
tion, tool selection, implementation and operation, user training (training on both
SCM concepts and SCM tool operation), change management, build and release
management, audits and reviews, and management reporting. To manage an efficient

6518 Book.indb 4 12/30/14 1:24 PM

Common SCM Myths 5

and effective SCM system that will help the organization to develop world-class
software without any problems, SCM teams need the full support and cooperation
of all the other departments, including developers, testers, QA personnel, technical
support staff, management, and customers.

SCM is Just for the Maintenance and Technical Support Team

Once an SCM system is developed and tested, it is released to users. From this
point onward, the maintenance phase starts. Once people start using the system,
they will find many errors unnoticed during testing. Users might also ask for new
features and enhancements. It is the responsibility of the maintenance team to
attend to these requests and to fix the bugs that are found. The job of the mainte-
nance and technical support teams will be a lot easier if the project followed good
SCM practices. The maintenance team can fix bugs quickly if the SCM system has
documented the change history, build history, details of bug fixes during develop-
ment, and other such information. Also, managing and maintaining the different
versions of the same product and providing support to these different versions are
not possible without an SCM system. A good SCM system produces a repository
of the errors that occurred during development and describes how they were fixed.
As the maintenance phase continues, more and more problems and their solutions
will be added to this repository, helping the technical support team to avoid the
“reinventing the wheel” phenomenon. Conversely, for projects that have not fol-
lowed any SCM procedures, the job of maintaining the system can turn into one
of the most difficult assignments that software professionals face. A good example
of this is the Y2K projects, where people had to fix problems in programs that
were more than 20–30 years old, programs that had no documentation and that
were developed without any programming standards and naming conventions. In
conclusion, for the effective and efficient functioning of maintenance and techni-
cal support teams, a good SCM system should be in place from the very beginning
of the software development process and not just at the beginning of the mainte-
nance phase.

SCM Will Make Many Employees redundant and Jobless

Another popular misconception about SCM systems is that their implementation
will make many jobs redundant (because of automation) and that hence, many
employees will lose their jobs. Although properly implemented SCM systems will
automate many tasks, they will not necessarily make people redundant. Yes, there
will be changes in job descriptions and in the activities people used to do. Many
tasks will indeed be automated, and this will make the people who were doing
those jobs unnecessary. At the same time, however, SCM systems create new job
opportunities, and the very same people whose jobs have been automated can fill
these new positions after receiving proper training. Here, the amount of planning
that goes into relocation and retraining of employees by the management and the
implementation teams can go a long way in reducing the anxiety of employees. SCM
is a people system made possible by computer software and hardware.

6518 Book.indb 5 12/30/14 1:24 PM

6 Overview of SCM

SCM Slows down the Software development process

Before the advent and popularity of SCM tools, SCM was a time-consuming process
as almost all its activities were performed manually. Even in those days, however,
SCM was considered worth the effort as it saved a lot of time otherwise spent in
activities such as searching for missing files, fixing bugs that were already fixed, and
troubleshooting problems due to the use of incorrect versions. Thus, even though
SCM was a time-consuming process that slowed down developers a little, the ben-
efits far outweighed the costs. Today, on the other hand, with the popularity of
excellent SCM tools that automate almost all the SCM functions, the practice of
SCM is a lot easier, and the argument that SCM slows down the software develop-
ment process or decreases development productivity is totally absurd. In fact, in
managing today’s complex software projects SCM is a must, and any organization
that attempts to develop software products without a good SCM system will be
shooting themselves in the foot.

SCM is Just To Get Certifications Like iSO and CMM

It is true that to get certifications like ISO (International Organization for Standard-
ization), CMM (Capability Maturity Model), and the like, a good SCM system is a
must. However, if SCM systems are implemented and managed just for the sake of
getting such a certification, then it is more likely that the systems will not deliver the
expected results. Organizations should create an environment or work culture that
treats SCM as a fundamental necessity and not as necessary evil to achieve some
certification or to get a contract. The SCM system will not deliver its full potential
if the people involved are doing the SCM activities for the sake of doing them. In
this aspect, the training of users about the benefits of SCM, SCM concepts, and
efficient use of SCM tools is very important.

SCM Tools Will Take Care of Everything

It is a fact that the SCM tools have evolved over time and have become very sophis-
ticated. Today’s SCM tools automate most of SCM activities, making the life of
users a lot easier. In many cases, SCM tools are integrated into the development
environment so that SCM becomes a part of the development process. However,
thinking that SCM tools will take care of everything can be a recipe for disaster. In
fact, many SCM activities need human intervention and judgment, including change
management, build and release management, and configuration audits. While SCM
tools make these jobs easier, there is no substitute for human intelligence and deci-
sion-making. For example, an SCM tool can automate almost 80% of the change
management process. However, SCM personnel should decide when to initiate a
change request, when to do the impact analysis, and when to incorporate the change.

One SCM Tool Will Suit Everybody

There are hundreds of SCM tools available in the marketplace. These tools differ in
features, capabilities, size, functionality, price, technical support, customizability,
and scalability, among other factors. Organizations also differ from one another,

6518 Book.indb 6 12/30/14 1:24 PM

Common SCM Myths 7

each having their own characteristics and identity. Accordingly, assuming that one
tool will be suited for all organizations is wrong. Selecting and purchasing an SCM
tool without analyzing whether the tool is suited for the organization might lead
to disastrous consequences. For an SCM implementation to be successful, the tool
that is implemented should be compatible with organizational culture, practices,
and procedures. Thus, organizations must give proper attention to the selection of
SCM tools that best suit them.

SCM is Very Expensive

SCM tools come in all shapes and sizes. Some are free; some cost a small fortune.
Similarly, some perform rudimentary change management activities, while others
cover the entire life cycle of the development process. Many free SCM tools are avail-
able, but they have limited functionality and features and offer no technical support.

The sophisticated and high-end SCM tools are very expensive. Furthermore, an
SCM system needs people to manage it. Thus, implementing and managing a SCM
system is an expensive affair. However, these expenses should be weighed against
the benefits of SCM systems. Efficient SCM systems increase the productivity of
human resources (e.g., developers, testers, QA personnel, auditors, and managers),
shorten development and change cycles, streamline software builds, reduce errors
by automating monotonous and repetitive tasks, speed up recovery to previous ver-
sions of software when errors are identified, enable better management of projects
by providing quality information, and improve customer satisfaction by resolving
bugs and problems quickly—among other benefits. When the advantages of the
SCM system are considered, it becomes evident that money spent on SCM is well-
spent and that, moreover, SCM systems pay for themselves.

Once the SCM implementation is Complete, There Will Be no additional
Expenses

The SCM implementation is never really over. Maintenance activities—like upgrad-
ing software as new versions come out, upgrading hardware as new technology
becomes available, renewing support contracts with vendors, training new employ-
ees, and conducting refresher courses for current employees—require money. In fact,
the key to successful SCM is a strong SCM strategy, not just for implementation,
but to keep it operating, growing, and adapting with the company—so spending on
SCM never really ends. After the initial deployment, an organization has covered
the major portion of the costs, such as the initial cost of purchasing the software
and hardware, the cost of setting up the SCM system, and the fees for the consul-
tants and vendor support team. However, maintenance and operation of the SCM
system will continue as long as the SCM is running. Accordingly, organizations
need to budget for this to prevent problems stemming from working with outdated
software and hardware and untrained employees.

SCM is Just for the Source Code

Many software professionals believe that CM is a solution suitable only for man-
aging source code. This is far from the truth. Many of today’s CM systems are

6518 Book.indb 7 12/30/14 1:24 PM

8 Overview of SCM

capable of managing a wide variety of digital and electronic artifacts. As we look
back on how this narrow-minded view of CM developed and why it still persists,
there is no great mystery. First-generation CM systems were capable of versioning
only ordinary text files and had self-limiting names like source code control system
(SCCS). In fact, Microsoft’s CM system still has such a name—Visual SourceSafe
[4]. However, CM has many other uses than just managing the source code. SCM
can and should be used to manage all the project artifacts including requirements,
visual models, prototypes, executables or binaries, system files, libraries, documents,
development tools, test scripts, and images.

SCM is Change Management and defect Tracking

While change management and defect tracking are two major activities of SCM,
there are many other SCM functions, including configuration identification, status
accounting, and configuration audits. Nevertheless, it is true that there are tools
available in the marketplace that do nothing but change management and defect
tracking. These tools help project managers to bring some amount of control to
the development process. In many small projects, in fact, full-fledged SCM systems
are not necessary, as the cost of the system will not justify its purchase. In such
cases, a change-management or defect-tracking tool can be used quite efficiently
to perform and automate the change-management functions, while other SCM
activities are performed manually. However, in the case of large, complex, and
mission-critical projects, a simple change-management tool will not be enough.
In these cases, a full-fledged SCM tool, one that covers the entire functionality of
SCM, should be used.

Software development Can Succeed Without SCM

In the early days, software development was done without SCM. Even today, soft-
ware development can sometimes succeed without SCM in the case of very small
projects with small project teams. However, today’s software products are becoming
more and more complex in size, sophistication, and technologies used. Also, the dif-
ferent components of a software product are not necessarily built by a single group.
This is the era of multisite, distributed development where different components of
a system are developed by different groups situated in different parts of the world.
In such scenarios, managing a software project is a very complex task. If proper
control mechanisms and procedures are not in place, software development can
quickly get out of control and projects can fail. The history of the software industry
is full of such software disasters, and if one closely examines these major failures,
many can be attributed to the absence of an efficient SCM system.

SCM is Just To impress Customers

It is true that a properly implemented SCM system can help serve customers better,
as it helps organizations to react faster, respond better, and deliver high-quality
products at astonishing speeds. This improved efficiency and quality will go a long
way in improving customer goodwill and customer relations. So, with an SCM

6518 Book.indb 8 12/30/14 1:24 PM

A Brief History of SCM 9

system you get more satisfied customers, but that is only one of the advantages of
an SCM system.

a Brief History of SCM

CM has its origins in the manufacturing industry, more specifically in the U.S.
defense industry. When the products that were developed were small and the product
sophistication level lower, the activities of product development and design change
during the entire product life cycle could be managed by a single person or a group
of close-knit people. However, when products began to become more complex—as
embodied by such machinery as fighter planes, tanks, and guns—it was impossible
for a single person or group to maintain control over the design and production
and, more importantly, the design changes. Moreover, the development of these
products spanned many years and was handled by more than one person, so when
control was transferred from one person to another, the associated information
was lost, because no formal methods existed for documenting the design and the
changes made to it.

Consequently, in 1962, the U.S. Air Force responded to the control and com-
munication problems in the design of its jet aircraft by authoring and publishing
a standard for CM, AFSCM 375–1. This first standard on CM [5] was followed
by many standards, mainly from the U.S. military and the Department of Defense
(the MIL and DoD standards).

As computers became popular, the importance of and focus on the software
development industry began to increase. More and more people began to use com-
puters and software products. Software systems made life easier by automating
many tasks that had previously been done manually. As people got used to the
convenience of automated systems, they began to demand more and more features.
Software development organizations were left with no choice as more and more play-
ers entered the market with newer and better products. Thus, computer programs
became increasingly complex in size, sophistication (used for mission-critical appli-
cations), and technologies used (today including workflow automation, groupware,
Internet, and e-commerce). Also, the size and the nature of development teams have
changed. Now, development teams consist of thousands of people, from different
cultural and social backgrounds, and the various subsystems of a system could eas-
ily be developed by different companies from around the world.

As computer programs became more and more complex and difficult to man-
age and as computer project teams became larger and more distributed, the prob-
lems that plagued production engineers—such as the inability of a single person to
control and manage the development process, the difficulty in managing change,
communication breakdowns, and the difficulty in transferring knowledge when
transferring responsibility—began to appear in the software development processes
also. The U.S. DoD and several international organizations, including the Institute
of Electrical and Electronics Engineers (IEEE), the American National Standards
Institute (ANSI), and ISO, all started to address the problem of CM in the software
development process and came out with their own standards. Among these, the

6518 Book.indb 9 12/30/14 1:24 PM

10 Overview of SCM

most widely used standards are the ANSI/IEEE standards. (Chapter 11 discusses
the different standards in more detail.)

Today, SCM is accepted as a discipline and is practiced by most, if not all, soft-
ware organizations, and awareness of the need and importance of SCM is increasing.
Hundreds of tools and packages are available that help automate the SCM process
and make the practice of SCM easier.

SCM: Concepts and definitions

Proper application of SCM is a key component in the development of quality soft-
ware. Uncontrolled changes to the software under development are usually a signifi-
cant cause of changes to a project’s schedule and budget; in fact, unmanaged change
is the largest single cause of failure to deliver systems on time and within budget.

Bersoff, Henderson, and Siegel [6] have defined SCM as the discipline of iden-
tifying the configuration of a system at discrete points in time for the purposes of
systematically controlling changes to this configuration and maintaining the integrity
and traceability of this configuration throughout the system life cycle.

The IEEE [7] defines CM as a discipline applying technical and administrative
direction and surveillance to identify and document the functional and physical
characteristics of a configuration item, control changes to those characteristics,
record and report change processing and implementation status, and verify compli-
ance with specified requirements.

What does this definition mean? First, SCM is a discipline—a discipline apply-
ing technical and administrative direction and surveillance. The term discipline
refers to a system of rules, so the practice of SCM cannot be done according to the
whims and fancies of individuals—it has to follow a set of rules. These rules are
to be specified in a document called the SCM plan (discussed later in this chap-
ter). The rules should be applied in a technical and administrative framework, and
monitoring (surveillance) should be constant to ensure that the rules are followed.
This means that SCM needs an organizational setup for carrying out the techni-
cal and administrative monitoring. SCM requires one group of people to carry out
different SCM functions and another group to monitor whether the SCM activi-
ties are performed according to the rules. The size and organizational structure
of this group—the SCM organization or SCM team—will vary with the size and
complexity of the project.

Second, the SCM function should identify the configuration items and document
their functional and physical characteristics. IEEE [7] defines a configuration item
as an aggregation of hardware, software, or both that is designated for CM and
treated as a single entity in the CM process. So, the SCM discipline must identify
the components (e.g., documentation, programs, functions, component libraries,
and data) of a software system. Then, it should document the components’ func-
tional characteristics, such as what they are supposed to do, performance criteria,
and features as well as the physical characteristics such as size, number of lines,
and number of modules, functions, and libraries.

Once the configuration items are identified and their characteristics documented,
the SCM system should control the changes to those characteristics. This means

6518 Book.indb 10 12/30/14 1:24 PM

SCM: Concepts and Definitions 11

that once the SCM system is in place, any change to a configuration item should
take place in a controlled way. Control does not mean prevention. It means that
the SCM system should institute procedures that will enable people to request a
change or an enhancement to a configuration item. Well-defined methods should
be in place for evaluating these requests, studying the impact of each request on
other configuration items, and then carrying out the changes if appropriate. In other
words, the SCM system should ensure that no changes are made to the configura-
tion items without proper authorization.

Third, the SCM system should record the change management process and
report it to all those who are involved. This necessitates the documentation of the
change management process. The status of the change requests should be tracked
and recorded from the point of origin until completion. Processes such as change
requisition, evaluation, impact analysis, and decisions on whether to implement a
change should be documented and reported to all people involved.

Last, there should be some mechanism to verify that the system that is being
developed and delivered is the one that is specified in the requirements definition
and other related documents. In other words, the SCM system should ensure that
what is developed and delivered is exactly what was required and specified. For this
there should be some sort of an auditing or verification mechanism.

So, translated into plain language, SCM requires the components of a software
system to be identified and their characteristics (both functional and physical) to be
documented. Once this is done, then any changes to these items should only be made
through proper channels. This means that somebody without proper authorization
cannot make changes to an item. The entire process of change management should
be documented and reported to all those who are involved. A mechanism should
exist for checking and verifying that the system is being developed in accordance
with the specifications.

IEEE [7] divides the SCM functions into four activities: configuration identifica-
tion, configuration control, status accounting, and audits and reviews. Configuration
identification is an element of CM, consisting of selecting the configuration items
for a system and recording their functional and physical characteristics in techni-
cal documentation. Configuration control is the element of CM consisting of the
evaluation, coordination, approval or disapproval, and implementation of changes
to configuration items. Status accounting consists of the recording and reporting
of information needed to manage a configuration efficiently. Auditing is carried
out to ensure that the SCM system is functioning correctly and to ensure that the
configuration has been tested to demonstrate that it meets its functional require-
ments and that it contains all deliverable entities. We will look at these four SCM
functions in more detail in Chapters 6 through 9.

Aiello and Sachs [8] define six core functional areas for CM: source code man-
agement, build engineering, environment configuration, change control, release
engineering, and deployment. These six functions together cover all the CM tasks,
which include the following:

•	 Identification and control of every configuration item;
•	 Selection of the exact version of each configuration item that is part of a build;
•	 Management and maintenance of the development;

6518 Book.indb 11 12/30/14 1:24 PM

12 Overview of SCM

•	 Checking the test, integration, and production environments to ensure that
there is a formal mechanism for making changes to the configuration items;

•	 Packaging and identification of all configuration items of a particular release;
•	 Releasing the packaged releases to production.

According to Davis [9], effective SCM is not just having a tool that records who
made what change to the code or documentation and when. It is also the thought-
ful creation of naming conventions, policies, and procedures to ensure that all
relevant parties are involved in changes to the software. SCM is not just a set of
standard practices that applies uniformly to all projects. SCM must be tailored to
each project’s characteristics—including the size of the project, its volatility, the
development process, and the extent of customer involvement. The best place to
record how SCM should be performed for each project is in the SCM plan. The
SCM plan documents what SCM activities are to be done, how they are to be done,
who is responsible for doing specific activities, when they are to happen, and what
resources are required. Chapter 13 details SCM plans, including their organiza-
tion and contents.

importance of SCM

Poor CM or lack of it often causes the most frustrating software problems. Some
examples of these problems are missing source code; changed component librar-
ies; the inability to determine what happened to a particular program or data; the
inability to track why, when, and who made a change; and difficulty in finding
out why programs that were working suddenly stop working. The problems are
frustrating because they are very difficult to fix, and they often occur at the worst
possible times [9]. Consider, for example, scenarios in which a difficult bug that was
fixed suddenly reappears, a program that was working mysteriously stops work-
ing, a developed and tested feature is missing, the updated version of the require-
ments document is not found, or the source code and the executable program are
different versions.

SCM helps reduce these problems by coordinating the work and effort of many
different people working on a common project. SCM plays an important role in
the software development process—analysis, design, development, testing, and
maintenance—by ensuring (through configuration audits) that what was designed
(as specified in the characteristics document) is what is built.

The key role of SCM is to control change activity so that problems (e.g., com-
munication breakdown, shared data, simultaneous updates, and multiple mainte-
nance) can be avoided. This does not mean that all the other SCM functions such
as configuration identification, status accounting, and configuration audits are
not important. All those activities are important. The configuration identification
should be performed well to manage the changes effectively. The status accounting
information is used by the project leaders and managers to keep the project under
control. The configuration audits are required to ensure that what is specified is
what is delivered. Even though we can consider configuration control (or changer

6518 Book.indb 12 12/30/14 1:24 PM

Summary 13

management) as the first among equals, it should be kept in mind that the other
functions are also very important for the efficient and effective functioning of SCM.

SCM is not easy; one has to do a lot of work to keep an SCM system in good
shape. The effort is worth it, however. Only when problems begin to crop up do
users realize the importance of SCM, but by then, it is too late, and getting a project
back on track can be a very tedious task without SCM.

For an SCM system to work, the people who are involved must be convinced of
the importance and benefits of SCM. If SCM is done for the sake of doing it, then
SCM will fail to deliver on its promises. If SCM is done just to get some certification
and not in its true spirit, then it will definitely fail. If SCM is treated as a manage-
ment tool or a contractual obligation, it can easily become a bureaucratic roadblock
that impedes the work [10]. Another point that should be noted here is that poor
SCM practices tend to ripple through an entire project, having an adverse effect
on a large number of people and their work. Hence, it is important to have a good
SCM system. The presence of an SCM system that is planned poorly, implemented
haphazardly, and practiced inefficiently will not improve the software development
process; in fact, it will create more problems than it will solve. So the SCM system
should be carefully designed, properly implemented, and practiced systematically
and willingly.

Benefits of SCM

A properly designed and implemented SCM system has a number of benefits. Some
of the benefits are improved software development productivity, easier handling
of software complexity, improved security, higher software reuse, lower software
maintenance costs, better quality assurance, reduction of defects or bugs, faster
problem identification and bug fixes, process-dependent development rather than
person-dependent development, and assurance that the correct system was built.
Chapter 4 discusses these benefits at length.

Summary

If designed properly, implemented judiciously, and used efficiently, SCM systems
will raise the productivity and profits of companies dramatically. For this to hap-
pen, personnel should be educated on the potential benefits of SCM, its capabilities,
and how it can help improve developmental productivity.

Many myths surround SCM. Many people consider it to be a bureaucratic pro-
cess and additional work. These concerns were true to some extent in the case of
manual SCM systems, but today’s SCM tools automate most of the SCM functions
and make the practice of SCM easier and painless.

Poor SCM practices tend to ripple through an entire project, having an adverse
effect on a large number of people and their work, so it is important to have a good
SCM system.

6518 Book.indb 13 12/30/14 1:24 PM

14 Overview of SCM

References

[1] Whitgift, D., Methods and Tools for Software Configuration Management, Chichester,
England: John Wiley & Sons, 1991.

[2] Babich, W. A., Software Configuration Management: Coordination for Team Productiv-
ity, Boston, MA: Addison-Wesley, 1986.

[3] Ben-Menachem, M., Software Configuration Guidebook, London: McGraw-Hill Inter-
national, 1994.

[4] Capasso, R., “Configuration Management—It’s Not Just for Source Code,” The Rational
Edge (http://www-106.ibm.com/developerworks/rational/library/content/RationalEdge/
feb01/ConfigurationManagementFeb01.pdf), 2001.

[5] Berlack, H. R., Software Configuration Management, New York: John Wiley & Sons,
1992.

[6] Bersoff, E. H., V. D. Henderson, and S. G. Siegel, Software Configuration Management:
An Investment in Product Integrity, Englewood Cliffs, NJ: Prentice-Hall, 1980.

[7] IEEE, IEEE Standard Glossary of Software Engineering Terminology (IEEE Std-610–
1990), IEEE Software Engineering Standards Collection (CD-ROM Edition), Piscataway,
NJ: IEEE, 2003.

[8] Aiello, B., and Sachs, L., Configuration Management Best Practices, Upper Saddle River,
NJ: Addison-Wesley, 2011.

[9] Davis, A. M., 201 Principles of Software Development, New York: McGraw-Hill, 1995.
[10] Humphrey, W. S., Managing the Software Process, New York: Addison-Wesley, 1989.

6518 Book.indb 14 12/30/14 1:24 PM

15

C h a p t e r 2

The Software Development Process

introduction

The software development process is that set of actions required for efficiently
transforming a user’s need into an effective software solution. Efficiency means
doing things in the right way, and effectiveness is doing the right things. So, for the
software development process to succeed, one not only has to do the right things
but also do them in the right way.

Humphrey [1] defines the software development process as the set of tools,
methods, and practices that we use to produce a software product. The software
development process defines the activities required for building the software sys-
tems and incorporating the methods and practices to be adopted. It also includes
the activities essential for planning the project, tracking its progress, and managing
the complexities of building the software. Scientific software development—also
known as software engineering—uses scientific and management techniques and
productivity improvement tools for developing the software.

There is no universally accepted definition for software engineering. According
to Jones [2], software engineering is a methodology that uses a set of recognized
criteria (e.g., functionality, reliability, and timeliness) and that has its foundations
in such disciplines as computer science, mathematics, engineering, and manage-
ment. The practice of software engineering is a discipline with a defined process for
software development and maintenance. Software engineering aims at developing
a full product that goes well beyond a small program and that uses a set of tools
and techniques for improving the productivity and quality of work.

So, software engineering is not just programming, nor is it the development
of a small program. It is the process of developing a software system or product.
It demands management skills, communication ability, analysis, and design skills.
Moreover, it means following standards and procedures and working as a team.

Software engineering is not an art. A software engineer is constrained by user
requirements, team decisions, and management instructions, and the software prod-
uct is the fruit of the entire team’s effort rather than the creation of an individual.
Also, the scope of software engineering extends far beyond the development of the
software product. It involves marketing, maintenance, and after-sales support. Just
because the product you have developed is the best does not mean it is going to suc-
ceed. Discipline, teamwork, marketing, money management, planning, and many
other nontechnical skills play a vital role in the success of a software product or
system. Thus, the objective of software engineering is not limited to the development

6518 Book.indb 15 12/30/14 1:24 PM

16 The Software Development Process

of a high-quality product, but includes the tasks of successfully marketing and
maintaining the product.

A software product starts its life as an idea or concept. Software can be of two
types—generic products (products that are produced by a software development
organization and sold in the open market) and customized products (products that
are developed to meet the specific needs of a customer). Examples of generic prod-
ucts [also known as shrink-wrapped products, packaged software, or commercial
off-the-shelf (COTS) products] include word processors, electronic spreadsheets,
database management systems, imaging tools, and Web browsers. Customized prod-
ucts are developed for a specific person or organization to meet a specific need [e.g.,
computerization of the operations of a bank, development of an airline or railway
reservation system, and development of a software tool to accomplish a specific
task (such as test data generation and code generation)]. In the case of generic prod-
ucts, the organization that develops the software controls the specification. In the
case of custom products, the client or organization for which the product is being
developed usually controls the specification. In other words, the characteristics and
features of generic products are market-driven (influenced by information drawn
from tools such as market research, surveys, and demos), while the client decides
those of customized products.

Irrespective of the type of the software product and the way in which the soft-
ware product idea was conceptualized, the software product goes through a series
of development phases. In most cases, the product’s features and functions are speci-
fied, then designed and implemented. The product is then put into operation, and
while it is operational, it is maintained. Finally, when the usefulness of the product
is over or when the product becomes obsolete, it is decommissioned. The series of
steps through which the software product goes through (from conceptualization
until retirement) is called the software development life cycle (SDLC).

Software development Life Cycle (SdLC)

Every software product has a lifetime—it starts its life as a response to a user need
or as a new product concept and ends up being obsolete. The life span of software
systems varies from product to product. During its lifetime, software goes through
various phases.

The IEEE Standard Glossary of Software Engineering Terminology (IEEE
Std-610-1990) defines SDLC as the period of time that begins when a software
product is conceived and ends when the software is no longer available for use.
The software life cycle typically includes a concept phase, a requirements phase, a
design phase, an implementation phase, a test phase, an installation and checkout
phase, an operation and maintenance phase, and sometimes, a retirement phase [3].

Each software product passes through these stages, although the duration,
sequence, number of iterations, and exact effect of each stage may vary from product
to product. In other words, the life cycle of every software product is different. Some
products will spend more years in the conceptual stage. There can be a variety of
reasons for this. For example, the idea may not be technically feasible due to some
hardware limitations; the product idea may not be economically feasible at that point

6518 Book.indb 16 12/30/14 1:24 PM

Software Development Life Cycle (SDLC) 17

in time; or the processing capability of the machines may not be good enough for
the product to be commercially viable. Other products will be quickly designed and
implemented and will spend more years in the maintenance phase, being modified
repeatedly to fix bugs (faults or errors) or to incorporate new features and func-
tionality required by users. Often, after many years of maintenance, a stage will be
reached when it will be cost-effective to develop a completely new product rather
than to attempt to maintain the current version yet again. So, just like any other
commercial product, every software product has a lifetime, starting as somebody’s
idea, need, or inspiration and ending up being obsolete, unsupported, and unused.

The different SDLC phases may overlap or be performed iteratively or be com-
bined or be omitted depending upon the software development approach (model)
used. Many theories and models have been advanced to describe how software goes
through these phases (and whether it goes through all the phases).

The most prominent process models include the waterfall model [3], the spi-
ral model [4], the win-win spiral model [5], the incremental model [6–8], the
operational model [9], the transformational model [10, 11], the joint application
development (JAD) model [12], the evolutionary development model [13], the com-
ponent assembly model [14], the cleanroom software engineering model [15], and
the concurrent development model [16]. A detailed discussion of these models is
beyond the scope of this book. It is important to remember, however, that, irre-
spective of the model chosen, software goes through the different life cycle phases
(although some models may not go through all the phases), and the order in which
a project moves forward through the different life cycle phases is determined by
the process model.

Recent years have seen the emergence of several lightweight or agile process
models. Agile proponents claim that the focal aspects of light and agile methods
are simplicity and speed. In development work, accordingly, development groups
concentrate only on the functions needed immediately, delivering them fast, col-
lecting feedback, and reacting rapidly to business and technology changes. Agile
software process models are characterized by the following attributes: incremental,
cooperative, straightforward, and adaptive [17]. Incremental refers to small software
releases, with rapid development cycles. Cooperative refers to a close customer and
developer interaction. Straightforward implies that the method itself is easy to learn
and to modify and that it is sufficiently documented. Finally, adaptive refers to the
ability to make and react to last-minute changes. These methodologies are mainly
suitable for small projects where the team size is small.

Some of the popular agile methods include extreme programming (XP) [18–20],
adaptive software development [21], the Crystal family of methodologies [22–24],
the dynamic systems development method [25, 26], and feature-driven develop-
ment [27–29]. Even though most of these models address certain aspects of SCM
(for example, the XP programming principles like collective code ownership, con-
tinuous integration, small releases, and refactoring, have relations to SCM), none
of them addresses the full functionality of SCM. The success of these projects lies
in the fact that they are small and have a very small team size. Also, these models
and methodologies are still in their infancy and still evolving. So one will have
to wait and see how these agile methodologies will address the use of full-fledged
CM systems.

6518 Book.indb 17 12/30/14 1:24 PM

18 The Software Development Process

SdLC phases

Software goes through certain phases before, during, and after the development
process. We will now examine these phases in detail, discussing when, why, and
how these phases are taken care of by the life cycle models. The various phases or
steps in the SDLC are listed as follows:

•	 Project start-up;
•	 Requirements analysis and requirements specification;
•	 Systems analysis;
•	 Systems design (high-level and low-level or detailed design);
•	 Development/coding and unit testing;
•	 System/integration testing;
•	 Acceptance testing;
•	 Implementation;
•	 Project windup;
•	 Maintenance;
•	 Retirement.

All of these phases will not be present in all projects. Also, all of the activities
described in each phase will not be present in many projects.

Depending on the size, nature, and complexity of the project, many of the
activities and even some phases might not be present. Also, in many projects, the
activities might be performed in an informal manner. For example, small projects
will not have a very detailed requirements definition document (RDD) or systems
analysis document (SAD). Moreover, in many projects the alpha and/or beta test-
ing phases could be absent.

The phases described next are for a fairly large project; however, depending on
the nature of the project and organizational policies, some of these phases might
get clustered together, omitted, or practiced under a different name. Keeping this in
mind, let’s look at the different phases of software development in a little more detail.

project Start-up

The start-up phase is sort of a curtain raiser for the project. The project team is
formed and the project leader identified. The project is organized (i.e., modules
are identified, key members are enlisted, and the people who will carry out the
support functions such as internal quality assurance and CM are identified). The
senior members of the project team sit down together and prepare the project plan
to ensure completion of the project within the cost, time, and resource constraints
based on the details available.

The main tasks in this phase are the following:

•	 Studying the project proposal and contract document (if it is a contracted
work), estimation work papers, and other documents available;

•	 Obtaining clarification on matters such as scope, contractual obligations, and
client participation in the project, if required;

6518 Book.indb 18 12/30/14 1:24 PM

SDLC Phases 19

•	 Defining the operational process for the project;
•	 Deciding on the format and standards for documenting the project plan;
•	 Documenting the project plan per the chosen structure and format;
•	 Implementing the SCM system.

This phase also sets up the hardware and software environment for the next
phase covering the hardware, system software, standards, and guidelines. The main
tasks performed in this phase are listed as follows:

•	 Ensuring that the environment defined in the project plan is still valid for the
next phase and, if not, changing it.

•	 Checking the availability of each resource that is defined as a part of the
environment. It is during this time that requests are made to the respective
support groups for supplying or arranging the required resources.

•	 Ensuring that the required hardware and software are in place.
•	 Testing the environment, if required.
•	 Obtaining the working space, machines, and other infrastructure require-

ments for the team members.
•	 Adding new procedures or modifying current procedures to be followed by

the team.

Most organizations will have their own software development standards and
guidelines, and if the work is done for a particular client, the project will have to
follow the standards of that company. In cases where project standards are not
available, they must be developed and finalized during this phase. The standards
for various phases include the following:

•	 The documentation standard for the RDD;
•	 The documentation standard for the SAD;
•	 Guidelines for various analysis techniques such as data modeling and process

modeling;
•	 The documentation standard for the high-level design (HLD) document;
•	 Database and file design standards;
•	 The documentation standard for test plans and test specifications;
•	 The documentation standard for user documents;
•	 The documentation standard for the low-level design (LLD) document;
•	 The documentation standard for unit test plans and specifications;
•	 Programming standards;
•	 The documentation standard for defect logs;
•	 System test plan standards;
•	 Test data preparation standards;
•	 Testing standards.

The SCM system is designed and implemented in this phase. Implementing the
SCM system during the initial phase of the project has tremendous advantages as
it will help to get the maximum benefit from the system, and the SCM activities
can be started from day one. The SCM system implementation involves a number

6518 Book.indb 19 12/30/14 1:24 PM

20 The Software Development Process

of activities such as system design, SCM plan preparation, SCM team organiza-
tion, infrastructure setup, SCM team training, project team training, and system
implementation.

One important task of the SCM system implementation is designing the SCM
system and preparing the SCM plan. The project team leader and other members,
such as representatives from the QA team and the SCM manager, sit together and
design the SCM system and SCM procedures to be used in the project. The SCM
manager is the person responsible for performing the SCM functions in the project.
Sometimes the project leader will serve as the SCM manager or in other cases a
person will be designated for that post. If the company has a standard SCM plan,
then that plan is tailored for the project. The proposed SCM system is documented
in the SCM plan. If the company has a standard SCM plan, then that plan is tai-
lored for the project. The proposed SCM system is documented in the SCM plan.

Each project is different and requires different approaches to SCM. Such factors
as the level of formalism, the number of procedures, the change control process,
and the SCM organizational structure will vary depending on the size, nature,
and complexity of the project. So, for each project the SCM implementation has to
be done afresh. The organization may have many projects that already have SCM
systems in place with the SCM tools already implemented. Even in those cases, the
SCM system should be customized and a separate SCM plan prepared to suit the
individual needs of the project. The presence of an established SCM system and
tool will make things easier, as all the SCM system designers have to do is to cus-
tomize the existing procedures, practices, and guidelines for the current project.
If the company is using enterprise-wide change management tools, then the tool
infrastructure is already in place. However, tasks such as obtaining the tool sup-
port for the project and getting the workspaces and libraries allocated will still
need to be completed.

The output of this phase, which is usually conducted by a high-level team
(including, for example, the project leader, management representatives, the SCM
manager, and support team representatives), is the project plan, the SCM plan, and
the standards for the next phases.

requirements analysis and requirements Specification

During this phase, user requirements are captured and documented, and a detailed
plan for the phase is prepared. The high-level activities for this phase are expanded
so that each activity spans not more than one or two person-weeks. The dependen-
cies between the various activities of this module are identified, and the activities
are scheduled. Plans for housekeeping activities like backup/recovery and security
are formulated. The resources required are estimated, and the team members are
allocated tasks.

One of the main tasks of this phase is understanding the current system (manual
or computerized). This is not applicable for a new product development project where
the task is understanding the functions the software is supposed to perform. The
task should be undertaken with a view to examining its adequacy and identifying
problem areas. The main tasks that are performed in this phase are understanding

6518 Book.indb 20 12/30/14 1:24 PM

SDLC Phases 21

the current system by discussing it with users and studying the documentation
available. The main areas to be studied include organization objectives, activities,
procedures, rules and standards, files and interfaces.

Every existing system, whether manual or computerized, will have some prob-
lems or inadequacies. That is why it is being redesigned. Even if the system is
functioning smoothly, there might be areas that could be improved. These existing
problems, possibilities, and constraints are identified. The existing system, problems,
and constraints are documented for future reference, and the findings are discussed
with the client or user.

The next step in this phase is the definition of user requirements. The main
activities performed in this phase are diagnosing existing problems and defining
user requirements. To do this, the context of the problems has to be understood,
the scope of the problems has to be assessed, and the user requirements, application
requirements, and information requirements have to be determined.

Once the user requirements have been defined, the next step in this phase is to
prepare the RDD. Once the initial draft of the RDD is created, it is given to all the
parties of the software project—users, clients, project team, and the support func-
tions. After incorporating suggestions from all quarters, the final RDD is prepared.

The output of this phase is the documentation of the existing system and the
RDD. The requirements analysis and the preparation of the RDD are usually done
by systems analysts in collaboration with users.

From this phase onward, the major SCM activities—configuration identifica-
tion, change management and control, status accounting, configuration reviews, and
audits—are performed. The different documents (including standards, guidelines,
the SCM plan, and the project plan) that are identified as configuration items (CIs)
are named; their physical and functional characteristics are recorded; and they
are brought under SCM control. The CIs in this phase will contain primarily the
updated documents from the previous phase and the RDD. The RDD is usually
put under configuration control. So once the final RDD is prepared, it is reviewed
and approved, and a baseline is established. Normally, this is the first baseline and
consists of the documents from the previous phase and the approved RDD. This
baseline is known as the functional or requirements baseline. By establishing a
baseline, the functional and other requirements described in the RDD become the
explicit point of departure for software development, against which changes can
be proposed, evaluated, implemented, and controlled. The requirements baseline
usually is the first established baseline in the SCM process.

Systems analysis

In the systems analysis phase, the proposed system is defined after analyzing various
alternatives. The following are the main tasks performed in this phase:

•	 Studying the approved RDD.
•	 Generating alternatives (solutions or designs) for the proposed system. One

must access prior knowledge, customize candidate solutions, partition the
system, and prototype the system if necessary.

6518 Book.indb 21 12/30/14 1:24 PM

22 The Software Development Process

•	 Evaluating alternatives. One must perform impact or cost-benefit analyses for
tangible costs (one-time and recurring costs, such as cost of the tools used in
the project) and for intangible costs (procedural and personnel-related costs
such as costs of training employees on tools to be used in the project).

•	 Selecting an alternative.
•	 Determining system requirements with respect to reliability, performance,

security, backup and restore capabilities, error recovery, and other quality
factors.

•	 Discussing the proposed system with the client.

In some cases, the project management may decide to develop a prototype of
the system to demonstrate an understanding of the user requirements and the func-
tionality that will be provided in the proposed system. Prototyping is required if a
lack of clear understanding of the user requirements is considered a major risk in
the project. The major activities in prototyping are listed as follows:

•	 Determining the objectives of the prototype. A prototype can be built to
demonstrate an understanding of the existing system, functionality of the
proposed system, data to be maintained, functions to be provided, data entry
screens to be provided, inquiries and reports to be provided, and external
interfaces to be provided.

•	 Deciding on the type of prototype—that is, whether it should be evolution-
ary or throwaway.

•	 Deciding on the software and hardware platforms and the tools to be used
for developing the prototype and then setting up the environment.

•	 Building a prototype to meet the chosen objectives.
•	 Demonstrating the prototype to the client/users, obtaining feedback, and

incorporate suggestions for improvement.

Once the prototype is developed and the feedback is obtained, the next step
is to prepare the SAD, where the proposed system’s functionality is documented.
While preparing the SAD, a usability plan is also prepared. The usability plan is
prepared when the system that is being built uses COTS packages for performing
some tasks in the system. The usability plan will compare the available packages
and help to identify the one that is best suited for the system in terms of such fac-
tors as cost effectiveness, amount of customization, and method of integration of
the selected package into the software system. This plan is needed only if the system
uses off-the-shelf packages.

During this phase, the project plan, SCM plan, and the RDD are refined and
updated based on the project progress and changes in the scope of the project. The
output of the systems analysis phase is the prototype (if developed), the SAD, the
usability plan, the updated project plan, the SCM plan, and the RDD. All docu-
ments except those produced in this phase are already under configuration control.
So changes to them can be made only following the formal change management
procedures. The documents produced during this phase are also brought under
SCM control.

6518 Book.indb 22 12/30/14 1:24 PM

SDLC Phases 23

High-Level design

In this phase, the system design objectives are defined. The following steps are car-
ried out to design the system properly:

•	 Studying the SAD and ensuring that requirements are understood so that the
high-level design documents can be properly written;

•	 Understanding the features and capabilities of the hardware and software
environments in which the proposed system is to be implemented;

•	 Studying standards and guidelines prepared for the HLD phase;
•	 Setting design objectives, constraints, and guidelines with respect to such

factors as usability, user interface, performance (response time, memory, and
throughput), reliability, design directives, and storage.

Sometimes a prototype is developed to demonstrate the user interface design,
screens, navigation, and other features of the system. Developing a prototype in the
HLD phase is required if the developers want to demonstrate to the user the design
features of the system such as system architecture, user interfaces, and system func-
tionality. Sometimes a prototype is developed during the systems analysis phase to
demonstrate an understanding of the user requirements and the functionality that
will be provided in the proposed system. If such a prototype exists, then this pro-
totype is refined during the HLD phase to demonstrate the user interface design,
screens, navigation, and other features of the system.

It is in this phase that the system components such as modules, programs, func-
tions, and routines are identified. The system components are identified hierarchi-
cally to the level required. The inputs and outputs of the system are defined. These
include menus, screens, navigation, levels of help and help screens, reports, error
messages, and the user interface. The programs for each component are identified
and classified. The programs can be classified in various ways, including as online/
batch, reports, transactions, drivers, functions, and libraries. The performance
requirements for each component are established, and the components that can be
reused are identified. The following items are produced as a part of this exercise:

•	 System components list;
•	 User interface design;
•	 Programs and the interface definition between programs;
•	 Screens and report definitions;
•	 Screen navigation details;
•	 Help screens and messages.

The next step in this phase is to define the system architecture. The system
architecture is established in terms of security, data access, communication, restart/
recovery, audit, and user interface. The system architecture deals with issues such
as whether the proposed system will be a client/server system, mainframe system,
or geographically distributed system; what technology should be used; and how
the communications network should be set up. The program dependencies and

6518 Book.indb 23 12/30/14 1:24 PM

24 The Software Development Process

interfaces are identified, and the system architecture for each class of programs is
finalized and documented.

Another task in this phase is the creation of a first-cut database and final-
ization of the database/file design. The database/file design is derived from data
model or data store identified during analysis. This should include content, access,
and organization of the database/files. The contents of each of the tables/files in
the database and the access path are defined. The necessary normalization of the
database tables is performed to ensure processing efficiency. This step produces the
database design document.

The final task in this phase is preparation of the HLD document. The HLD
document is prepared as per documentation standards for HLD. The documents
that have been prepared thus far, such as the design objectives document, the system
architecture document, and the database design document, are used as the input
for the HLD document. The system test plan is a part of the HLD document. So
while the HLD document is compiled, the system test plan (STP) and system test
specification (STS) are also prepared, and they then form part of the HLD docu-
ment. The preparation of the initial draft of user documents such as user manuals,
capabilities manuals, and tutorials are started during this phase. In summary, this
phase produces the following documents: the HLD document, the STP and STS,
and the initial draft of the user documents.

All of the documents produced in this phase are reviewed and brought under
SCM control. If changes are required for any of these items, then the change pro-
cedures are initiated and the changes are effected.

Low-Level (LLd) or detailed design (dd)

In this phase, the copy libraries, common routines, and program skeletons to be
used are finalized. The HLD is analyzed to understand the system architecture,
components, programs, and their interfaces. The standards prepared for the LLD
phase are studied. The component libraries to be used for each of the programs in
the system are identified, as are the common routines and the input and output for
these common routines. If program skeletons or templates are to be used for vari-
ous types of programs, then the scope and contents of such skeletons and templates
are decided. The specifications for the component libraries, common routines, and
skeletons are written.

The major task in this phase is to write the specification for each program in the
system. Writing program specifications is essential for projects involving develop-
ments in procedural languages. For each program and reusable routine identified
in the system, the program logic is determined; the structure chart is prepared (if
necessary); the inputs, outputs, error messages, and help messages are finalized; and
the program specification is prepared. As part of the program specification, the unit
test specification (UTS) and unit test plan (UTP) are prepared.

The last step of this phase is the preparation of the LLD document consisting of
program specifications for all programs, component libraries, skeletons, and tem-
plates of the system. All documents, specifications, and program templates produced
during this phase are usually subject to configuration control.

6518 Book.indb 24 12/30/14 1:24 PM

SDLC Phases 25

At the end of this phase, the project plan is updated, and the RDD, SAD, HLD,
STP, STS, and user documents are refined based on the changes and additional
information obtained during this phase. These changes are made following the
change control procedures because these items are under CM, and hence unauthor-
ized changes are not allowed.

The baseline that is established at the end of the design phase is usually called
the allocated or design baseline. The allocated baseline contains the initial approved
specifications that form the basis for the software development and testing. The
allocated baseline represents the logical progression from the functional baseline
and represents the link between the design process and the development process.

Coding and Unit Testing

During this phase the programs, copy libraries, functions, and other program ele-
ments are coded (or generated) and tested (unit testing). The main people involved
in this phase are developers and programmers, analysts, the QA team, and testers.
Among all of the life cycle phases, this is the phase that involves the largest number
of people. The SCM team is up and running and will be involved in activities like
change management and control, repository management, defect tracking, change
request evaluation, and impact analysis. The following are the major activities dur-
ing this phase:

•	 Studying the LLD document, test cases, and data;
•	 Including additional test cases if needed;
•	 Coding the programs per the program specifications;
•	 If the evolutionary prototyping approach is followed, refining the prototype

to yield the final code;
•	 Finalizing all error and help messages;
•	 Conducting unit testing in accordance with the UTS;
•	 Recording the test results;
•	 Logging the following unit test errors: errors external to the program (where

the error cannot be fixed in the program being tested), errors in LLD and
test specifications, errors caused due to the standards adopted, and errors in
the reused code;

•	 Diagnosing and fixing the errors;
•	 Updating defect logs;
•	 Initiating corrective action, as applicable (possibly revisiting the earlier phases

of SDLC);
•	 Consolidating test results and findings and recording appropriately.

The output of this phase is the unit-tested programs, all of which—including
the source code, test scripts, test data, test results, associated documentation, and
change/problem reports—will be under SCM control. To make any changes to
those items, a formal change management process has to be followed. Accordingly,
the developers will check-out and check-in programs; change requests and prob-
lem reports will be initiated; the change management procedures [such as impact

6518 Book.indb 25 12/30/14 1:24 PM

26 The Software Development Process

analysis and configuration control board (CCB) meetings] will be at their peak;
and project managers and leaders will be using the status accounting information
to ensure that project is on track and under control. The proper operation of the
SCM system during this phase of the SDLC is of paramount importance for the
success of the project.

System Testing

This is the phase in the SDLC where system testing or integration testing is carried
out. System testing is done using STP, STS, and system test data. Many companies
do alpha and/or beta testing also.

Alpha testing is done when the system or product has a lot of new previously
untested features. Because a lot of the functionality is untested, the development
team might be uncomfortable proceeding with the final testing and release of the
product until they get a feedback from a limited number of users or customers. So
the developers use the alpha testing primarily to evaluate the success or failure (or
acceptance) of the new features incorporated into the system.

Beta testing is required when the development team decides that some level of
customer evaluation is needed prior to the final release of the product. In the case
of beta testing, the developers are no longer looking for user inputs on functionality
or features. The product has all the functionality incorporated in it, so the devel-
opment team will be looking for the beta testers to uncover bugs and faults in the
system. Unlike alpha testing the beta testing is done on a much larger scale; that is,
the number of people who will be doing the beta testing will be much higher than
that for alpha testing. Companies usually distribute the beta releases cost-free to the
people who have enrolled in the beta testing program, and in many cases, the beta
versions will be available for download from the company’s Web site. New products
will have the alpha testing followed by the beta testing. In the case of new versions
of existing products, however, either alpha or beta testing is done.

The tasks in this phase are as follows:

•	 Carrying out system test according to the STP and STS. For alpha and beta
testing, there will be no test plans. In the case of alpha testing, the testers
will be evaluating the acceptability of the new features or functionality; in
the case of beta testing, the testers will be trying to find bugs or problems in
the product.

•	 Recording the test results.
•	 Logging the test errors.
•	 Diagnosing and fixing errors.
•	 Updating defect logs.
•	 Initiating corrective action as applicable. This might involve revisiting earlier

phases of the SDLC.
•	 Performing regression testing.
•	 Consolidating and reporting test results and findings.

The major players involved in this stage are the QA team, the testers, the devel-
opment team (for bug or problem fixing), and the actual users of the system. If alpha

6518 Book.indb 26 12/30/14 1:24 PM

SDLC Phases 27

beta testing is used, then the number of people who will be testing the system will
increase dramatically.

During this phase, members of the SCM team will have their hands full, because
they are the ones who coordinate the change requests and problem reports and
ensure that the changes are made according to the procedures and that all people
concerned are aware of the changes. Once the project is successfully tested, functional
and physical configuration audits are performed to ensure that the final product is
complete and satisfies the specifications. At this stage, the product baseline is estab-
lished. The product baseline represents the technical and support documentation
established after successful completion of the functional configuration audit and
physical configuration audit.

acceptance Testing

Acceptance testing is the formal testing that is conducted (usually by the user, client,
or an authorized entity) to determine whether or not a system satisfies its acceptance
criteria and to enable the customer to determine whether or not to accept the system.
This phase is carried out only if the system is developed for a particular client or
customer. In this phase, the project team prepares for the acceptance test by ensur-
ing the availability and completeness of all work items needed for the acceptance
test and populating the acceptance test data. The project team will assist the client
or customer in acceptance testing, recording the errors found, and fixing them. The
main tasks in this phase are the following:

•	 Providing support to the client in conducting acceptance test;
•	 Ensuring that documentation-related tests are also completed;
•	 Recording acceptance test results;
•	 Logging acceptance test errors;
•	 Diagnosing and fixing errors;
•	 Updating the defect logs;
•	 Revisiting earlier phases of the SDLC, as required, in order to fix errors;
•	 Performing regression testing;
•	 Preparing a report summarizing the test results;
•	 Highlighting any disagreements.

implementation

Once the integration, system and acceptance (in some cases, alpha and beta testing)
testing are over, the software product or the system is turned over to the customers
or clients or installed at the client site. The members of the development team will
supervise the installation in the case of large projects. In the case of a shrink-wrapped
project, the customer does the installation and, if faced with any problem, calls
the technical support team of the vendor. In the case of large projects, the instal-
lation team, in collaboration with the end users, will install the system and train
the users to operate the system. There will be some amount of user training. Once
the system is up and running, and the users are familiarized with the product, the
implementation phase is complete. From that point onward, the maintenance team

6518 Book.indb 27 12/30/14 1:24 PM

28 The Software Development Process

will take over and manage tasks such as technical support, product enhancements,
and error fixing.

project Windup

In this phase, the project windup activities are completed, and all the resources
acquired for the project are released. The main activities are listed as follows:

•	 Carrying out project-end appraisals;
•	 Releasing project team members and hardware and software resources;
•	 Returning client-supplied products, if any;
•	 Ensuring availability of project documentation copies in the library.

project Maintenance

Once the system has been developed and tested, it is released to the users. From this
point onward, the maintenance phase starts. Once people start using the system,
many errors that escaped the testing will be found. Users might ask for new fea-
tures and enhancements. It is the responsibility of the maintenance team to attend
to these requests and to fix the bugs that are found.

It is during the project maintenance stage that the full impact and usefulness
of the SCM process can be felt. If the project was developed following a good
SCM system, then all the resources such as defect and defect-prevention details,
help desks, programs, libraries, change histories, technical documents, and user
documents will be readily available. Furthermore, since any particular component
or version can be recreated with very high accuracy, the change-management and
problem-solving processes—and the overall tasks of maintenance and technical
support—will be much easier.

retirement

The final phase in the life cycle of a software product or system is retirement. After
many years of service, software products or systems reach a stage when any further
maintenance would not be cost-effective. This might happen when the proposed
changes are so drastic that the whole design has to be changed, and as a result, it
would be cheaper to redesign and recode the entire product from scratch.

Similarly, changes made to the original design may have inadvertently built
interdependencies into the product, creating a real danger that even a small change
to one module will have a drastic effect on the functionality of the product as a
whole. Yet another reason for retirement is that the documentation may not have
been adequately maintained, thus increasing the risk of a regression fault to the
point where it would be safer to recode than to maintain. Another reason for retir-
ing a software product is that technological advancements have made the existing
system obsolete. In such cases, the hardware on which the product runs has to be
replaced by a different (more powerful and less expensive) machine with a differ-
ent operating system, and it is cheaper to rewrite from scratch than to modify the

6518 Book.indb 28 12/30/14 1:24 PM

SDLC Phases 29

product. In each of these instances, the current product is retired, and a new version
will be developed and the life cycle continues.

During this phase, the SCM system that was designed for the particular project
and documented in the SCM plan is also retired. However, the SCM tools used are
not retired; they are released and used by other projects. Similarly, the SCM team
members and the maintenance and support team members are released to other
projects. Likewise, records and documentation created during the project with any
value—either due to legal reasons or as reference material—are retained per the
records-retention policy specified in the SCM plan. Usually they are archived, and
unwanted documentation and records are discarded.

True retirement (removal of a product) is a rare event that occurs when a prod-
uct has outgrown its usefulness. The client organization no longer requires the

Figure 2.1 Life cycle phases and their relationship with SCM.

6518 Book.indb 29 12/30/14 1:24 PM

30 The Software Development Process

functionality provided by the product, and it is finally removed from the computer
on which it has been in operations mode for many years.

Summary

This chapter describes the various phases involved in the software development pro-
cess. All of these phases may not be present in all projects, and the order in which
the various steps are executed will vary.

Most of the time, some degree of overlap will occur between the various phases.
The software life cycle model that is adopted will determine these things. The chap-
ter describes the various outputs of each phase and the role of SCM in the project
life cycle and discusses how and when the different SCM activities are performed
in a project. These aspects are summarized in Figure 2.1.

References

[1] Humphrey, W. S., Managing the Software Process, New York: Addison-Wesley, 1989.
[2] Jones, G. W., Software Engineering, New York: John Wiley & Sons, 1990.
[3] Royce, W., “Managing the Development of Large Software Systems: Concepts and Tech-

niques,” Proc. IEEE WESCON, 1970.
[4] Boehm, B. W., “A Spiral Model for Software Development and Enhancement,” IEEE

Computer, Vol. 21, No. 5, 1988, pp. 61–72.
[5] Boehm, B. W., et al., “Using the Win-Win Spiral Model: A Case Study,” IEEE Computer,

Vol. 31, No. 7, 1988, pp. 33–44.
[6] McDermid, J. A., and P. Rook, “Software Development Process Models,” in Software

Engineer’s Reference Book (J. A. McDermid, ed.), Boca Raton, FL: CRC Press, 1994, pp.
15.26–15.28.

[7] Brooks, F. P., “No Silver Bullet: Essence and Accidents of Software Engineering,” IEEE
Computer, Vol. 20, No. 4, 1987, pp. 10–19.

[8] Mill, H. D., “Top-Down Programming in Large Systems,” in Debugging Techniques in
Large Systems (R. Rustin, ed.), Englewood Cliffs, NJ: Prentice-Hall, 1971.

[9] Zave, P., “The Operational Versus Conventional Approach to Software Development,”
Commun. ACM, Vol. 27, No. 2, 1992, pp. 104–118.

[10] Balzer, R., “Transformational Implementation: An Example,” IEEE Transactions on
Software Engineering, Vol. 7, No. 1, 1981, pp. 3–14.

[11] Balzer, R., “A 15-Year Perspective on Automatic Programming,” IEEE Transactions on
Software Engineering, Vol. 11, No. 11, 1985, pp. 1257–1268.

[12] Wood, J., and Silver, D., Joint Application Development, New York: John Wiley & Sons,
Inc., 1995.

[13] Lehman, M. M., and L. Belady, Program Evolution: Processes of Software Change, Lon-
don: Academic Press, 1985.

[14] Nierstrasz, O., “Component-Oriented Software Development,” Commun. ACM, Vol. 35,
No. 9, 1992, pp. 160–165.

[15] Dyer, M., The Cleanroom Approach to Quality Software Development, New York: John
Wiley & Sons, 1992.

[16] Aoyama, M., “Concurrent Development of Software Systems: A New Development Para-
digm,” ACM SIGSOFT Software Engineering Notes, Vol. 12, No. 4, 1987, pp. 20–24.

6518 Book.indb 30 12/30/14 1:24 PM

Summary 31

[17] Abraharnsson, P., et al., Agile software development methods: Review and Analysis,
Espoo, Finland: Technical Research Centre of Finland, VTT Publications, 2002.

[18] Beck, K., Extreme Programming Explained: Embrace Change, Boston, MA: Addison-
Wesley, 2000.

[19] Beck, K., and M. Fowler, Planning Extreme Programming, Boston, MA: Addison-Wesley,
2000.

[20] Jeffries, R., A. Anderson, and C. Hendrickson, Extreme Programming Installed, Boston,
MA: Addison-Wesley, 2000.

[21] Highsmith, J. A., Adaptive Software Development: A Collaborative Approach to Manag-
ing Complex Systems, New York: Dorset House Publishing,2000.

[22] Cockburn, A., Surviving Object-Oriented Projects: A Manager’s Guide, Vol.5, Boston,
MA: Addison Wesley Longman, 1998.

[23] Cockburn, A., Writing Effective Use Cases: The Crystal Collection for Software Profes-
sionals, Boston, MA: Addison-Wesley Professional, 2000.

[24] Cockburn, A., Agile Software Development, Boston, MA: Addison-Wesley, 2002.
[25] DSDM Consortium, Dynamic Systems Development Method (Version 3), Ashford, Eng-

land: DSDM Consortium, 1997.
[26] Stapleton, J., Dynamic Systems Development Method: The Method in Practice, Boston,

MA: Addison Wesley, 1997.
[27] Palmer, S. R., and J. M. Felsing, A Practical Guide to Feature-Driven Development,

Englewood Cliffs, NJ: Prentice Hall PTR, 2002.
[28] Rising, L., and N. S. Janoff, “The Scrum Software Development Process for Small Teams,”

IEEE Software, Vol. x, No. x, 2000, pp. 2–8.
[29] Schwaber, K., and M. Beedle, Agile Software Development with SCRUM, Englewood

Cliffs, NJ: Prentice Hall, 2001.

Selected Bibliography

Behforooz, A., and F.J. Hudson, Software Engineering Fundamentals, New York: Oxford Uni-
versity Press, Inc., 1996.

Jones, G. W., Software Engineering, New York: John Wiley & Sons, 1990.
Marciniak, J. J. (ed.), Encyclopedia of Software Engineering (2nd Edition), New York: John

Wiley & Sons, 2002.
Peters, J. F., and W. Pedrycz, Software Engineering: An Engineering Approach, New York: John

Wiley & Sons, Inc., 2000.
Pfleeger, S. H., Software Engineering: Theory and Practice (2nd Edition), Pearson Education,

Inc., 2001.
Pressman, R. S., A Manager’s Guide to Software Engineering, New York: McGraw-Hill, 1993.
Pressman, R. S., Software Engineering: A Practitioner’s Approach (5th Edition), New York:

McGraw-Hill, 2001.
Schach, S. R., Software Engineering, Boston, MA: Aksen Associates, Inc., 1990.
Shooman, M. L., Software Engineering: Design, Reliability and Management, New York:

McGraw-Hill, 1983.
Sommerville, I., Software Engineering (6th Edition), Pearson Education Ltd., 2001.

6518 Book.indb 31 12/30/14 1:24 PM

6518 Book.indb 32 12/30/14 1:24 PM

33

C h a p t e r 3

Pitfalls in the Software Development
Process

introduction

The software development process is very different from other production or man-
ufacturing processes. According to Jones [1], software products are intangible,
because there is no need for physical mechanisms, structures, or processes. Soft-
ware engineers do not use most of the concepts familiar to traditional engineering,
and their work is mostly independent of natural science. Also, software products
are much more complex and sophisticated, thus requiring special care in concep-
tualizing, managing, organizing, and testing. Software products are manufactured
by a simple copying process, so almost all of the production effort is dedicated to
design and development.

Because the software development process is different from regular industrial
practice, normal rules of production or manufacturing do not apply here. For
example, Brook’s law [2] states that, “Adding manpower to a late software proj-
ect makes it later.” It might sound strange, but it is true. If you calculate the time
required to train the new people, the added communications channels because of
the new people, and other related complexities, the project in question (the already
late project) could be finished earlier if more people were not inducted. This is not
true in a construction project where additional manpower can speed up the project.

So now that we have established that the software development process is dif-
ferent from the other manufacturing or production processes, we need to look at
some of the problems that plague many software projects and that can result in
time and cost overruns if corrective actions are not taken. The most frequent among
these are the communications breakdown problem, the shared data problem, the
multiple maintenance problem, and the simultaneous update problem. This chap-
ter examines each of these problems in greater detail, since understanding them is
crucial to realizing the importance of the CM function.

Communications Breakdown problem

The era when a single person developed a software product is long gone. Today’s
software projects consist of teams with hundreds of members in different modules.
The modules or subsystems of a project might be located in different continents and

6518 Book.indb 33 12/30/14 1:24 PM

34 Pitfalls in the Software Development Process

might very well include developers with different social, cultural, and educational
backgrounds.

In a single-person project, communications breakdowns never occur. Accord-
ing to Rawlings [3], “When only one person is working on a project, that one
person has a rather singular communication path with no need for interpretative
cognition. The person has only him or herself to communicate with and, hopefully
understands his or her own thought processes. When two people are working on
the same project, there are now two communicators and two listeners with four
potential communication paths. Not only is there a dramatic increase in the number

Figure 3.1 Increase in number of communication paths with increasing team size.

6518 Book.indb 34 12/30/14 1:24 PM

Communications Breakdown Problem 35

of communication paths, there is also the problem of interpretative cognition, which
now comes into play.”

As more and more people are added to the project team, the total number of
communication paths increases dramatically as shown in Figure 3.1, and as the
number of communication paths increases, the potential for communication errors
also increases.

Interpretative cognition is a part of the process that occurs when two or more
people communicate with one another. It is a measure of how much of a person’s
communication is understood by the other person or persons. You must have encoun-
tered situations in daily life when you said something and the listener understood
something else, resulting in misunderstanding and confusion. In such cases we say
that the interpretative cognition did not work. When a person wants to communicate
some idea, he or she must describe it using such tools as words, pictures, drawings,
and gestures. The person who is listening to this communication should see and
hear the communication directed at him or her and should reconstruct the idea in
his or her mind. If the two ideas are the same, then we say that the communication
has been successful.

The complexity of this process increases as the idea that is communicated
becomes more complex or if the people who are involved are not familiar with one
another’s mannerisms and communication methods. Failing to understand a gesture
or body language can convey the wrong meaning to the listener.

So in the case of large software projects, where complex and sophisticated
systems are being developed, the ideas that are to be communicated are complex.
Also, members of the project team, as mentioned previously, may be working in
different parts of the world; thus, the chance to communicate face to face will be
rare. Moreover, because of the different cultural and ethnic backgrounds, the ges-
tures, phrases, and colloquial usages will not be understood by all team members.
So the lack of proper communication between team members or a communications
breakdown can result in the failure of the project.

How do you control communications and keep everyone informed about the
tasks and activities that affect them? How will a project leader make sure that all
team members are communicating with each other and that all people are aware
of what is happening? How will he or she ensure that the effort is not duplicated
and that the work of one person is not destroyed by another?

In the case of small projects, where the number of people involved is limited to
two or three, effective communication is easier to establish. If the team members
have been working together for quite some time and are familiar with each other’s
communication patterns and work methods, then the chances of a communications
breakdown and associated problems can be minimized, but not completely elimi-
nated. Even in projects involving two or three people, efforts can be duplicated; one
can overwrite the code the other person has just fixed, and so on.

If in a small project, the problems just mentioned can happen, then think about
a project having, say, five modules and 100 members. It will be total chaos if some
sort of control mechanism is not in place and that control mechanism is CM.

SCM helps prevent the communications breakdown by controlling and managing
change. SCM ensures that if something is changed, then all the people who need to
know about the change are made aware of it. Configuration status accounting (CSA)

6518 Book.indb 35 12/30/14 1:24 PM

36 Pitfalls in the Software Development Process

is an SCM function that captures all the activities in a project and keeps accurate
and traceable records of these activities. CSA produces reports relating to various
aspects of the software development process like items changed, who changed them,
why they were changed, and so on. The SCM database can also be queried using
query languages for more specific information that is not available in CSA reports.
All these go a long way in avoiding the communications breakdown problem.

Shared data problem

The shared data problem is a very common source of trouble in any environment
where two or more programmers or programs share a common resource. It can be
a function that is shared by two programmers. It can be a component library that is
common to two programs. It can be a housekeeping program or an error-handling
subroutine that is being used by all the programs in the project. The trouble arises
when one developer makes a change to any of the common or shared resources
without telling others.

Consider two programmers, Bob and Jane, sharing a function (Figure 3.2).
To improve functionality, Bob makes some changes to the function. Jane is not
aware of the change. However, the next time Jane tries to execute Bob’s program
it may “abend,” or it may not function correctly depending on what changes Bob
has made. Jane is completely in the dark about the change made by Bob to the
function. She is amazed by the fact that the program that was working fine up to
that point is suddenly not working. She can spend hours in debugging, but with-
out some luck, she will never find the cause, as she has no reason to doubt the
function, which is the real culprit. This type of situation occurs often in almost
all projects where more than one person is involved and, in some cases, in single-
person projects also.

The software developers found a way to solve this problem: by creating separate
and independent workspaces where each programmer has his or her own copy of
the resources he or she needs (Figure 3.3). In this situation, even if one program-
mer modifies the code of a shared resource, others are not affected because they are
using separate copies of the same resource. This solution has one major drawback,
however: It creates multiple copies of the same function or program throughout

Figure 3.2 Shared data problem.

6518 Book.indb 36 12/30/14 1:24 PM

Multiple Maintenance Problem 37

the project, which, in most cases, will not be identical. As a result, a lot of space is
wasted. The real trouble, however, is that this creates another problem: the multiple
maintenance problem.

Multiple Maintenance problem

This is a variation of the shared data problem. It occurs when there are multiple
copies of the shared components in the system. The main problem created by hav-
ing multiple copies is keeping track of them (Figure 3.4). How many copies of the
function exist in the project? Which program uses which copy? How many cop-
ies are still in the original state? What changes were made? To which copies were
those changes made? Ideally, all the copies across the system would be identical,
but rarely is the situation ideal.

Suppose Bob finds a bug and makes the necessary corrections to a function. It
is his duty to inform all the people who are using a copy of the function in ques-
tion that he has made the change; otherwise, while he will be using the “bug-fixed”
version of the function, everyone else will be using the one with the bug. When
the time comes to integrate all of the common functions, the multiple copies will
create problems for the programmers depending on which version of the function
is actually used. So, if the new version—the one that is fixed—is used, then all the
programs that have used the old version will be in trouble.

Figure 3.3 Shared data problem solved by using independent workspaces.

Figure 3.4 Multiple versions of the same component in use.

6518 Book.indb 37 12/30/14 1:24 PM

38 Pitfalls in the Software Development Process

As with any problem, programmers found a way to solve the multiple mainte-
nance problem, too. They created centralized libraries (Figure 3.5).

In this solution, the shared components were kept in a central location. The
different programmers took the required resources from the central library. If a bug
was discovered in a function, then the copy in the library was updated, so that it
was available to all. These centralized libraries could be considered the predeces-
sors of today’s repositories.

There was a problem, however, with these shared libraries. There was no control
over the changes made to a shared resource (e.g., program, function, or specifica-
tion) in the central library of shared components. Anybody could make a modifica-
tion. There was also no formal mechanism for informing all users that a particular
module or function had been changed. Further, there was no proper authority to
decide whether a particular change was necessary or not. This lack of proper control
mechanism led to another problem—the simultaneous update problem.

Simultaneous Update problem

Consider this situation. Bob has found a bug and has fixed it. He copies the bug-
fixed version to the central library, thus overwriting the existing copy. According to
the procedure we saw in the previous section, this is how it should be done. That is,
the changes are incorporated to the copy in the central library where all the shared
resources were kept.

But what if Jane also finds the same bug? She is not aware of the fact that Bob
has found the bug and is fixing it or has already fixed it. She also fixes the bug and
then copies the function to the library, thus overwriting the copy that was created
by Bob. So the work that was done by Bob to fix the bug is lost.

This creates a lot of problems (Figure 3.6). One, a lot of time and resources are
wasted because two people, working in isolation, corrected the same mistake. Two,

Figure 3.5 Solving the multiple maintenance problem using a central library.

6518 Book.indb 38 12/30/14 1:24 PM

Simultaneous Update Problem 39

different people will have different opinions about how to fix the same problem.
Who will decide which one is the best and which one is to be used?

Now consider another variation of this problem—and one that is much more
serious. Bob finds a bug and fixes it. During the same time, Jane finds a different
bug and fixes it. However, depending on which programmer updates the library
copy last, the other programmer’s work is lost. Still, both bug fixes are necessary
and need to be incorporated into the function. This means that the uncontrolled
and unmanaged functioning of these central libraries where the shared resources are
kept is not going to solve the problem. In other words, just by creating a repository
of shared components and leaving it unmanaged and uncontrolled so that anybody
can make changes to the items in the repository is not going to solve the problem.

SCM solves the three problems mentioned above—the shared data problem, the
multiple maintenance problem, and the simultaneous update problem—by enforcing
formal change management and control procedures. Once an item is brought under
SCM control, it is stored in a controlled library where the access is restricted. Devel-
opers just cannot make changes to items—configuration items—in the controlled
library. A change request has to be initiated, impact analysis has to be done, and
the change has to be approved. Only when the change is approved will the item be
released from the controlled library. Once the change has been made and tested, the
item(s) have to be reviewed and approved before being returned to the controlled
library. Since the developers cannot make changes to programs at will, the shared
data problem is eliminated. Since there is only one library to keep the configura-
tion items, and since only one person1 can make changes to an item at a time, the
multiple maintenance problem is also eliminated. Since the access to the central
library is controlled and formal change control procedures have to be followed to
modify the items, the simultaneous problem is also eliminated.

1. There are instances where more than one person needs to make changes to the same item and SCM has
ways to control such situations—branching and merging (detailed in Chapter 5).

Figure 3.6 Simultaneous update problem.

6518 Book.indb 39 12/30/14 1:24 PM

40 Pitfalls in the Software Development Process

Summary

We have considered the four major problems that create trouble in the software
development process—and drive programmers and developers crazy in the process.
Fortunately, a good change management and control system can solve these problems
and can bring discipline into the development process and improve the develop-
ment productivity. A lot of time that would otherwise be spent on debugging and
reworking can be saved. It is a well-known fact that the earlier defects are found,
the easier and cheaper it is to solve them. In order to detect and solve problems and
to ensure that the solved problems do not recur, it is important to have a good SCM
system from the beginning of the project.

References

[1] Jones, G. W., Software Engineering, New York: John Wiley & Sons, 1990.
[2] Brooks, F. P., The Mythical Man-Month, New York: Addison Wesley Longman, 1995.
[3] Rawlings, J. H., SCM for Network Development Environments, New York: McGraw-

Hill, 1994.

6518 Book.indb 40 12/30/14 1:24 PM

41

C h a p t e r 4

Need and Importance of SCM

introduction

Chapter 1 introduces SCM; Chapter 2 provides a brief introduction to the software
development process and how the various SCM activities fit into the development
process. Chapter 3 discusses some of the most common problems that plague the
software development process. This chapter examines why SCM is important and
why it should be implemented in all software projects irrespective of the size (small,
medium, large, or very large); complexity (simple or complex); and the stage (con-
ceptual, design, development, testing, or maintenance) of the project.

need for SCM

Here are just some of the reasons for implementing SCM:

•	 The nature of software products, projects, and development teams;
•	 The increased complexity of the software systems;
•	 The increased demand for software;
•	 The changing nature of software and the need for change management.

The nature of Software products, projects, and development Teams

Software products have many different components in multiple versions and run
on many different software and hardware platforms. The versions and variants are
closely interrelated, and if no control mechanism is in place, they are easily modi-
fied, corrupted, or destroyed.

Software development projects are one of the most difficult types to manage. In
a software project, everything from requirements to the development and installation
environment is constantly changing: Users modify the requirements they had laid out
at the beginning of the project; programmers make changes to code without letting
other users of the same code know about those changes; development environments
change due to new developments in technology; installation and operational envi-
ronments change because of customer policy decisions or technological innovations
or obsolescence; end users differ in their knowledge of the system they are going to
use—the list of the difficulties in a software project is endless. To manage such a
complex activity, project managers need tools to avoid chaos and confusion, some
examples of which are listed as follows:

6518 Book.indb 41 12/30/14 1:24 PM

42 Need and Importance of SCM

•	 Tools that will ensure that changes happen in an orderly and scientific manner;
•	 Tools that prevent communications breakdown among project stakeholders;
•	 Tools that alert managers before something goes wrong (an early warning

system);
•	 Tools that record everything so that when disaster strikes troubleshooting

is easier.

Today, most software products are developed by teams spread across the world
and by people who have different social, educational, cultural, and ethnic back-
grounds. Project managers need a system to ensure that these teams can commu-
nicate smoothly without misunderstandings. Employee turnover is another factor
that troubles all projects. When an employee leaves a project, it leaves a hole, and
it takes a long time to recover from the loss as some portion of the project-specific
knowledge is lost. To prevent this problem, projects need a system to record all the
details of the work that has been done and that needs to be done, including, for
example, what the employee did, how he or she did it, what tasks are left unfinished,
and which other components are affected. Then, even if an employee leaves the proj-
ect, somebody else can take his or her place and get up to speed much more quickly.

So it is clear that the special nature of the software products, projects, and teams
make software development very unique and very complex. Attempting to succeed
in such a venture without any tools or systems (such as SCM) is like attempting a
tightrope walk without any safety precautions. The most experienced and successful
adventure sports personnel are the ones that do not make any compromises on tak-
ing safety measures and precautions. Similarly, the more experienced and successful
software project managers insist on scientific methods and tools for managing the
project. Experience has taught them that the difference between a successful and
failed project is the use of proper control mechanisms and scientific procedures.

increased Complexity and demand

Information technology is revolutionizing the way in which we live and work. It
is changing all aspects of our lives and lifestyles. The digital revolution has given
humankind the ability to treat information with mathematical precision, to transmit
it with a high degree of accuracy, and to manipulate it at will. These capabilities are
bringing into being a whole world within and around the physical world.

The amount of information-processing power that is available to humankind
is increasing. Computers and communications are becoming integral parts of our
lives. The driving force behind these advancements is computer software. Computer
software is becoming more and more complex, and the amount of software being
developed each year is increasing at an exponential rate. Also, software is being
used to control a range of activities from mission-critical applications such as con-
trolling the operations of satellites and intercontinental ballistic missiles, managing
the functioning of banks and hospitals, and handling airline and railway reserva-
tion systems to performing mundane tasks like operating door-locking systems or
desktop publishing.

Musa [1] estimates that the demand for software systems increases by 900%
each decade. Boehm and Papaccio [2] predict that the expenditure on software

6518 Book.indb 42 12/30/14 1:24 PM

Need for SCM 43

development increases by 200% each decade, whereas the productivity of software
professionals increases by only 35%. So the gap between supply and demand is very
large. Software companies, nonsoftware organizations, and governmental agencies
are producing hundreds of new applications and modifying thousands of existing
ones every year. All of them are finding it difficult to develop the high-quality soft-
ware they need on-time and within budget.

Another aspect of software that has changed is the complexity. According to
Jones [3], in the early days of software development, computer programs were
typically less than 1,000 machine instructions in size, required only one program-
mer to write, seldom took more than a month to complete, and often shouldered
development costs of less than $5,000. Today, however, some of the large systems
exceed 25 million source code statements, usually require thousands of program-
mers, can take more than five years to complete, and have development costs in the
range of $500 million.

In the early days of software development, all of the parts or modules of a
software system were developed in the same place. Today, however, the different
components of complex software systems are not even built by the same organiza-
tion. Many software systems are built jointly by different organizations working in
different parts of the world. They may communicate via Internet, e-mail, or video-
conferencing technologies. So in this distributed development environment where
face-to-face communication is rare, managing and coordinating the development
process is a difficult task.

This increasing demand for new software, the need to modify or maintain exist-
ing software, the increasing complexity of the software development process, and
the critical nature of the applications in which software is being used dictate that
software development cannot be accomplished in the same way it was during the
early days. As Jones [4] has stated, “Software has become the central component
in many complex activities. For this reason, the challenge of producing it requires
specialized and powerful techniques. It is not possible to rely on luck, guesswork,
and innate talent for dependable results.” We need scientific methods and techniques
for developing software.

The Changing nature of Software and The need for Change
Management

Software systems are subject to constant changes—during design, during develop-
ment, and even after development. The pioneering work in this area has been done
by Lehman and Belady [5] and is detailed as a set of laws called Lehman’s laws.
According to Lehman’s law of continuing change, any large software system that
is being used will undergo continual change, because the system’s use will suggest
additional functionality. It will change until it becomes more cost-effective to rewrite
it from scratch [6]. This means that the software will be subject to constant changes
other than the bug fixes and defects that are already in the software and that will
be detected during and after its development.

That’s not all: The software system that is perfectly developed and that has met
all requirements and passed all audits and reviews will also change. According to
Lehman [7], even if a system were built in complete conformance to the requirements,

6518 Book.indb 43 12/30/14 1:24 PM

44 Need and Importance of SCM

the system would still evolve because the system is introduced into the real world,
and the environment into which the system is introduced is subject to change. So
in order to adapt to the changes in the environment in which the system works,
it has to change. In other words, no matter how perfectly built a system is, it will
have to be changed to meet the changes in the environment. So it is clear that the
only constant thing about software is change. If changes are not managed, chaos
and confusion will result. Accordingly, a mechanism for managing the change and
controlling it is required. SCM is one such mechanism.

Benefits of SCM

We have seen the need for SCM. A well-designed and properly implemented SCM
system offers many benefits to developers, organizations, and customers. Some of
the benefits of SCM are listed as follows:

•	 Improved organizational competitiveness;
•	 Better customer service and improved customer goodwill;
•	 Better return on investment;
•	 Improved management control over software development activities;
•	 Improved software development productivity;
•	 Easier handling of software complexity;
•	 Improved security;
•	 Higher software reuse;
•	 Lower software maintenance costs;
•	 Better quality assurance;
•	 Reduction of defects and bugs;
•	 Faster problem identification and bug fixes;
•	 Process-dependent development rather than person-dependent development;
•	 Assurance that the correct system was built.

These benefits are discussed in the following sections.

improved Organizational Competitiveness

Today’s business environment is highly competitive. Organizations are fiercely
competing for market share. In this race to survive, only the organizations that
continuously improve their processes and implement and use scientific tools, tech-
niques, and business practices will succeed. Software development is a process that
has many pitfalls (as seen in Chapter 3) and many peculiarities as mentioned in the
beginning of this chapter. If not managed properly, the software development pro-
cess can spiral out of control and result in time and cost overruns and low-quality
products. SCM is the discipline of controlling the chaos of the software develop-
ment process by managing uncontrolled change and improving communication.
SCM can improve the productivity of employees by reducing confusion, redundant
work, and wasted effort. It can reduce the time to market and help organizations
produce high-quality products. Thus, organizations can use SCM as a weapon to

6518 Book.indb 44 12/30/14 1:24 PM

Benefits of SCM 45

increase their competitiveness. The difference between the market leader and an
“also ran” is often the presence of a good SCM system and an organizational cul-
ture that promotes effective use of the SCM system.

Better Customer Service and improved Customer Goodwill

Even though it is possible to drastically reduce the number of defects in a software
product, it is impossible to completely eliminate all defects. Even if one manages to
deliver a completely defect-free product to the customers, there will be requests for
enhancements. So once the product is released into the market, the maintenance
and technical support personnel should gear up for such tasks as solving technical
problems, incorporating enhancement requests, and fixing bugs. To make changes
to the software (for incorporating new features or fixing bugs), the support team
must identify the source of the bug or the place where the enhancement is to be
made. This process is a lot easier if the organization has implemented a good SCM
system from the very beginning and followed the SCM procedures. Since the SCM
system keeps a record of all the changes made to each and every CI, identifying the
cause of a problem is easy. Since the SCM help desk contains a record of all known
problems with the system and their solutions, troubleshooting is easier. Thus, a good
SCM system leads to quicker resolution of customer problems, thereby improving
customer goodwill.

Better return on investment

A good SCM system automates the process of changing and deploying software
applications. The SCM system helps in process improvement, process automation,
communication, coordination, and change management and provides a better return
on investment (ROI) by accomplishing the following:

•	 Reducing rework, wasted effort, and number of errors;
•	 Shortening development and change cycles and reducing the time to market;
•	 Improving the quality of products and reducing errors;
•	 Reducing the time to find and fix errors and bugs;
•	 Automating and streamlining build and release management;
•	 Increasing productivity for human resources throughout the organization.

improved Management Control Over Software development activities

SCM systems improve communication in software development projects. The status
accounting function provides the project and company management with up-to-
the-minute information about what is happening in the project so that management
can take proactive actions to keep the project on-time and within schedule. The
status accounting information also includes information about the quality of the
software development (as indicated by such factors as the number of changes and
problems) and process improvement (indicated by metrics like average time to fix
bugs and time spent on development), which will help management to measure the
status of the project and manage it better.

6518 Book.indb 45 12/30/14 1:24 PM

46 Need and Importance of SCM

improved Software development productivity

Chapter 3 examined the various problems—communications breakdown problem,
shared data problem, multiple maintenance problem, and simultaneous update prob-
lem—that reduce the productivity of software professionals and result in wasted
effort, duplicated effort, and a host of other complications.

If software development were carried out in an environment where these prob-
lems did not occur, then productivity would naturally increase, because problems
and mistakes would be reduced. For example, if the communication channels are
well-defined and functioning smoothly, if changes are made in a controlled fashion,
if all team members are aware of how to handle change (i.e., each member of the
team knows what to do when they have to change something), then a lot of time
and effort can be saved. With an SCM system in place, developers have more time to
develop software instead of wasting time looking for missing items, fixing bugs that
have already been fixed, and solving problems caused by using different versions of
the same code. This yields a tremendous improvement in development productivity.

Easier Handling of Software Complexity

We have seen that software development is a very complex process. The use of SCM
in a software development project will equip all the project stakeholders to better
handle the complexity. SCM identifies all the components or artifacts of a software
project, captures their description and physical and functional characteristics, and
scientifically and systematically classifies, categorizes, and names them. These com-
ponents or CIs are then stored in one or more protected environments so that they
are safe from unauthorized changes, corruptions, and even disasters. SCM tracks
the progress of each component and alerts the management of impending dangers,
so that preventive actions can be taken. Thus, SCM acts as a management-reporting
tool that tells the project manager whether the project is on schedule. SCM also
performs audits and reviews to ensure that the product that is being developed is
exactly the same as the user requires (as specified in the requirements document).
Thus, SCM prevents chaos, confusion, rework, and wasted effort in a software
development project, helping to make the complex task of software development
a lot easier.

improved Security

We have seen that SCM prevents unauthorized changes to the different components
of the project. SCM achieves this by placing the reviewed, approved, and baselined
CIs in controlled libraries where access is restricted. SCM also maintains a change
log (history of the evolution of the CI to its current state). Such change logs, retained
along with the components, form a valuable resource for troubleshooting problems
and fixing bugs, among other challenges. Many SCM systems have off-site security
vaults where a copy of the latest version of the items in the controlled library is
stored. These off-site vaults will prevent data loss even in the case of a disaster at
the project site. Employee turnover can seriously jeopardize project schedules, since,
in most cases, employees leave without transferring knowledge to their successors.

6518 Book.indb 46 12/30/14 1:24 PM

Benefits of SCM 47

Because the SCM system maintains records of all the project-related activities per-
formed by each team member, new employees can be brought up to speed with the
help of the SCM logs and reports. Thus, implementing an SCM system increases
the level of security against potential losses, unauthorized changes, employee turn-
over, and other disasters.

Higher Software reuse

SCM system maintains a record of the past (project history or change history),
the present (project tracking and change logs), and the future (information about
planned versions and variants). The components or artifacts of the project are
classified, categorized, named, and stored so that they can be easily identified and
retrieved. These records help in a higher degree of software reuse, both for future
versions and other projects.

Lower Maintenance Costs

When dealing with software costs, most people address only the short-term or vis-
ible costs like the costs associated with design, development, and testing. However,
long-term costs associated with system operation and maintenance often constitute
a large percentage (as high as 75%) of the total life-cycle cost for a given system.
Blanchard [8] called this the iceberg effect, in which the initial costs are the visible
part of the iceberg—the tip of the iceberg—and the operational and maintenance
costs (amounting to more than 75 % of the total life-cycle costs) are the submerged
part of the iceberg. So maintenance costs constitute a significant amount of a soft-
ware system’s total life-cycle costs. Software maintenance is usually classified as
follows:

•	 Corrective maintenance: Corrects the mistakes that escaped the testing phase
and are found during actual usage.

•	 Adaptive maintenance: Changes the software to perform in a new environ-
ment or with some new interfaces.

•	 Perfective maintenance: Modifies the software to include new functionality
or additional features.

According to Lientz and Swanson [9], the perfective maintenance costs account
for 65% of costs; 18% are adaptive; and 17% are corrective. There are many reasons
for the high maintenance costs irrespective of which class they fall into. The most
important among these is the absence of a proper method for handling these main-
tenance issues. Almost all maintenance issues involve changing something, making
modifications to the existing code, or adding new code to the existing system. The
people who are supposed to do these activities should have a good understanding of
what they have to do, how they have to do it, where they have to make the change
or modifications, and what the impact of the change will be on other programs.

If the software was developed in a systematic manner, if the documentation is
perfect, the changes made to the programs are recorded, and the program depen-
dencies are defined, then the task of the maintenance team is easy. So from the

6518 Book.indb 47 12/30/14 1:24 PM

48 Need and Importance of SCM

design stage onward, proper mechanisms, ensuring that design and development
are done in a systematic and controlled fashion, need to be in place. These control
mechanisms will play a vital role in reducing maintenance costs.

Better Quality assurance (Qa)

One of the main objectives of a QA system is to prevent defects from occurring. In
the old days when the concept of quality control (QC) was prevalent, the idea was
to find defects once they had occurred. If we take the manufacturing industry as
an example, the QC team was interested in finding defects before the parts were
shipped. So the QC team concentrated on the final inspection with the objective
that not even a single defective part got past the final inspection stage.

With the advent of the QA philosophy, the focus changed from the final inspec-
tion to the assembly line. The idea was to prevent defects from occurring rather than
reject defective parts during final inspection. QA teams thus worked to identify the
causes of the defects, where they were occurring, when they were occurring, and
how they were occurring.

This is true in the case of software development also. In the early days, the focus
was on finding errors or bugs and fixing them before the product or system was
delivered to the customer. Nobody really cared about the causes of these defects and
how they originated and so on. As long as they were found and fixed, life was good.

The QC philosophy had a problem, however; it was costly. A lot of time and
effort could be saved if the defects were detected early. More important, though,
was that in the QC approach, because nobody was looking into the causes of the
defects, they remained undetected and reappeared in the next project. For example,
suppose a defect was occurring because the programmer was not good at the CASE
tool that he or she was using to generate the code. So every time he or she generated
new code, the same mistakes were repeated. A causal analysis would have revealed
this problem, and the programmer would have been trained on the tool to avoid
repeating the problem. However, to do a causal analysis, one needs to have data.
Accordingly, there has to be a formal mechanism for problem reporting or defect
logging and tracking.

reduction of defects and Bugs

Once you have a defect logging and tracking system in place, once the QA teams
start looking into the causes of the problems and correcting them, once the checks
and audits are made to ensure that the project standards and guidelines are followed,
then the number of bugs and problems will be reduced. In most cases, problems
occur because the documentation is not in sync with the development, the RDD
and system design document (SDD) are not updated to reflect the latest changes,
and different people are using different versions of the same program or function.
In many projects, there are no formal mechanisms to find out which code belongs
where, what changes were made, and why and when. If the development process
has a system that takes care of these types of issues, then the software development
and maintenance processes will be easier.

6518 Book.indb 48 12/30/14 1:24 PM

Benefits of SCM 49

Faster problem identification and Bug Fixes

In the usual system of testing, bugs are found and fixed. However, if there is a
mechanism for logging bug and problem reports, categorizing them, analyzing the
causes, and recording how the problem was solved, then much time and effort can
be saved the next time a similar bug or problem occurs.

Also, by recording the bugs, their causes, and the corrective actions, a knowledge
base will be created that will grow with time and become an invaluable resource
for future tasks. When a problem is reported, the knowledge base can be searched
for similar problems, and if one exists, the solution for the previous bug will help
resolve the current problem faster. As mentioned previously, the knowledge base
will grow in size and value as time goes on and as new problems and solutions are
added to it. This also means that even when people who are working on a project
leave, they leave behind the knowledge they have gained for others to use.

process-dependent development rather Than person-dependent
development

In the early days, when software projects were simple and small, a single individual
often handled the design and details of a project. Even though projects have become
larger and more complex, dependency on the individual still exists. For example, in
many projects, if you remove a few key people, projects will come to a standstill,
basically because the other members of the team do not have the whole picture of
the project. There is no way they can have the whole picture because no documen-
tation exists, and, even if it does exist, it is often understood only by the people
who wrote it. In many cases, these documents have not been updated and are not
in sync with the system that is being developed.

This kind of dependency on people is very dangerous. What happens if a key
person leaves the company or is not able to work anymore? In such cases, the entire
process of design and development has to start all over again, because nobody knows
what to do with the current system. It is for this reason that the software engineering
pioneers have always said that software development has to be process-dependent,
not people-dependent.

Boehm [10] has said that talented people are the most important element in
any software organization and that it is crucial to get the best people available.
According to him, the better and more experienced they are, the better the chance
of producing first-class results. The problem with these geniuses, however, is that
their capability to work as a team member, in most cases, will not be in the same
class as their talent.

Software development has become too complex and software systems so huge
that it is not possible for one individual to complete a project regardless of talent.
To develop software systems success fully, even the best and most talented profes-
sionals need a structured and disciplined environment, conducive for teamwork and
cooperative development. According to Humphrey [11], “Software organizations that
do not establish these disciplines condemn their people to endless hours of repeti-
tively solving technically trivial problems. There may be challenging work to do,
but their time is consumed by mountains of uncontrolled detail. Unless these details

6518 Book.indb 49 12/30/14 1:24 PM

50 Need and Importance of SCM

are rigorously managed, the best people cannot be productive. First-class people are
essential, but they need the support of an orderly process to do first-class work.”

assurance That the Correct System Has Been Built

Software development, as we have seen, starts with the requirements analysis. We
have also seen that during the software development life cycle, the requirements
will undergo many changes. So how do we make sure that the system that is being
delivered to the customer is what the customer initially wanted and contains all the
changes that were suggested during the development period? In other words, how
do clients or customers know that what they are getting is what they asked for?

There should be some sort of process for documenting the initial requirements
and the changes made to them. There should also be a mechanism for checking or
auditing the software system or product that is being delivered to the customer and
certifying that the product satisfies the requirements. In other words, there should
be a facility to conduct audits (or reviews) to ensure that what is developed and
delivered is complete in all respects and exactly what was specified.

Summary

Software systems are becoming more and more complex and sophisticated and
are being used increasingly in mission-critical applications. Due to the changing
nature of software and software development, it is necessary to have a system in
place to manage and control change; otherwise, chaos and confusion may ensue,
resulting in low quality, lower productivity, and even the scrapping of a project.
One weapon against such an outcome is QA, an important element that can help
to reduce bugs and maintenance costs. To be successful in the long run, however,
we need a process-dependent system.

SCM is an ideal solution for the issues discussed and an excellent foundation from
which other process-improvement methodologies can be launched. SCM provides a
mechanism for managing, documenting, controlling, and auditing change. Accord-
ingly, in today’s complex software development environment, SCM is a must for all
projects, irrespective of their nature, size, and complexity. Furthermore, it is better
to have the SCM functions in place as early as possible. According to Davis [12],
SCM procedures should be designed and approved and recorded in a document—
the SCM plan. This document should be written early in a project (as described
in Chapter 2—as early as the project start-up phase), typically getting approved
around the same time that the software requirements specifications are approved.

References

[1] Musa, J. D., “Software Engineering: The Future of a Profession,” IEEE Software, Vol.
22, No. 1, 1985, pp. 55–62.

[2] Boehm, B. W., and P. N. Papaccio, “Understanding and Controlling Software Costs,”
IEEE Trans. Software Engineering, Vol. 14, No. 10, 1988, pp. 1462–1477.

6518 Book.indb 50 12/30/14 1:24 PM

Summary 51

[3] Jones, C. T., Estimating Software Costs, New York: McGraw-Hill, 1998.
[4] Jones, G. W., Software Engineering, New York: John Wiley and Sons, 1990.
[5] Lehman, M. M., and L. Belady, Program Evolution: Processes of Software Change, Lon-

don: Academic Press, 1985.
[6] Lehman, M. M., and L. Belady, “A Model of Large Program Development,” IBM Syst.

J., Vol. 15. No. 3, 1976, pp. 225–252.
[7] Lehman, M. M., “Software Engineering, the Software Process and Their Support,” Soft-

ware Engineering J., Vol. 6, No. 5, 1991, pp. 243–258.
[8] Blanchard, B. S., System Engineering Management, New York: John Wiley & Sons, 1991.
[9] Lientz, B. P., and E. B. Swanson, Software Maintenance Management, Reading, MA:

Addison-Wesley, 1980.
[10] Bohem, B. W., Software Engineering Economics, Englewood Cliffs, NJ: Prentice-Hall,

1981.
[11] Humphrey, W. S., Managing the Software Process, New York: Addison-Wesley, 1989.
[12] Davis, A. M., 201 Principles of Software Development, New York: McGraw-Hill, 1995.

6518 Book.indb 51 12/30/14 1:24 PM

6518 Book.indb 52 12/30/14 1:24 PM

53

C h a p t e r 5

SCM: Basic Concepts

introduction

SCM is the set of activities that are performed throughout the project life cycle—
from requirements analysis to maintenance. SCM is important because software
is subject to constant change—software systems undergo changes when designed,
when built, and even after being built. Uncontrolled and unmanaged change can
create confusion and lead to communications breakdown problems, shared data
problems, multiple maintenance problems, simultaneous update problems, among
others. So change has to be controlled and managed.

A software development project produces the following items:

•	 Programs (e.g., source code, object code, executable programs, component
libraries, functions, and subroutines);

•	 Documentation (e.g., requirements definition, systems analysis, systems design,
high-level design, low-level design, test specifications, test plans, test scripts,
installation manuals, release notes, and user manuals);

•	 Data (test data and project data).

These items are collectively called a software configuration. IEEE [1] defines a
software configuration as the functional and physical characteristics of the software
as set forth in technical documentation or achieved in a product.

The SCM system1 identifies these items (the software items) and records their
properties and relationships. This task would be very easy if the items and the
systems were not subject to change. Unfortunately, however, that is not the case.

Changes can occur at any time. Bersoff’s [2] first law of system engineering
states that no matter where you are in the system life cycle, the system will change
and the desire to change it will persist throughout the life cycle. So we have to deal
with change and SCM does that. That is not the only thing that SCM does, how-
ever; it also—through audits and reviews—ensures that the items that are being
released satisfy the requirements that were set forth in the requirements and design
documents.

1. SCM system refers to the tools, plans, and procedures that collectively implement SCM in the project. It
is the collection of all activities and personnel and other resources that performs SCM.

6518 Book.indb 53 12/30/14 1:24 PM

54 SCM: Basic Concepts

Accordingly, we can define SCM as the set of activities whose main purposes
are to identify the CIs (the items that are supposed to change or that will undergo
change); to find the properties, characteristics, and interdependencies of these items
and record them; to monitor these items; to manage the changes made to these
items; to document and report the change process; and to ensure that the items
delivered are complete and satisfy all requirements.

Overview of SCM

To identify, control, and manage change, one must first identify which items in the
project will be subject to change. Therefore, we must first identify the items that
we plan to control and manage. These items are called, in SCM terminology, CIs.
IEEE [1] defines CIs as an aggregation of hardware, software, or both that is des-
ignated for CM and treated as a single entity in the CM process. Examples of such
entities include a program, a group of programs, a component library, a function,
a subroutine, project documentation, a user manual, a test plan, test data, and
project data. The SCM system is supposed to record the functional and physical
properties (e.g., the features, what it is supposed to do, what performance criteria
it is supposed to achieve, the size, and lines of code) of these CIs. Some examples
of CIs in a project are listed as follows:

•	 The project plan;
•	 The SCM plan;
•	 The RDD;
•	 The analysis, design, coding, testing, and auditing standards;
•	 The SAD;
•	 The system design document (SDD);
•	 The prototypes;
•	 The HLD document;
•	 The LLD document;
•	 The system test specifications;
•	 The system test plan;
•	 The program source code;
•	 The object code and executables;
•	 The unit test specifications;
•	 The unit test plans;
•	 The database design documents;
•	 The test data;
•	 The project data;
•	 The user manuals.

This list is by no means exhaustive. It varies from project to project. The design-
ers of the SCM system for a particular project decide which items should be CIs.
The characteristics of each CI and their interdependencies with one another are
recorded. Usually, this information is recorded in what is called a CM database or

6518 Book.indb 54 12/30/14 1:24 PM

Baselines 55

in repositories in the case of SCM tools. We will learn more about the CM database
later in this chapter.

Once the CIs are identified and their characteristics recorded, the next steps
in SCM, as shown in Chapter 1, are configuration control, status accounting, and
configuration audits. We look briefly at these activities later in this chapter. Before
we proceed, however, we should familiarize ourselves with some of SCM terminol-
ogy and concepts that we will be using in this book, including baselines, deltas,
versions, variants, branches, builds, and releases.

Baselines

Baselines play a very important role in managing change. During the software
development process, the CIs are developed. For example, design documents are
created, programs are coded and tested, and user manuals are prepared. When a
CI is complete, it is handed over to the CM team for safekeeping. The CM team
will check whether the item that is given to them is complete (or contains all the
necessary components) per the SCM plan and place it in the controlled library.
During specific points during the software development, usually after the require-
ment phase, design phase, and release phase, the set of CIs under SCM control are
formally designated as a baseline. So a baseline need not contain all the items that
are in the controlled library. Which items are to be included in a baseline is depends
on the purpose for which the baseline is created. For example, a release baseline
will only contain the CIs that are to be given to the customer.

There are two schools of thoughts regarding baselines. One suggests that the
required CIs are placed into one of the different baselines. The other proposes that
a CI becomes its own baseline once it is given over to SCM for control. The problem
with declaring any configured item as a “baseline” is that one loses the distinction
between something that is merely checked in, and when it becomes a part of some
deliverable (such as the development, test, or deployed or release baselines). Just
checking an artifact in may not even mean it gets included in a build. It may be an
interim step as part of a parallel development effort, for example. A baseline does
not represent simply any changed item; rather, it is a particular grouping of items
at a specific point in time, for a given purpose.

Baseline is an SCM concept that helps to control change. IEEE [1] defines base-
line as a specification or product that has been formally reviewed and agreed on,
which, thereafter, serves as the basis for further development and can be changed
only through formal change control procedures. So once a baseline is established,
the CIs in the baseline can be changed only through a formal change management
process. Pressman [3] compares the process of change management to a room with
two doors: the IN and OUT doors. According to him, when an item has passed
through the IN door—to the controlled environment—the item is brought under
configuration control. Then the only way to make changes to the item is get it out
through the OUT door—using formal change management methods.

The baseline is the foundation for CM. The definition of SCM contains the con-
cept of identifying the configuration—the functional and physical characteristics—of
each CI at discrete points in time during the life cycle process. The configuration

6518 Book.indb 55 12/30/14 1:24 PM

56 SCM: Basic Concepts

of software at a discrete point in time is known as a baseline. Each baseline serves
as a point of departure or reference for the next development stage.

A software baseline is a set of software items formally designated and fixed at
a specific time during the software life cycle. A baseline, together with all approved
changes to the baseline, represents the current approved configuration. Usually,
baselines are established after each life cycle phase at the completion of the formal
review that ends the phase. Thus we have such baselines as the requirements base-
line, the design baseline, and the product baseline, as shown in Chapter 2.

A baseline provides the official standard or point of reference on which subse-
quent work is based and to which only authorized changes are made. After an initial
baseline is established, every subsequent change made to the CIs is done using the
configuration control process or, in other words, using formal change management
procedures. Whenever an item is changed, all the processes involved in making the
change—change initiation to change requests2 to change disposition and implemen-
tation—are recorded. Then, the item that is being changed is reviewed and saved as
a new version of the item. For all these change management processes, the baseline
serves as a reference point.

Baselines should be established at an early point in the project. However, bring-
ing all items under configuration control too early will impose unnecessary pro-
cedures and will slow the programmers’ work. This is because before a software
CI becomes part of a baseline, changes may be made to it quickly and informally.
For example, consider a programmer developing a program. After he or she has
completed coding, while doing the unit testing, the programmer stumbles on a
better algorithm to accomplish some task in the program. Because the program is
not part of a baseline, the programmer can make the necessary change to the pro-
gram, recompile it, and continue with the testing. However, if the same situation
occurs after the program is checked-in or has become part of a baseline, then the
programmer will have to make a change request and follow the change management
procedures to make the change.

So when should baselines be established? There are no hard and fast rules on
this issue. It depends on the nature of the project and the thinking of the SCM sys-
tem designers (the people who designed the SCM system and wrote the SCM plan).
Establishing baselines involves a trade-off between imposing unnecessary procedures
(thus reducing productivity) and letting things go uncontrolled (which will result in
project failure). So these two factors should be kept in mind when deciding when to
baseline. As long as the programmers can work on individual modules with little
interaction, a code baseline is not needed. As soon as integration begins, formal
control is essential.

So prior to a CI becoming a controlled item, only informal change control3 is
applied. The developer of the item can make whatever changes are justified by project

2. Change request (CR) is a request to make a change or modification. A CR form is a paper or electronic
form that is used to initiate a change and that contains the details of the change such as the name of the
change originator, the item to be changed, and the details of changes.

3. Informal change control is applicable when the developers can make changes to their programs without
following the SCM procedures. This is possible when the item has not been checked in and is not under
SCM control.

6518 Book.indb 56 12/30/14 1:24 PM

Check-In and Check-Out 57

and technical requirements, as long as these changes do not conflict with the system
requirements.4 However, once the object has undergone formal technical review and
has been approved, a baseline is created. Once the CI becomes a baseline, project
level change control or formal change control is implemented.

Even though the most common baselines are the requirements, design, and
product baselines, a baseline can be established whenever a need is felt. For exam-
ple, many projects have many more baselines than the three mentioned above. A
new baseline is not necessarily established each time a CI is modified or added to
the library. The number of baselines that a project has is determined by the SCM
team, the project’s needs, and what is advantageous. The information about when
to create a baseline will be in the SCM plan.

You can have a baseline at the start of each phase, if you so choose. As for
trade-offs, the only time there is a real need to establish a baseline is, if after it is
done, a copy of the baseline leaves SCM control in some fashion (i.e., to a test lab
or deployment)—that is the minimum for creating a baseline. You must know the
“set” of software that starts a phase or is deployed so that you know what changes
should be made to it later. In considering how to control the number of baselines,
ask the following questions:

•	 What are the requirements from the customer vis-à-vis providing demonstrable
progress reporting?

•	 What are the needs and requirements internal to your organization or project
about status and progress reporting?

•	 What metrics do your customers, management, and project leadership need
to see?

The answers to these questions can help you establish a baseline schedule.

Check-in and Check-Out

We have seen that once a CI is developed, reviewed, and approved, it is kept in a
controlled library or repository. This process of reviewing, approving, and moving
an item into the controlled environment is called check-in.

Once an item is checked in, it becomes a controlled item, and all change manage-
ment procedures apply to it. It cannot be taken out and modified whenever a pro-
grammer feels like doing so, even if he or she is the author or developer of the item.

For making changes to an item that is in the controlled library, the change man-
agement process, which is discussed in detail in Chapter 7, must be followed. That
is, a change request has to be submitted and approved, among other things. Once
the change request is approved, the configuration manager will copy the item (and

4. Developers can find out whether the changes they make to their programs conflict with the system
requirements by going through the system design specifications and HLD documents. For example, in a
program, whether the developer first calculates the tax and subtracts it from the earnings or multiplies
the earnings with the (1-tax/100) does not conflict with the system requirements. This is a decision that
the programmer takes according to his or idea about which is the best algorithm.

6518 Book.indb 57 12/30/14 1:24 PM

58 SCM: Basic Concepts

other impacted items, if any) from the controlled library so that modifications can
be made. This process is called check-out. Thus, to make a change to an item that
is under SCM control, it has to be checked out of the controlled library. After the
changes are made, the item or items are again tested and reviewed and, if approved,
proceed to be checked in to the controlled environment. The check-out/check-in
process is shown in Figure 5.1. Today’s SCM tools have made this whole process
of check-in and check-out an easy task. Many tools allow programmers to work on
CIs without physically checking out the items. Also, today’s SCM tools allow more
than one person to simultaneously work on the same CI (concurrent development).
These facilities provided by modern SCM tools are discussed later in this chapter.

Versions and Variants

During the software development life cycle, the CIs evolve until they reach a state
where they meet the specifications. This is when the items are reviewed, approved,
and moved into the controlled environment. However, we have seen that the story
does not end there. The item will undergo further changes (due to various reasons
such as defects and enhancements) and to make those changes, the change control
procedures must be followed. The items have to be checked out, and the changes
need to be implemented, tested, reviewed, approved, and again moved back to the
controlled library. This change process produces a new version or revision of the item.

A version is an initial release or rerelease of a CI. It is an instance of the system
that differs in some way from the other instances. New versions of the system may
have additional functionality or different functionality. Their performance charac-
teristics may be different, or they may be the result of fixing a bug that was found
by the developer, tester, user, or customer.

Figure 5.1 Check-in and check-out.

6518 Book.indb 58 12/30/14 1:24 PM

Parallel Development and Branching 59

Some versions can be functionally equivalent but may be designed for different
hardware or software environments. In such cases, they are called variants. For
example, two different instances of the same item—e.g., one for Windows and the
other for Linux—can be called variants rather than different versions. Unlike a
version, one variant of an item is in no sense an improvement on another variant.

As we have seen, the items once moved into the controlled environment can be
changed only by using SCM change control methods. Each such change produces a
revision or version. So each change to a controlled item produces a new version, and,
except for the first, each version has a predecessor. Similarly, except for the most
recent, each version has a successor. The different versions of an item represent its
history. It explains how an item got transformed or evolved from its initial form or
stage to its current form. Usually, a new version of an item is created by checking
out the most recent copy and making changes to it.

parallel development and Branching

So far we have seen that an item is checked out, and changes are made and then
tested, reviewed, approved, and checked in. So the versions will form a linear line
as shown in Figure 5.2.

In real life, however, this linear development might not always be possible.
In such cases we use what is called a branch. Branches (Figure 5.3) are deviations
from the main development line for an item. They are a convenient mechanism for
allowing two or more people to work on the same item at the same time—parallel,
concurrent development—perhaps for different goals. A common scenario is hav-
ing one person working to add new features to the product, while a second is doing
bug fixes on prior versions.

The version numbers of branches can be a little confusing, so they warrant a
quick discussion. Version numbers on the main development line have only two
parts—a major and minor number. Branches have four parts to their numbering
scheme. The first two parts represent the point at which the branch splits off the
main line. The third number indicates which of the many possible branches it is.
For example, in Figure 5.3, we have only one branch originating from 1.3. As such,

Figure 5.2 Version numbers.

Figure 5.3 Branching for parallel development.

6518 Book.indb 59 12/30/14 1:24 PM

60 SCM: Basic Concepts

its numbering starts at 1.3.1.0 and proceeds from there. If a second branch is later
formed from 1.3, then its numbering will begin with 1.3.2.0, as shown in Figure 5.4.

Branches can also extend from existing branches. For example, a branch can
be formed from 1.3.1.1. This branch will have a six-part numbering scheme start-
ing with 1.3.1.1.1.0 as shown in Figure 5.5. The first four parts represent the point
at which the branch split off from the parent branch. The fifth number indicates
which of the many possible branches it is. For example, in Figure 5.5 we have only
one branch originating from 1.3.1.1. As such, its numbering starts at 1.3.1.1.1.0
and proceeds from there. If a second branch is later formed from 1.3.1.1, then its
numbering will begin with 1.3.1.1.2.0.

Branches are often used as a temporary means of allowing parallel and concur-
rent development on a single file. Sooner or later, the edits made to the branched
line must be incorporated into the main evolutionary line for the file. When doing
this, the changes made by the different persons have to be merged. If the changes
are made at different parts of the item, then the merge is an easy task. However, if
two people have changed the same lines of an item, then a decision has to be reached
about how the merge is to take place. The person who does the merging should
decide which one to keep and which one to discard. SCM tools have automatic
merging facilities that allow interactive merging, in which the tool will compare
the changed portions of the two changed files to the original file (usually called the

Figure 5.4 Multiple branches.

Figure 5.5 Branch from an existing branch.

6518 Book.indb 60 12/30/14 1:24 PM

Source and Derived Items 61

ancestor), and the user can choose which change to accept. In the author’s opinion,
however, it is always better to do an interactive or manual merge, because human
judgment is better that the judgment afforded by the algorithms used by the tools.

After the merge occurs, the branches have outlived their utility and no longer
need to evolve separately.

naming of Versions

We have seen that all CIs have to be named and that the name has two parts: a
number part, which changes with each version, and the name of the item (including
the project, type, and other details). The names should be descriptive. For example,
in a large project with many modules and subsystems, a simple name for a CI is
not a good idea. In such cases, the name should have elements of the project, sub-
system, module, and other components in it so that it can be easily identified with
a project or subsystem. The number part of the name should be designed in such a
way as to determine its relative position in the version hierarchy. For example, we
have seen that the first version will be identified as 1.0 and subsequent revisions
1.1, 1.2, 2.0, 2.1, and so on. A branch from version 1.1 will be identified as 1.1.1.0
and its subsequent versions 1.1.1.1 and so on. A second branch will be identified
as 1.1.2.0 and so on.

Source and derived items

An item that is created from another item or set of items is called a derived item.
The items from which a derived item is created are called source items. For example,
an executable program is a derived item—an item that is derived from the source
code using a compiler. In the case of derived items, the details, such as the list of
source items used to derive the item, the tool or tools used to derive the item, and
the environment in which the derivation was done, are important and should be
documented. This is important from the point of view of reproducibility and repeat-
ability. For example, if you want to derive the particular version of a derived item,
you will need all the above information to do so. Also, if a problem is detected with
a version of the derived item, then the following questions need to be answered to
solve the problem:

•	 Which versions of which source elements (name and version of each source
item) were used to build the item?

•	 Which tools were used for the process?
•	 What environment variables and parameters (such as compile and link-edit

options) were used to by the tools while building the item?

These are the first questions one must answer if a problem occurs, and a good
SCM system should be able to provide the answers to these questions, as these are
the answers that fully describe a derived item.

6518 Book.indb 61 12/30/14 1:24 PM

62 SCM: Basic Concepts

System Building

System building is the process of combining “source” components of a system into
components, which execute on a particular target configuration. The system or
parts of it have to be rebuilt after every change in the “source.” The following fac-
tors must be considered:

•	 Have all components that make up the system been included in the build
instructions (e.g., dependencies resolved and include paths set), and do they
have the proper version?

•	 Are all required ancillary files (data and documentation, e.g.) available on
the target machine?

•	 Are the required tools (e.g., the compiler or linker) available, and do they
have the right version?

The system is built using a command file that specifies such factors as the com-
ponents of the system (both source and derived), their versions, their location in
the controlled environment, the system building tools (e.g., a compiler and a linker)
and their versions, and the options and environmental parameters that were set. In
the IBM mainframe, this file is usually a JCL file; in UNIX, it is a shell script; in
modern integrated development environments such as Visual C++ and Visual Basic,
it is a make file or project file. These command files are also CIs and are necessary
for reproduction of the particular configuration.

The build management facility of many SCM tools automates the process of
constructing the software system and ensures that the systems are built completely
and accurately at any time. These configuration builders save time, shorten build
cycles, and eliminate build errors by providing repeatable, automated builds of
the software development projects. In most cases, the system building tools work
with the version management tools and extract the correct versions of development
objects from libraries. This simplifies the system building process and eliminates
errors when building complex versions on multiple operating systems.

releases

A release consists of more than just the executable code. It includes installation files,
data files, setup programs, and electronic and paper documentation. A system release
is the set of items that is given to the customers. Each system release includes new
functionality or features or some fixes for the faults found by customers, develop-
ers, or testers. Usually, there are more revisions of a system than system releases.
Revisions or versions, as mentioned before, are created for internal use and may
never be released to customers. For example, a revision may be created for testing.

When a release is produced (using the system building process), as we have
seen, it is important to record the environment in which it was produced, including
the operating system, versions of the components used, and other parameters such

6518 Book.indb 62 12/30/14 1:24 PM

Deltas 63

as compile and link-edit options. This is important from the SCM point of view,
because at a later stage, it might become necessary to reproduce the exact configu-
ration that was released. For example, consider a bug that is discovered after the
system is released. The easiest way to find the source of the problem is to find out
what components were changed. The problem could be either due to a bug in one
of the changed components or due to some environmental variables being changed
(like some compiler or linker options). Accordingly, if we have a record of the com-
ponents and the environment details used for the release, then it is easy to track the
source of the defect. One merely needs to compare the details of the current release
with the previous release and see what has been changed. Thus, it is imperative that
a proper mechanism to record the details of each and every release be instituted.

A release to a client or a system release should contain identifiers indicating
the release or version number. It should also include a release note containing the
following information:

•	 Installation requirements (e.g., required operating system, memory, and pro-
cessor specifications);

•	 How to install the system and how to test the system to ensure that the instal-
lation was successful;

•	 How to upgrade from an earlier version of the system;
•	 The key or serial number of the product, if such a number is required for

installation;
•	 A list of known faults and limitations of the particular version of the system

and a list of the faults that were fixed in the current release;
•	 New features introduced in the release;
•	 Instructions for contacting the supplier of the system for technical support

or if problems arise.

Today, most of the above-mentioned activities, including the registration of the
product, are done by installation programs, so release notes are not as important
as they once were.

deltas

In an ideal situation, all changes made to the CIs should be recorded and all of the
different versions of the items should be kept, because in a software system not all
users will be using the latest version. So, even though the system may be in version
6.0, some users will still be using version 1.0 or 2.1. Accordingly, CM systems should
be able to produce the details of the latest as well as past versions and to reproduce
the components of every version. For example, years after a system is released, a
request for a component in the first version can come up. Even if the system is cur-
rently in its seventh or eighth version, companies cannot ignore a client that still
uses the initial version.

Ideally, copies of all versions should be in a repository. However, this is not
practical, because of the amount of disk space required. Instead, we create what is

6518 Book.indb 63 12/30/14 1:24 PM

64 SCM: Basic Concepts

known as a delta. When a new version is created, the difference between the new
and the previous version is called delta. With this method, instead of storing full
copies of all versions, one version and the deltas are stored, so that at any point in
time the required version can be derived by applying the relevant deltas to the base
version. Figure 5.6 illustrates the concept of deltas.

Deltas are smaller than the source code of a system version, so the amount of
disk space required for version management is greatly reduced. The two types of
delta storage are forward deltas and reverse deltas, as shown in Figure 5.7.

Figure 5.6 Use of deltas.

Figure 5.7 Forward and reverse deltas.

6518 Book.indb 64 12/30/14 1:24 PM

SCM Database 65

The principle of forward delta storage is that the system maintains a complete
copy of the original file. After this, whenever a new version is checked in, the two
versions are compared and a delta report is produced. Then, this delta report is
stored instead of storing the full copy of the new version. Whenever the new version
is required, the delta is applied to the original to get the new version.

In the case of reverse delta storage, only the most recent version of the module is
kept in the complete form. Whenever a new version is checked in, it is compared to
the previous version and the delta is created. Then, the previous version is deleted,
and the new version is stored.

The problem with forward delta storage is that as more revisions are added,
more computation is required to obtain the latest revision. So the greater the num-
ber of revisions, the longer the retrieval time will be. This is because in the case of
the forward delta, the change manager must always start with the original version
and then apply the deltas one at a time to create the latest version. In the case of the
reverse delta option, no computation is required to get the latest version, because
it is stored in its full form.

Using deltas is a classical space-time trade-off—deltas reduce the space consumed
but increase access time. However, an SCM tool should impose as little delay as
possible on programmers. Excessive delays discourage the use of version controls,
or induce programmers to take shortcuts that compromise system integrity.

The decision to go in for delta storage as opposed to storing copies of all versions
should be made with respect of amount of storage space required and cost of storage
and retrieval. With the cost of storage systems coming down, storing copies of all
versions can be considered, thus eliminating the need of deltas. Another factor that
decides whether or not to use delta storage is the accuracy in rebuilding the required
versions using the deltas vis-à-vis the cost of storage and the time taken to retrieve
an archived item from the backup mechanism. Whether to use delta storage or not is
a subject of debate among SCM professionals. In my opinion, if the complete copies
can be stored at a reasonable price and be retrieved as fast as recreating using the
delta storage, then it is better to eliminate delta storage or to limit it to text files.

The decision to go in for forward delta storage or reverse delta storage depends
on the nature of the project. If the latest versions are more frequently required,
then it is always better to use the reverse delta. In the real world, more than 75%
of archive accesses are for the latest version, and this explains the popularity of
reverse delta storage among the change management tools. Many tools also offer
the facility to use delta storage or keep the complete copies. So depending on the
nature, size, and type of CIs in the project, tool administrators can select a method
to suit their preference.

SCM database

We have seen that the properties, characteristics, and interdependencies of the CIs
should be recorded in a database—the CM database. The CM database is used to
record all relevant information related to configurations. The principal functions
of such a database are to assist in assessing the impact of system changes and to
provide information about the SCM process. The CM database, in addition to the

6518 Book.indb 65 12/30/14 1:24 PM

66 SCM: Basic Concepts

details about the CIs, contains information about change requests (which are also
CIs), their status, and information regarding the review and audit processes.

The contents and structure of the CM database should be defined during the
SCM system design stage and should be documented in the SCM plan. In modern
CASE environments, the configuration database is part of the system and the details
of the items are automatically recorded. In the case of manual SCM systems, the
details have to be entered manually into the system. The system should have neces-
sary precautions and safety mechanisms to prevent bypassing the procedures and
thus corrupting the data and making it useless. If a CI is added without an entry
in the database, then the integrity of the data in the database and the usefulness of
the database are lost.

A CM database should be able to provide answers to queries such as the following:

•	 What is the current configuration? What is its status?
•	 Which person has taken delivery of a particular version of the system?
•	 What hardware and operating system configuration are required to run a

given system version?
•	 How many versions of a system have been created and what were their cre-

ation dates?
•	 What changes have been made to the software, documentation, and other

items in the project? Who made them, and when were they made?
•	 Were the changes approved by somebody or just informally done?
•	 What versions of a system might be affected if a particular component is

changed?
•	 How many change requests are pending on a particular item?
•	 How many reported faults exist in a particular version?
•	 Can I recreate the original from the changed version or the changed version

from the original?
•	 Can I find out what happened to a specific item at some point in time, such

as what changes were made to it and so on?
•	 Does my change affect others?

With the increasing popularity of SCM tools, the necessity for a configuration
database is decreasing. SCM tools have their own repositories where they can store
SCM-related information. The advantage of these systems is that SCM informa-
tion is captured automatically as and when each activity is performed. So there is
no need to enter details manually in such situations as when a change request is
initiated, when an item is released, or when a change is made. This feature saves
considerable time and effort and reduces the chance of creating errors that can
occur during manual data entry. Also, with the facility to automatically capture
SCM information, such as when the activities happen, the SCM tool user has the
ability to capture comprehensive SCM information without any additional effort.

SCM activities

Configuration identification, the first activity of CM, is the process of defining each
baseline to be established during the software life cycle and describing the software

6518 Book.indb 66 12/30/14 1:24 PM

Summary 67

CIs and their documentation that make up each baseline. First, the software must
be grouped into CIs. Once the CIs and their components have been selected, some
way of designating the items must be developed. This is done by the development of
a numbering and naming scheme that correlates the code and data items with their
associated documentation. Finally, each CI must be described by the documentation
in terms of its functional, performance, and physical characteristics.

Configuration control is the process of evaluating, coordinating, and deciding on
the disposition of proposed changes to the CIs and includes implementing approved
changes to baselined software and associated documentation. The change control
process ensures that changes that have been initiated are classified and evaluated,
approved, or disapproved, and that those approved are implemented, documented,
and verified.

Configuration status accounting is the process used to trace changes to the soft-
ware. It ensures that status is recorded, monitored, and reported on both pending
and completed actions affecting software baselines.

Configuration auditing is the process of verifying that a deliverable software
baseline contains all of the items required for that delivery and that these items have
themselves been verified to determine that they satisfy requirements.

We will examine these activities in greater detail in Chapters 6–9.

Summary

This chapter details the various CM concepts and SCM terminology. It explains
SCM activities and how they relate to one another. Further, it provides readers with
an understanding of the fundamental concepts of SCM such as versions, variants,
branching, merging, deltas, system building, and releases.

In today’s business environment, where competition is fierce and one has to
constantly improve and innovate to stay ahead of the competition, SCM can give
an organization a strategic advantage over its competitors. An organization that
uses SCM has a definitive edge over others that do not use SCM or that use it inef-
ficiently or ineffectively.

References

[1] IEEE, IEEE Standard Glossary of Software Engineering Terminology (IEEE Std-610–
1990), IEEE Standards Collection (Software Engineering), Piscataway, NJ: IEEE, 1997.

[2] Bersoff, E. H., V. D. Henderson, and S. G. Siegel, Software Configuration Management:
An Investment in Product Integrity, Englewood Cliffs, NJ: Prentice-Hall, 1980.

[3] Pressman, R. S., Software Engineering: A Practitioner’s Approach (5th Edition), New
York: McGraw-Hill, 2001.

Selected Bibliography

Babich, W. A., Software Configuration Management: Coordination for Team Productivity,
Boston, MA: Addison Wesley, 1986.

6518 Book.indb 67 12/30/14 1:24 PM

68 SCM: Basic Concepts

Ben-Menachem, M., Software Configuration Guidebook, London: McGraw-Hill International,
1994.

Berlack, H. R., Software Configuration Management, New York: John Wiley & Sons, 1992.
CM Crossroads™: The Configuration Management Community (http://www.cmcrossroads.

com/).
Conradi, R. (ed.), Software Configuration Management: ICSE’97 SCM-7 Workshop Proc.,

Berlin: Springer-Verlag, 1997.
IEEE Standards Collection, Software Engineering, New York: IEEE, 1997.
Magnusson, B. (ed.), System Configuration Management: ECOOP’98 SCM-8 Symp. Proc.,

Berlin: Springer-Verlag, 1998.
Pressman, R. S., Software Engineering: A Practitioner’s Approach, New York: McGraw-Hill,

1997.
Sommerville, I., Software Engineering, Reading, MA: Addison-Wesley, 1996.
Whitgift, D., Methods and Tools for Software Configuration Management, Chichester, England:

John Wiley & Sons, 1991.

6518 Book.indb 68 12/30/14 1:24 PM

69

C h a p t e r 6

Configuration Identification

introduction

Configuration identification is the basis for subsequent control of the software con-
figuration. The software configuration identification activity identifies items to be
controlled, establishes identification schemes for the items and their versions, and
establishes the tools and techniques to be used in acquiring and managing controlled
items. These activities provide the basis for the other SCM activities [1].

The configuration identification process involves the selection, designation, and
description of the software CIs. Selection involves the grouping of software into CIs
that are subject to CM. Designation is the development of a numbering or naming
scheme that correlates the software components and their associated documenta-
tion. Description is the documentation of functional, performance, and physical
characteristics for each of the software components.

IEEE [2] defines configuration identification as an element of CM, consisting
of selecting the CIs for a system and recording their functional and physical char-
acteristics in technical documentation. In other words, configuration identification
is the process whereby a system is separated into uniquely identifiable components
for the purpose of SCM. This is the first major SCM function that has to be started
in a project (the design of the SCM system and the preparation of the SCM plan
are done before configuration identification begins). Effective configuration identi-
fication is a prerequisite for other SCM activities, all of which use the products of
configuration identification.

The software under control is usually divided into CIs, also known as com-
puter software CIs (CSCIs). A CI is an aggregation of software that is designated
for CM and is treated as a single entity in the SCM process. In other words, CI
is the term used for each of the logically related components that make up some
discrete element of software. A variety of items, in addition to the code itself, are
controlled by SCM. Software items with potential to become CIs include plans,
specifications and design documentation, testing materials, software tools, source
and executable code, code libraries, data and data dictionaries, and documenta-
tion for installation, maintenance, operations, and software use. For example, if a
system contains several programs, each program and its related documentation and
data might be designated a CI. Determining what characteristics must be captured
so that the properties and requirements of the product are correctly reflected is an
important decision.

The configuration identification process should capture all characteristics of
the software to be controlled—its content, the content of documents that describe

6518 Book.indb 69 12/30/14 1:24 PM

70 Configuration Identification

it, the different versions as the contents are changed, the data needed for operation
of the software, and any other essential elements or characteristics that make the
software what it is. A CI can contain other CIs and these are sometimes referred
to as computer software components (CSCs) and computer software units (CSUs).
A CSC is a functional or logically distinct part of a computer software CI. CSCs
may be top-level (TLCSCs) or lower-level (LLCSCs). A CSU is the smallest logical
entity or the actual physical entity of the system.

The software product shall be organized as one or more CSCIs. Each CSCI is
part of a system, subsystem, or prime item and shall consist of one or TLCSCs. Each
TLCSC shall consist of LLCSCs or CSUs. LLCSCs may consist of other LLCSCS or
CSUs. TLCSCs and LLCSCs are logical groupings. CSUs are the the smallest logical
entities and the actual physical entities implemented in code. The static structure
of CSCIs, TLCSCs, LLCSCs, and CSUs shall form a hierarchical structure as illus-
trated in Figure 6.1. The hierarchical structure shall uniquely identify all CSCIs,
TLCSCs, LLCSCs, and CSUs.

To accomplish configuration identification, it is necessary to perform the fol-
lowing steps:

•	 Develop the criteria for selecting items to be placed under configuration
control.

•	 Select CIs and define the relationships between the CIs.
•	 Establish a software item hierarchy (structure and elements of the complete

software system) and define the interrelationships between the CIs. The

Figure 6.1 CSCI structure.

6518 Book.indb 70 12/30/14 1:24 PM

Introduction 71

structural relationships among the selected CIs, and their constituent parts,
affect other SCM activities or tasks, such as software building or analyzing
the impact of proposed changes. Proper tracking of these relationships is also
important for supporting traceability verifications.

•	 Develop an identification or naming scheme for identifying the CIs clearly
and unambiguously.

•	 Select configuration documentation to be used to define configuration base-
lines for each CI.

•	 Establish a release/version management system for configuration documentation.
•	 Define and document interfaces to and between CIs.
•	 Define and establish baselines to be used.
•	 Establish the procedure for a baseline’s acquisition of the items.
•	 Assign identifiers to CIs and their associated configuration documentation,

including version numbers where appropriate.
•	 Check that the marking or labeling of items and documentation with their

applicable identifiers enable correlation between the CI and other associated
data. The documents that capture the functional and physical characteristics
of the CI and the corresponding documentation will become part of the CI.
The naming of those items should be consistent with that of the CI for easy
association. For example, if the name of the documentation for a program
PGM XYZ is DOC XYZ it will help in better correlation.

•	 Ensure that applicable identifiers are embedded in the software and on its
storage media. For example, the source code of the program named PGM
XYZ can contain the name PGM XYZ. (Consider a COBOL program named
PGM XYZ; here the program name can be embedded in the source code as
PROGRAM ID in the IDENTIFICATION DIVISION.)

There are no hard and fast rules as to the order in which the above steps must
be performed. It depends on the organization, project, and the SCM system design-
ers and implementers.

EIA-649 [3] identifies configuration identification as the basis from which the
configuration of products are defined and verified; products and documents are
labeled; changes are managed; and accountability is maintained. Configuration
identification affords many benefits and purposes, including the following:

•	 To select products based on functionality, verifiability, supportability, com-
plexity, risk, and management activity;

•	 To determine the structure (hierarchy) of a product and the organization
and relationships of its configuration documentation and other product
information;

•	 To document the performance, interface, and other attributes of a product;
•	 To determine the appropriate level of identification marking of product and

documentation;
•	 To provide a unique identity to a product or to a component part of a product;
•	 To provide a unique identity to the technical documents describing a product;
•	 To modify the identification of product and documents to reflect incorpora-

tion of major changes;

6518 Book.indb 71 12/30/14 1:24 PM

72 Configuration Identification

•	 Maintenance of release control of documents for baseline management;
•	 To distinguish between product versions;
•	 To correlate a product to related user or maintenance instructions;
•	 To manage information including that in digital format;
•	 To correlate individual product units to warranties and service life obligations;
•	 To correlate document revision level to product version/configuration;
•	 To provide a reference point for defining changes and corrective actions.

impact of Ci Selection

Selecting CIs is an important process that must achieve a balance between providing
adequate visibility for project control purposes and providing a manageable num-
ber of controlled items. Poor CI selection can adversely affect costs and scheduling
and can become an unnecessary administrative and technical burden during and
after software development. The number of CIs in a system is a design decision—a
decision made by the people who design the SCM system. They are the people who
decide which items should be brought under configuration control.

This process should be done carefully, because the selection of CIs needs to
be correct: You should not select more or less than what is necessary. However,
with the introduction of SCM tools, this issue—the number of CIs—is not very
important. Modern tools can efficiently and effortlessly handle any number of CIs
without any problems. Still, the tools can only reduce the workload of managing
the CIs; other problems, such as reduced visibility, too much documentation, and
inefficient design, cannot be solved by the tools. Hence, the selection of the CIs is
still important. Technology can only help do things like automating processes, per-
forming repetitive and monotonous tasks, and reducing the workload of managing
the CIs. The question of what items should be made into CIs is still a management
decision based on experience and judgment—a decision that can be made only by
a person or group of persons who have the required knowledge about the project
and who have the relevant experience and expertise.

Effects of Selecting Too Many Cis

Selection of too many CIs may result in hampered visibility and management rather
than improved control. Examples of such difficulties include the following:

•	 Increased administrative burden in preparing, processing, and reporting of
changes, which tends to be proportional to the number of CIs.

•	 Increased development time and cost as well as potential creation of an inef-
ficient design. When there are too many CIs, the documentation and other
procedures increase and take valuable time that could be devoted to design
and development. As a result, too many CIs will result in increased develop-
ment time, and once the concentration is shifted from design and develop-
ment to maintaining the SCM records, the chances of creating an inefficient
design arise.

6518 Book.indb 72 12/30/14 1:24 PM

Baselines 73

•	 Potential increase in management effort, difficulties maintaining coordina-
tion, and unnecessary generation of requirements, design, test, and system
specifications for each selected CI.

Effects of Selecting Too Few Cis

Too few CIs can result in costly logistics and maintenance difficulties, such as these:

•	 Loss of visibility down to the required level to effect maintenance or modifica-
tion. For example, if CIs are chosen only at the module level, then maintaining
a function in that module will be quite difficult, because finding the subrou-
tine will be difficult when there are not any records in that name. Because
the CIs are defined only at the module level, only the modules will be visible.

•	 Difficulty in effectively managing the changes (for example, managing changes
to individual items, which are part of a CI). If there are too few CIs, say, only at
the module level, then check-in and check-out and change implementation will
be difficult because check-out happens at the CI level, and a lot of unwanted
items will also need to be checked out, tested, verified, and checked back in.

Baselines

As the CIs go through their development process, more and more components are
developed until the final CIs are available for use. Generally, the life cycle process
will first result in a set of requirements, then a design, then code for individual ele-
ments of the CI, and then integrated code with test cases and user manuals. The
definition of SCM contains the concept of identifying the configuration of each CI
at discrete points in time during the life cycle process, and then managing changes
to those identified configurations.

The configuration of software at a discrete point in time is known as a baseline.
Thus, a baseline is the documentation and software that make up a CI at a given
point in its life cycle. It includes the user documentation (if any), the specifications
document (or the document that contains the functional and physical characteristics),
and software (if any) that make up the CI at a given point. Each baseline serves as a
point of departure or reference for the next development stage. Baselines are usually
established after each life cycle phase at the completion of the formal review that
ends the phase. Thus, we have the requirements baseline, design baseline, and prod-
uct baseline. Chapter 2, and specifically Figure 2.1, gives an overview of baselines.

Each baseline is subject to configuration control and must be formally updated
(using the change management procedures) to reflect approved changes to the CI as
it goes through the next development stage. A baseline, together with all approved
changes to the baseline, represents the current approved configuration. At the end
of a life cycle phase, the previous baseline and all approved changes to it become
the new baseline for the next development stage. The term baseline management is
often used to describe this control process. Baseline management is the discipline
of controlling a series of baselines as they evolve and are then merged into the next

6518 Book.indb 73 12/30/14 1:24 PM

74 Configuration Identification

baseline to be defined. The SCM system provides the policies, procedures and tools
for exercising baseline management [4].

Baselines are established and placed under CM when it makes good management
sense to start controlling subsequent changes to the CIs. When to start baselining
is a management decision. Establishing a baseline does not mean that the software
development is brought to a halt. It only means that subsequent changes to the CIs
will be subject to formal change management procedures. Normally, the first base-
line consists of an approved software requirements document and is known as the
requirements baseline. The requirements baseline is the initial approved technical
documentation for a CI [2]. The requirements baseline contains the details regarding
what the system or software must accomplish. Through the process of establishing
a baseline, the requirements and other requirements described in the requirements
document become the explicit point of departure for software design. The require-
ments baseline is usually the first established baseline in the SCM process. When the
requirements baseline is established at the conclusion of the requirements analysis
phase of a project, the formal change control process commences. The requirements
baseline is also the basis against which the software is authenticated.

The design baseline is comprised of the initial approved specifications governing
the development of CIs that are part of a higher level CI [5]. The design baseline
represents the next logical progression from the requirements baseline and represents
the link between the design process and the development process. The requirements
baseline describes the functions that the system should have. Then, the software
system is designed by allocating the various functions to various components or
subsystems.

Based on the RDD (part of the requirements baseline), the different functions
of the software product are determined, and during the design process these vari-
ous functions—user interfaces, database operations, error handling, and input data
validation—are allocated to the various subsystems and components. This alloca-
tion of the different functionality happens during the design phase, and at the end
of the design phase the design baseline is established where the components of the
system would have their functionality assigned to them. So at the design baseline
stage, the functionality, or requirements defined in the requirements baseline, is
allotted to CIs in the form of design documentation (high-level and low-level),
which is now managed within the design baseline. So at the design baseline stage,
the functionality, or requirements defined in the requirements baseline, is allotted
to CIs in the form of design documentation (high-level and low-level), which is now
managed within the design baseline.

The product baseline corresponds to the completed software product delivered
for system integration. The product baseline represents the technical and support
documentation established after successful completion of the functional configura-
tion audit and physical configuration audit. The product baseline [6] is the initial
approved technical documentation (including source code, object code, and other
deliverables) defining a CI during the production, operation, maintenance, and
logistic support of its life cycle. The product baseline is sometimes known as the
deliverables baseline.

According to Ben-Menachem [4], the process of establishing baselines describes
the construction of the aggregates (the software system) from the components (the

6518 Book.indb 74 12/30/14 1:24 PM

CI Selection 75

CIs). So the baselines also define such things as how the aggregates must be con-
structed, what tools should be used, which parts are connected and which are not,
and what the nature of these interconnections is. As mentioned previously, once the
item is tied into a baseline, changes can be made only through the formal change
management process. Thus, baselines define the state of a system at a given point
in time, and the proper recording of this information is absolutely critical for the
success of any project.

Ci Selection

A software system is generally split into a number of CIs that are independently
developed and tested, and then finally put together at the software system integra-
tion level. Each CI essentially becomes an independent entity as far as the SCM
system is concerned, and the SCM functions are carried out on each CI. The divi-
sion of the software into CIs may be contractually specified or may be done during
the requirements analysis or preliminary design phase. As a general rule, a CI is
established for a separable piece of the software system that can be designed, imple-
mented, and tested independently. Some examples of items that are to be identified
include project plan, requirements specifications, design documents, test plans and
test data, program source codes, data, object code, executables, EPROMS, media,
make files, tools, user documentation, quality manual, and SCM plan.

CI selection is not an easy process as there are no hard and fast rules to it. The
selection process should involve all the major stakeholders of the project—includ-
ing company management, software team leader, SCM administrator or manager,
QA representative, testers, maintenance and support team members (if identified),
and client representatives.

Checklist for Selection of Cis

When a software project or system is broken down into components (the structural
decomposition), we can create a sort of tree structure. The decomposition can be,
for example, project-modules-sub modules-programs-functions-link libraries-icons
and other small minor components and so on. Decomposition to this detail is neither
necessary nor advisable because it will create many problems in managing the CIs
and will create too many specifications and documentation. However, if we reduce
the number of CIs by limiting the system decomposition to, say, the second level
(module level), it will result in poor visibility of the overall design and development
requirements.

The number of CIs is determined by the system granularity desired by the SCM
system’s designers. The granularity decides the level of decomposition of the software
system. There are no hard and fast rules here. It varies from project to project and
is a decision that has to be made by the SCM system development team.

We have seen that there are no firm rules when choosing CIs, but the following
questions can be used as a guide:

•	 Is the item critical or high-risk or a safety item?
•	 Is the item to be used in several places?

6518 Book.indb 75 12/30/14 1:24 PM

76 Configuration Identification

•	 Will the item be reused or designated for reuse?
•	 Is the system already a CI?
•	 Is the item borrowed from some other project or system?
•	 Would the item’s failure or malfunction adversely affect security, human safety,

or the accomplishment of a mission or have significant financial implications?
•	 Is the item individual, and can it be designed, developed, tested, and main-

tained as a stand-alone unit?
•	 Is the item newly developed? For example, a system or subsystem might be

developed to add certain requested enhancements.
•	 Will the item be maintained by diverse groups at multiple locations?
•	 Does the item incorporate new technologies?
•	 Is the item purchased off-the-shelf—COTS?
•	 Is the item supplied or developed by a subcontractor?
•	 Is the item highly complex, or does it have stringent performance requirements?

For instance, does the item have complicated algorithms, or does it need to
meet a stringent performance requirement such as having a small footprint?

•	 Does the item encapsulate interfaces with other software items that currently
exist or are provided by other organizations?

•	 Is the item installed on a different computer platform from other parts of the
system?

•	 Does it interface with other CIs whose configuration is controlled by other
entities, for example, a system that interfaces with an off-the-shelf package?

•	 Is it likely to be subject to modification or upgrading during its service life?
Is the item subject to modification at a rate that is much higher than that of
the other items? For example, consider an interface that reads data from some
external source. Every time the external source changes (assuming that data
formats will be subject to frequent changes), the item has to be modified.

•	 Is there a requirement to know the exact configuration and status of changes
made to an item during its service life? This refers to the criticality of the
item. Some items in a system are critical or more important than others. So
project management will necessarily be more interested in those types of items.

•	 Is the size of the item manageable? Can it be made by a small but efficient
development team in a reasonable time? If not, should it become two items
instead of one?

If the majority of these questions can be answered, “No,” the item should prob-
ably not be a CI. If the majority of questions can be answered, “Yes,” the item should
probably be a CI. However, there are no definitive rules and no magic formulas to
help in CI selection. The bottom line is that selection of CIs is a management deci-
sion based on experience and good judgment.

designation: naming of CiS

Each software component must be uniquely identified. According to IEEE [3], the
identification methods could include naming conventions and version numbers
and letters. The identification system or the naming convention should facilitate

6518 Book.indb 76 12/30/14 1:24 PM

Acquisition of CIs 77

the storage, retrieval, tracking, reproduction, and distribution of the CIs. A good
naming system will make it possible to understand the relationship between the CIs.

A good naming system uses numbers or alphabets to represent the position of
the CI in the hierarchy. For example, an item labeled 1.4 is definitely created after
an item with the label 1.2 and before one with the label 1.6. Note that the num-
ber is only a part of the name-the time–related part that changes when the item
undergoes revisions. The other part of the name, which defines the item, is usually
derived from the project or system and the type of the item and the item name. It
can be a simple name such as “PGMPAY” indicating that it is the payroll calcula-
tion program named PGMPAY or it can be a composite name like “PRJ_MOD
PGM_SRC PGMPAY” indicating the project, module, CI type, and name. The
decision on the complexity and detail of the names will depend on the size and
complexity of the project.

One important thing to remember is that the naming system should be developed
in such a way that the derived names do not produce duplicates, because this can
create chaos and confusion. For large and complex projects that have thousands of
CIs the naming system is usually quite detailed to facilitate easy identification and
tracking. As we have seen, the name part of the identification system will remain
constant over time for each item, whereas the number part will undergo changes.

Ci description

Software components are described in specifications (i.e., software requirements
specifications, software architectural design specifications, software-detailed design
specifications, interface control documents, and software product specifications).
The description of the component becomes more detailed as the design and devel-
opment proceeds through the life cycle. The description forms the basis for con-
figuration control and configuration status accounting. The description is also the
basis for the configuration audits and reviews, which ensure that the software is
complete and verified. The documents or portions of documents that describe each
CI must be identified and made part of the CI. I have frequently found a document
in use by several different companies (large and small) called the CI description (or
specification). Generally, it is not much more than a listing of CIs, by configura-
tion identifier, and an indication of the owner or programmer, next higher CI name
(parent), controlling baseline, fit into the hierarchy (CSCI, subsystem, or segment
name), and perhaps some other general information. This document forms a handy
reference for the CIs.

acquisition of Cis

The last activity of the configuration identification function is the acquisition of
the CIs for configuration control. Following the acquisition of a CI, changes to the
item must be formally approved as appropriate for the CI and the baseline involved,
as defined in the SCM plan. This means that the CIs—both intermediate and final
outputs (e.g., source code, executable, user documentation, design documents,

6518 Book.indb 77 12/30/14 1:24 PM

78 Configuration Identification

databases, test plans, test cases, test data, project plan, and SCM plan), and the
elements of the environment (such as compilers, operating systems, and tools)—
should be acquired and stored in a controlled environment (controlled software
libraries) so that they can be retrieved and reproduced when required and access can
be restricted. A software library is a controlled collection of software and related
documentation designed to aid in software development, use, and maintenance [4].
IEEE [6] specifies that for each such library the format, location, documentation
requirements, receiving and inspection requirements, and access control procedures
must be specified. Once the CIs are acquired and placed in the controlled library,
as we have seen, the configuration control procedures will apply to them.

Summary

Configuration identification is the process of selecting the CIs for a system and
recording their functional and physical characteristics in technical documentation.
We have seen why it is important to select the CIs, how to select them, and how
to establish baselines. Configuration identification is one of the important phases
of SCM, because it decides the level of granularity or detail to which SCM will be
performed in a project.

References

[1] Alain Abran, A., and J. W. Moore (eds.), SWEBOK: Guide to the Software Engineering
Body of Knowledge (Trial Version), Los Alamitos, California: IEEE Computer Society,
2001.

[2] IEEE Standard Glossary of Software Engineering Terminology (IEEE Std-610–1990),
IEEE Standards Collection (Software Engineering), Piscataway, NJ: IEEE, 1997.

[3] EIA, National Consensus Standard for Configuration Management (EIA-649), Arlington,
VA: Electronics Industries Alliance, 1998.

[4] Marciniak, J. J. (ed.), Encyclopedia of Software Engineering (2nd Edition), New York:
John Wiley & Sons, 2002.

[5] Ben-Menachem, M., Software Configuration Guidebook, London: McGraw-Hill Inter-
national, 1994.

[6] IEEE Standard for Software Configuration Management Plans (IEEE Std-828–2012),
Piscataway, NJ: IEEE, 2012.

Selected Bibliography

Berlack, H. R., Software Configuration Management, New York: John Wiley & Sons, 1992.
Dart, S., “Concepts in Configuration Management Systems,” Technical Report, Software Engi-

neering Institute, Carnegie-Mellon University, 1994.
Feiler, H. P., “Software Configuration Management: Advances in Software Development Envi-

ronments,” Technical Paper, Software Engineering Institute, Carnegie-Mellon University,
1990.

6518 Book.indb 78 12/30/14 1:24 PM

Summary 79

IEEE Software Engineering Standards Collection 2003 (CD-ROM Edition), Piscataway, NJ:
IEEE, 2003.

Magnusson, B. (ed.), System Configuration Management: ECOOP’98 SCM-8 Symp. Proc.,
Berlin: Springer-Verlag, 1998.

Quality Management-Guidelines for Configuration Management, ISO 10007:1995(E), Geneva,
International Standards Organization, 1995.

6518 Book.indb 79 12/30/14 1:24 PM

6518 Book.indb 80 12/30/14 1:24 PM

81

C h a p t e r 7

Configuration Control

introduction

IEEE [1] defines configuration control as an element of CM, consisting of the evalu-
ation, coordination, approval or disapproval, and implementation of changes to CIs
after formal establishment of their configuration identification. So once the CIs of
a project or system have been identified, the next step is to bring in some degree
of control. Restrictions have to be implemented, and rules regarding who can do
what to these CIs have to be formulated. This aspect of SCM is handled by the
configuration control function or the “change management and control system.”

Changes to all items identified in the configuration identification phase—CIs—
should be controlled. To properly control change, procedures have to be established,
guidelines have to be implemented, roles and authorities have to be defined, and all
workflow processes of the change management system—including change identifica-
tion, change requisition, change approval or disapproval, change implementation,
and testing—have to be designed, documented, and implemented. How these pro-
cedures and guidelines apply to the different CIs such as source code, documents,
specifications, third-party software, and subcontracted items also has to be estab-
lished. These activities fall under the purview of configuration control.

Of the SCM functions, configuration control is the one that is performed most
often. Configuration identification, as we saw in Chapter 6, is done only once at the
beginning of the SCM implementation. Status accounting, which is the recording and
reporting of the SCM activities, is done on a regular basis. Configuration audits are
performed when a configuration is complete or before a system is released. However,
the configuration control activities have to be done whenever a change request (CR)
is initiated. Requests for changes will be quite frequent during the software develop-
ment phase and after the system is released. Requests for new features, functional
enhancements, and bug and defect reports can all initiate a change.

The different activities of configuration control lend themselves to automation.
For example, all activities from change initiation to change disposition can be easily
automated. Thus, configuration control is one SCM function that can be automated
very efficiently and effectively. In fact, it is imperative that one use some sort of
change management tool, because except in the case of very small single-person
projects, change management and control is too repetitive and monotonous, and
hence, more prone to error and not worth the effort for manual processing. Many
software tools are available—covering almost all available platforms and develop-
ment environments—to automate configuration control. In fact, it was one of the

6518 Book.indb 81 12/30/14 1:24 PM

82 Configuration Control

first functions of CM that was automated, which is evident from the number of
change management tools available on the market.

Configuration control is not an easy task. It involves a lot of people and a lot of
procedures, making it difficult to manage. The configuration control activities will
increase as the project evolves, because more and more items will undergo change,
more and more people will be inducted, requirements will change, new modules
and subsystems will be added, and different versions will have to be maintained—
among other challenges. However, if designed intelligently, planned properly, and
supported well by a good software tool it can be an easy, if not exciting, task.

Change

Change is one of the most fundamental characteristics in any software development
process. All phases of the software development process from requirements analysis
to production or maintenance are always subject to change. Making changes to soft-
ware is easy. In fact, it is one of best features of software—that it can be changed
at will. However, if changes are made at will, without any proper planning, chaos
will result. Making changes is easy; managing those changes—the uncontrolled
changes—is not, because there is no way of knowing what was changed and hence
what to manage.

Software development is a continuously evolving process. You cannot freeze
one phase of software development and then go to the next phase. Even though
early development models like the waterfall model were developed based on the
compartmentalization of the various phases, the real-life situation is quite differ-
ent. You cannot freeze analysis and go to design and freeze design and then go to
development. A great deal of overlap occurs between these phases. This is because
software development is a complex process that involves many variables, all of which
can change. Changes to the requirements drive the design, and the design changes
affect the code. Testing then uncovers problems that result in further changes, which
might force us to return to the requirements phase. So change is something that
cannot be avoided. Managing the change process is a complex but essential task.

proposing Changes to the Customer

In some instances, a change affects the customer’s agreement with the developer.
These changes (sometimes known as major changes) can affect the terms and con-
ditions of a contract or purchase order related to cost, delivery schedules, or other
milestone events. Other changes can affect the statement of work, specifications,
or other requirement documents to which the customer has asked the developer to
adhere. Thus, when these types of changes occur, a CR is prepared and submitted
to the customer for approval.

Incorporation of such proposed changes cannot be implemented until the cus-
tomer has given approval to do so. The procedure for processing these changes is
the same as the normal change management procedures (Figure 7.1). A point to
remember is that once a major change is approved, it is actually an amendment to

6518 Book.indb 82 12/30/14 1:24 PM

Change and Configuration Control 83

the developer’s contract. In addition, the customer normally pays for the cost of
preparing the changes and incorporating them into the system and conducting the
prescribed tests. Such changes may also require reidentification of the change units
or modules and may, in addition, affect those of which they are a part.

deviations and Waivers

In addition to changes that may affect the functionality of the software product,
developers may also run into situations where they must deviate from the prescribed
specification due to a temporary inability to meet a given requirement. The con-
straints imposed on a software development effort or the specifications produced
during the development activities might contain provisions that cannot be satisfied
at the designated point in the life cycle. The customer may approve such deviations
up to an agreed on point in time or in some instance may approve a permanent
deviation without requiring a major change to be submitted.

A deviation is an authorization to depart from a provision prior to the develop-
ment of the item. A waiver is an authorization to use an item, following its develop-
ment, that departs from the provision in some way. In these cases, a formal process
is used for gaining approval for deviations to, or waivers of, the provisions [2].

Waivers may also be granted to cover temporary problems in meeting specifica-
tions or contract requirements. Instances include delivery of the product without
having completed all the prescribed testing or delivery of the product without cer-
tain units or modules included, due to a delaying action. A waiver, however, has a
specified time factor that must be met in order to satisfy contractual or agreed on
requirements. The procedure to be followed when requesting for authorized devia-
tions and waivers are normally specified in the contract or agreement.

Change and Configuration Control

Change is inevitable during the software development life cycle. Changes to soft-
ware come from both external and internal sources. External changes originate
from users, from evolution of operational environments, and from improvements
in technology, among other factors. Internal changes come from such impetuses as
improved designs and methods, incremental development, and correction of errors.
A properly implemented configuration control process is the project manager’s best
friend and provides potential salvation when coping with change.

Configuration control (or change management and control) is thus the process
of evaluating, coordinating, and deciding on the disposition of proposed changes
to the CIs and implementing the approved changes to baselined software and asso-
ciated documentation and data. The change control process ensures that changes
that have been initiated are classified and evaluated and approved or disapproved
and that those that are approved are implemented, documented, tested, verified,
and incorporated into a new baseline.

Configuration control is the set of techniques used to ensure that the components
in a system achieve and maintain a definite structure (where the relationships between

6518 Book.indb 83 12/30/14 1:24 PM

84 Configuration Control

the components are established) throughout the system life cycle. To this end, change
management and control provide the necessary procedures, documentation, and
organizational structure to make sure that all items identified in the configuration
identification phase, the details of the changes made to them, and other related
information are available to all who need to see it (or have the necessary authority)
throughout the system life cycle. In other words, configuration control provides the
necessary mechanism to orchestrate change—but in a controlled manner.

problems of Uncontrolled Change

We have seen that uncontrolled or unmanaged change can create problems serious
enough to create project failures. In its mildest forms, these changes can create con-
fusion and chaos. Change management and control solves the four most common
(and dangerous) software development and maintenance problems: communications
breakdown, shared data, multiple maintenance, and simultaneous update problems.

In any development environment, the same code, say a program, function, or
subroutine, is often shared by different programmers. This sharing of common
items—source code or data or documentation—reduces development costs because
it avoids the problem of reinventing the wheel. If a function or a program or a com-
ponent library that suits one’s needs is already available, then it is prudent to use
it, rather than coding it again. Similarly, in the case of documentation, such as an
RDD or SDD, the entire project uses the same document. So, what is wrong with
sharing data, code, or documents? As long as nobody makes any changes to these
shared items, there are no problems. However, if changes are made to any shared
item without a proper control mechanism, trouble can arise, as detailed in Chapter 3.

In the case of a properly implemented change management system, all changes
made to the components of a software system are made after proper analysis and
review. Because changes can be made only with proper authorization, and since
the authorization is done by a separate entity that is responsible for managing the
changes to all the items, the chances of effort getting duplicated or two people solv-
ing the same problem in isolation do not occur. Also, the problem of one person
overwriting another person’s efforts does not occur, because the changes are made
to items that are stored in a controlled environment, where records of who is mak-
ing changes to what items are kept. Accordingly, if a person is making changes on
an item, that fact is known to all the people in the project. Also, the information
regarding a change is reported to all concerned. Thus, a good change management
system solves the abovementioned software problems and can bring discipline into
the development process and improve development productivity, because a lot of
time that would otherwise be spent on debugging and reworking can be saved. The
following sections describe how this is accomplished.

Configuration Control

We have seen the dangers and problems of unmanaged and uncontrolled changes.
So how do we to avoid them? We should have a good change management and

6518 Book.indb 84 12/30/14 1:24 PM

Configuration Control 85

control system. The system should define a process and the necessary procedures
to ensure that all events—from the identification of a change to its implementation
and baselining—are done in a systematic, scientific, and efficient manner (i.e., fol-
lowing SCM principles).

To make this happen, procedures should be established for requesting a change
once the need has been identified and people authorized to decide whether the
requested change needs to be implemented. Once the decision to implement the
change has been made, a mechanism should be in place for analyzing which other
resources are affected by the proposed change and then assigning the task of effect-
ing the change to the resource (and if necessary to any impacted resources). The
necessary facilities to test, verify, and validate the changed resources also need to be
in place; in other words, the changed function or program needs to be tested, veri-
fied, and approved so that it can be incorporated or promoted as the new version.

An orderly change process is necessary to ensure that only approved changes are
implemented into any baselined document or software. Figure 7.1 shows a simple
overview of the change management and control process. The steps mentioned here
are very generic and will vary from one company to another and even from one
project to another.

The steps within the overall process can be grouped into the following categories:

•	 Change initiation;
•	 Change classification;
•	 Change evaluation or change analysis;
•	 Change disposition;
•	 Change implementation;
•	 Change verification;
•	 Baseline change control.

These seven steps in change control are individually discussed in the following
sections. We will first look at how configuration control is done manually. As a
minimum, it is suggested that the following data elements always be included (as
applicable) in any change control communication:

•	 Project name, date, requestor name, and priority (high, medium, or low);
•	 Name, number, and description of element(s) needing change;
•	 Description of change(s) required or made;
•	 Suggested fixes or fixes made with supporting data if needed;
•	 Disposition of change by a review board or person;
•	 Approval signatures of review board or person;
•	 Date of incorporation;
•	 Date of verification of the incorporated changes.

If one is using a change management tool or SCM tool, then most of these
processes will be done automatically. For example, processes such as the change
requisition, verification of the details, assignment of CR numbers, intimation of the
CR evaluators, intimation of the change control board members, voting on the CR,
and informing the result could be done automatically. Project managers should be

6518 Book.indb 85 12/30/14 1:24 PM

86 Configuration Control

careful, however, when selecting a tool that the one under consideration fits the job
at hand and that the project team does not have to change form, fit, and function
of the job to fit the tool. There are any number of consultants and tool reference
guides available to help a project or firm, select the type of tools that will enhance
productivity and maintain good change control. This topic is detailed in Chapter 15.

Change initiation

Requests for change to software and documents come from many sources. A CR
can be submitted by the developer, a member of the QA team, a reviewer, or a user.
Each project should set up a CR form for documenting the proposed change and
its disposition. Sometimes a CR is also called a problem report (PR) or a specifica-
tion change notice (SCN).

Figure 7.1 Overview of change management and control process.

6518 Book.indb 86 12/30/14 1:24 PM

Configuration Control 87

Problem reports, which we will discuss later in the chapter, are a special kind
of CR where the cause of the change is a defect or bug in the system. However,
problem reports necessitate change, so the procedures for resolving problem reports
and for requesting an enhancement or a new product feature are the same. Fig-
ure 7.2 shows a sample CR form. The sample contains the basic information that
should be included in a CR/PR/SCN form; however, the actual form for a particular
project must correspond to the planned SCM process. Note that electronic forms,
containing the same information, are being used increasingly as direct interfaces
to SCM support tools.

Each project should also name an individual—the CM officer (CMO) or a mem-
ber of the SCM team—to receive the CR form, assign it a tracking number, and
classification, and route it for processing. This person receives the CR and reviews
it for clarity and completeness. If the CR is not complete, it is returned to the origi-
nator. Once complete, the CR is assigned a unique identifier for tracking purposes,
and the information about the CR is recorded in the CR tracking database or files.

In an automated environment the elements of the CR form are available online
and simply require the originator to bring the form up and enter the necessary data.

Figure 7.2 Sample CR form.

6518 Book.indb 87 12/30/14 1:24 PM

88 Configuration Control

There are many ways to make this easier than the manual entry, especially when
redlining the changes to be made on a source or object listing.

Change Classification

Changes to software and associated documentation are classified according to the
impact of the change and the approval authority needed. Depending on the critical-
ity, impact, and cost involved, there will be a hierarchy of people who can approve
the changes. At the top of the hierarchy is the CCB, which is detailed later in this
chapter. Major changes need the approval of the CCB, whereas minor changes can
be done with the approval of the project manager or development manager. This
is usually done to speed up (fast-track) the change management process. The exact
mechanism of the change classification and the approval should be defined in the
SCM plan. (See Chapter 13 for more on SCM plans.)

The changes are classified into different categories with different priorities. Clas-
sification methods can be based on such factors as severity, importance, impact,
or cost involved. For example, a CR for fixing a bug that could result in system
failure will have higher priority than a request for a cosmetic change. A functional
enhancement request that comes from a user may not be in the same category as a
CR from a member of the development team. However, the classification criteria
(how to classify a change) should be spelled out very clearly in the SCM plan.

The individual who proposes the change may suggest a classification for that
change. The CMO or the receiving authority reviews suggested classes and assigns
a working or tentative classification. After assessment of the impact of the CR, the
CCB or the approving authority will assign the final class.

Change Evaluation/analysis

One important aspect of the configuration control process is that it provides adequate
analysis of changes in terms of impact to system functionality, interfaces, utility, cost,
schedule, and contractual requirements. Each change should also be analyzed for
impact on software safety, reliability, maintainability, transportability, and efficiency.
The project CMO routes the CR to the software engineering staff for evaluation.

In some cases, project procedures require that the CR be screened before it is
analyzed. Some CRs will not have any chance of approval due to considerations
(e.g., costs or schedules) of which the change initiator may not be aware. In some
cases, management may decide not to take any action in the case of changes that
fall into some category or meet some predefined criteria. This information might not
be or need not be communicated to all the people involved in the project. So when
such CRs—the CRs that do not have any chance of approval are submitted—they
will get rejected in the pre-evaluation screening itself. This approach saves the cost
of analysis for changes that do not have any chance of approval.

The analysis produces documentation (like that shown in Figure 7.3), which
describes the changes that will have to be made to implement the CR, the CIs and
documents that will have to be changed, and the resources required to effect the
change. This documentation becomes part of the change package, along with the
CR. After completion of the analysis, the change package is sent to the CCB.

6518 Book.indb 88 12/30/14 1:24 PM

Configuration Control 89

Change disposition

Disposition of changes to baselined items are usually done by a CCB. The CCB
evaluates the desirability of a change versus the cost of the change, as described in
the documentation of the analysis. The CCB may approve, disapprove, or defer a CR.
Sometimes the CCB may have to request more information and additional analysis.

Items for which decisions have been made are sent to the CMO for action.
Rejected items are sent to the originator along with the CCB’s rationale for rejec-
tion. CRs needing further analysis are sent back to the analysis group with the
CCB’s questions attached. Deferred CRs are filed, to be sent back to the board at
the proper time.

Remember that the CCB may not be the change approving/disapproving author-
ity in all cases. In some cases the project leader, the CMO, or any other designated
person could make the decision. The exact mechanism of change disposition varies
from one organization to another and will be usually documented in the SCM plan.

The CMO sends approved items to the development team. The CMO also pre-
pares and distributes the meeting minutes and records the current status of the CR.
This information is added to the tracking database or recorded in files.

Figure 7.3 Sample change analysis document.

6518 Book.indb 89 12/30/14 1:24 PM

90 Configuration Control

Today, with the use of change management tools, physical CCB meetings are
rare. In today’s development environment, e-mail or some other messaging system
connects everybody in the organization. So it is possible to hold CCB meetings with-
out the CCB members actually meeting. The CRs and the necessary information
(such as evaluation reports and impact analysis reports) can be sent electronically
to all CCB members, and the CCB members can convey their responses in the same
way. Thus, today it is possible to hold virtual CCB meetings and have online voting
on CRs. The SCM tools make change disposition and management an easy task.

Change implementation

Approved CRs are either used directly as a change authorization form or result in a
change directive being prepared by the CMO. In either case, approval results in the
issuance of instructions that authorize and direct the implementation of the change
in the software and associated documentation.

The development team schedules the resources to make the change. It must get
official copies of the baselined component to be changed from the program library.
For code changes, design has to be developed, code has to be written, testing has to
be done, and the correctness of the change has to be verified. Moreover, the asso-
ciated documentation has to be revised to reflect the change. Once the change has
been made and local testing completed, the revised component and documents are
returned to the control of the program library. After verification, the new version
takes its place in the sequence of baselines.

Change Verification

The implemented changes, which have been tested at the unit level, must be veri-
fied at the system level. This may require the rerun of tests specified in the test
plan or the development of additional test plans. Regression testing will usually
have to be included in the test to ensure that errors have not been introduced in
existing functions by the change. Once the verification is complete, the review-
ing team submits evidence of it to the program library, which will then accept
the changed items for inclusion in the SCM controlled files that make up the new
version of the baseline.

After the successful implementation and testing of the change described in
the CR, the CMO will record the occurrence of this process into the CR track-
ing database or files. Also, a change history (or patch history) is maintained. The
change history is a recording of the events that occurred to an item from the state
before change to the one after. The details to be incorporated include (but are not
limited to) name of the originator and receiving authority, date received, name of
the individual who performed the analysis, date of analysis, approving authority’s
name, date, names of the persons who effected the change, testing, review and audit,
reasons for change, and a short description of change.

If an SCM or change management tool is used, then such steps as the process
of recording the change implementation information and the task of changing the
status of the CR do not have to be done manually. All of these activities will be
taken care of by the tool. As mentioned before, the tools capture all the information

6518 Book.indb 90 12/30/14 1:24 PM

File-Based versus Change-Based Change Management 91

as the events are happening and will record them automatically. So, details such as
when the change was initiated, when it was evaluated, when it was reviewed, who
initiated the change, who reviewed it, who approved it, when the implementation
started, when it was finished, and who performed the implementation will auto-
matically be captured by the tool. Accordingly, in a project where SCM tools are
used the abovementioned activities (the activities that are performed by the CMO or
SCM team members in a manual SCM system) are done automatically and without
human intervention. However, all these features—the complete automation of the
change control process—are available only in the more advanced and sophisticated
SCM tools.

Baseline Change Control

Changes to software are not complete until the code and data changes have been
implemented and tested, the changes to associated documentation have been made,
and all of the changes have been verified. To minimize the number of versions and
the frequency of delivery of software components, changes to software are usually
grouped into releases. Product release is the act of making a product available to
its intended customers [3]. Each release contains software and documentation that
has been tested and controlled as a total software system.

There are other reasons for product releases. One would be to satisfy a customer
by customizing a software system to meet the specific needs of that customer. This
is called a customer-specific release. For properly incorporating emergency fixes (a
fix that was done without following any change management procedures due to the
urgency of the problem or situation), a release might be made after the emergency
fix has been properly incorporated. Alpha and beta releases are also used for alpha
and beta testing.

Companies also do major and minor releases. Major releases are done when
there is a significant increase in the product’s functionality, whereas minor releases
are done when the release is to correct a bug or fault in the program or system. The
decision on the when and how of the releases is usually made by the CCB, because
it is the ultimate authority for making decisions about configuration control and is
represented by all functions of the organization.

File-Based versus Change-Based Change Management

In a file-based change management system, to make a change the change initiator
identifies the file he or she wants to change and initiates the change management
process. The CR is then analyzed, the impacted files are identified during the CR
evaluation phase, and the decision to approve or reject the CR is made. If the CR is
approved then the file (or files if more than one file is impacted) is checked out and
the necessary changes are made to it. Then the file is tested, verified, and checked
in. Thus, if there is more than one file for the same CR then they are not associated
with one another except for what is recorded in the evaluation report.

The major drawback of the file-based system is that it fails to capture the relation-
ships between the items that are changed due to a CR. In real life, a typical change

6518 Book.indb 91 12/30/14 1:24 PM

92 Configuration Control

is rarely limited to a single file; in most cases more than one file needs to be changed
to implement a CR. However, the problem with a file-based change management
system is that once the files are checked in there is no way to determine which files
were modified as a result of a particular CR. Yes, the person who has implemented
the change might know or there might be some informal records somewhere, but
there are no formal methods to track all the files that were modified in response to
a single change or CR. This creates a lot of problems, because people often forget
the details of all the files they changed and often forget to include some of them
during the system building, resulting in build failures.

To avoid the drawbacks of file-based change management, SCM practitioners
started to use change-based change management. In this system, all the files required
to perform a task or to implement a CR are considered to be a single entity. Here
we are tracking logical changes rather than individual file changes. However, the
technology of making all the files of a CR into a single logical unit is not new.
Some mainframe systems tracked changes in this manner as early as the 1970s,
and companies such as IBM, Control Data Corporation, Unisys, and Tandem have
used logical change-based software tracking systems for years [4]. In 1983, SMDS
(now True Software) released Aide-de-Camp as the first commercial SCM system
that tracked logical changes rather than physical file changes [5].

Since then, many commercial SCM systems have added the ability to track logical
changes rather than individual file changes, including Synergy/CM from Telelogic
AB, AllFusion Harvest CM from Computer Associates, Dimensions from Merant,
and ClearCase from Rational. SCM tools like Merant’s PVCS and StarBase’s StarT-
eam have the ability to mark a source code change with the corresponding defect
report or enhancement request.

The method of tracking software by units of logical change is a more logical
and practical model, because the items that are changed because of a single CR are
logically linked. They are checked out together, they are tested together, they are
reviewed and approved as a group, and they are checked in and promoted together.
According to Weber [6], not all SCM systems use the same name for the logical
unit of change. For example, ADC/Pro uses the term “change set,” AllFusion Har-
vest CM uses “package,” Synergy/CM and Dimensions use “task,” CIearCase uses
“activity,” PCMS uses “work package,” and StarTeam uses “subproject.”

Furthermore, not all SCM systems implement the ability to track changes in
the same way. Two very different implementations have emerged—change sets and
change packages. Systems that treat a logical change as the individual lines of code
typically refer to the unit of change as a change set. Systems that treat a logical
change as the set of file versions that contain the code changes are called change
packages. For a detailed discussion of change sets and change packages, readers
should refer to the following texts:

•	 Burrows, C., S. Dart, and G. W. George, Ovum Evaluates: Software Con-
figuration Management, London: Ovum Limited, 1996.

•	 Cagan, M., and D. W. Weber, “Task-Based Software Configuration Man-
agement: Support for ‘Change Sets’ in Continuus/CM,” Technical Report,
Continuus Software Corporation, 1996.

6518 Book.indb 92 12/30/14 1:24 PM

Emergency Fixes 93

•	 Weber, D. W., “Change Sets Versus Change Packages: Comparing Implementa-
tion of Change-Based SCM,” Proc. 7th Software Configuration Management
Conf. (SCM7), Boston, MA, May 1997, pp. 25–35.

•	 Weber, D. W., “Change-based SCM Is Where We’re Going,” Technical Report,
Continuus Software Corporation, 1997.

Escalation and notification

Escalation can be defined as the process of increasing the intensity or magnitude
of an issue. In the change management process, there are times when issues need
escalation. For example, consider a CR for which the evaluation report was for-
warded to all CCB members for their decision. If a CCB member has not conveyed
a decision within the specified time period, then the person has to be reminded
about it. However, if, even after the reminder, nothing happens, then the issue has
to be brought to the attention of the senior member of the CCB, so that necessary
corrective action can be initiated.

The escalation process is equally applicable for most of the change management
processes such as change evaluations, impact analysis, and change implementation.
Also, we have seen that the CRs can be accepted, rejected, or deferred. In the case of
deferred CRs, a time period can be set after which it has to be revisited. So once the
specified time is over, the CR is again reviewed. This process of keeping track of the
deferred CRs and then bringing them back for review is another form of escalation.

Today’s change management tools are capable of performing problem escalation
and notification automatically based on predefined rules and criteria. For example,
the change management tools could be programmed to escalate an issue (like failure
to convey the decision on a CR) after a specified number of days.

Multiple levels of escalation are also possible. For example, if the CCB member
fails to respond to the reminders, then the issue could be escalated to his or her
superior, and if there is still no action after a specified period, the next person in the
organizational hierarchy could be informed about the issue. Here, such factors as
the levels of escalation, the time period before escalation, and the people who are to
be informed can be predefined, and the tools will do the rest. This is an important
aspect that will improve the efficiency and productivity of the SCM team, since
it will not have to keep track of each and every CR; the tools will automatically
perform the necessary actions when something is not happening according to the
rules and schedules.

Emergency Fixes

Some CRs or problem reports need immediate action and will not allow enough
time to follow all change management and control procedures. For example, an
emergency request from a client or a distress call from a customer cannot wait for
steps such as the change evaluation, CCB meeting, or change disposition. Efforts
to correct these difficulties are referred to as emergency fixes. These are not change

6518 Book.indb 93 12/30/14 1:24 PM

94 Configuration Control

management processes in the conventional sense, because the sole focus of an emer-
gency fix is to resolve the customer’s difficulties right away. The most important
distinction is that these emergency fixes invalidate the version of the components
that they fix, because they are temporary measures taken when there is not enough
time or resources to process them in the proper manner. When time permits, these
emergency fixes will be taken through the proper change management procedures
and the required tasks will be completed.

problem reporting and Tracking

We have seen how the change management and control process works, starting with
the initiation of the CR and the subsequent processing to effect the change. A CR
can result from many things. It can be the result of a user needing a new feature, it
can be the result of some enhancements of the existing functionality, or it can be due
to an anomaly in the software system. An anomaly is any condition that deviates
from expectations based on such information as that contained in the requirements
specifications, design documents, or user documents, or someone’s perceptions or
experiences. Anomalies may be found during, but not limited to, the review, test,
analysis, compilation, or use of software products or applicable documentation
[7]. In common usage, the terms error, fault, flaw, gripe, glitch, defect, problem,
and bug are used to express the same meaning. In this section we deal with PRs or
software PRs (SPRs). The SPR or PR is a type of CR—a request that is the result
of an anomaly in the system.

problem reports and Crs

An SPR usually will get more and quicker attention than a CR because it is the
result of a problem that has to be fixed. It is not some cosmetic change that can
wait. Also, a single SPR can create or result in more than one CR. This is because
a problem or bug (for example, navigation not working properly) can be the result
of faults in two different subsystems that require different skills to fix and thus
need two different persons or teams to do the job. Moreover, it might be better to
keep the two subsystems separate if there are no direct relationships or dependen-
cies between the two. Accordingly, it is quite possible that a PR or SPR can initiate
more than one CR.

We saw that SPRs can result in one or more CRs. In the author’s opinion, the
disposition of a fault or PR should follow the same process as that of the enhance-
ment requests once the CRs associated with the PR have been created. In other
words, the processing of the PR and the enhancement request become the same.
In the case of a PR, however, before the creation of the CR and after the change
management process is set into motion, some activities need to done. These activi-
ties are intended to prevent the same type of mistakes from recurring and to create
a knowledge base of the anomalies. Figure 7.4 shows the problem reporting and
tracking process.

6518 Book.indb 94 12/30/14 1:24 PM

Problem Identification 95

problem identification

We know that a problem, bug, or defect can go undetected and can remain in the
software system. It is not possible to say that a software system is 100% defect-free.
Nevertheless, we need to try to reduce the number of defects in a system and, more
importantly, reduce the number of critical defects. We know about the existence of
a defect when, for example, something goes wrong, the system starts misbehaving,
the performance of the system is not what it is supposed to be, or the system stops
performing.

Once the problem is identified, it should be reported and fixed, and the fixed
version should be reviewed, approved, and baselined. So, the first step after the
detection of an anomaly or defect is to report it. Figure 7.5 shows a PR form. PRs
are usually handled by the SCM team, so the PR is also received by the CMO or a
representative of the SCM team. Once the PR is received, it is checked for clarity
and completeness and if the necessary details are specified, the PR is assigned a PR
number. This number serves as the identifier for the PR.

Once the problem is known and the report is received, the report is given to
qualified professionals (people from the project team or QA department who have
the necessary technical knowledge of the system and the problem analysis method-
ologies) for analysis. These people will analyze the problem with the objective of
determining the severity of the problem; its nature; its impact; the cause, the cat-
egory; its place of origin; the items affected; and the cost, time, and skills required
for fixing the problem. The analysis will also classify the defect (based on its seri-
ousness and impact) and will create the CRs for fixing the problem. As mentioned
previously, a PR can result in more than one CR.

The analysis team will report their findings in the problem analysis document.
Figure 7.6 shows a sample problem analysis document. This document forms the

Figure 7.4 Problem reporting and tracking process.

6518 Book.indb 95 12/30/14 1:24 PM

96 Configuration Control

basis of causal analysis, which is discussed later in this chapter. The CRs that are
created as a result of the problem analysis are processed as discussed in the previ-
ous sections.

defect Classification

The classification of a defect is dependent on the phase in which it occurs. The fol-
lowing is a general classification of defects during the various phases of a project.

requirements analysis

•	 Incorrect requirements. This occurs when a requirement or part of it is incor-
rect. This may result from a misunderstanding of the user expectations.

•	 Undesirable requirements. The requirement stated is correct but not desirable
due to technical feasibility, design, or implementation cost considerations.

Figure 7.5 Sample PR form.

6518 Book.indb 96 12/30/14 1:24 PM

Defect Classification 97

•	 Requirements not needed. The user does not need the stated functionality
or feature. Adding this requirement does not significantly increase the utility
of the project.

•	 Inconsistent requirements. The requirement contradicts some other
requirement.

•	 Ambiguous or incomplete requirements. The requirement or part of it is
ambiguous. It is not possible to implement the stated requirement.

•	 Unreasonable requirements. The requirement cannot be implemented due to
cost, hardware, or software considerations.

•	 Standards violation. The standards set for analysis have not been followed.

design phase

Design defects may relate to data definition, the user interface, the module inter-
face, or processing logic. Each of these may be incorrect, incomplete, inconsistent,
inefficient, or undesirable, or they may violate standards.

Figure 7.6 Sample problem analysis report.

6518 Book.indb 97 12/30/14 1:24 PM

98 Configuration Control

Coding and Testing phase

Coding and testing defects may relate to such factors as logic, boundary conditions,
exception handling, performance, documentation, and standards violations.

The above classifications are very general, and depending on the nature of
the project and degree of detail required, a defect classification system should be
designed for each project.

defect Severity

Severity of a defect is a measure of the impact of the defect. During the analysis,
design, and coding phases the defects might be classified as follows:

•	 Major defects, which have substantial impact on several processes or subsys-
tems. The correction activity involves changing the design of more than one
process or subsystem.

•	 Minor defects that impact only one process or subsystem. The correction
activity will be local to that process or subsystem.

•	 Suggestions toward improvements.

During the testing phase the defects may be classified as follows:

•	 Critical. These are errors that cause system failure.
•	 Fatal. These are fatal errors that result in erroneous output.
•	 Nonfatal. These are errors that are not fatal but will affect the performance

or smooth functioning of the system.
•	 Cosmetic. Minor errors like cryptic error messages or typos in messages,

screens, or user documentation.

During problem analysis, the analysis team classifies the defect, decides on its
severity, and records these findings in the problem analysis document.

defect prevention

The primary objective of the problem report is to identify the fault and fix it. The
problem analysis and CR generation and change management process achieve this.
The secondary objective (maybe one that is more critical in a long-term perspective)
is to prevent faults from recurring. This area of problem identification and tracking
is called defect prevention.

One of the main methods of defect prevention is causal analysis. The other
method is the creation of a knowledge base that contains the classified and catego-
rized defects, so that a programmer or designer can browse the knowledge base
before he or she starts the analysis, design, or development, to be forewarned of
the problems that could occur.

6518 Book.indb 98 12/30/14 1:24 PM

CCB 99

Causal analysis

The objective of causal analysis is to analyze defects and problems to determine and
record the cause and initiate corrective actions so that the defects will not occur
again. The primary document or the basis of the causal analysis is the problem
analysis document. This document contains information such as the causes of the
defects, where they occurred, and their severity.

By studying the analysis reports, the person doing the causal analysis will be
able to come up with cause patterns. For example, some of the causes for the defects
are insufficient input during the analysis stage, inadequate standards, inadequate
skill levels, lack of training, lack of documentation, lack of communication, over-
sight, and inappropriate methodology or tools. For example, in a project if the
causal analysis reveals that the reason for most of the defects is lack of knowledge
of a tool that is used to generate the code, the team members can be given training
on the tool so that the problem can be prevented. Thus, causal analysis plays an
important role in defect prevention.

defect Knowledge Base and Help desks

When a problem analysis document is submitted, it should result in the creation
of CRs and problems being fixed. It will also form the basis of causal analysis.
Its contents should also find their way into the defect knowledge base—a knowl-
edge base that stores defects in an organized way, classified and categorized. This
knowledge base should have a search facility where one can search for defects by
such aspects as category, phase of origin, cause, and severity. Details of the defects
such as the project, the defect description, the cause, and the solution should be in
the knowledge base.

This knowledge base will be tremendously valuable because it will serve as a
road map and guidebook for analysts, designers, programmers, and people who
do the testing and maintenance. For analysts, designers, and programmers, it will
serve as a guide, telling them, for example, what to do, what to avoid, and what
mistakes can happen. The people who do the testing can create better test cases
and test data if they know about the defects that escaped testing and how that
happened. People who do the problem fixing will find similar problems and can
see how they were fixed. This information will be very useful for people who are
managing the help desks and for the technical support team. In addition, as new
problems get added to the system, it will become more and more comprehensive,
and its usefulness will increase.

CCB

We have seen that once the CIs are identified, acquired, and baselined, they come
under the purview of configuration control, and formal change control procedures
come into effect. This means that once the items are brought into the SCM system,
the changes to it are done through a formal change management process. Previous

6518 Book.indb 99 12/30/14 1:24 PM

100 Configuration Control

sections have described the exact mechanism of this process. Since the SCM is
one of the essential means of communication, changes to agreed-on baselines or
points of departure should be reviewed and approved to ensure that the integrity
of a baseline has not been altered by a given change. In addition, such a review and
approval should be made for all internal changes so that communication among
the development team members can be maintained.

We have also learned that there should be a body for making decisions such
as what changes should be made to a CI and which CRs should be rejected This
approving authority is known as the CCB or the change control authority (CCA).
The IEEE [1] defines the CCB as a group of people responsible for evaluating and
approving or disapproving proposed changes to CIs and for ensuring implemen-
tation of approved changes. This also ensures that all proposed changes receive a
technical analysis and review and that they are documented for tracking and audit-
ing purposes. The board also has final responsibility for release management (e.g.,
establishing new baselines).

The basic tasks of the CCB are to declare baselines on CIs (e.g., promotions
and releases; to review changes to baselined CIs; and to approve, disapprove, or
defer their implementation. The above is a short but extremely important task list.
The CCB must have a stranglehold on the project. Nothing can be changed without
its approval except in the case of emergency fixes. For this reason, board members
must be chosen carefully.

CCB Composition

The name change control board has the connotation of being a bureaucratic setup
with many people. The composition of the CCB can vary anywhere from a single
person to a highly structured and very formal setup with many people. For exam-
ple, in small projects, the project leader alone will perform all the functions of the
CCB, but in the case of large projects like a defense project, there will be a highly
structured and formal CCB setup with well-defined procedures.

Factors such as the composition, the nature of functioning (formal or informal),
and the number of people in the CCB depend on the complexity, size, and nature
of the project. In some very large projects there can be multiple levels or hierarchies
of CCBs (CCBs for handling different types of problems) or multiple CCBs (each
dealing with a subsystem of the project). In some cases there can be a super CCB to
coordinate the activities of the CCBs and to act as an arbitrator to solve conflicts
between CCBs of equal status and authority.

Irrespective of the size and nature of the CCBs, their function is the same: to
control and manage change. To manage and control change in a software system,
the CCB should be comprised of people who have knowledge about the system (its
technical, managerial, and economic aspects) and the effect and consequences of
their decisions on the system.

The CCB must be composed of representatives from all affected organizations
or departments (stakeholders). It may contain such members as a representative
from the SCM group (preferably the CMO); representatives from the project team
(project leader or his representative), QA group, company management, marketing
department, or project management; members of the functional or user community;

6518 Book.indb 100 12/30/14 1:24 PM

CCB 101

developers; test group, design group, interface group, documentation group, or opera-
tion personnel; or database administrators. In some cases, the CCB must include
the client’s representatives. The members of the CCB should be senior people who
can speak for their respective departments. Also, there should be a provision by
which the CCB can summon individuals (like the change initiator, the person who
conducted the analysis, or outside experts) if their presence is required for better
decision making. The ideal size of the CCB is around seven, but it can be more or
less depending on the organization. When all project groups are not represented, it
is the members’ responsibility to ensure that other groups are aware of the CCB’s
actions. This can be accomplished by the SCM recording minutes of the meeting
and circulating it among all the concerned parties.

Although all members of the CCB might not agree to each and every change, it
is certain that some change will affect every member of the board at some time. It
should not be difficult to recall past experiences when an unwise or costly mistake
could have been avoided if the right people had known about a proposed change.
The chair of the CCB must be from project management—a person who can unam-
biguously resolve conflicts within the board and enforce the board’s decisions on the
project. Decisions on change implementation and CI promotion translate directly
to fundamental project cost, schedule, and quality issues.

The CCB will find that its efforts are an infuriating exercise in futility if their
decisions are continually reversed or ignored by an outside entity with the real
decision-making authority. Do not let this happen; put that entity in charge of the
board. By doing so, those who have decision authority are directly coupled to those
who have expertise on the details. Decisions of the CCB should be reached by con-
sensus whenever possible. The group dynamics must reflect the cooperative nature
of a development project. The chair must nurture this cooperative vision and take
unilateral action only when all other methods have been exhausted.

Functions of the CCB

As stated in the IEEE definition, the main function of the CCB is to evaluate and
approve or disapprove the CRs and PRs that have been initiated or filed. The CCB
will also see to it that the approved changes are implemented in the correct manner.
The CRs and problem reports are evaluated before submitting them to the CCB.
This evaluation is necessary because it will save a lot of time and effort. Also, there
are some tasks that are better accomplished by a single person than a team. So the
presubmission evaluation should be done by a qualified professional, who knows
the subject well. Assigning the right person to this task is the duty of the CMO. The
evaluation report along with the CR or problem report is submitted to the CCB.

The CCB is comprised of members who are quite senior and have other respon-
sibilities and whose time is valuable. Accordingly, speedy resolution of the issue is
a must; to attain speedy resolution and better decision making, the facts should be
presented to the CCB in a clear and concise manner. It is a good idea to circulate
the agenda of the CCB meeting and the issues and the supporting documents to
the members so that they can come prepared for the meeting. This is a task that
has to be done by the CMO. The CCB members will evaluate the requests for their
technical feasibility, economical viability, impact on marketing, and other factors.

6518 Book.indb 101 12/30/14 1:24 PM

102 Configuration Control

Depending on the pros and cons, the committee will decide to approve, reject, or
defer the CRs.

During the presubmission evaluation, the analysis focuses on factors such as
the impact of the program on other programs, the cost of implementation, the skills
required for implementing the change, and the time required. During the CCB
meeting, these factors, along with other issues such as how a particular change is
going to affect the system release schedule, how the change will affect the market-
ing strategy, and how it will affect the quality of the system, will be evaluated. In
other words, the CCB members will decide on each request looking at the overall
picture. The concerns and issues the CCB discusses include the following:

•	 Operational impact: What will be the effect of this change on the final product?
•	 Customer approval: Will the change require customer approval? Is it a major

change?
•	 Development effort: What is the impact of the change on interfaces and

internal software elements of the final system?
•	 Interface impact: Will the change affect the established interfaces of the

system?
•	 Time schedule: At what point is this change incorporated? What is the time

for incorporation with minimal impact on cost and schedule?
•	 Cost impact: What is the estimated cost of implementing the change?
•	 Resources impact: What resources—infrastructure, skill, people, etc.— will

be required to implement the change?
•	 Schedule impact: How will the processing and incorporation of the change

affect the current schedule?
•	 Quality impact: How will the change affect the quality and reliability of the

final product?
•	 Feasibility: With all the above factors, can this change be made in an eco-

nomical manner?
•	 Risks involved: What is the risk of implementing the change? What is the risk

of not implementing or deferring the implementation?

For example, a CR, if implemented, will delay the system release, but it is a
user interface change that the marketing department feels will improve the sales.
As a result, the CCB has to decide whether to delay the release for better sales or
to go ahead with the release and incorporate the CR in the next version. Overall,
the decisions made in a CCB meeting are strategic in nature, even though a good
technical understanding is necessary to make those decisions.

Functioning of the CCB

The CCB should have a chairman. Usually the project management representative
is given this post. In some organizations, however, the members are assigned this
post on a rotating basis. The CCB should meet at the intervals specified in the SCM
plan. There should be a provision to call an emergency meeting if need arises. This
is because certain CRs may require immediate action and cannot be delayed until
the next scheduled CCB meeting.

6518 Book.indb 102 12/30/14 1:24 PM

Summary 103

The minimum number of people who can make a decision must also be speci-
fied. The rules for the functioning of the CCB should be formulated. How will the
CCB decide on an issue? Is it by vote, and if so, what will be done in the case of a
tie? These things should be specified in the SCM plan. If they are not specified in
the SCM plan, then they should be addressed at the first meeting of the CCB.

Another important point is that all transactions that happen during the CCB
meetings should be recorded. The minutes of the meeting should be circulated among
the CCB members. The format and the style of the meeting minutes can be formal
or informal, but they should contain at least the following information:

•	 Members present;
•	 Date of the meeting;
•	 Agenda of the meeting;
•	 Action taken report (ATR) by the CMO (status of the CRs and other SCM

activities since the last CCB);
•	 CRs (CR number and evaluation document number) discussed at the meeting;
•	 Discussion details and decisions;
•	 Distribution list.

The approved changes will be assigned to a qualified person or team for making
the changes. If a CR is rejected, then the change initiator will be notified about the
decision and the reasons for rejection. The initiator can resubmit the request or file
an appeal, if he or she feels that the reasons are not satisfactory. The deferred CRs
are filed for later discussion, and the decision is conveyed to the initiator.

In the case of approved changes, the CCB will assign the task of implementing
the change to someone or assign the change management process to the CMO. In
such a situation, the CMO will assign the task to qualified person(s) and perform
the necessary actions to complete the change management process (review, approve,
promote, and baseline). In the next meeting of the CCB, the CMO will present the
ATR on the CRs that were approved and implemented.

As discussed earlier, the growing popularity of SCM tools, which allow CCB
meetings to be conducted electronically, is slowly eroding the need for and impor-
tance of physical CCB meetings.

Summary

This chapter discusses configuration control and why it is needed and how it is done.
Further, it details the reasons for change and how a change is requested, processed,
and implemented. It also describes the benefits of automating the change manage-
ment process.

In addition, we consider the problem reporting and tracking process and dis-
cuss defect prevention. Strictly speaking, defect prevention does not come under
the purview of SCM. In the author’s opinion, however, because defect prevention
is closely related to SCM, the SCM team must perform its associated tasks.

An integral part of any configuration control system is the CCB. Therefore, the
chapter explains the composition, functions, and working of the CCB and highlights

6518 Book.indb 103 12/30/14 1:24 PM

104 Configuration Control

that, as change management and SCM tools become more and more popular, a lot
of activities that were performed by the SCM team members are now automated.
This automation will reduce the monotonous and repetitive nature of change man-
agement and help make the configuration control function easier. Moreover, it will
improve development productivity, because automation will allow people to con-
centrate more effort on developmental activities.

References

[1] IEEE Standard Glossary of Software Engineering Terminology (IEEE Std-610-1990),
IEEE Standards Collection (Software Engineering), Piscataway, NJ: IEEE, 1997.

[2] Alain Abran, A., and Moore, J. W. (eds.), SWEBOK: Guide to the Software Engineering
Body of Knowledge (Trial Version), Los Alamitos, California: IEEE Computer Society,
2001.

[3] Bays, M. E., Software Release Methodology, Upper Saddle River, NJ: Prentice Hall PTR,
1999.

[4] Cagan, M., and D. W. Weber, “Task-Based Software Configuration Management: Support
for ‘Change Sets’ in Continuus/CM,” Technical Report, Continuus Software Corporation,
1996.

[5] Burrows, C., S. Dart, and G. W. George, Ovum Evaluates: Software Configuration Man-
agement, London: Ovum Limited, 1996.

[6] Weber, D. W., “Change Sets Versus Change Packages: Comparing Implementation of
Change-Based SCM,” Proc. 7th Software Configuration Management Conf. (SCM7),
Boston, MA, May 1997, pp. 25–35.

[7] IEEE Standard for Software Anomalies (IEEE Std-1044–2009), Piscataway, NJ: IEEE,
2009.

Selected Bibliography

Ben-Menachem, M., Software Configuration Management Guidebook, New York: McGraw-
Hill, 1994.

Berlack, H. R., Software Configuration Management, New York: John Wiley & Sons, 1992.
Davis, A. M., 201 Principles of Software Development, New York: McGraw-Hill, 1995.
Gill, T., “Stop-Gap Configuration Management,” Crosstalk: The Journal of Defense Software

Engineering, Vol. 11, No. 2, February 1998, pp. 3–5.
Humphrey, W. S., Managing the Software Process, New York: Addison-Wesley, 1989.
IEEE Standard for Software Configuration Management Plans (IEEE Std-828–1998), Pisca-

taway, NJ: IEEE, 1998.
IEEE Standard for Configuration Management in Systems and Software Engineering (IEEE

Std-828–2012), Piscataway, NJ: IEEE, 2012.
IEEE Software Engineering Standards Collection 2003 (CD-ROM Edition), Piscataway, NJ:

IEEE, 2003.
Intersolv, “Software Configuration Management for Client/Server Development Environments:

An Architecture Guide,” White Paper, Intersolv, 1998.
ISO, “Quality Management-Guidelines for Configuration Management,” Technical Report No.

ISO 10007:1995(E), Geneva, International Standards Organization, 1995.

6518 Book.indb 104 12/30/14 1:24 PM

Summary 105

NASA, “NASA Software Configuration Management Guidebook,” Technical Report SMAP-
GB-A201, NASA, 1995.

Peters, J. F., and W. Pedrycz, Software Engineering: An Engineering Approach, New York: John
Wiley & Sons, Inc., 2000.

Pfleeger, S. H., Software Engineering: Theory and Practice (4th Edition), Prentice Hall, 2009.
Pressman, R. S., Software Engineering: A Practitioner’s Approach (8th Edition), New York:

McGraw-Hill, 2014.
Sommerville, I., Software Engineering (9th Edition), Reading, MA: Addison-Wesley Publish-

ing Company, 2011.
Weber, D. W., “Change-based SCM Is Where We’re Going,” Technical Report, Continuus Soft-

ware Corporation, 1997.
Whitgift, D., Methods and Tools for Software Configuration Management, Chichester, England:

John Wiley & Sons, 1991.

6518 Book.indb 105 12/30/14 1:24 PM

6518 Book.indb 106 12/30/14 1:24 PM

107

C h a p t e r 8

Status Accounting

introduction

CSA is an element of CM that consists of the recording and reporting of informa-
tion needed to manage a software system and its characteristics effectively. This
information includes a listing of approved configuration identifications, the status of
proposed changes to the configuration, and the implementation status of approved
changes [1]. In other words, the status accounting function is the recording and
reporting of information needed to manage CIs effectively, including, but not
limited to, a record of approved configuration documentation and identification
numbers, the status of proposed changes, the implementation status of approved
changes, the status of pending or open CRs and PRs, and the build state of all
units of the CIs. Status accounting is the record keeping element of SCM, and the
status accounting records are the means for SCM to report the state of the soft-
ware product’s development to the project management, company management,
and the customer.

The aim of status accounting is to keep managers, users, developers, and other
project stakeholders informed about the various configuration stages and their
evolution. This implies three basic tasks: data capture, data recording, and report
generation. The status accounting activity is important for maintaining the conti-
nuity of the project and avoiding duplication of effort.

The effectiveness of CM is closely linked to the flow and availability of configu-
ration information about the product. Information is collected while performing
activities associated with the CM processes (planning and management, identi-
fication, change management, and verification and audit). CSA correlates stores,
maintains, and provides readily available views of this organized collection of
information. CSA provides access to accurate, timely information about a product
and its documentation throughout the product life cycle. CSA involves the storage
and maintenance of the following:

•	 Information about the configuration documentation (such as document iden-
tifiers and effective dates);

•	 Information about the product’s configuration (such as part numbers or
changes installed in a given unit);

•	 Information about the product’s operational and maintenance documenta-
tion (such as the documents affected by each change and their update status);

•	 Information about the CM process (such as the status of CRs).

6518 Book.indb 107 12/30/14 1:24 PM

108 Status Accounting

The status accounting activity designs and operates a system for the capture
and reporting of necessary information as the life cycle proceeds. As in any infor-
mation system, the configuration status information to be managed for the evolv-
ing configurations must be identified, collected, and maintained. Various pieces of
information and measurements are needed to support the SCM process and to meet
the configuration status reporting needs of management, software engineering, and
other related activities. A good status accounting system should be able to answer
questions like the following and many more:

•	 What is the status of an item?
•	 Has a particular CR been approved?
•	 What is its status of pending or open CRs and PRs?
•	 What items were affected by a particular CR?
•	 When was the CR approved, and who approved it?
•	 Who performed the change for a particular CR, and when was it completed?

Who reviewed it? Who approved it?
•	 Which version of an item implements an approved CR?
•	 What CRs are assigned to whom?
•	 How many high-priority CRs are currently not implemented?
•	 What is different about a new version of a system?
•	 How many CRs are initiated each month, and what is the approval rate?
•	 How many PRs are filed each month, and what is the status of each of them?
•	 What are the major causes of the problems or defects?

The status accounting of the CIs can be compared with bank accounts, where
each CI is an individual account. All transactions that happen to the CI and all
activities that are performed on the CI are recorded. So individual transactions can
then be tracked through each account as they occur.

Some form of automated tool support is necessary to accomplish the data col-
lection and reporting tasks. This could be a database capability, such as a relational
or object-oriented database management system. This could be a stand-alone tool
or a capability of a larger, integrated tool environment.

Status accounting information Gathering

Since CSA information is a byproduct of all the other CM processes, the effective-
ness of CSA is dependent on the quality of CM implementation, supported by CM
processes that ensure the information is systematically recorded, safeguarded, vali-
dated, and disseminated. Decisions on the information to be captured in the CSA
system should be based on such factors as the nature of the product, the environ-
ment in which the product will be operated, the anticipated volume and complexity
of change activity, and the information needs of the customer(s) [2].

The procedure of tracking the status of the CIs should be established early
enough in the software development process to allow for data gathering. Also, the
system should be designed in such a way that the SCM activities will update the

6518 Book.indb 108 12/30/14 1:24 PM

Status Accounting Database 109

status accounting database rather than the person in charge of the status account-
ing function collecting the data regarding each and every change that is happening.

If control mechanisms are built into the process that make updating the status
accounting database a prerequisite for further processing, the data in the database
will be current and complete. For example, when a CR is initiated, that information
is recorded in the database and if a check is made to ensure that the details of the
CR have been entered in the database before it is forwarded to the CCB, the status
accounting function can be performed more effectively.

For this process to happen, people should be aware of what to do and how to
update the status accounting database. This is beneficial to the people who update
the information because they are the same people who will be asking for informa-
tion about the status of the various items at a later stage.

Status accounting database

The status accounting database is established to receive and process the data col-
lected regarding the evolution of the various CIs of the product during the different
phases of the software development life cycle. The amount of data collected and the
level of detail will depend on the size, complexity, and nature of the project. The
primary data of interest reflect knowledge of dates of start and completion of design
and builds. Also important is accurately knowing the changes that are being made
or that have been made and incorporated so that the up-to-the-minute status of a
configuration item can be known. The following list gives the necessary informa-
tion for a simple status accounting report:

•	 CI name and identification number;
•	 Name of the next higher level CI;
•	 Design start date;
•	 Design approval date and revision number;
•	 Coding start date;
•	 Coding finish date;
•	 Testing start date;
•	 Testing finish date;
•	 Build start and finish dates and revision number;
•	 System merge date;
•	 System delivery date and revision number;
•	 CR date, CR number, and requestor’s name;
•	 Change disposition date;
•	 Change incorporation date, implementer’s name, and revision number.

CRs also have IDs and descriptions. The database is the primary reference
point for anything one may need to know or report about the project. The database
thus should capture as much information as possible. If the database is made an
integral part of the development environment, the details necessary for effective
status accounting can be captured automatically as and when it happens. This will

6518 Book.indb 109 12/30/14 1:24 PM

110 Status Accounting

greatly reduce the workload of the SCM team. The database should be secured and
protected from tampering by authorized or unauthorized persons during the input
of date, query or generation of reports.

An important feature of the database is the ability to trace the software system
upward and downward. This is the capability to track the relationship of the software
requirements down through the various levels (e.g., system, program, module, and
unit—a process known as drill-down in knowledge management terminology—or
in the opposite direction (i.e., track the relationship from the smallest element (unit)
upward through module, program, system, design, and ultimately, the require-
ments). This traceability feature is most helpful during audits and for determining
the impact of a change on all the interrelated elements.

importance of Status accounting

Status accounting refers to the information management (or data management)
functions in the SCM system. For each CI designed, developed, reviewed, approved,
released, and distributed, the activities that are done and other information such
as how they were done; why, where, and when they were done; and who did them
have to be recorded.

These details will be useful for everyone involved in the project in various
ways. The information needs of a developer are different from that of a project
manager, but each and every member of the project team and the support functions
will need at least some of the information. Status accounting is the information
gathering and dissemination component of SCM. It is also used by management
in decision making to monitor the progress of the project, and it can help identify
problems before they become critical so that project management can take cor-
rective actions.

The information provided by the status accounting function helps project man-
agement identify problems, pinpoint the source of the problem(s), and take correc-
tive action before the situation gets out of hand. From the reports that are produced
and by making ad hoc queries, project management can determine how the project
is performing and compare the performance against the plan. One can also look at
the types of changes, the rate of changes, the causes of the changes, the cost, and
many other factors and take the necessary actions.

Status accounting reports are invaluable during the maintenance phase. To
understand and identify the cause of a problem, one needs to know the history of
the CI. For example, consider a program that was working until last week but is
not working now. The easiest way to find out why is to identify the changes that
were made to the program since last week. In situations like this, the information
provided by status accounting helps resolve the problem faster.

Similarly, the information provided by the status accounting function is useful
in determining the performance characteristics of the project such as number of
CRs, approval rate, number of PRs, average time for a change resolution, average
implementation time, and cost of implementing a change. This information will
help when evaluating the performance of the project and when comparing different

6518 Book.indb 110 12/30/14 1:24 PM

Status Accounting Reports 111

projects. Also, these details will help to fine tune the estimation and costing pro-
cedures of the organization.

So when the SCM system is designed, the information that has to be gathered
by the status accounting function should be identified and selected, keeping in mind
all of the uses mentioned here. A good status accounting system should provide
information that is accurate, relevant, and timely.

Status accounting reports

As previously discussed, the major functions of status accounting are to record
and report information needed to manage a software system and its characteris-
tics effectively. Reported information can be used by various organizational and
project elements, including the development team, the maintenance team, project
management, and QA activities. Reporting can take the form of ad hoc queries to
answer specific questions or the periodic production of predesigned reports. Some
information produced by the status accounting activity during the course of the
life cycle might become QA records. In addition to reporting the current status of
the configuration, the information obtained by status accounting can serve as a
basis for various measurements of interest to management, development, and SCM.
Examples include the number of CRs per CI and the average time needed to imple-
ment a CR [3]. Even though it is not possible to anticipate all possible information
requests, there are several reports that every system must have. These include the
change log, the progress report, the CI status report, and the transaction log. We
will look at each of these reports in some detail a little later.

The factors that should be considered while designing the reporting require-
ments and reports of a system include the following:

•	 The audience for the report;
•	 The information contained in each report;
•	 The need for a routine report or a report provided on an ad hoc basis;
•	 The frequency of the report;
•	 The distribution list.

Examples of routine reports are, as we have seen, the change log and transac-
tion log. Some examples of ad hoc reports are listed as follows:

•	 A list of all CRs that have been approved but not implemented;
•	 A list of all CRs initiated in the last four months;
•	 A list of how many people are working on a particular CR;
•	 A record of how much time was needed to implement a particular change;
•	 The number and details of CRs that are pending.

Ad hoc reports are generated when a user requests particular information not
included in the routine reports.

Let’s take a look at some of the most common routine reports.

6518 Book.indb 111 12/30/14 1:24 PM

112 Status Accounting

Change Log

The change log should contain all information about the CRs in the system. The
usual distribution frequency is monthly. This report should contain information
such as CR number, status, originator’s name, impacted items, origination date,
description of change, and implementer’s name.

progress report

The progress report, which is a summary of development progress since the last
report was issued, is used primarily by management to monitor the progress of the
project. This report should include information such as the reporting period (from
and to dates), the task ID1, a brief description of the work performed during the
period on the task, and the status of the task (e.g., complete or percent completed).

Ci Status report

This report is prepared to summarize the status of all CIs in the system and should
include information such as a list of the CIs, description, and location of the CIs
(the controlled library where they are stored). The CI description should include
the name, version number, and details of dependent items.

Transaction Log

This log contains the transactions that have happened to items, recorded in chron-
ological order. The log should contain details such as transaction number, date,
originator (person who is making the entry), nature of the entry (what the entry
regards), affected items, activity (e.g., CR, CCB approval, analysis, and PR), descrip-
tion, participants (people who are involved), impacted items (items affected by the
activity), and remarks.

The objective of the transaction log is to find out what happened during a spe-
cific period, say, “What were the activities done on mm/dd/yy?” Here, the idea is
not to provide a detailed description of how things were done, but to give someone
a snapshot of what happened during a given period.

Status accounting and automation

SCM tools fully automate the status accounting function. We have seen that SCM
tools capture all SCM-related information as and when it happens and does so
automatically. The SCM tools store this information in a database, so retrieval
of the information is fast and efficient. Also, the information can be generated in
any format the user wants. SCM tools can be used to generate routine reports.

1. A task is the result of a CR implementation. An approved CR can result in one or more tasks that can
be assigned to one or more persons or teams. When the task is created the CMO creates a task ID and
associates it with the CR.

6518 Book.indb 112 12/30/14 1:24 PM

Status Accounting and Automation 113

However, SCM tools deliver their full potential when they are used for generating
ad hoc reports. Users can query the system for any information they require and
get answers immediately and in the requested format.

Without SCM tools, SCM teams have to go through data such as that contained
in change logs, defect logs, CRs, and transaction logs to correlate and collate bits
and pieces of information from different sources to create a report that satisfies the
user’s requirements. This is a tedious and time-consuming process that increases
the workload of the SCM team if users start asking complex queries that involve
more than one source.

An SCM tool is an ideal solution to this situation. It is quick, accurate, and
customizable. In the case of an SCM tool, all SCM-related information is stored
in relational databases, making information retrieval easy and quick. Also, in the
case of a tool, the information will be up-to-date, as the events are recorded and
the information is captured as the activities occur.

Another advantage of using tools is the variety of information that can be
retrieved. For example, one can obtain information on such topics as all pending
CRs, all completed CRs, all CRs completed between such-and-such a date, all CRs
initiated by a particular developer, and all CRs implemented by a particular person.
The beauty of this system is that no additional cost or extra effort is required to
produce these different reports. Most SCM tools will have a set of standard reports
and then the facility to query the SCM database for other details. Most tools have
the facility to display the information in graphical form also.

Thus, SCM tools greatly enhance the capabilities of the status accounting func-
tion because they can record and retrieve minute details with speed and accuracy
to satisfy ad hoc queries. This is especially true when different users of the SCM
system have different needs. The project manager’s information requirements are
different from that of the developer’s. What the change initiator wants to know will
be different from what the project leader or a QA person wants to know. With a
manual system, people have to wait while the information is compiled from records,
whereas with a computerized system, retrieval is merely a matter of running a query.

Another advantage of a software tool is that the people concerned can be given
read-only access so that they can query the system and get the answers they need.
Here, once again, the author would like to stress the need for a computerized system.
Manual systems are fine for routine reports. However, an interactive system can
reduce the workload of the SCM staff because the people who want the information
(and have the necessary authority) can log on to the system and get the information
required. Also, routine reports provide static information. With an interactive system,
on the other hand, users can view the reports, and if they require more information,
they can drill down and get the details they want. In this way, SCM information
is more effectively used, leading to better, well-informed decisions. If an SCM tool
does not support flexible and customizable reporting features, it is of limited value.

As previously mentioned, SCM tools completely automate the status account-
ing process and make status accounting easier and accurate. However, the level of
automation possible and the capabilities offered differ among SCM tools. Most orga-
nizations use some sort of tool for performing SCM (at least tasks like change man-
agement, defect tracking, and build management), and complete manual systems are
very rare nowadays. However, to take full advantage of automation, organizations

6518 Book.indb 113 12/30/14 1:24 PM

114 Status Accounting

need to turn to high-end sophisticated SCM tools (which cost a fortune)—and even
then, at least some of the SCM functions will require human operation.

Next, we examine some of the common report categories that are supported
by most SCM tools.

Change and problem Tracking reports

These reports contain details such as who made the change and when, who initiated
it, change history, and CR status. Here, the advantage, as mentioned previously, is
that the users can tailor the information retrieved in any format that they would
like. So one can generate reports of all unassigned CRs; all pending CRs; all CRs
assigned to a particular person; and CRs sorted by such factors as date, severity,
priority, classification, completion date, and status.

difference reporting

It is important to keep track of the differences between versions and releases, because
doing so will make it easier to incorporate changes from one version to the next.
Most SCM tools have the facility to generate difference reports, which will contain
the differences (changes) between two versions of an item or set of items.

ad Hoc Queries

The usefulness of having ad hoc querying capabilities can never be overstated. Ad
hoc queries allow the users of an SCM system to get the information they want,
when they want it, and in the form they want. The reporting tools are so advanced
that many of them have graphical user interfaces that help users write their own
queries by choosing the items in which they are interested. Also, these reporting
tools have drill-down features, so that a user can drill down from a summary report
to the level of detail required. This feature is particularly useful for project leaders
and management.

Journals

The journal feature distinguishes SCM tools from the manual status accounting
process. A journal records all events that happen to all configuration items as they
occur, thus providing users with a complete and comprehensive picture of what
happened during a particular period in time. This is a much advanced and more
comprehensive version of manual transaction logs.

Journals provide audit trails that can be used for a variety of purposes including
configuration audits. The advantage of having the journal details in a database is
that the information contained in it can be manipulated at will. Accordingly, one
can recreate all of the events that happened during the transition of a configura-
tion item from, say, version 1 to 6 or the details of activities performed by a certain
developer. The advantage here is that the information can be retrieved quickly and
without any extra effort.

6518 Book.indb 114 12/30/14 1:24 PM

Summary 115

Summary

Status accounting is a recording activity that serves as a follow-up to the results of
the SCM activities of configuration identification and change control. It keeps track
of the current configuration identification documents, the current configuration of
the delivered software, the status of the changes being reviewed, and the status of
the implementation of approved changes.

The status accounting function plays a vital role in the efficient management and
control of projects by providing the necessary information to project management
and the project team. SCM tools automate the status accounting function and help
provide users with information that is accurate, timely, and relevant.

References

[1] IEEE Standard Glossary of Software Engineering Terminology (IEEE Std-610–1990),
IEEE Standards Collection (Software Engineering), Piscataway, NJ: IEEE, 1997.

[2] EIA, National Consensus Standard for Configuration Management (EIA-649), Arlington,
VA: Electronics Industries Alliance, 1998.

[3] Alain Abran, A., and Moore, J. W. (eds.), SWEBOK: Guide to the Software Engineering
Body of Knowledge (Trial Version), Los Alamitos, California: IEEE Computer Society,
2001.

Selected Bibliography

Babich, W. A., Software Configuration Management: Coordination for Team Productivity,
Boston, MA: Addison-Wesley, 1986.

Ben-Menachem, M., Software Configuration Guidebook, London: McGraw-Hill International,
1994.

Berlack, H. R., Software Configuration Management, New York: John Wiley & Sons, 1992.
Bersoff, E. H., V. D. Henderson, and S. G. Siegel, Software Configuration Management, An

Investment in Product Integrity, Englewood Cliffs, NJ: Prentice-Hall, 1980.
EIA, National Consensus Standard for Configuration Management (EIA-649), Arlington, VA:

Electronics Industries Alliance, 1998.
IEEE Software Engineering Standards Collection 2003 (CD-ROM Edition), Piscataway, NJ:

IEEE, 2003.
Marciniak, J. J. (ed.), Encyclopedia of Software Engineering (2nd Edition), New York: John

Wiley & Sons, 2002.
“Software Configuration Management: A Primer for Development Teams and Managers,” White

Paper, Intersolv, 1997.
“Software Configuration Management for Client/Server Development Environments: An Archi-

tecture Guide,” White Paper, Intersolv, 1998.

6518 Book.indb 115 12/30/14 1:24 PM

6518 Book.indb 116 12/30/14 1:24 PM

117

C h a p t e r 9

Configuration Verification and Audits

introduction

The objective of configuration verification and audits is to verify that the software
system matches the CI description in the specifications and documents and that
the package being reviewed is complete. According to EIA-649 [1], configuration
verification and audit establish that the performance and functional requirements
defined in the configuration documentation have been achieved by the design and
that the design has been accurately documented in the configuration documenta-
tion. The purpose and benefits of the process include the following:

•	 Ensuring that the product design provides the agreed-to performance
capabilities;

•	 Validating the integrity of the configuration documentation;
•	 Verifying the consistency between a product and its configuration

documentation;
•	 Determining that an adequate process is in place to provide continuing con-

trol of the configuration;
•	 Providing confidence in establishing a product baseline;
•	 Ensuring a known configuration as the basis for such things as operation and

maintenance instructions, training, and spare and repair parts.

Once the software has been designed, developed, and tested, it is necessary to
establish that the software product has been built in accordance with the require-
ments and that the software is correctly represented in the documentation that is
shipped along with the software. A configuration audit (CA) is a check to verify
that the product package contains all of the components it is supposed to contain
and performs as promised.

Configuration verification and audits enable the developer and the customer to
agree that what has been designed has been built and that the testing applied to the
software product CIs proved that the requirements of the software requirements
specification (SRS) for each CI were met. The CAs are performed after software
integration and testing. In some cases, the software will be audited with the hard-
ware—after system integration. Reviews are an iterative activity that start with
receipt of a contract and culmination of an agreement and end with delivery of the
software product and its associated documentation [2].

The configuration verification and audit process includes the following:

6518 Book.indb 117 12/30/14 1:24 PM

118 Configuration Verification and Audits

•	 Configuration verification of the initial configuration of a CI, and the incor-
poration of approved changes, to assure that the CI meets its required per-
formance and documented configuration requirements;

•	 CA of configuration verification records and physical product to validate that
a development program has achieved its performance requirements and con-
figuration documentation or the system/CI being audited is consistent with
the product meeting the requirements.

The common objective is to establish a high level of confidence in the configura-
tion documentation used as the basis for configuration control and support of the
product throughout its life cycle. Configuration verification should be an embedded
function of the contractor’s process for creating and modifying the CI or CSCI.
Validation of this process by the government may be employed in lieu of physical
inspection where appropriate [3]. Inputs to the configuration verification and audit
activity are listed as follows:

•	 Configuration, status, and schedule information from status accounting;
•	 Approved configuration documentation (which is a product of the configura-

tion identification process);
•	 Results of testing and verification;
•	 Physical hardware CI or software CSCI and its representation;
•	 Build instructions and tools used to develop, produce, test, and verify the

product.

Successful completion of verification and audit activities results in a verified
system and CI(s) and a documentation set that may be confidently considered a
product baseline. It also results in a validated process to maintain the consistency
of product to documentation.

Many organizations do not perform CAs [functional CAs (FCAs) and physical
CAs (PCAs)] and instead perform audits such as market readiness reviews (MRRs),
test readiness reviews (TRRs), or alpha and beta testing.

MRRs are conducted to confirm that the distribution, service, maintenance,
technical support, and field people are ready; that the installation, operation, and
troubleshooting manuals are ready; and that product tests and trial runs were suc-
cessful, among other purposes.

TRRs are conducted to evaluate preliminary test results for one or more CIs, to
verify that the test procedures for each CI are complete, to comply with test plans
and descriptions, to satisfy test requirements, and to verify that a project is prepared
to proceed to formal testing of the CIs. TRRs will be held for each application of
a release at the completion of the software integration test and at the completion
of the functional validation test. There are three levels of TRRs at the application
level, defined as follows:

•	 Development TRR: Informal TRR conducted following successful comple-
tion of unit or module testing of a given application;

•	 Project TRR: Formal TRR conducted following successful completion of the
software integration test (SIT) of a given application;

6518 Book.indb 118 12/30/14 1:24 PM

Software Reviews 119

•	 Enterprise TRR: Formal TRR conducted following successful completion of
the functional validation test (FVT) of a given application.

Alpha testing is done when the system or product has a lot of new previously
untested features. Since there is a lot of untested functionality, the development
team might be uncomfortable proceeding with the final testing and release of the
product until they get a feedback from a limited number of users or customers. So
developers use alpha testing primarily to evaluate the success or failure (or accep-
tance) of the new features incorporated into the system.

Beta testing is required when the development team decides that some level of
customer evaluation is needed prior to the final release of the product. In the case
of the beta testing, the developers are no longer looking for user inputs on func-
tionality or features. The product has all the functionality incorporated in it, so the
development team will be looking for the beta testers to uncover bugs and faults in
the system. Unlike alpha testing, beta testing is done on a much larger scale (i.e.,
the number of people doing the beta testing will be much higher than that for alpha
testing). Usually, companies distribute the beta releases free of cost to the people
who have enrolled for the beta testing program, and in many cases, the beta ver-
sions will be available for download from a company’s Web site. New products will
have alpha testing followed by beta testing. In the case of new versions of existing
products, however, either alpha or beta testing is done.

It is quite clear that these tests and reviews are not as comprehensive and thor-
ough as CAs and that they do not provide the same kind of assurance that prod-
ucts are built according to specifications and complete in all respects. CAs, on the
other hand, provide objective evidence of products’ and processes’ compliance with
standards, guidelines, specifications, and procedures.

Software reviews

A review is a process or meeting during which a work product, or set of work
products, is presented to project personnel, managers, users, customers, or other
interested parties for comment or approval [4]. Technical reviews are a series of
system engineering activities by which the technical progress on a project is assessed
relative to its technical or contractual requirements. The reviews are conducted at
logical transition points in the development effort to identify and correct problems
resulting from the work completed thus far before problems can disrupt or delay the
technical progress. Reviews, as we have seen, are performed many times during the
development process at least, at the completion of each phase and sometimes more
often. Reviews—which include system requirements reviews, software requirements
reviews, design reviews (preliminary design reviews and critical design reviews), and
code reviews—provide a method for the performing activity and tasking activity
to determine that the development of a CI and its documentation has a high prob-
ability of meeting contract requirements.

On the other hand, audits are performed at the completion of the product to
make sure that the product is complete in all respects and that the development has
been performed in conformance with the development standards and guidelines

6518 Book.indb 119 12/30/14 1:24 PM

120 Configuration Verification and Audits

Configuration Verification

Configuration verification is an ongoing process that is common to CM, systems
engineering, design engineering, manufacturing, and QA. It is the means by which
the design solution is verified. Verification that a design achieves its goals is accom-
plished by a systematic comparison of requirements with the results of tests, analyses,
or inspections. The documentation of a product definition must be complete and
accurate enough to permit reproduction of the product without further design effort.
The design of a product must be verified to ascertain that it has achieved specified
requirements and desired goals, that the documentation of the design is accurate,
and that the product can be produced from the documentation [1].

Conceptually, verification occurs in sequence by first determining the acceptabil-
ity of the design and then confirming that the documentation portrays that design.
In practice, it may be accomplished in separate events or audits. It is often more
practicable to verify these aspects incrementally during the course of the definition
phase and to incorporate the verification into the design and development process
flow, so that it occurs on a continuous basis.

Verification methods should be carefully planned to ensure that all requirements
are addressed and that the individual verification methods chosen are appropriate.
Requirements analysis and test tools that flow down, account for, and verify all
attributes facilitate the design verification process. Results are typically recorded
in a matrix indicating each discrete requirement, the method of verification, the
verification procedure, and the verification results. The design output, consisting of
the complete set of design information, must be accurately documented to permit
reproduction of the product without further design effort. Beyond this fundamental
requirement, other factors (such as the need to procure from other sources or future
maintenance needs) may influence the content and formality of documentation. A
product should be able to be produced from its documentation with confidence that
it will meet all requirements.

A software product should also be in compliance with published design and
coding standards so that it can be maintained, modified, and upgraded. In addition,
the following should be verified:

•	 The documentation library control system;
•	 The uniqueness of the product identifier;
•	 The validity of interfaces;
•	 The internal audit records of CM processes and procedures.

Verifying the documentation determines that it is adequate for its intended
purposes and accurately reflects compliant design. The verification of design and
documentation must be planned to permit its accomplishment at minimum cost. In
complex physical products, the comparison of the documentation with the proto-
type or test article can often be accomplished incrementally, during assembly of the
article, to avoid the need for later disassembly. These verifications are considered
complete upon resolution of discrepancies or departures found and correction of
associated documentation.

6518 Book.indb 120 12/30/14 1:24 PM

The When, What, and Who of Auditing 121

The When, What, and Who of auditing

Audits are the means by which an organization can ensure that software development
has been performed in the correct way—that is, in conformance with development
standards and guidelines. The software configuration auditing activity determines
the extent to which an item satisfies the required functional and physical characteris-
tics. Audits vary in formality, but all audits perform the same function—they check
the completeness of the software system or product. Any anomalies found during
an audit should not only be corrected, but the root cause of the problem should be
identified and corrected to ensure that the problem does not occur again. (Here, the
defect prevention methods described in Chapter 8 are quite useful.)

Before the release of a product baseline, an FCA and a PCA of the CIs are usu-
ally conducted. The FCA ensures that the functions defined in the specifications are
all implemented in the correct manner. The PCA determines whether all the items
identified as being part of the CI are present in the product baseline.

A software audit is an activity performed to evaluate independently the con-
formance of software products and processes to applicable regulations, standards,
guidelines, plans, and procedures [4]. An audit is usually done at the end of a phase
in the development life cycle. Before the development proceeds to the next phase, it
is a good practice to conduct an audit so that the development team has the satisfac-
tion of knowing that it is working on something that is complete and approved. The
reality, however, is that audits are usually performed only before a system release.
This is because the system release is the one that will go to the customer.

Conducting the audit prior to final release gives the company and the customer
the satisfaction of knowing that what they are delivering or getting is complete in
all respects and meets the requirements specified. The CA can be performed before
the final release for projects done in-house and when the organization is follow-
ing all the development standards and guidelines and other QA procedures are in
place. Even then, however, every final major baseline or release must be audited.
Items supplied by subcontractors must be subjected to a formal auditing process.

Who should perform the CAs? Audits are usually performed by a representative
or team of representatives from management, the QA department, or the customer
or client. In some cases, the auditing is done by an external agency. An external
auditor is best, because the auditing activity requires a very high degree of objectivity
and professionalism. The person who conducts the audit should be knowledgeable
about SCM activities and functions and technically competent to understand the
functionality of the project. The SCM plan should describe the types of audits and
reviews to be applied to a specified software project. Where hardware components
are also involved, it is necessary to pay special attention to what documents and
data will be reviewed and audited and who will represent the hardware and soft-
ware engineering functions assigned to the project.

Audits may be conducted by the organization responsible for the product devel-
opment, by the customer, or by a third party designated by the customer. A chair-
person representing each party to the audit participates in audit planning and
preparation. Audit plans and agendas are reviewed and agreed to prior to the audit.
Audits of complex products may be accomplished in a series of incremental audits.

6518 Book.indb 121 12/30/14 1:24 PM

122 Configuration Verification and Audits

During an audit, audit participants record significant questions, discrepan-
cies or anomalies, and recommended courses of action. Chairpersons review audit
findings and determine appropriate actions. Affected parties agree to action items
and the plan for effecting their successful closure. Audit minutes provide a record
of the audit findings, conclusions, recommendations, and action items. Follow-up
occurs until all required action items are complete. The necessary resources and
material to perform an audit include the following items to the extent appropriate
for the type and scope of audit:

•	 An audit plan and agenda;
•	 Adequate facilities and unencumbered access;
•	 Assignment and availability of personnel;
•	 Applicable specifications, drawings, manuals, schedules, and design data, test

results, inspection reports, process sheets, data sheets, safety procedures, and
other documentation as deemed necessary;

•	 Tools and inspection equipment necessary for evaluation and verification;
•	 Access to the product(s) and detailed parts to be reviewed.

FCa

The objective of the FCA is to verify that a CI’s actual performance agrees with the
requirements specified in the requirements definition and system design documents.
IEEE [5] defines FCA as an audit conducted to verify that the development of a
CI has been completed satisfactorily, that the item has achieved the performance
and functional characteristics specified in the functional or allocated configuration
identification, and that its operational and support documents are complete and
satisfactory. An FCA will prove, right or wrong, that the software test reports cor-
rectly state that a given requirement has been met.

The FCA team reviews the test plans, the test data, and the testing methodology
to verify that all functional parameters were tested and that the test results were
satisfactory. The audit team may ask for additional tests to be conducted, if neces-
sary. Functional audits normally involve a structured and well-defined sequence of
tests designed to ensure that the performance of the new or modified item conforms
to the requirements in the specification.

The form of the FCA will vary according to the type and extent of change
involved. In most cases, the FCA represents a review of the qualification of the item,
to ensure that it not only meets the specification requirement but that there are no
unintended consequences associated with the change. This process may include some
or all of the following forms of test, analysis, or demonstration: environmental tests,
to ensure that the new design is suitable for operation within the extremes of the
operational requirements; reliability tests; user trials; interfaces with other systems;
software testing; and stress testing.

As mentioned, the audit team consists of representatives from management,
QA, external experts, and client representatives. An audit team can be an ongoing
part of the organization or it can be constituted on an as-needed basis. Sometimes
audit teams are from an external agency that specializes in conducting audits. The

6518 Book.indb 122 12/30/14 1:24 PM

Role of the SCM Team in CAs 123

composition and structure of the audit team depends on the company and the audit-
ing standards that the company is following.

pCa

The objective of the PCA is to verify that a CI, as built, conforms to the technical
documentation that defines it. The PCA is usually done after successful completion
of the FCA. A PCA will demonstrate that the documentation for each CI and the
software system that will be delivered with the software product correctly describes
the functional and physical characteristics of the product and that the software
product specification and version description documents are consistent with the
software product. The audit team examines the design documentation with the
source code and user documentation and any other items that will accompany the
final software system. When a PCA is completed, the product baseline is established.
In other words, the successful completion of the FCA and PCA are prerequisites to
the establishment of the product baseline.

auditing the SCM System

SCM system audits are carried out to ensure that the implementation of SCM remains
consistent with established policy and procedures. System audits are essential to
ensure that defined processes are being properly applied and controlled. General
aspects that may be considered part of a system audit are listed as follows:

•	 The operational change control processes, including the CCB function;
•	 The implementation of change requests;
•	 The traceability of approved changes to the original specification and

requirement;
•	 The availability of design data and documentation in support of approved

changes;
•	 The traceability of design decisions to the initiating requirement.

The auditing of the SCM system is done by management’s representatives, QA
personnel, or SCM experts. It is better to have the SCM system audits done by the
people who reviewed the SCM plan, because they are familiar with the SCM system
that is being practiced and thus are able to do a better job. The SCM system will be
audited against the SCM plan and the standards mentioned in the SCM plan. The
purpose of auditing the SCM system is to ensure that the SCM system and SCM
functions and procedures are being practiced as specified in the SCM plan and to
find out areas in the functioning of the SCM system that need improvement.

role of the SCM Team in Cas

It is the responsibility of the SCM team to schedule the audits and find qualified
personnel to perform them. The SCM team also liaises between the audit team and

6518 Book.indb 123 12/30/14 1:24 PM

124 Configuration Verification and Audits

the development and testing team and ensures that the audit team gets full support
from the development and testing team to carry out the audits successfully.

Sometimes, auditors need to question the development or testing team members
as part of the audit. The SCM team should act as a facilitator of such meetings and
record the points discussed; these minutes should form part of the audit report.
In addition, the SCM team should arrange for the infrastructure facilities such as
room(s), furniture, machine access, documents, and any other items required by
the audit team.

After the FCA and PCA have been completed, the SCM team reviews the audi-
tor’s comments and nonconformance reports (NCRs) and initiates necessary cor-
rective actions.

Cas and SCM Tools

SCM tools make the auditing process a lot easier than before. As we have seen,
SCM tools capture all SCM-related information in a very comprehensive manner
as the activities occur. In addition, the journal reports created by SCM tools record
all events that have happened to the CIs, thus creating an audit trail, which can be
used by auditors to perform their job. Also, the querying facility of the tools helps
the auditing team get any other information it needs.

The automated information gathering abilities of the SCM tools make audit-
ing into an incredibly simple process, because any necessary information can be
generated for verification purposes and auditors can confirm whether the system or
product they are auditing is complete and meets all the requirements.

Summary

CAs are carried out to ensure that software systems are functioning correctly and
to ensure that the configurations have been tested to demonstrate that they meet
their functional requirements and contains all deliverable entities.

The two types of audits are PCAs and FCAs. Whereas FCAs authenticate that
the software performs in accordance with the requirements and as stated in the
documentation, PCAs authenticate that the components to be delivered actually
exist and that they are complete in all respects and contain all of the required items.

SCM systems should also be subjected to auditing to ensure that the implementa-
tion of SCM remains consistent with established policies and procedures. SCM tools
automate most of the auditing tasks and make auditing an easy and painless job.

References

[1] EIA, National Consensus Standard for Configuration Management (EIA-649-B), Arling-
ton, VA: Electronics Industries Alliance, 2011.

[2] Marciniak, J. J. (ed.), Encyclopedia of Software Engineering (2nd Edition), New York:
John Wiley & Sons, 2002.

6518 Book.indb 124 12/30/14 1:24 PM

Summary 125

[3] U.S. Department of Defense, Military Handbook: Configuration Management Guidance
(MIL-HDBK-61A(SE)-2001), U.S. Department of Defense, 2001.

[4] IEEE Standard for Software Reviews (IEEE Std-1028-2012), Piscataway, NJ: IEEE, 2012.
[5] IEEE Standard Glossary of Software Engineering Terminology (IEEE Std-610–1990),

IEEE Software Engineering Standards Collection 2003 (CD-ROM Edition), Piscataway,
NJ: IEEE, 2003.

Selected Bibliography

Arthur, J. D., et al., “Evaluating the Effectiveness of Independent Verification and Validation,”
IEEE Computer, Vol. 32, No. 10, October 1999, pp. 79–83.

Ben-Menachem, M., Software Configuration Management Guidebook, New York: McGraw-
Hill, 1994.

Bourque, P., and R. E. Fairley (eds.), Guide to the Software Engineering Body of Knowledge,
Version 3.0, IEEE Computer Society, 2014; www.swebok.org.

EIA, National Consensus Standard for Configuration Management (EIA-649-B), Arlington,
VA: Electronics Industries Alliance, 2011.

IEEE Software Engineering Standards Collection 2003 (CD-ROM Edition), Piscataway, NJ:
IEEE, 2003.

Pressman, R. S., Software Engineering: A Practitioner’s Approach (8th Edition), New York:
McGraw-Hill, 2014.

Sommerville, I., Software Engineering (9th Edition), Reading, MA: Addison-Wesley Publish-
ing Company, 2011.

U.S. Department of Defense, Military Handbook: Configuration Management Guidance (MIL-
HDBK-61A (SE)-2001), U.S. Department of Defense, 2001.

Whitgift, D., Methods and Tools for Software Configuration Management, Chichester, England:
John Wiley & Sons, 1991.

6518 Book.indb 125 12/30/14 1:24 PM

6518 Book.indb 126 12/30/14 1:24 PM

127

C h a p t e r 1 0

SCM: Advanced Concepts

introduction

This chapter discusses some of the advanced concepts in SCM, building on the basic
concepts introduced in Chapter 5 and dealing with some important SCM functions
such as interface control and subcontractor control. These topics are particularly
important when writing the SCM plan, which is discussed in Chapter 13. This
chapter also deals with the concept of software libraries and how important they
are for performing SCM activities.

The foundation of SCM is based on three components (introduced in Chapter
5): version control, system building, and release management.

Version Control

We have seen that a version is an initial release or rerelease of a CI. It is an instance
of the system that differs in some way from the other instances. A version is usu-
ally accompanied by a version description document (VDD). A VDD is a document
that accompanies and identifies a given version of a system or component. Typical
contents include an inventory of a system or its component parts, identification of
changes incorporated into this version, and installation and operating information
unique to the version described [1]. VDD is not normally required for each build or
internal release of software or a CI. Typically, a VDD is produced only for system-
level testing and for the major activities that follow the system level test (e.g., release
to client, customer, or marketing, archival purposes, rerelease, etc.). The VDD,
which may exist in hardcopy or electronic form, describes new capabilities, known
problems, and platform requirements necessary for proper product operation.

Version control is simply the automated act of tracking the changes of a par-
ticular file over time. This is typically accomplished by maintaining one copy of the
file in a repository, then tracking the changes to that file. The concepts of check-in
and check-out (described in Chapter 5) make this possible. Version control has a
number of benefits including the following:

•	 Preventing unauthorized access and modification to files;
•	 Tracing the evolution of a file from inception to the current state;
•	 Rolling back to a previous version of a given file in case of a problem or for

debugging;

6518 Book.indb 127 12/30/14 1:24 PM

128 SCM: Advanced Concepts

•	 Comparing two versions of a file and highlighting differences to see what
changes are made;

•	 Providing a mechanism of locking or forcing serialized change to any given file;
•	 Creating branches that allow for parallel concurrent development and the

ability to combine the changes made by different people to a single file at a
later stage—merging;

•	 Maintaining an instant audit trail on each and every file: versions, modified
date, modifier, and any additional amount of metadata a system provides and
one chooses to implement.

Thus, version control makes it possible to trace the history of all CIs in a sys-
tem and to recreate any previous version of a file. This capability gives the software
organization tremendous power to identify and pinpoint the files that are creating
problems while debugging during the maintenance and support phases. When things
are not working, the files can be rolled back to previous versions, and the changes
made after the successfully working version can be inspected to find out what is
causing the error or malfunction.

System Building

IEEE defines a build as an operational version of a system or component that incor-
porates a specified subset of the capabilities that the final product will provide [1].
The building activity combines the correct versions of software items, using the
appropriate configuration data, into an executable program for delivery to custom-
ers or other recipients, such as developers, testers, and QA personnel. Build instruc-
tions ensure that the proper build steps are taken and in the correct sequence. In
addition to building software for new releases, it is usually also necessary for SCM
to have the capability to reproduce previous releases for recovery, testing, or addi-
tional release purposes.

During the development of a software product the build process will be per-
formed several—or actually, many—times. The developers, testers, and QA per-
sonnel will perform builds during the course of the development to see whether the
system that is under development performs as expected. When system development
is complete and all the items that are required for the final product are debugged,
tested, reviewed, verified, validated, and audited, the system build is performed.
The system build produces the product that is given to the client or shipped to the
customers.

Software is built using particular versions of supporting tools, such as compil-
ers. The two most essential characteristics that are needed for any build process
are repeatable and reproducible. In other words, you should be able to recreate
the exact product that was created using a build process at a later date. For this to
happen, the supporting tools and associated build scripts need to be under SCM
control to ensure availability of the correct versions of the tools. The build process
and products are often subject to SQA verification. Outputs of the build process
might be needed for future reference and may become QA records.

6518 Book.indb 128 12/30/14 1:24 PM

Release Management 129

Tools are very useful for selecting the correct versions of software items for a
given target environment and for automating the process of building the software
from the selected versions and appropriate configuration data. For large projects
with parallel development or distributed development environments, this tool capa-
bility is a must. Most software development environments provide this capability.
These tools vary in complexity and features; some use scripting languages while
others employ GUI-oriented approaches that hide much of the complexity of the
build facility.

release Management

The term “release” is used in this context to refer to the distribution of a software
CI outside the development activity. The primary purpose of a release is to make
the application available to its end users. Thus, a release can be for internal users
as well as customers.

Release management is closely tied to build management in that a specific release
is essentially a production build of an application. In addition to putting the runtime
software in its final form, release management includes the deployment process as
well as the update of related metadata that goes into tracking a given version of a
software application. When different versions of a software item are available for
delivery, such as variants for different platforms or versions with varying capabilities,
it is frequently necessary to recreate specific versions and package the correct materi-
als for delivery of the version. The software library is a key element in accomplish-
ing release and delivery tasks. Software libraries are detailed later in this chapter.

Software release management encompasses the identification, packaging, and
delivery of the elements of a product such as the executables, documentation, release
notes, and configuration data. Software products will be subjected to changes and
enhancements on a continuous basis. Hence, one of the main considerations for
release management is determining when to issue a release. The severity of the
problems addressed by the release and measurements of the fault densities of prior
releases affect this decision [2]. Pressure from competitors, entry of new products
and technology, and other environmental factors also affect the decision on when
to release.

The packaging task must identify which product items are to be delivered and
select the correct variants of those items, given the intended application of the
product. The set of information documenting the physical contents of a release is
known as a VDD, described earlier in the chapter. The package to be released also
contains loading or upgrading instructions. The latter can be complicated by the
fact that some current users might have versions that are several releases old. SCM
tools are needed for supporting these release management functions.

Software released to customers must be comprised of items that have been
approved as fit for their intended use. Usually, this requires that the items be fully
approved by the CCB, although beta test or prototype releases may be less than
fully approved. It also requires that the correct variant of the system be issued to
clients. Variants differ only in the platform or language supported and have the

6518 Book.indb 129 12/30/14 1:24 PM

130 SCM: Advanced Concepts

same functionality. So clients who want a Windows version of a product will not
be happy if they receive a UNIX version.

interface Control

In today’s environment, interface design has become an important segment of the
software engineering process. One is not only faced with the normal computer
system-to-computer system interfaces, but other functions such as LANs to WANs
or workstations to files servers to mainframes. Those interfaces that affect the soft-
ware are identified and documented by the systems analyst and, in turn, are placed
under configuration control.

Interface describes the functional and physical characteristics required for a
common boundary to exist between two or more software products and computer
systems that are provided by different organizations or sources. Interface control
is the process of identifying, documenting, and controlling all performance, func-
tional, and physical attributes relevant to the interfacing of two or more products
provided by one or more organizations. Interface documentation consists of interface
control drawings or other documentation that depicts physical, functional, and test
interfaces of related or cofunctioning products [3]. An interface control document
defines the interfaces that may affect the operation of cofunctioning CIs and is used
for control as well as delineating the interface criteria and technical detail necessary
to effect an economical and viable interface [4].

For product interfaces external to the enterprise, the SCM system must establish
an interface agreement and a mutually agreed documentation of common attributes.
Product attributes include defined interfaces with products that are developed, pro-
duced, and supplied by organizations outside the enterprise. External interfaces are
documented in a product’s configuration documentation. To document and control
the interface, there must be a relationship between the interfacing organizations.

If the relationship is a buyer-seller relationship, the interface definition is included
as part of the purchase agreement (e.g., by reference to a defined catalog item or
by use of a control drawing). If there is no direct relationship, an interface agree-
ment is established between the developing enterprises. It delineates procedures
for defining and maintaining the common interface. The procedures (for defining
complex interfaces and coordinating proposed changes to them) may employ a
joint interface control working group. A mutually agreed upon interface definition
(including performance, functional, and physical attributes) is typically detailed in
an interface document or drawing.

NASA-DID-M200 provides for an interface control plan (ICP) and states in
simple terms that the purpose of the plan is to define the process by which the
developer defines and manages all external interfaces between the software and
all users—both human and software. It may be appropriate to roll out this plan
when there are major coordination concerns and risks between the developer and
the organizations responsible for the interfacing units [5].

MIL-STD-483B states that interface control is the coordinated activity required
to ensure that the functional and physical characteristics of systems and equipment
are compatible [6]. The interface control activity is responsible for ensuring that

6518 Book.indb 130 12/30/14 1:24 PM

Subcontractor Control 131

the configuration identification conforms to the functional interfaces established
by system engineering and that the affected CIs are logically compatible and can
be operated and supported as needed. The interface activity is also responsible for
controlling documentation, including an assessment of the impact of changes to
control documentation or changes emanating from other document changes that
could affect the interfaces.

Most software specifications and documents define or explain the interfaces
between the CI being identified and another CI or computer system. All of these
interfaces must be mapped so that everyone on the project will understand what
has been defined and will be able to carry out their specified tasks. SCM treats the
interface design documents and drawings in the same manner as other documen-
tation, except SCM also provides for assessment of impacts to interfacing entities.

The days of one organization developing all the components of a system are long
gone. This is the era of distributed development. Development teams from around
the world and from different organizations work jointly to produce a software
system. In such cases, interface control working groups (ICWGs) comprised of the
representatives of the participant companies or teams are established. This may be
necessary to ensure compatibility of all interfacing entities and to establish better
communication among the large number of developers and organizations that may
be participating in the design effort.

In most cases, an ICWG is formed at the start of the project. It is composed of
the interfacing developers and users and the prime developers’ SCM activity. The
SCM activity provides for the identification of all the interface specifications and
documents authorized by the ICWG and when released by the ICWG, places them
under SCM control. The change process for an interface document is the same as
that of any other CI; the only exception is that the CCB is replaced by the ICWG
[7]. The SCM activity will also maintain the status accounting of the documentation
and changes and provide periodic reports to the various participating organizations
represented on the ICWG. In addition, status accounting will provide the mechanism
for requirements traceability to enable the communication of the impact created
by such changes as they occur. Tools are now in use that map the entire software
system, including interfaces, and delineate the changes that have occurred by some
form of reference marking such as version number or version letter. Such informa-
tion can be acquired online (if SCM tools that capture this information are used)
by the SCM activity and the project for immediate information.

Subcontractor Control

A subcontractor is any supplier, distributor, vendor, or firm that furnishes supplies
or services to or for a prime contractor. Subcontractor control is another SCM
activity that is provided for in the software project’s SCM plan. It is most impor-
tant that the developing organization select qualified developers who, in turn, can
demonstrate an adequate understanding of performing the SCM process and can
meet the requirements that have been flowed down to them by the prime developer.

CM requirements appropriate to the product being acquired are passed down
(flowed down) to subcontractor(s), typically via purchase orders or other subcontract

6518 Book.indb 131 12/30/14 1:24 PM

132 SCM: Advanced Concepts

agreement instruments. Tailoring of requirements for subcontractors is a major SCM
planning activity. The performing activity takes on the role of customer (buyer) to
the supplier. Suppliers are monitored via data reviews, configuration change man-
agement, design reviews, product test results, CAs, and SCM surveillance reviews,
as appropriate.

Data reviews typically include assessment of supplier plans, procedures, and
configuration documentation. Configuration change management typically includes
review of proposed changes to buyer-approved or -imposed configuration documen-
tation. Design reviews assess the supplier’s progress and provide a level of confidence
that the product, when developed, will meet its specified attributes. Product test
results are positive or negative indicators that required attributes will, or will not,
be satisfied. CAs verify that the required attributes have been achieved and that the
design of the product has been accurately documented. SCM surveillance reviews
verify the continuing application of supplier SCM processes.

There can be several categories of development subcontracts, including ones
under which (1) full authority is given to design, develop, build, test, and deliver
a specified CI or multiple CIs; (2) limited design authority is given, such as when
modifying existing software or performing coding and unit testing only; and (3)
no design responsibility is given and the software to be delivered is termed as a
nondevelopmental item (NDI) or COTS software.

The level of configuration change management exercised by the buyer (prime
contractor) ranges from none to total depending on the nature of the product and
the conditions of purchase. For a COTS product or NDI, the buyer generally has
no control over the product attributes, but can choose not to buy the product.

In the case of a product purchased using a buyer-prepared control drawing, the
buyer typically exercises CCA over the specified form, fit, and function attributes.
For a product developed to the buyer’s specifications, the buyer normally exercises
CCA over the product’s requirement attributes. The buyer may also exercise control
over the product design if more rigorous SCM has been flowed down to the supplier.

Software Library

The software library is the heart of the SCM. It contains everything that is impor-
tant to a software project: source code, user and system documentation, test data,
support software, specifications, project plans, and derived items [8]. The software
library must be secure. It must only be accessed in ways that are consistent with
sound SCM. Both read access and write access must be controlled, the former to
prevent unauthorized disclosure and the latter to prevent unauthorized or acciden-
tal change or deletion.

The software library is an important asset to the performance of the SCM
process, especially in carrying out change control, release management, and status
accounting activities. A software library is defined as a controlled collection of
software and related documentation designed to aid in software development, use,
or maintenance [1]. Types include development libraries, controlled libraries, and
master libraries.

6518 Book.indb 132 12/30/14 1:24 PM

Summary 133

The development library (sometimes called the dynamic library) holds newly
created or modified software entities, data units, or documentation. The production
library is the working library for the production of the source code and is usually
managed by the developers. This can be a collection of many independent librar-
ies—each owned by different developers. The items in the dynamic library are not
under configuration control.

The controlled library (sometimes called the production library) is used for
managing current baselines and for controlling changes made to them. It maintains
CI units promoted for integration. The controlled library is the entity for reten-
tion of approved or released CIs as well as the retention of approved and released
software documentation that will be delivered to the customer or distributed to
the marketplace.

The master library, also known as the static library, maintains archives of
various baselines released for general use. This library contains master copies and
authorized copies of software and documentation released for operational use.
The items in the master library should not be changed under any circumstances.
The master library usually consists of many different physical repositories or stor-
age media. The software repository is the entity that archives software and related
documentation at the close of the project. All released documentation and software
in the master library should be backed up. The working interfaces of the various
software libraries are shown in Figure 10.1.

The status accounting activity will account for all of the software documenta-
tion and code in the various library segments and report their status at any given
time, including the changes under way, approved, or incorporated.

Summary

The principles of SCM revolve around three key components: version control, system
building, and release management. Version control is simply the automated act of
tracking the changes of a particular file over time. Version control gives the ability

Figure 10.1 Working of the software library.

6518 Book.indb 133 12/30/14 1:24 PM

134 SCM: Advanced Concepts

to trace the history of all CIs in a system and to recreate any previous version of
a file. The system build produces the product that is given to clients or shipped to
customers. Software release management encompasses the identification, packag-
ing, and delivery of the elements of a product like the executables, documentation,
release notes, and configuration data.

Two other important aspects of SCM are interface control and subcontractor
control. Interface control is the process of identifying, documenting, and control-
ling all performance, functional, and physical attributes relevant to the interfacing
of two or more products provided by one or more organizations. Subcontractor
control is an activity that establishes the procedures for ensuring the quality and
completeness of products and components of the system that are being developed
by a subcontractor or bought directly from the market. Both interface control and
subcontractor control procedures should be described in the SCM plan.

This chapter also describes the different types of software libraries and the role
they play in the practice of SCM.

References

[1] IEEE Standard Glossary of Software Engineering Terminology (IEEE Std-610–1990),
IEEE Software Engineering Standards Collection 2003 (CD-ROM Edition), Piscataway,
NJ: IEEE, 2003.

[2] Sommerville, I., Software Engineering (9th Edition), Reading, MA: Addison-Wesley Pub-
lishing Company, 2011.

[3] EIA, National Consensus Standard for Configuration Management (EIA 649), Arlington,
VA: Electronic Industries Alliance, 1998.

[4] U.S. Department of Defense, Configuration Management Data Interface (MIL-STD-2549),
1997.

[5] NASA, NASA Software Documentation Standard (NASA-STD-2100-91), Washington,
D.C.: National Aeronautics and Space Administration, 1991.

[6] Department of Defense, Configuration Management Practices for Systems, Equipment,
Munitions and Computer Programs (MIL-STD-483B), 1985.

[7] Berlack, H. R., Software Configuration Management, New York: John Wiley & Sons,
Inc., 1992.

[8] Whitgift, D., Methods and Tools for Software Configuration Management, Chichester,
England: John Wiley & Sons, 1991.

Selected Bibliography

Ben-Menachem, M., Software Configuration Management Guidebook, New York: McGraw-
Hill, 1994.

Berlack, H. R., Software Configuration Management, New York: John Wiley & Sons, Inc., 1992.
Bourque, P., and R. E. Fairley (eds.), Guide to the Software Engineering Body of Knowledge,

Version 3.0, IEEE Computer Society, 2014; www.swebok.org.
Department of Defense, Military Handbook: Configuration Management Guidance [MIL-

HDBK-61A (SE)], 2001.
EIA, National Consensus Standard for Configuration Management (EIA 649), Arlington, VA:

Electronic Industries Alliance, 1998.

6518 Book.indb 134 12/30/14 1:24 PM

Summary 135

IEEE Software Engineering Standards Collection 2003 (CD-ROM Edition), Piscataway, NJ:
IEEE, 2003.

Marciniak, J. J. (ed.), Encyclopedia of Software Engineering (2nd Edition), New York: John
Wiley & Sons, 2002.

Pressman, R. S., Software Engineering: A Practitioner’s Approach (8th Edition), New York:
McGraw-Hill, 2014.

Sommerville, I., Software Engineering (9th Edition), Reading, MA: Addison-Wesley Publish-
ing Company, 2011.

Whitgift, D., Methods and Tools for Software Configuration Management, Chichester, England:
John Wiley & Sons, 1991.

6518 Book.indb 135 12/30/14 1:24 PM

6518 Book.indb 136 12/30/14 1:24 PM

137

C h a p t e r 1 1

SCM Standards

introduction

Configuration management got its start in the U.S. defense industry as a technique to
resolve problems of poor quality, wrong parts ordered, and parts not fitting, which
were leading to inordinate cost overruns. In 1962, the U.S. Air Force published the
first standard on CM—AFSCM 375-1. The AFSCM 375-1 identified CM as the
key element in the design, development, testing, and operation of the item to be
delivered, because CM procedures facilitated better communication and prevented
uncontrolled change. In 1964, the National Aeronautics and Space Administration
(NASA) developed a CM standard (NPC 500-1) that was based on the AFSCM
375-1, for the design and development of the Saturn V spacecraft. This standard
played an instrumental role in the Saturn V and Apollo space programs. During
the same time the U.S. Army came out with its version of a CM standard (AMCR
11-26), and in 1965 the U.S. Navy followed suit with its standard NAVMATINST
4130.1 (Configuration Management Policy and Guidance Manual). In 1968, four
major standards related to CM were published:

•	 Department of Defense Directive (DOD D) 5010.19–Configuration
Management;

•	 MIL-STD-480–Configuration Control Engineering Changes, Deviations
and Waivers;

•	 MIL-STD-482–Configuration Status Accounting Data Elements & Related
Features;

•	 MIL-STD-490–Specification Practices.

These standards gave a new thrust to the practice of CM and were integrated
into defense contracts, so that not only the military used these standards internally,
but also the defense industry (the government contractors and commercial corpo-
rations who supplied materials and equipment to the military) started subscribing
and implementing these standards.

In 1971, the U.S. Air Force issued MIL-STD-483—Configuration Management
Practices for Systems, Equipment, Munitions, & Computer Programs. This was the
first standard that recognized CM of both hardware and software. Even though
the defense industry, through various associations, such as the Electronics Indus-
tries Association (EIA), the Aerospace Industries Association (AIA), the National
Security Industrial Association (NSIA), and the American Electronics Association

6518 Book.indb 137 12/30/14 1:24 PM

138 SCM Standards

(AEA) were reviewing the military standards at that time, it was not until 1988
that commercial standards began to appear.

The proliferation of military standards had a number of drawbacks, and it has
been argued that the large number of standards, nearly 30,000 by 1990, imposed
unnecessary restrictions and increased costs on contractors and impeded the incor-
poration of the latest technology. In 1988, the assistant secretary of defense for
acquisition, Dr. Costello, wrote a memo indicating that the government should get
out of the standards-writing business and entrust the job of developing standards to
the organizations that were developing standards on various topics. He also stated
that the military would use the standards written by organizations like EIA, IEEE,
the Society of Automotive Engineers (SAE), ANSI, and ISO for procuring materi-
als from the commercial market. These organizations had a good track record at
developing standards. For example, EIA had written many standards on electron-
ics, electrical, and communications protocols. SAE had developed standards on
automotive development and related topics. IEEE was one of the pioneers in the
development of software standards. Thus, commercial standards on CM from these
organizations began to appear.

In 1994, responding to heightened criticism of the increasing number of mili-
tary standards, U.S. Secretary of Defense William Perry issued a memorandum that
prohibited the use of most defense standards without a waiver, and many defense
standards were subsequently canceled. In their place, the DOD encouraged the use
of industry standards. Military systems were then required to use “performance
specifications” that described the desired features of the weapon, as opposed to
requiring a large number of defense standards.

Now, there are hundreds of CM standards available, covering every aspect of
CM. A search by the author at the site of Global Engineering Documents, one of
the largest vendors of technical standards, for CM standards brought up 151 stan-
dards. Some of the popular military and commercial standards are listed as follows.

•	 DOD-STD-2167A—Defense System Software Development (canceled);
•	 DOD-STD-2168—Defense System Software Quality Program (canceled);
•	 MIL-STD-973—Configuration Management, 1990 (canceled);
•	 MIL-STD-498—Software Development and Documentation, 1994 (canceled);
•	 MIL-HDBK-61A (SE)—Military Handbook for Configuration Management

Guidance, 2001;
•	 MIL-STD-2549—Configuration Management Data Interface, 1997;
•	 MIL-STD-480B—Configuration Control Engineering Changes, Deviations

and Waivers, 1988 (canceled);
•	 MIL-STD-481B—Configuration Control Engineering Changes (Short Form),

Deviations and Waivers, 1988 (canceled);
•	 MIL-STD-482—Configuration Status Accounting Data Elements & Related

Features, 1974 (canceled);
•	 MIL-STD-483A—Configuration Management Practices for Systems, Equip-

ment, Munitions and Computer Programs, 1985 (superseded by MIL-STD-973);
•	 MIL-STD-973—Configuration Management, 1992 (superseded by EIA-649);
•	 MIL-STD-490A—Specification Practices, 1985 (superseded by

MIL-STD-961E);

6518 Book.indb 138 12/30/14 1:24 PM

Introduction 139

•	 MIL-STD-1521B—Technical Reviews and Audits for Systems, Equipment
and Computer Programs, 1985 (canceled);

•	 MIL-STD-961E—Defense and Program-Unique Specifications Format and
Content, 2003;

•	 RTCA DO/178B-92—Software Considerations in Airborne Systems and
Equipment Certification;

•	 NATO STANAG 4159—Configuration Management, 1992;
•	 STANAG 4427 Ed. 2—Introduction of Allied Configuration Management

Publications (ACMPs), 2007;
•	 ACMP-1 Ed. 2—NATO Requirements for the Preparation of Configuration

Management Plans, 2007;
•	 ACMP-2 Ed. 2—NATO Requirements for Configuration Identification, 2007;
•	 ACMP-3 Ed. 2—NATO Requirements for Configuration Control—Engineer-

ing Changes, Deviations and Waivers, 2007;
•	 ACMP-4 Ed. 2—NATO Requirements for Configuration Status Accounting

and Configuration Data Management, 2007;
•	 ACMP-5 Ed. 2—NATO Requirements for Configuration Audits, 2007;
•	 ACMP-6 Ed. 2—NATO Configuration Management Terms and Definitions,

2007;
•	 ACMP-7 Ed. 2—NATO Configuration Management Guidance on the Appli-

cation of ACMPs 1 to 6, 2007;
•	 NATO NAT-PRC-2—Software Project Configuration Management Procedures;
•	 UK MOD DEF-STAN 05-57/2—Configuration Management Policy and Pro-

cedures for Defense Material, 1985;
•	 NASA-Sfw-DID-04—Software Configuration Management Plan Data Item

Description, NASA, 1986;
•	 NASA D-GL-11—Software Configuration Management for Project Manag-

ers, NASA, 1987;
•	 IEEE-Std-24765-2010—Systems and Software Engineering—Vocabulary,

2012;
•	 IEEE Std-828-2012—IEEE Standard for Configuration Management in Sys-

tems and Software Engineering, 2012;
•	 ANSI/IEEE Std-1042-1987—IEEE Guide to Software Configuration Man-

agement, 1987 (withdrawn);
•	 ANSI/IEEE Std-730-2014—IEEE Standard for Software Quality Assurance

Processes, 2014;
•	 ANSI/IEEE Std-730.1-1995—IEEE Guide for Software Quality Assurance

Planning, 1995 (withdrawn);
•	 ANSI/IEEE Std-1028-2008—IEEE Standard for Software Reviews and Audits,

2008;
•	 ISO/IEC/IEEE 12207-2008—ISO/IEC/IEEE Standard for Systems and Soft-

ware Engineering—Software Life Cycle Processes, 2008;
•	 ISO/IEC/IEEE 15288-2008—Systems and Software Engineering—System

Life Cycle Processes, 2008;
•	 ISO 9001: 2008—Quality Management Systems—Requirements, 2008;
•	 ISO 9000-3—Guidelines for the Application of ISO 9001 to the Development

and Maintenance of Software, 1997 (withdrawn);

6518 Book.indb 139 12/30/14 1:24 PM

140 SCM Standards

•	 ISO/IEC 90003:2004—Software Engineering—Guidelines for the Applica-
tion of ISO 9001:2000 to Computer Software, 2004;

•	 ISO 10007—Quality Management—Guidelines for Configuration Manage-
ment, 2003.

•	 ISO/IEC TR 15846:1998—Information Technology—Software Life Cycle
Processes–Configuration Management, 1998;

•	 EIA-649-B—Configuration Management Standard, 2011;
•	 EIA-836-B—Configuration Management Data Exchange and Interoperabil-

ity, 2010;
•	 EIA CMB4-1A-84—Configuration Management Definitions for Digital Com-

puter Programs, 1984;
•	 EIA CMB4-2-81—Configuration Identification for Digital Computer Pro-

grams, 1981;
•	 EIA CMB4-3-81—Computer Software Libraries, 1981;
•	 EIA CMB4-4-82—Configuration Change Control for Digital Computer

Programs, 1982;
•	 EIA CMB5-A-86—Configuration Management Requirements for Subcon-

tractors/Vendors, 1986;
•	 EIA CMB6-1C-94—Configuration and Data Management References, 1994;
•	 EIA CMB6-2-88—Configuration and Data Management In-house Training

Plan, 1988;
•	 EIA CMB6-3-91—Configuration Identification, 1991;
•	 EIA CMB6-4-91—Configuration Control, 1988;
•	 EIA CMB6-5-88—Textbook for Configuration Status Accounting, 1988;
•	 EIA CMB6-6-96—Textbook for Reviews and Configuration Audits, 1996;
•	 EIA CMB6-8-88—Data Management In-house Training Course, 1988;
•	 EIA CMB6-9-90—Configuration and Data Management Training Course,

1990;
•	 EIA CMB7-1-91—Electronic Interchange of Configuration Management Data,

1991;
•	 EIA CMB7-2-91—Guidelines for Transitioning Configuration Management

to an Automated Environment, 1991;
•	 ESA PPS-05-09 Rev. 1—Guide to Software Configuration Management,

March, 1995;
•	 FAA-STD-021 (Rev. A) (Chg Notice 1)—Configuration Management (Con-

tractor Requirements), 1990;
•	 FEI-4—Software Configuration Management, 1983;
•	 NIST S.P. 500-161—Software Configuration Management—An Overview;
•	 BS 6488-84—Code of Practice for Configuration Management of Computer-

based Systems;
•	 JPL D-4011—Software Configuration Management Planning, December

1988.

As indicated in their descriptions, some of the above listed standards (mainly
MIL and DOD standards) have been canceled and cannot be used or referred to in
any formal agreement or contracts. They are referenced here because they contain
valuable information. Moreover, most of them are available on the Internet free of

6518 Book.indb 140 12/30/14 1:24 PM

Military Standards 141

cost. The following sections provide an overview of a few representative standards
from the list—both military and commercial.

Military Standards

The standards published by the U.S. Department of Defense are used by all NATO
countries and by countries that use military equipment, manufactured in the United
States. The next few sections discuss the following CM-related military standards:

•	 DOD-STD-2167A—Defense System Software Development (canceled);
•	 DOD-STD-2168—Defense System Software Quality Program (canceled);
•	 MIL-STD-973—Configuration Management (canceled);
•	 MIL-STD-498—Software Development and Documentation (canceled);
•	 MIL-HDBK-61A (SE)—Military Handbook for Configuration Management

Guidance;
•	 MIL-STD-2549—Configuration Management Data Interface;
•	 MIL-STD-480B—Configuration Control Engineering Changes, Deviations

and Waivers (canceled);
•	 MIL-STD-481B—Configuration Control Engineering Changes (Short Form),

Deviations and Waivers (canceled);
•	 MIL-STD-482—Configuration Status Accounting Data Elements & Related

Features (canceled);
•	 MIL-STD-973—Configuration Management, (Superseded by EIA-649);
•	 MIL-STD-1521B—Technical Reviews and Audits for Systems, Equipment

and Computer Programs (canceled);
•	 MIL-STD-961E—Defense and Program-Unique Specifications Format and

Content;

dOd-STd-2167a

This standard (which supersedes the DOD-STD-2167—Defense System Software
Development, 1985) establishes requirements to be applied during the acquisition,
development, or support of software systems. The requirements of this standard
apply to the development of CSCIs. Even though this standard was developed for the
DOD environment, it can be tailored to handle rapidly evolving software technol-
ogy and to accommodate a wide variety of state-of-the-practice software engineer-
ing techniques. The standard allows the user to incorporate the SCM plan into the
software development plan (SDP) or to treat it as a separate document. The benefit
of handling the SCM plan as part of the SDP is that, for the projects where SCM is
either tightly tied to development life cycle or where the SCM function is relatively
small, it allows the SCM plan to be placed in the SDP where it is more appropriate.

dOd-STd-2168

This standard contains requirements for the development, documentation, and imple-
mentation of a software quality program. This program includes planning for and

6518 Book.indb 141 12/30/14 1:24 PM

142 SCM Standards

conducting evaluations of the quality of software, associated documentation, and
related activities and planning for and conducting the follow-up activities necessary
to assure timely and effective resolution of problems. This standard, together with
other military specifications and standards governing software development, CM,
specification practices, project reviews and audits, and subcontractor management,
provides a means for achieving, determining, and maintaining quality in software
and associated documentation.

MiL-STd-498

The purpose of this standard was to establish uniform requirements for software
development and documentation. This standard merged DOD-STD-2167A, DOD-
STD-7935A, and DOD-STD-1703 to define a set of activities and documentation
suitable for the development of both weapon systems and automated informa-
tion systems. This standard supersedes DOD-STD-2167A, DOD-STD-7935A, and
DOD-STD-1703.

A conversion guide from these standards to MIL-STD-498 is provided in Appen-
dix A. Other changes include improved compatibility with incremental and evolu-
tionary development models, improved compatibility with nonhierarchical design
methods; improved compatibility with computer-aided software engineering (CASE)
tools; alternatives to, and more flexibility in, preparing documents; clearer require-
ments for incorporating reusable software; introduction of software management
indicators; added emphasis on software supportability; and improved links to sys-
tems engineering. This standard is superseded by IEEE/EIA 12207.0, IEEE/EIA
12207.1 and IEEE/EIA 12207.2

MiL-HdBK-61a (SE)

This military handbook provides guidance and information to DOD acquisition
managers, logistics managers, and other individuals assigned responsibility for CM.
It helps them plan for and implement effective DOD CM activities and practices
during all life cycle phases of defense systems and CIs. It supports acquisition based
on performance specifications, and the use of industry standards and methods to
the greatest practicable extent. Revision B of this document is currently in draft
form and is being reviewed.

This military handbook’s content is structured to provide a comprehensive
guide (roadmap). After the initial three sections—Scope, Applicable Documents
and Definitions—the handbook is divided into the following major sections:

•	 CM Life Cycle Management and Planning (Section 4)—Since management
and planning are the keys to effective implementation of CM, Section 4 pro-
vides the focus for the entire handbook. It contains an overview of the CM
process, a discussion of CM’s relationships to other processes, and a synopsis
of government/contractor CM during the entire program life cycle. It addresses
global CM activities applicable to all phases such as planning, process imple-
mentation, and performance measurement.

6518 Book.indb 142 12/30/14 1:24 PM

Military Standards 143

•	 Major CM Functions (Sections 5–9.)—In support of Section 4, Sections 5–9
contain detailed information in the form of activity descriptions, activity mod-
els, principles and concepts, and activity guides (e.g., diagrams, checklists,
and tables) for the following topics: configuration identification, configuration
control, CSA, configuration verification, and audit and data management.

Appendix F of this handbook contains a comparison of the CM standards
such as ISO 10007, IEEE Std-828, and MIL-STD-973 against EIA-649. This
matrix is very useful as it gives the relative strengths and weaknesses of the four
CM standards.

MiL-STd-2549

This document establishes a standard interface for the delivery of, or access to,
electronic CM data. This interface prescribes the data elements, the data element
definitions, and the data element relationships that define the conceptual schema for
CM data. These interface requirements have been subdivided into data information
packets to support various CM needs. This standard applies to all activities respon-
sible for procuring, recording, maintaining, and disseminating CM information.

MiL-STd-480B

This standard establishes the requirements, formats, and procedures to be utilized
in the preparation of configuration control documentation. Included are require-
ments for the following:

•	 Maintaining configuration control of CIs, both hardware and software;
•	 Preparing and submitting engineering change proposals (ECPs), requests for

deviations (RFDs)/requests for waivers (RFWs), notices of revision (NORs),
and SCNs;

•	 Evaluating, coordinating, and approving or disapproving ECPs and RFDs/
RFWs applicable to the DOD—NDIs or commercial items.

This standard establishes configuration control requirements and procedures
applicable to the acquisition and modification of items procured by the DOD. This
standard is to be used by contractors and government activities to do the following:

•	 Establish and maintain effective configuration control of the approved con-
figuration identification;

•	 Propose engineering changes to CIs, both hardware and software, that are
designed, developed, or modified for DOD activities;

•	 Request deviations or waivers pertaining to such items;
•	 Prepare NORs and SCNs;
•	 Control the form, fit, and function of privately developed items used in CIs,

including NDI items.

6518 Book.indb 143 12/30/14 1:24 PM

144 SCM Standards

MiL-STd-481B

This standard establishes requirements, formats, and procedures for the prepara-
tion, submission, and approval or disapproval of abbreviated ECPs. Where complete
descriptions of ECPs are required, MIL-STD-480 should be specified in contracts.
The purpose of this standard is to establish configuration control requirements
and procedures applicable to the acquisition and modification of items procured
by the DOD. It is intended that this standard be applied to contracts or orders for
procurement of the following:

•	 Multiapplication or standard items that were not developed as subdivisions
of a specific system;

•	 Items fabricated in accordance with a mandatory detail design that was not
developed by the fabricator;

•	 Privately developed items (e.g., COTS items), when the procuring activity has
determined that the application of change control to such items is necessary
and that the short form ECP is applicable.

MiL-STd-482

To assure the use of uniform, clearly defined status-accounting management infor-
mation throughout the DOD and the DOD-defense Industry interface, this stan-
dard prescribes status-accounting standard data elements, interim (nonstandard)
data elements, and their related data items, codes, use identifiers, and data chains
(referred to as “related features”). The data elements and related features are to
be used as the content of those CSA records prepared by or for the department or
agencies of DOD in accordance with the provisions of DOD Directive 5010.19 and
DOD Instruction 5010.21.

MiL-STd-973

This standard defines CM requirements that are to be selectively applied, as required,
throughout the life cycle of any CI that fits either of the following descriptions:

•	 Developed wholly or partially with government funds, including NDIs when
the development of technical data is required to support off-the-shelf equip-
ment of software;

•	 Designated for CM for reason of integration, logistics support, or interface
control.

This standard is superseded by EIA-649.

MiL-STd-1521B

This standard, which supersedes the MIL-STD-1521 (Technical Reviews & Audits
for Systems, Equipment, & Computer Software), prescribes the requirements for
the conduct of technical reviews and audits on systems, equipment, and computer

6518 Book.indb 144 12/30/14 1:24 PM

International/Commercial Standards 145

software. The program manager shall select the following technical reviews and
audits at the appropriate phase of program development:

•	 System requirements review (SRR);
•	 System design review (SDR);
•	 Software specification review (SSR);
•	 Preliminary design review (PDR);
•	 Critical design review (CDR);
•	 TRR;
•	 FCA;
•	 PCA;
•	 Formal qualification review (FQR);
•	 Production readiness review (PRR).

Technical reviews and audits defined in this standard are to be conducted in
accordance with this standard to the extent specified in the contract clauses, state-
ment of work (SOW), and the contract data requirements list.

MiL-STd-961E

This standard, which supersedes MIL-STD-490A, establishes the format and con-
tent requirements for the preparation of defense specification and program-unique
specifications prepared either by DOD activities or by contractors for the DOD.

international/Commercial Standards

There are a host of standards by many organizations like the EIA, the Electric Power
Research Institute (EPRI), the European Computer Manufacturers Institute (ECMI),
the Federal Aviation Authority (FAA), the Institute of Nuclear Power Operations
(INPO), the European Space Agency (ESA), the Nuclear Information & Records
Management Association (NIRMA), NASA, and North Atlantic Treaty Organiza-
tion (NATO). However, the usage of these standards is limited to the members of
those organizations. The most popular international standards on CM are those by
ANSI/IEEE and ISO. The next sections will describe the following popular inter-
national and commercial standards:

•	 EIA-649-B—Configuration Management Standard;
•	 IEEE Std-828-2012—IEEE Standard for Configuration Management in Sys-

tems and Software Engineering;
•	 ANSI/IEEE Std-1042-1987—IEEE Guide to Software Configuration

Management;
•	 ANSI/IEEE Std-730-2014—IEEE Standard for Software Quality Assurance

Processes;
•	 ANSI/IEEE Std-730.1-1995—IEEE Guide for Software Quality Assurance

Planning;
•	 ANSI/IEEE Std-1028-2008—Standard for Software Reviews and Audits;

6518 Book.indb 145 12/30/14 1:24 PM

146 SCM Standards

•	 ISO/IEC/IEEE 12207-2008—ISO/IEC/IEEE Standard for Systems and Soft-
ware Engineering—Software Life Cycle Processes;

•	 ISO/IEC/IEEE 15288-2008—Systems and Software engineering—System
life cycle processes;

•	 ISO 9001: 2008—Quality Management Systems—Requirements;
•	 ISO/IEC 90003:2004—Guidelines for the Application of ISO 9001:2000 to

Computer Software;
•	 ISO 10007: 2003—Quality management—Guidelines for Configuration

Management.

Eia-649-B

This standard defines five CM functions and their underlying principles. The prin-
ciples, highlighted in text boxes, are designed to individually identify the essence
of the related CM functions and can be used collectively to create a checklist of
criteria to evaluate a CM program. In describing each CM function and its prin-
ciples, this standard utilizes neutral CM terminology, while also providing equiva-
lent terms that have historically been used in various product environments. There
is no intent to express preference for any particular set of terminology. This stan-
dard uses a neutral set of names for the phases of a product’s life cycle, which are
generic enough to be easily mapped to the myriad of different life cycle models in
use. Regardless of the titles chosen for the various life cycle phases, or whether the
product is a facility, software, an airplane, or a machine screw, at some time in its
history a product will go through all or most of these phases. The phases can have
considerable overlap, or the sequence of the phases might change or be repeated
(e.g., for product improvements and enhancements). Approved configurations of a
product can be in the build, distribution, operation, and disposal phases simultane-
ously, and changes to those configurations may occur during all life cycle phases.
Appropriate application of CM functions enables a user of this standard to plan
and implement a CM program for a product, project, or enterprise. The degree to
which each of the CM principles applies to a product varies over the product’s life
cycle. Some principles do not apply during every phase of the product’s life cycle
(e.g., configuration verification and audit principles are not applicable in the concep-
tion or definition phases). The degree of rigor and techniques used in implementing
CM is commensurate with the type of product and its application environment as
defined by program requirements.

iEEE Std-828-2012

This standard establishes the minimum requirements for processes for CM in
systems and software engineering. The application of this standard applies to any
form, class, or type of software or system. This revision of the standard expands
the previous version to explain CM, including identifying and acquiring CIs, con-
trolling changes, reporting the status of CIs, as well as software builds and release
engineering. Its predecessor defined only the contents of a software CM plan. This
standard addresses what CM activities are to be done, when they are to happen in
the life cycle, and what planning and resources are required. It also describes the

6518 Book.indb 146 12/30/14 1:24 PM

International/Commercial Standards 147

content areas for a CM plan. The standard supports ISO/IEC/IEEE 12207:2008
(Standard for Systems and Software Engineering—Software Life Cycle Processes)
and ISO/IEC/IEEE 15288:2008 (Systems and Software Engineering System Life
Cycle Processes) and adheres to the terminology in ISO/IEC/IEEE Std. 24765 and
the information item requirements of IEEE Std. 15939.

anSi/iEEE Std-1042-1987

This is the most comprehensive international standard available on SCM. This stan-
dard describes the application of CM disciplines to the management of software
engineering projects. SCM consists of two major aspects—planning and implemen-
tation. For those planning SCM activities, this standard provides insights into the
various factors that must be considered. Users implementing SCM disciplines will
find suggestions and detailed examples of SCM plans in this standard. This standard
introduces the essential concepts of SCM, particularly those of special significance
(for example, libraries and tools) to software engineering. It then presents the plan-
ning for SCM in terms of documenting a plan following the outline of the ANSI/
IEEE Std-828, so that a user who is unfamiliar with the disciplines of SCM can
gain valuable insights into the issues. For those preparing SCM plans, the second
part of the guide provides sample plans for consideration.

anSi/iEEE Std-730-2014

Requirements for initiating, planning, controlling, and executing the SQA pro-
cesses of a software development or maintenance project are established in this
standard. This standard is harmonized with the software life cycle process of ISO/
IEC/IEEE 12207:2008 and the information content requirements of ISO/IEC/IEEE
15289:2011.

anSi/iEEE Std-730.1-1995

This guide explains and clarifies the contents of each section of a SQA plan (SQAP)
that satisfies the requirements of IEEE Std-730-1989. The guide supersedes IEEE
Std-983-1986 and does not constitute further requirements than those stated in
IEEE Std-730-1989. An organization can claim compliance with IEEE Std-730-1989
without following this guide completely. This guide presents the consensus of those
in the software development and maintenance community with expertise or expe-
rience in generating, implementing, evaluating, and modifying SQAPs. The SQAP
should describe the plans and activities for the SQA staff. The SQA staff observes
the development process and reports deficiencies observed in the procedures and
the resulting products.

anSi/iEEE Std-1028-2008

This standard provides definitions and uniform requirements for review and audit
processes. It does not establish the need to conduct specific reviews or audits; that
need is defined by local policy. Where specific reviews and audits are required,

6518 Book.indb 147 12/30/14 1:24 PM

148 SCM Standards

standard procedures for their execution must be defined. This standard provides
definitions for review and audit purposes that are applicable to products and pro-
cesses throughout the software life cycle. Each organization should specify where
and when this standard applies and any intended deviations from this standard.

This standard defines five types of software reviews and audits, together with
procedures required for the execution of each type. It is concerned only with the
reviews and audits; it does not define procedures for determining the necessity of
a review or audit, nor does it specify the disposition of the results of the review or
audit. Review types include management reviews, technical reviews, inspections,
and walk-throughs. This standard is meant to be used either in conjunction with
other IEEE software engineering standards or as a stand-alone definition of software
review and audit procedures. In the latter case, local management must determine
the events that precede and follow the actual software reviews and audits.

iSO/iEC/iEEE 12207-2008

This standard establishes a common framework for software life cycle processes,
with well-defined terminology, that can be referenced by the software industry. It
contains processes, activities, and tasks that are to be applied during the acquisition
of a software product or service and during the supply, development, operation,
maintenance, and disposal of software products. Software includes the software
portion of firmware.

This standard applies to the acquisition of systems and software products and
services, to the supply, development, operation, maintenance, and disposal of soft-
ware products and the software portion of a system, whether performed internally
or externally to an organization. Those aspects of system definition needed to pro-
vide the context for software products and services are included. This standard also
provides a process that can be employed for defining, controlling, and improving
software life cycle processes. The processes, activities and tasks of ISO/IEC/IEEE
12207-2008—either alone or in conjunction with ISO/IEC 15288—may also be
applied during the acquisition of a system that contains software.

iSO/iEC/iEEE 15288:2008

This standard establishes a common framework for describing the life cycle of sys-
tems created by humans. It defines a set of processes and associated terminology.
These processes can be applied at any level in the hierarchy of a system’s structure.
Selected sets of these processes can be applied throughout the life cycle for managing
and performing the stages of a system’s life cycle. This is accomplished through the
involvement of all interested parties, with the ultimate goal of achieving customer
satisfaction. ISO/IEC 15288:2008 also provides processes that support the defini-
tion, control, and improvement of the life cycle processes used within an organiza-
tion or a project. Organizations and projects can use these life cycle processes when
acquiring and supplying systems. This standard concerns those systems that are
man-made and may be configured with one or more of the following: hardware,
software, data, humans, processes (e.g., processes for providing service to users),

6518 Book.indb 148 12/30/14 1:24 PM

International/Commercial Standards 149

procedures (e.g., operator instructions), facilities, materials, and naturally occur-
ring entities. When a system element is software, the software life cycle processes
documented in ISO/IEC 12207:2008 may be used to implement that system element.
ISO/IEC 15288:2008 and ISO/IEC 12207:2008 are harmonized for concurrent use
on a single project or in a single organization.

iSO 9001:2008

ISO 9001:2008, which replaced ISO 9001:2000, is a model for QA when con-
formance to specified requirements is to be assured by the supplier during design,
development, production, installation, and servicing. ISO 9001:2008 specifies
requirements for a quality management system where an organization needs to
demonstrate its ability to consistently provide product that meets customer and
applicable statutory and regulatory requirements and aims to enhance customer
satisfaction through the effective application of the system, including processes for
continual improvement of the system and the assurance of conformity to customer
and applicable statutory and regulatory requirements. This standard specifies qual-
ity system requirements for use where a supplier’s capability to design and supply
conforming product needs to be demonstrated. The requirements specified are
aimed primarily at achieving customer satisfaction by preventing nonconformity
at all stages from design through to servicing. ISO 9000 is not a standard that is
specific to software development. It is a general standard and can be tailored to any
industry. This standard does not mention the term CM anywhere in it but contains
most CM concepts. A few examples are detailed as follows:

•	 There should be a mechanism to control quality system documents. This
mechanism should approve documents before they are distributed, provide
the correct version of documents at points of use, review and reapprove docu-
ments whenever they are updated, specify the current revision status of the
documents, monitor documents that come from external sources, prevent
the accidental use of obsolete documents, and preserve the usability of your
quality documents.

•	 All design changes and modifications shall be identified, documented, reviewed,
and approved by authorized personnel before their implementation.

•	 The documents and data shall be reviewed and approved for adequacy by
authorized personnel prior to issue. A master list or equivalent document
control procedure identifying the current revision status of documents shall
be established.

•	 Where and to the extent that traceability is a specified requirement, the sup-
plier shall establish and maintain documented procedures for unique identifi-
cation of individual product or batches. This identification shall be recorded.

•	 Nonconforming products shall be reviewed in accordance with documented
procedures. They may be reworked to meet the specified requirements, accepted
with or without repair by concession, regarded for alternative applications,
or rejected or scrapped.

•	 The supplier shall implement and record any changes to the documented pro-
cedures resulting from corrective and preventive action.

6518 Book.indb 149 12/30/14 1:24 PM

150 SCM Standards

•	 The organization should maintain quality system records and should be able
to prove that requirements have been met using the records. A procedure to
control the records should be developed, and it must be ensured that all the
records are useable.

•	 The organization should manage design and development changes by identi-
fying, recording, reviewing, verifying, validating, and approving the changes
in product design and development.

•	 The organization should identify and track its products by establishing, main-
taining, and recording the identity of the products.

•	 The organization should control nonconforming products by developing a
procedure to control nonconforming products, identifying and controlling
the nonconforming products, reverifying the nonconforming products that
were corrected, controlling nonconforming products after delivery or use,
and maintaining records of nonconforming products.

•	 Organizations must correct actual nonconformities by reviewing the noncon-
formities, finding out what causes the nonconformities, evaluating whether
corrective action is necessary, developing corrective actions to prevent recur-
rence, recording the results that corrective actions achieve, and examining
the effectiveness of corrective actions.

All requirements of ISO 9001:2008 are generic and are intended to be applicable
to all organizations, regardless of type, size, and product provided.

iSO/iEC 90003: 2004

The ISO 9000 series of standards were not primarily designed for software but for
manufacturing processes. ISO 9001 is the model for QA in design and develop-
ment, production, installation, and servicing (or, in other words, manufacturing
processes, which have design aspects). ISO/IEC 90003:2004 provides guidance
for organizations in the application of ISO 9001:2000 to the acquisition, sup-
ply, development, operation, and maintenance of computer software and related
support services. ISO/IEC 90003:2004 does not add to or otherwise change the
requirements of ISO 9001:2000. The guidelines provided in ISO/IEC 90003:2004
are not intended to be used as assessment criteria in quality management system
registration or certification.

The application of ISO/IEC 90003:2004 is appropriate to software that is part
of a commercial contract with another organization, a product available for a market
sector, used to support the processes of an organization, embedded in a hardware
product, or related to software services. Some organizations may be involved in
all the above activities; others may specialize in one area. Whatever the situation,
the organization’s quality management system should cover all aspects (software
related and nonsoftware related) of the business. ISO/IEC 90003:2004 identifies
the issues that should be addressed and is independent of the technology, life cycle
models, development processes, sequence of activities, and organizational structure
used by an organization.

The standard ISO 9000-3 contains guidelines for the application of ISO 9001
to the development, supply, and maintenance of software. This standard mentions

6518 Book.indb 150 12/30/14 1:24 PM

Summary 151

identification of CM procedures as a part of quality planning, mentions the need to
develop a SCM plan, and stresses the importance of bringing the various artifacts
under configuration control prior to use. For CM functions and procedures this
standards refers to ISO 10007:2003.

iSO 10007: 2003

ISO 10007:2003 gives guidance on the use of CM within an organization. It is
applicable to the support of products from concept to disposal. It first outlines the
responsibilities and authorities before describing the CM process, which includes
CM planning, configuration identification, change control, CSA, and configuration
audit. Since ISO 10007:2003 is a guidance document, it is not intended to be used
for certification or registration purposes.

ISO 10007 defines CM as a management discipline that applies technical and
administrative direction to the development, production, and support life cycle of
a CI. The main objective of CM is to document and provide full visibility of the
product’s present configuration and on the status of achievement of its physical and
functional requirements. Another objective is that everyone working on the project
at any time in its life cycle uses correct and accurate documentation.

This standard is applicable to the support of projects from concept to design,
development, procurement, production, installation, operation, and maintenance
and to the disposal of products. The application of CM may be tailored to suit indi-
vidual projects, taking into account the size, complexity, and nature of the work.

Summary

The ANSI/IEEE standards are the most widely used SCM standards, and the cov-
erage of software CM and its functions is quite elaborate and comprehensive. ISO
9000-3 and ISO 10007 provide another set of very good CM standards. The EIA-
649-B is perhaps the most readable SCM standard available. The DOD and MIL
standards are mainly used in defense industry projects, and even though they could
be tailored for any project their use is generally limited to the defense industry and
military organizations within and outside the United States.

The SCM standards (most preferably EIA-649-B) are the starting point for the
practice of CM and related functions in any project or organization. It is the first
place that one should look for guidance when one is starting a CM program. Unless
your organization does not deal in the defense industry, then it would be better
to base your SCM system on one of the commercial standards like ANSI/IEEE or
ISO. This is because these standards are written for the entire industry (whereas
the DOD standards were written for their specific segments of industry), and hence
they are more flexible and can be customized more easily to suit your needs. Also,
these standards have greater potential for timely updates than the DOD standards;
since they are used by the general industry, they must maintain relevance to the
current software engineering principles and practices or face obsolescence. The
CM standards have played a very crucial role in shaping the way in which CM is
being practiced today.

6518 Book.indb 151 12/30/14 1:24 PM

152 SCM Standards

Selected Bibliography

Alain Abran, A., and Moore, J. W., (eds.), SWEBOK: Guide to the Software Engineering Body
of Knowledge (Trial Version), Los Alamitos, California: IEEE Computer Society, 2001.

Ben-Menachem, M., Software Configuration Management Guidebook, New York: McGraw-
Hill, 1994.

Berlack, R.H., Software Configuration Management, New York: John Wiley & Sons, Inc., 1992.
IEEE, IEEE Guide for Software Quality Assurance Planning (IEEE Std-730.1–1995), Piscat-

away, NJ: IEEE, 1995.
IEEE, IEEE Guide to Software Configuration Management (IEEE Std-1042-1987), Piscataway,

NJ: IEEE, 1987.
IEEE, IEEE Standard for Configuration Management in Systems and Software Engineering

(IEEE Std-828–2012), Piscataway, NJ: IEEE, 2012.
IEEE, IEEE Standard for Software Quality Assurance Plans (IEEE Std-730–1998), Piscataway,

NJ: IEEE, 1998.
IEEE, IEEE Standard for Systems and Software Engineering—Software Life Cycle Processes

(IEEE Std-12207-2008), Piscataway, NJ: IEEE, 2008.
IEEE, Standard for Software Reviews and Audits (IEEE Std-1028-2008), Piscataway, NJ:

IEEE, 2008.
IEEE, Systems and Software Engineering—System life cycle processes (IEEE Std-15288-2008),

Piscataway, NJ: IEEE, 2008.
Ince, D., ISO 9001 and Software Quality Assurance, London: McGraw-Hill Book Company,

1994.
ISO, Guidelines for the Application of ISO 9001:2000 to Computer Software (ISO 90003:2004),

Geneva: ISO, 2004.
ISO, Quality Management Systems—Requirements (ISO 9001:2008), Geneva: ISO, 2008.
ISO, Quality Management—Guidelines for Configuration Management (ISO 10007:2003),

Geneva: ISO, 2003.
Marciniak, J. J. (ed.), Encyclopedia of Software Engineering (2nd Edition), New York: John

Wiley & Sons, 2002.
Peach, R. W. (ed.), The ISO 9000 Handbook, New York: The McGraw-Hill Companies, Inc.,

1997.
Pressman, R. S., Software Engineering: A Practitioner’s Approach (8th Edition), New York:

McGraw-Hill, 2014.
Sommerville, I., Software Engineering (9th Edition), Reading, MA: Addison-Wesley Publish-

ing Company, 2011.
TechAmerica, Configuration Management Standard ANSI/EIA-649-B, Washington, D.C., 2011.
Whitgift, D., Methods and Tools for Software Configuration Management, Chichester, England:

John Wiley & Sons, 1991.

6518 Book.indb 152 12/30/14 1:24 PM

153

C h a p t e r 1 2

Software Process Improvement Models
and SCM

introduction

A process is a series of interrelated activities that bring about a result or that are
directed toward a particular aim. Process improvement is the analysis and redesign
of processes to eliminate organizational problems and inefficiencies in small incre-
ments, over time, by improving one or two processes at a time. Process improvement
is done on an operational level (as opposed to radical reengineering, which is done
on a strategic level) and is carried out primarily by the people most involved in the
process. The incremental process improvement approach builds in small successes
that motivate teams to continue. Failure, if it occurs, has less potential to do serious
damage because scope is limited to one or two processes at a time.

Process improvement models define the various processes and activities that will
help an organization to move from a stage of total confusion, lack of discipline, and
ad hoc processes to a stage where the organization has well-defined and mature
processes that help the organization not only to deliver high-quality products and
services repeatedly but also to continuously improve the quality of the products and
services and efficiency of the organization.

The software process improvement models assess the current state of an orga-
nization and determine where it belongs in the process maturity scale. Then these
models give specific guidelines to move from the current state to a process maturity
level where the organizations have the necessary processes to continuously improve
its products and services.

This section describes some of the most common process assessment and
improvement models and standards. These include CMM, CMMI, ISO/IEC 15504
(formerly SPICE), BOOTSTRAP, Trillium, ITIL, COBIT, and SWEBOK. We will
examine the role of CM in process improvement and how the above-mentioned
process improvement and assessment models relate CM and process improvement.

CMM

The CMM for software describes the principles and practices underlying software
process maturity and is intended to help software organizations improve the matu-
rity of their software processes in terms of an evolutionary path from ad hoc, cha-
otic processes to mature, disciplined software processes. The CMM is organized

6518 Book.indb 153 12/30/14 1:24 PM

154 Software Process Improvement Models and SCM

into five maturity levels—initial, repeatable, defined, managed, and optimizing.
A maturity level is a well-defined evolutionary plateau toward achieving a mature
software process. Each maturity level provides a layer in the foundation for con-
tinuous process improvement.

Except for level 1, each maturity level is decomposed into several key process
areas that indicate the areas an organization should focus on to improve its software
process. Key process areas identify the issues that must be addressed to achieve a
maturity level. Each key process area identifies a cluster of related activities that,
when performed collectively, achieve a set of goals considered important for enhanc-
ing process capability. CM is a key process area for level 2. So for any organization
that wants to achieve CMM level 2 or above, CM practices have to be performed
in accordance with the guidance provided by the CMM document.

According to the CMM documents, the CM practice should achieve the fol-
lowing four goals:

•	 Software CM activities are planned;
•	 Selected software work products are identified, controlled, and available;
•	 Changes to identified software work products are controlled;
•	 Affected groups and individuals are informed of the status and content of

software baselines.

To achieve the above goals the CMM requires certain commitments from the
organization—commitment to perform. The organizations should also have the
necessary resources (e.g., funding, tools, and training capabilities) to achieve these
goals—ability to perform. The CMM also specifies several activities to be performed
to achieve the goals—activities performed. The model also provides for mechanisms
for measuring, and reviewing data—measurement and analysis, and for analyzing,
statusing, and auditing—verifying implementation.

CMM interactive (CMMi)

The CMMI project was formed to address the need that computer system devel-
opment environments were concerned with more than just software. The CMMI
product team’s mission was to combine three source models:

•	 The CMM for Software (SW-CMM) v2.0 draft C;
•	 The Systems Engineering Capability Model (SECM);
•	 The Integrated Product Development Capability Maturity Model (IPD-CMM)

v 0.98.

The combination of these models into a single improvement framework is intended
for use by organizations in their pursuit of enterprise-wide process improvement.

There are two types of CMMI model representations—staged and continuous.
The staged representation is the approach used in the SW-CMM. It is an approach
that uses predefined sets of process areas to define an improvement path for an
organization. This improvement path is described by a model component called

6518 Book.indb 154 12/30/14 1:24 PM

ISO/IEC 15504 155

a maturity level. A maturity level is a well-defined evolutionary plateau toward
achieving improved organizational processes for a project (i.e., the project moves
through the maturity levels).

The continuous representation allows an organization to select a specific process
area and improve relative to it. The continuous representation uses capability levels
to characterize improvement relative to an individual process area. A capability level
is a well-defined evolutionary plateau toward achieving improved organizational
processes for a particular organization. An organization moves through the capa-
bility levels until it reaches the top.

CM comes under the “support” process area of CMMI. CMMI defines CM
as a discipline whose purpose is to establish and maintain the integrity of work
products using configuration identification, configuration control, CSA, and CAs.

The CM process area supports all process areas by establishing and maintain-
ing the integrity of work products using configuration identification, configuration
control, CSA, and CAs. The work products placed under CM include the products
that are delivered to the customer, designated internal work products, acquired
products, tools, and other items that are used in creating and describing these work
products. Examples of work products that may be placed under CM include plans,
process descriptions, requirements, design data, drawings, product specifications,
code, compilers, product data files, and product technical publications.

The specific goals for CM as defined in CMMI are listed as follows:

•	 Establish baselines: Baselines of identified work products are established.
•	 Track and control changes: Changes to the work products under CM are

tracked and controlled.
•	 Establish integrity: Integrity of baselines is established and maintained.

The specific goals are achieved by following a number of specific practices. The
practices for each specific goal of CM are:

•	 Establish baselines (SG 1):
1. Identify configuration items (SP 1.1-1).
2. Establish a CM System (SP 1.2-1).
3. Create or release baselines (SP 1.3-1).

•	 Track and control changes (SG 2):
1. Track change requests (SP 2.1-1).
2. Control configuration items (SP 2.2-1).

•	 Establish integrity (SG 3):
1. Establish CM records (SP 3.1-1).
2. Perform CAs (SP 3.2-1).

iSO/iEC 15504

ISO/IEC 15504 is a process improvement and assessment standard. This standard
was developed jointly by the Joint Technical Committee 1/Sub Committee (JTC1/
SC7) of the ISO and International Electrotechnical Commission (IEC). The work

6518 Book.indb 155 12/30/14 1:24 PM

156 Software Process Improvement Models and SCM

was assigned to a group called WG10, which established a special project called
Software Process Improvement and Capability dEtermination (SPICE). The SPICE
project, established in 1993, developed a set of draft standards that finally (after
countless reviews and revisions) evolved into the ISO/IEC 15504 standard.

The ISO/IEC 15504 process model is divided into five categories—organizational
process (ORG), management process (MNA), customer-supplier process (CUS),
engineering process (ENG), and support process (SUP). Each of these processes is
divided into several process areas. CM comes under the support process—SUP. 2.

The purpose of SUP.2 is to establish and maintain the integrity of all of the
work products of a process or project. The successful implementation of the process
should lead to the following outcomes:

•	 Identifying, defining, and baselining all relevant items generated by the pro-
cess or project;

•	 Controlling modifications and releases;
•	 Recording and reporting the status of the items and modification requests;
•	 Ensuring the completeness and consistency of the items;
•	 Controlling storage, handling, and delivery of the items.

The standard defines nine best practices that will lead to the successful imple-
mentation of CM system. These include developing a CM strategy, establishing a
CM system, CI identification, maintaining the CI description and history, establish-
ing formal change management procedures, managing product releases, maintain-
ing the CI history, reporting configuration status, and managing the release and
delivery of CIs.

This model has six levels (0–5) of process capability—incomplete, performed,
planned and tracked, established, predictable, and optimizing. Since this model is
continuous, the CM must be performed at the different levels. To obtain level 1, CM
must be performed in such a way that the expected outcomes are achieved. Level
2 requires placing the work products under configuration control and developing
a CM plan. To obtain level 3, the CM procedures should be documented and the
resources required for performing CM must be made available. Level 4 requires
establishing metrics for measuring the performance of CM and controlling the
performance based on the measurements. At level 5, the CM metrics are used to
improve the CM performance and again used to measure this improved performance.

BOOTSTrap

BOOTSTRAP is a method to evaluate and to improve the quality of the software
development and management processes of an organization. BOOTSTRAP is based
on the assumption that the capabilities of an organization increase one step after
the other. The concepts behind this approach were published by Watts Humphrey
while working for the Software Engineering Institute (SEI). The CMM distinguishes
five levels of process quality, while the CMMI has six levels. This model is now the
software process standard in the United States. BOOTSTRAP uses the same basic

6518 Book.indb 156 12/30/14 1:24 PM

Trillium Model 157

principles. The reference model has been extended cover the requirements imposed
by ISO 9000. BOOTSTRAP does not only deliver the maturity level, but also a
detailed capability profile of the organization and the projects investigated.

BOOTSTRAP adopts a process model that addresses the processes and prac-
tices for the organization and the project. The process areas are categorized into
organization, methodology, and technology. The process categories are comprised
of process areas that contain activities and best practices. The methodology process
is again divided into three process areas—process engineering, product engineering,
and engineering support functions. Each of these process areas contains various
activities. Configuration and change management is an activity under engineering
support functions. The BOOTSTRAP process model contains many best practices
for the configuration and change management activity. These are very similar to
those of ISO/IEC 15504.

The BOOTSTRAP model has five maturity levels—initial, repeatable, defined,
managed, and optimizing. The process areas are not confined to a single level but
cover several levels.

Trillium Model

The goal of the Trillium Model is to provide a means to initiate and guide a con-
tinuous improvement program. The model is used in a variety of ways:

•	 To benchmark an organization’s product development and support process
capability against best practices in the industry;

•	 In self-assessment mode, to help identify opportunities for improvement within
a product development organization;

•	 In precontractual negotiations, to assist in selecting a supplier.

This model and its accompanying tools are not in themselves a product develop-
ment process or life cycle model. Rather, the Trillium Model provides key industry
practices that can be used to improve an existing process or life cycle. The practices
in the Trillium Model are derived from a benchmarking exercise that focused on
all practices that would contribute to an organization’s product development and
support capability. Trillium has a telecommunications orientation; provides a cus-
tomer focus; provides a product perspective; covers CMM, ISO 9001, ISO 9000-
3, Bellcore’s TR-NWT-000179 and TA-NWT-001315, Malcom Baldrige National
Quality Award criteria, IEEE, and IEC standards; includes technological maturity;
includes additional Trillium-specific practices; and provides a roadmap approach
that sequences improvements by maturity.

The Trillium Model has been developed from a customer perspective, as per-
ceived in a competitive, commercial, environment. In this context, capability is
defined as the ability of a development organization to consistently deliver a product
or an enhancement to an existing product that meets customer expectations with
minimal defects for the lowest life cycle cost, and in the shortest time. A telecom-
munications product typically includes hardware, software, documentation, train-
ing, and support services.

6518 Book.indb 157 12/30/14 1:24 PM

158 Software Process Improvement Models and SCM

The Trillium scale spans levels 1 through 5. The levels can be characterized in
the following way:

1. Unstructured: The development process is ad hoc. Projects frequently can-
not meet quality or schedule targets. Success, while possible, is based on
individuals rather than on organizational infrastructure (risk = high).

2. Repeatable and project-oriented: Individual project success is achieved
through strong project management planning and control, with emphasis on
requirements management, estimation techniques, and CM (risk = medium).

3. Defined and process-oriented: Processes are defined and used at the orga-
nizational level, although project customization is still permitted. Processes
are controlled and improved. ISO 9001 requirements such as training and
internal process auditing are incorporated (risk = low).

4. Managed and integrated: Process instrumentation and analysis is used as a
key mechanism for process improvement. Process change management and
defect prevention programs are integrated into processes. CASE tools are
integrated into processes (risk = lower).

5. Fully integrated: Formal methodologies are extensively used. Organizational
repositories for development history and process are utilized and effective
(risk = lowest).

Each level (except level 1) contains several capability areas, which, in turn, con-
tain roadmaps that are comprised of activities. This is very similar to the CMM.
Each capability area spans multiple levels. For example, the development practices
capability area spans levels 2, 3, and 5. The development practices capability area
contains the CM roadmap among another six roadmaps (development process,
development techniques, internal documentation, verification and validation, re-
use, and reliability management). The configuration management related activities
of the Trillium model are shown in Table 12.1.

information Technology infrastructure Library (iTiL)

ITIL is a globally recognized collection of best practices for information technology
(IT) service management. It provides a practical framework for identifying, planning,
delivering, and supporting IT services to the business. United Kingdom’s Central
Computer and Telecommunications Agency (CCTA) created ITIL in response to
growing dependence on information technology for meeting business needs and goals.

ITIL provides businesses with a customizable framework of best practices to
achieve quality service and overcome difficulties associated with the growth of IT
systems.

The primary objective of service management is to ensure that IT services are
aligned with the business needs and actively support them. It is important that IT
acts as an agent for change to facilitate business transformation. All organizations
that use IT depend on IT to be successful. If IT processes and IT services are imple-
mented, managed, and supported in the appropriate way, the business will be more
successful, suffer less disruption and loss of productive hours, reduce costs, increase
revenue, improve public relations, and achieve its business objectives.

6518 Book.indb 158 12/30/14 1:24 PM

Information Technology Infrastructure Library (ITIL) 159

Table 12.1 CM in Trillium Model

Level Criteria Description

2 Scope Source code is under CM control
All project and product (internal and external) documents are
under CM control

Function A board having the authority for managing the project’s
product baselines [i.e., a product configuration control board
(PCCB)] exists or is established
There is a function responsible for coordinating and
implementing CM for the project

Funding Adequate resources and funding are provided for performing
the CM activities

Planning A CM plan is prepared for each project according to a
documented procedure
A documented and approved CM plan is used as the basis for
performing the CM activities

Repository A CM system is established as a repository for product
baselines
The product repository ensures secure storage of configuration
items (e.g., code units and design documents) and the secure
and controlled retrieval of current and previous versions of
CIs
The product repository ensures the secure and controlled
retrieval of current and previous baselines
The status of CIs/units is recorded according to a documented
procedure
The product repository maintains records of the status and
change history of all CIs and baselines

Traceability There is traceability between design specifications and source
code and between design specifications and integration test
cases

Change control CRs and PRs for all configuration items/units are initiated,
recorded, reviewed, approved, and tracked according to a
documented procedure
CIs and baselines are changed formally according to a
documented procedure

Baselines Baseline(s) are created and released formally
Product baseline audits are conducted according to a
documented procedure

Reporting Standard reports documenting the CM activities and the
contents of the product baselines are developed and made
available to affected groups and individuals

3 Scope Plans, descriptions, product test procedures, requirements
specifications, design specifications, review results, and test
cases (e.g., integration, system and operation) are under CM
control
All development tools are under CM control

Traceability There is full forward and backward traceability between
all configuration items (e.g., design specification forward to
code units and design specification backward to requirement
specification)

5 Scope The complete development history (e.g., design decisions
and design rationale) is captured and maintained under CM
control

6518 Book.indb 159 12/30/14 1:24 PM

160 Software Process Improvement Models and SCM

ITIL provides guidance throughout the service life cycle to help senior busi-
ness managers and IT managers achieve the objectives of service management and
address the key issues they face in a systematic way.

ITIL guidance is structured in five life cycle phases—service strategy, service
design, service transition, service operation, and continual service improvement.
The SCM processes are under service transition stage. These processes, described
in subsequent sections, are listed as follows:

•	 Change evaluation;
•	 Change management;
•	 Release and deployment management;
•	 Service asset and CM.

Change Evaluation

The purpose of the change evaluation process is to provide a formal, standardized
means of determining the performance of a service change in the context of likely
impacts on business outcomes, and on existing and proposed services and IT infra-
structure. Change evaluation assesses the actual performance of a change against its
predicted performance and identifies risks and issues related to the change. Change
evaluation is closely linked to change management. The main output of change evalu-
ation is an evaluation report, which is used to help change management personnel
decide whether to authorize a change. Formal change evaluation is not required for
all changes, and each service provider defines when this formal process should be
used and when the evaluation can be carried out as part of change management.
The main subprocesses of change evaluation are change evaluation prior to plan-
ning, change evaluation prior to build, change evaluation prior to deployment, and
change evaluation after deployment.

Change Management

Change management controls the life cycle of all changes, enabling beneficial changes
to be made with minimum disruption to IT services. Change management ensures
that changes are recorded and evaluated and that authorized changes are prioritized,
planned, tested, implemented, documented, and reviewed in a controlled manner.
The main subprocesses of the change management process are change management
support, assessment of change proposals, request for change (RFC) logging and
review, assessment and implementation of emergency changes, change assessment
by the change manager, change assessment by the change advisory board (CAB),
change scheduling and build authorization, change deployment authorization, minor
change deployment, post-implementation review, and change closure.

release and deployment Management

The purpose of the release and deployment management process is to plan, schedule,
and control the building, testing, and deployment of releases and to deliver new func-
tionality required by the business while protecting the integrity of existing services.

6518 Book.indb 160 12/30/14 1:24 PM

Control Objectives for Information and Related Technology (COBIT) 161

Effective release and deployment delivers significant business value by delivering
changes at optimized speed, risk, and cost and offering a consistent, appropriate,
and auditable implementation of usable and useful services. Release and deployment
management covers the whole build, test, and implementation of new or changed
services, from planning through to early life support. The subprocesses of this phase
are release management support, release planning, release build, release deployment,
early life support, and release closure.

Service asset and CM

The purpose of service asset and CM (SACM) is to ensure that the assets required to
deliver services are properly controlled, and that accurate and reliable information
about those assets is available when and where it is needed. This information includes
details of how the assets have been configured and the relationships between assets.
SACM supports the business by providing the information needed to manage all CIs
across the whole of the service life cycle. This contributes to the success of all service
management processes, as well as providing IT management and the business with
the information needed to get maximum value from service assets. The scope of
SACM may extend to non-IT assets and to internal and external service providers,
where shared assets need to be controlled. To manage large and complex IT services
and infrastructures, SACM requires the use of a supporting system known as the
CM system. The main subprocesses of this phase are configuration identification,
configuration control, and configuration verification and audit. More information
about ITIL can be obtained from the ITIL home at http://www.itil-officialsite.com/.

Control Objectives for information and related Technology (COBiT)

COBIT is a framework developed by the Information Systems Audit and Control
Association (ISACA) for IT management and IT governance. COBIT (currently
version 5) is the only business framework for the governance and management of
enterprise IT. COBIT 5 builds and expands on COBIT 4.1 by integrating other
major frameworks, standards, and resources, including ISACA’s Val IT and Risk
IT, ITIL and related standards from ISO. Some of the benefits of using COBIT are
the following:

•	 Availability of high-quality information to support business decisions;
•	 Achievement of strategic goals and realization of business benefits through

the effective and innovative use of IT;
•	 Achievement of operational excellence through reliable, efficient application

of technology;
•	 Maintenance of IT-related risk at an acceptable level;
•	 Optimization of the cost of IT services and technology.

COBIT contains 34 high-level IT processes described in the COBIT model that
provide excellent guidance in establishing IT controls including those for SCM. The
key management jobs for CM in COBIT are the following:

6518 Book.indb 161 12/30/14 1:24 PM

162 Software Process Improvement Models and SCM

•	 To establish and maintain a configuration model;
•	 To define CIs, attributes, business models, and relationships;
•	 To approve requests for new CIs and changes to existing ones;
•	 To register new CIs;
•	 To establish and maintain a configuration repository and baseline;
•	 To approve changes to CIs and the CM system;
•	 To produce status and configuration reports;
•	 To verify and review integrity of the configuration repository;
•	 To conduct configuration audits and report nonconformances.

These activities are each assigned to a person who is responsible, accountable,
consulted, and informed to ensure that the practices are not bypassed. For example,
establishing and maintaining a configuration model is the responsibility of the
configuration manager and IT administration head, while the CIO, head archi-
tect, business process owners, and auditors are consulted on that. The head of IT
operations is accountable for ensuring that the configuration model is established
and maintained. The model provides the roles and responsibilities of the key SCM
personnel such as the configuration manager, configuration analyst, configuration
administrator, CCB, CIO, head of IT operations, head of IT administration, head
architect, head of development, and business process owners.

COBIT provides extensive guidelines and advice on how to implement the vari-
ous CM activities, how to set up a CM system (CMS), and how to assign the various
CM tasks, how to create a CM database (CMDB) and a host of other best practices
to improve the efficiency and effectiveness of the CM system. More information
about COBIT is available at ISACA’s Web site, http://www.isaca.org/COBIT/.

Software Engineering Body of Knowledge (SWEBOK)

SWEBOK, a guide that establishes software engineering as a recognized engineer-
ing discipline, is aimed at promoting a consistent view of software engineering
worldwide. The guide (SWEBOK) is not the body of knowledge, as the body of
knowledge exists in the published literature. The purpose of the guide is to describe
the portion of the body of knowledge that is generally accepted, to organize that
portion, and to provide topical access to it. The body of knowledge is subdivided
into 15 knowledge areas (KAs), which can be broadly categorized into three. The
KAs are listed as follows:

•	 Development processes:
 – Software requirements;
 – Software design;
 – Software construction;
 – Software testing;
 – Software maintenance.

•	 Supporting processes:
 – SCM;
 – Software engineering management;

6518 Book.indb 162 12/30/14 1:24 PM

Software Engineering Body of Knowledge (SWEBOK) 163

 – Software engineering process;
 – Software engineering models and methods;
 – Software quality;
 – Software engineering professional practice.

•	 Engineering fundamentals:
 – Software engineering economics;
 – Computing foundations;
 – Mathematical foundations;
 – Engineering foundations.

SCM is a supporting-software life cycle process that benefits project manage-
ment, development and maintenance activities, and QA activities, as well as the
customers and users of the end product.

The SCM knowledge area is further subdivided into seven subareas, described
as follows:

•	 Management of the SCM processes: This subarea deals with topics like orga-
nizational context for SCM, constraints and guidance for SCM, planning for
SCM, SCM plans, and surveillance of SCM.

•	 Software configuration identification: Software configuration identification
identifies items to be controlled, establishes identification schemes for the
items and their versions, and establishes the tools and techniques to be used
in acquiring and managing controlled items. The topics in this subarea are
identifying items to be controlled and the software library.

•	 Software configuration control: Software configuration control is concerned
with managing changes during the software life cycle. The topics in this sub-
area are requesting, evaluating, and approving software changes and imple-
menting software changes and deviation and waivers.

•	 Software configuration status accounting: Software configuration status
accounting is an element of CM consisting of the recording and reporting of
information needed to manage a configuration effectively. The main topics
in this subarea are software configuration status information and software
configuration status reporting.

•	 Software configuration auditing: This consists of software functional con-
figuration auditing, software physical configuration audits, and in-process
audits of a software baseline.

•	 Software release management and delivery: The main topics of this subarea
are software building and software release management.

•	 Software CM tools: This subarea discusses the SCM tools. SCM tools can
be divided into three classes in terms of the scope at which they provide sup-
port: individual support, project-related support, and company-wide process
support.

The latest version of the SWEBOK is available free of cost in HTML format
(http://www.computer.org/portal/web/swebok/htmlformat) and in PDF format
(http://www.computer.org/portal/web/swebok).

6518 Book.indb 163 12/30/14 1:24 PM

164 Software Process Improvement Models and SCM

Summary

CM is a vital discipline for all of the process improvement efforts and models that
exist today. Process improvement models and frameworks like CMM, CMMI,
SPICE, BOOTSTRAP, Trillium, ITIL, COBIT, and SWEBOK require a CM. To
achieve certification, the existence of formal CM and procedures is a must.

Selected Bibliography

Bell Canada, Trillium: Model for Telecom Product Development & Support Process Capability
(Release 3), Bell Canada, 1994.

Bourque, P., and R. E. Fairley (eds.), Guide to the Software Engineering Body of Knowledge,
Version 3.0, IEEE Computer Society, 2014; www.swebok.org.

Caputo, K., CMM Implementation Guide, Reading, MA: Addison-Wesley, 1998.
Chrissis, B. M., M. Konrad, and S. Shrum, Introduction to CMMI, Reading, MA: Addison

Wesley, 2003.
CMMI Product Team, Capability Maturity Model® Integration (CMMISM), Version 1.1:

CMMISM for Systems Engineering and Software Engineering (CMMI-SE/SW, V1.1),
Continuous Representation, Technical Report (CMU/SEI-2002-TR-001), Software Engi-
neering Institute, Carnegie Mellon University, 2001.

CMMI Product Team, Capability Maturity Model® Integration (CMMISM), Version 1.1:
CMMISM for Systems Engineering and Software Engineering (CMMI-SE/SW, V1.1),
Staged Representation, Technical Report (CMU/SEI-2002-TR-002), Software Engineer-
ing Institute, Carnegie Mellon University, 2001.

CMMI Product Team, Capability Maturity Model® Integration (CMMISM), Version 1.1:
CMMISM for Systems Engineering, Software Engineering, and Integrated Product and
Process Development (CMMI-SE/SW/IPPD, V1.1), Continuous Representation, Techni-
cal Report (CMU/SEI-2002-TR-003), Software Engineering Institute, Carnegie Mellon
University, 2001.

CMMI Product Team, Capability Maturity Model® Integration (CMMISM), Version 1.1:
CMMISM for Systems Engineering, Software Engineering, and Integrated Product and
Process Development (CMMI-SE/SW/IPPD, V1.1), Staged Representation, Technical
Report (CMU/SEI-2002-TR-004), Software Engineering Institute, Carnegie Mellon Uni-
versity, 2001.

CMMI Product Team, Capability Maturity Model® Integration (CMMISM), Version 1.1:
CMMISM for Systems Engineering, Software Engineering, Integrated Product and Process
Development, and Supplier Sourcing (CMMI-SE/SW/IPPD/SS, V1.1), Continuous Represen-
tation, Technical Report (CMU/SEI-2002-TR-011), Software Engineering Institute, Carn-
egie Mellon University, Software Engineering Institute, Carnegie Mellon University, 2002.

CMMI Product Team, Capability Maturity Model® Integration (CMMISM), Version 1.1:
CMMISM for Systems Engineering, Software Engineering, Integrated Product and Pro-
cess Development, and Supplier Sourcing (CMMI-SE/SW/IPPD/SS, V1.1), Staged Repre-
sentation, Technical Report (CMU/SEI-2002-TR-012), Software Engineering Institute,
Carnegie Mellon University, 2002.

CMMI Product Team, Capability Maturity Model® Integration (CMMISM), Version 1.1:
CMMISM for Software Engineering (CMMI-SW, V1.1), Continuous Representation, Tech-
nical Report (CMU/SEI-2002-TR-028), Software Engineering Institute, Carnegie Mellon
University, 2002.

CMMI Product Team, Capability Maturity Model® Integration (CMMISM), Version 1.1:
CMMISM for Software Engineering (CMMI-SW, V1.1), Staged Representation, Technical

6518 Book.indb 164 12/30/14 1:24 PM

Summary 165

Report (CMU/SEI-2002-TR-029), Software Engineering Institute, Carnegie Mellon Uni-
versity, 2002.

Garcia, S. M., Evolving Improvement Paradigms: Capability Maturity Models & ISO/IEC 15504
(PDTR), Software Engineering Institute, Carnegie Mellon University, 1996.

Marciniak, J. J. (ed.), Encyclopedia of Software Engineering (2nd Edition), New York: John
Wiley & Sons, 2002.

Paulk, M. C., A Comparison of ISO 9001 and the Capability Maturity Model for Software,
Technical Report (CMU/SEI-94-TR-12), Software Engineering Institute, Carnegie Mel-
lon University, 1994.

Paulk, M. C., et al., Capability Maturity ModelSM for Software, Version 1.1, Technical Report
(CMU/SEI-93-TR-024), Software Engineering Institute, Carnegie Mellon University, 1993.

Paulk, M. C., et al., Key Practices of the Capability Maturity ModelSM, Version 1.1, Technical
Report (CMU/SEI-93-TR-025), Software Engineering Institute, Carnegie Mellon Uni-
versity, 1993.

Pressman, R. S., Software Engineering: A Practitioner’s Approach, New York: McGraw-Hill,
2001.

SEI, ISO/IEC 15504: Frequently Asked Questions, Software Engineering Institute, Carnegie
Mellon University, 1998.

Sommerville, I., Software Engineering, Reading, MA: Addison-Wesley Publishing Company,
2001.

Trillium Model Home Page (http://www.sqi.griffith.edu.au/trillium/).
Weber, C. V., et al., Key Practices of the Capability Maturity Model, Technical Report (CMU/

SEI-91-TR-25), Software Engineering Institute, Carnegie Mellon University, 1991.
Zahran, S., Software Process Improvement: Practical Guidelines for Business Success, Harlow,

England: Addison-Wesley, 1998.

6518 Book.indb 165 12/30/14 1:24 PM

6518 Book.indb 166 12/30/14 1:24 PM

167

C h a p t e r 1 3

SCM Plans (SCMPs)

introduction

We have seen that once the SCM system is designed, it should be documented so
that the working of the SCM system, the procedures, and the functions, duties, and
responsibilities of each member are transparent and known to all members of the
SCM team, project team, the subcontractor’s team (if any), and others. This docu-
ment is called the SCMP or simply the plan.

An initial draft of the SCMP should be created and circulated among the vari-
ous groups involved in the project during the initial phases (i.e., during the analysis
or design phase). Once feedback from the various groups—project team, QA team,
management, and others—is obtained, it can be incorporated, and the approved
SCMP can be made available so that everybody is clear about the various SCM
procedures and their duties and responsibilities.

According to Bounds and Dart [1], the CM plan is one of the three keys to the
success of attaining a CM solution (the other two are the CM system and the CM
adoption strategy). It is generally the case that an SCM solution is part of a corporate-
wide process improvement plan and, as such, the solution is coordinated with that
effort. This means that the SCMP needs to be in agreement with any other plans
related to the corporate improvement effort.

An SCMP clearly describes how SCM is accomplished and how consistency
between a system’s configuration and the configuration records is achieved and
maintained. The SCMP is a central source of information for the SCM program.
The major benefits of creating a CM plan include an assurance that the appropriate
SCM processes are applied, the responsibilities for the various SCM activities are
assigned, detailed descriptions of these responsibilities are documented, accurate
knowledge concerning required resources are available, and a foundation for con-
tinued improvement is put in place.

The objective of the SCMP is to create and document a system that will describe
and specify, as accurately as possible, all tasks that are to be performed by the
agency that is responsible for the configuration of the system or product. Thus the
main function of the SCMP is to create an awareness among the various groups
involved in a software project about the SCM functions and how they are to be
performed in that project.

SCM is not a well-known subject and in most cases people—even people who
have been in the software profession for many years—are not aware of SCM and
how an SCM system works. So in order to create awareness among the project team
members, SCM team members, and other people who are in some way related to

6518 Book.indb 167 12/30/14 1:24 PM

168 SCM Plans (SCMPs)

the project (such as the QA personnel), it is necessary to create a document that
describes how SCM will be practiced for the project. Thus the SCMP forms the
basis of training the personnel who are part of the project team and SCM team. It
will be used as a reference manual for the SCM functions. It will also be used in
the resolution of conflicts regarding the practice or implementation of SCM func-
tions in the project.

The SCMP can be either created for the organization or for each project. If the
plan is created for the entire organization, its suitability should still be assessed for
each project, and necessary modifications should be made. In the case of organiza-
tions where the projects that are carried out differ in nature, complexity, and size,
it is desirable to create separate plans for each project tailored to suit the needs and
characteristics of the project.

SCMp and the incremental approach

Some companies adopt what is called the incremental approach to SCM implemen-
tation. In the incremental approach, SCM functions are implemented in stages. The
system starts with just some of the components, say, a change- or problem-tracking
system or a source code control and revision management system. Then slowly, as
time progresses, the other components are introduced until the full spectrum of
SCM functionality is achieved.

The natural question when considering the incremental approach is how an
SCMP can be developed when the full SCM system is not being implemented.
Another question is why an SCMP is needed since many of the components will
not be part of the plan during the first phase of implementation.

In the author’s opinion, irrespective of whether the company chooses the big-
bang approach (where full SCM functionality is implemented in one shot) or the
incremental approach, it is always better to have an SCMP. This is because, even
for the incremental approach, the broad outline of what the final system will be
like must be decided at the outset. There is no need to go into the finer details of
the portions that are not being implemented in the first phase, but a very high-level
outline of how these missing components will fit into the final system and the cho-
sen implementation strategy (the when and how of implementing those functions)
should be documented. This is important because, if the different functions of the
SCM system are implemented without considering the overall picture (that is, the
effect of each subsystem on the overall SCM system), then the integration of the
different subsystems will not be seamless.

So, even when the incremental approach is used, the full SCM system should
be designed and the SCMP prepared based on a full implementation. Otherwise,
as components are added and full SCM functionality finally is reached, the SCM
tools will not be well-integrated.

SCMps and SCM Tools

Another question that is often asked about SCMPs by companies using SCM tools
is whether the SCMP is really necessary. Here also the answer is, “yes.” The SCMP

6518 Book.indb 168 12/30/14 1:24 PM

SCMPs and Standards 169

is the document that records how the different SCM functions will be performed.
Only after analyzing and deciding how the SCM system should function, what its
functions will be and which functions will be automated, and the peculiarities of
each organization or project can the company decide which tool to use.

The SCMP has a section on SCM resources in which details are given about the
software tools, techniques, equipment, personnel, and training necessary for the
implementation of the specified SCM activities. The SCMP, as discussed earlier, is
the basis for SCM training and auditing of the SCM system. So it is still very impor-
tant to have an SCMP. In fact, the author strongly advocates training employees in
the fundamentals and concepts of SCM and in how the SCM functions are carried
out before training them in the tools. This will give the users a better understand-
ing of what they are doing and how their actions will affect others in the project.
In practice, if one is using a tool he or she can perform the SCM functions without
knowing the SCM concepts; the tool’s user manual is enough. If, however, users
want to know why they are performing a function, they need to be aware of the
SCM concepts.

So even though it is possible to use SCM tools without knowing much about
the SCM concepts and functions, a person who knows the SCM concepts is a better
user of the SCM tool than a person who has been told just to perform certain activi-
ties. There is always a difference between doing something just because somebody
is told to do it that way and doing something after knowing why a task has to be
performed and what will be the effect of that action.

SCMps and Standards

Almost all CM standards advocate some sort of a document or plan. Except for
some minor differences, the format specified by most of the standards for the SCMP
is similar. According to a study conducted by Bounds and Dart [1], in which they
compared three standards (by IEEE, NASA, and DOD) based on six criteria (ease
of use, completeness, tailorability, consistency, correctness, and life cycle connec-
tion), the IEEE standard—IEEE Std-828-1998—had the best rating. IEEE Std-828-
1998 defined only the contents of an SCMP. It has since been revised. The revised
standard—IEEE Std-828-2012—expands the previous version to explain CM,
including identifying and acquiring CIs, controlling changes, and reporting the
status of CIs, as well as software builds and release engineering. It also addresses
what CM activities are to be done, when they are to happen in the life cycle, and
what planning and resources are required. In the revised version there is only an
annex (Annex D) that deals with the CM plan (CMP) and what it should contain.

According to IEEE Std-828-2012 the CMP should have the following sections:

•	 Introduction: This section should cover such topics as the purpose, scope,
relationship to the organization and other projects, key terms, and references;

•	 Criteria for identification of the CIs to which CM will be applied;
•	 Limitations and assumptions affecting the plan;
•	 CM responsibilities and authorities;
•	 Project organization;

6518 Book.indb 169 12/30/14 1:25 PM

170 SCM Plans (SCMPs)

•	 CM responsibilities;
•	 Applicable policies, directives, and procedures;
•	 Planned activities, schedules, and resources;
•	 CMP maintenance.

For developing a CMP, the combination of IEEE Std-828–1998 and IEEE
Std-1042–1987 is still a better option than depending on the annex of the IEEE
Std-828-2012.

As mentioned before, many standards exist for SCMPs. In the following sec-
tions, we will examine four, comprising a representative sample of the lot:

•	 IEEE Std-828–1998, IEEE Standard for Software Configuration Manage-
ment Plans, and IEEE Std-1042–1987, IEEE Guide to Software Configura-
tion Management;

•	 MIL-HDBK-61A(SE)-2001, Military Handbook: Configuration Manage-
ment Guidance;

•	 EIA-649-B: 2011, National Consensus Standard for Configuration
Management;

•	 ISO 10007: 2003, Quality Management-Guidelines for Configuration
Management.

anSi/iEEE Std-828–1998 and anSi/iEEE Std-1042–1987

ANSI/IEEE Std-828–1998 is the standard for CMPs. Complementing this standard
is a guide—IEEE Guide to Software Configuration Management (ANSI/IEEE Std-
1042–1987)—that contains an explanation of the standard and sample SCMPs for
different kinds of projects. These two standards together form the most compre-
hensive standards available on SCM and SCMPs.

The IEEE standard is a very comprehensive standard on SCM, and it can be
customized easily to suit one’s needs. This standard intentionally addresses all lev-
els of expertise, the entire life cycle, other organizations, and the relationships to
hardware and other activities on a project.

The ANSI/IEEE Std-828–1998 provides a format for creating the SCMP. Accord-
ing to the standard, the SCMP should consist of six sections as shown in Table 13.1.

ANSI/IEEE Std-1042–1987, the guide to SCMPs, explains how Std-828 should
be implemented. This guide has several appendixes for different types of SCMPs
(e.g., real-time, critical projects, and maintenance projects) that can be customized
very easily to suit individual needs and requirements.

MiL-HdBK-61a (SE)-2001

The purpose of MIL-HDBK-61A (SE) is to assist configuration managers in plan-
ning for and implementing effective DOD configuration management activities
and practices during all life cycle phases of defense systems and CIs. It supports
acquisition based on performance specifications and the use of industry standards
and methods to the greatest practicable extent.

6518 Book.indb 170 12/30/14 1:25 PM

SCMPs and Standards 171

According to MIL-HDBK-61A (SE), CM planning is a vital part of the prepa-
ration for the next phases of a program life cycle. The CMP documents the results
of that planning to enable it to be communicated and used as a basis in managing
the program CM activities.

Appendix A of this handbook provides guidance in the content, use, and main-
tenance of government CMPs (GCMPs). It also provides guidance in evaluating
contractor CMPs (CCMPs). In addition, the appendix provides two activity guides
that give the contents and guidance for writing GCMPs and CCMPs.

The primary objective of the GCMP is to document the planning for the gov-
ernment CM activity to take place during the upcoming phase and to schedule
specific actions necessary to implement those activities. The second purpose is to
communicate and coordinate the government’s intentions with the contractor or
contractors involved in the program so that efficient and effective interfacing pro-
cesses and working relationships may be established. The GCMP communicates to
the contractor, the government’s CM objectives for a given phase and the associated
risks if those objectives are not met. It describes the expected deployment and use
of the system or CI and indicates the CM process, systems, and methodologies the
government plans to use and the interfaces that the contractor will be expected to
establish. According to the handbook, the content of the GCMP should include the
following six sections: (1) introduction, (2) reference documents, (3) government
CM concept of operations and acquisition strategy, (4) CM organization, (5) data
management, and (6) government CM process.

The CCMP describes the contractor’s CM objectives, the value-adding CM
activities that will be employed to achieve them, and the means of measuring and
assuring that they are effectively accomplished. The CCMP should have the fol-
lowing sections: (1) introduction, (2) reference documents, (3) CM organization, (4)
CM phasing and milestones, (5) data management, (6) configuration identification,
(7) interface management, (8) configuration control, (9) CSA, (10) CAs, and (11)

Table 13.1 Format of SCMP per IEEE Std-828–1998

No. Section Name Description

1 Introduction Purpose of the plan, scope, definition of key terms, and
references.

2 SCM Management Describes the allocation of responsibilities and authorities for
SCM activities to organizations and individuals within the
project structure.

3 SCM Activities Identifies all functions and tasks required for managing the
configuration of the software system as specified in the scope of
the SCMP. Both technical and managerial SCM activities must be
identified.

4 SCM Schedules Establishes the sequence and coordination for the identified SCM
activities and for all events affecting the SCMP’s implementation.

5 SCM Resources Identifies the software tools, techniques, equipment, personnel,
and training necessary for the implementation of the specified
SCM activities.

6 SCMP Maintenance Identifies the activities and responsibilities necessary to ensure
continued SCM planning during the life cycle of the project.

6518 Book.indb 171 12/30/14 1:25 PM

172 SCM Plans (SCMPs)

subordinate performing activity and vendor control. The handbook gives detailed
descriptions and phase-by-phase guidance for each section.

Eia-649-B: 2011

According to EIA-649-B, the purpose and benefits of CM planning and manage-
ment include the following:

•	 Assurance that the appropriate CM processes and activities are applied;
•	 Establishment of organizational responsibilities for CM activities;
•	 Identification of—and making available—necessary resources and facilities;
•	 Formation of a basis for continuous improvement;
•	 Enhanced maturity of the enterprise’s process.

EIA-649-B discusses in detail the requirements of the plan and considerations
that should be taken into account in its development. A CMP should not be a one-
size-fits-all document. Rather, it must be tailored to meet the needs of the agency
responsible for CM. In particular, EIA-649-B points out that a well-developed plan
will aid in the training of personnel in CM and will help explain the process to
outside personnel, such as upper-level management and auditors. A comprehensive
CMP that reflects efficient application of CM principles and practices to the identi-
fied context and environment would normally include the following topics:

•	 General product definition and scope;
•	 Description of CM activities and procedures for each major CM function—

configuration planning and management, configuration identification, con-
figuration change management, CSA, configuration verification and audit,
and CM of digital data;

•	 CM;
•	 Organization, roles, responsibilities, and resources;
•	 Definitions of terms;
•	 Programmatic and organizational interfaces;
•	 Deliverables, milestones, and schedules;
•	 Subcontract flow-down clauses;
•	 Definitions of terms.

If these topics are covered in detail in the plan, the CM program will have a
sound blueprint to guide its effective implementation.

iSO 10007: 2003

This international standard gives guidance on the use of CM in industry and its
interface with other management systems and procedures. This standard defines a
CMP as a document that sets out the organization and procedures for the CM of a
specific product or project. The standard states that the CM plan provides the CM
procedures that are to be used for each project and states who will undertake these

6518 Book.indb 172 12/30/14 1:25 PM

SCMPs and Standards 173

and when. The standard also states that the plan should be subjected to document
control procedures.

This standard specifies a format for the CM plan (Annex A-Recommended
Structure and Content of a Configuration Management Plan). According to ISO
10007, a CMP should have the six chapters listed in Table 13.2.

The standard also specifies that whenever an existing procedure or standard is
used, it should be referenced rather than repeated so that duplication can be avoided
and simplicity can be maintained. This is a good practice to follow irrespective of
which standard you are using, because it will make the SCMP simple and short,
and it will eliminate data duplication. For example, according to the preceding
standard, the audit procedures that will be followed have to be mentioned in Chap-
ter 6, CA. If the audit is conducted as per the ISO guidelines for auditing quality
systems, instead of defining and describing the auditing process, the plan can just
say that the SCM auditing will be done in accordance with the ISO 10011–1:1990,
ISO 10011–2:1990, and ISO 10011–3:1990 (ISO guidelines for auditing quality
systems, Parts 1, 2, and 3).

In a study conducted by Bounds and Dart [1], users of the CMPs were asked
whether CM procedures should be part of the CMP or separate. The overwhelming
response was that the procedures should be kept separate from the plan but that the
plan should reference the procedures. Although many reasons were cited for this,
the most common reasons were that separating the procedures allows the users to
focus only on what applies to them and makes maintenance of the procedures and
plan much easier. Respondents also stated that procedures should focus on how to
do something, whereas a plan should focus on what is to be done.

The same study recommended the use of IEEE standards as the best standards
to use in developing SCMPs for these reasons:

Table 13.2 Format of SCMP per ISO 10007

No. Chapter Name Description

1 Introduction Description of the system or CIs to which the plan
applies, a schedule of the CM activities, the purpose and
scope of the plan, list of related documents, and so on.

2 Policies and Procedures CM policies, CM organization and structure of the CCB
and the other committees, selection criteria for the CIs,
frequency, distribution, and control of reports and agreed
terminology.

3 Configuration Identification Family tree of the CIs, numbering conventions, baselines
to be established, and so on.

4 Configuration Control Organization and composition of the CCB, change
management procedures, and so on.

5 CSA Procedures for collecting, recording, processing, and
maintaining the data for status accounting reports,
definition of all CM reports, and so on.

6 CA List of audits to be conducted, the audit procedures, the
authorities and disciplines involved, format of the audit
reports, and so on.

6518 Book.indb 173 12/30/14 1:25 PM

174 SCM Plans (SCMPs)

•	 The IEEE standard was written explicitly for use by anyone within the indus-
try, whereas the NASA and DOD standards were written for their specific
segments of industry.

•	 The IEEE standard is, by far, more complete than the other two standards
and is the only standard that can be treated as a stand-alone document.

•	 The IEEE standard has greater potential for timely updates than the other
standards since it is used by general industry.

audit of the SCMp

An SCMP is a controlled document as well as a CI. So all document control proce-
dures that are applicable to a controlled document and all the change management
procedures that are applicable to a CI are applicable to the SCMP also. This means
that the distribution of the SCMP should be controlled. There should be a distribu-
tion list that contains the names of persons having a copy of the plan. Also, access
to the plan should be controlled. The level of control is decided based on the nature
of the project. If the plan is hosted on the company intranet or bulletin board, then
access to that should be controlled.

Another aspect is that changes to the plan should be done in accordance with
the change management procedures mentioned in the plan. When a change is imple-
mented the new versions should be made available to all who are in the distribution
list. If the plan is hosted on the intranet then it should be updated.

The SCMP should be subject to auditing. Like any other CI, the plan should
undergo the functional and physical CAs. Auditing ensures that the plan is complete
and correct and satisfies the requirements as described in the standard or standards
on which it is based.

How to Write a Good SCMp

Writing the SCMP is not an easy task. Good SCMPs take time; thorough knowl-
edge of SCM functions, the peculiarities of the project, and the organization; and
knowledge of other procedures such as auditing and testing. It is also not a task
that should be taken lightly because the practice of SCM functions in a project or
organization is based on the procedures and tasks specified in the SCMP. It is not
too strong a statement to say that the SCMP can make or break a project. A bad
and improperly designed SCMP will create unnecessary and cumbersome proce-
dures, and instead of assisting the development process and improving productivity,
it will result in confusion and an increased workload for the project team and the
SCM team. In the following paragraphs, we look at some practices and tips that
will help in the creation of good SCMPs.

The most important decision that affects the quality of an SCMP is the capa-
bility and knowledge of the person or the team that writes the plan. Ideally, the
plan should be written by the people who have designed the SCM system for the
project or organization. Here we are talking about experienced people who have a
good understanding of the project or organization and the SCM system. Once the

6518 Book.indb 174 12/30/14 1:25 PM

How to Write a Good SCMP 175

plan is written, the technical documentation team can copyedit it so that typos and
grammatical mistakes are eliminated. This is a good practice to follow, because the
writing skills of the technical people may not be on par with their technical skills.
The copyeditors should be given clear instructions not to touch the structure of the
plan, just to check for grammatical and spelling errors. In fact, it could be beneficial
to have the editor sit with the technical team during the writing process, so if any
issues arise, they can be resolved immediately.

The second most important decision is selecting the standard on which the
SCMP is going to be based. As mentioned earlier, the IEEE standards emerge as
the best and most popular choice. However, it is good practice to see what other
standards have to offer, and it may not be a bad idea to borrow good ideas from
them. There is nothing wrong with formulating an SCMP based on more than one
standard, because all standards will have some weak areas, and adapting substitute
areas from other standards might improve them. Some of the standards that could
be referenced are listed as follows:

•	 IEEE Std-828–1998, IEEE Standard for Software Configuration Management
Plans, IEEE, 1998;

•	 IEEE Std-1042–1987, IEEE Guide to Software Configuration Management,
IEEE, 1987;

•	 ISO 10007, Quality Management-Guidelines for Configuration Management,
ISO, 2003;

•	 DOD MIL-STD-973, Military Standard for Configuration Management,
Department of Defense, 1995;

•	 MIL-HDBK-61A (SE)—Military Handbook: Configuration Management
Guidance, 2001.

One can get a feel for how to write the SCMP by studying some sample plans and
reading books on SCM. Today, getting sample SCMPs is not a difficult task. IEEE
Std-1042–1987 has four appendixes consisting of sample SCMPs for different types
of projects. Also, hundreds of SCMPs—of all types and sizes—are available on the
Web. A Google query for “sample SCMP” produced more than 2,050,000 results.

The next step in writing the SCMP is to identify the procedures that should be
followed in the practice of SCM. If the SCM system is using procedures that are
part of other standards, then as we have seen before, it is quite sufficient just to
give references to those standards. These standards can be industry standards, the
organization’s internal standards, or even the project’s own standards. However,
before giving reference to a standard, it is a good idea to ensure that all the stan-
dards are available and, if possible, to bring them under document control, so that
they are readily available for reference.

We have researched the standards and literature, discussed the sample plans,
and identified the procedures that will be followed and the documents that define
these procedures. The next step is to write the plan using any of the existing tem-
plates that are available. Many SCMP templates are available on the Web; the IEEE
standard provides a very customizable template, and the ISO has a reasonably good
template. The choice of template is a matter of taste and convenience. The contents
of both the IEEE and ISO templates are almost the same, but the IEEE template
is more comprehensive. For a company using ISO standards, however, the ISO

6518 Book.indb 175 12/30/14 1:25 PM

176 SCM Plans (SCMPs)

10007 template can be used. You just have to choose a template that is suited to
your purpose (and similar to your project or organization) and customize it to your
specific needs. Once the template or the table of contents is ready, the next step is
to fill in the blanks or put the procedures and other details in place to complete the
plan. The resulting document is considered the initial draft of the SCMP. Copies
of this document—the initial draft—should be circulated to all groups that will
be involved in implementing the SCM system and performing the various SCM
functions. This process—involving everyone who matters in plan development—is
very important; SCM is a team effort. To implement and manage an SCM system
successfully, the SCM team will need cooperation from all quarters. One way to
ensure that cooperation is to get others involved by sending copies of the initial
draft and asking for feedback.

Once the feedback from the various groups is received, the SCMP’s authors can
review it, accept valid comments, and incorporate them into the plan. Once the final
draft is ready, it is a good idea to get it reviewed by an external agency—a person
or team of experts. This review can throw light on issues that the plan might have
failed to address or bring up inadequacies or even detect errors that the internal
reviews have missed. The external audit also provides a stamp of approval from a
body that is supposed to be an expert in this area, which will help to increase the
credibility and acceptance of the plan. Once the SCMP is reviewed and approved,
it can be baselined.

Contents of a Typical SCMp

The SCMP can be written in any format as long as it contains all necessary informa-
tion. The standards offer considerable latitude and freedom to the person who writes
the SCMP. All standards require one to address certain topics such as scope, purpose,
definitions, SCM organization, SCM functions, responsibilities, and resources. How
this material should be presented, however, is decided by the author of the plan.
Such decisions as the degree of detail or the amount of additional information to
include in the SCMP depend on the nature of the project.

A sample outline for an SCMP is given next. All items, sections, and subsec-
tions need not be present in all projects. Some will have additional information.
This structure relies heavily on the IEEE standards. Each section and subsection is
proceeded by an explanation of its contents.

i. Cover Page
•	 This page should have the title “SCMP” and details on the project such as

the organization, the authorities, the version number, and the release date.

ii. Copyright Page
•	 This page should list the copyright information of the SCMP.

iii. Distribution List
•	 This page should include the name and number of copies distributed and a

description of how the documentation control activities will apply to this
document.

6518 Book.indb 176 12/30/14 1:25 PM

Contents of a Typical SCMP 177

iv. About the Document
•	 A short description of the document and its sections.

1.0 INTRODUCTION
•	 An overview of the plan, the SCM activities, the audience for the plan, and

how to use the plan, so that the user will have a clearer understanding of
the plan. The introduction should contain at least the following four topics:
purpose, scope, definitions, and references.

1.1 Purpose
•	 Addresses the need for the plan and the intended audience.

1.2 Scope
•	 Covers the plan’s applicability, limitations, and assumptions. This section

provides an overview of the software development process in the project or
organization and how the SCM functions and activities fit into the project.

1.3 Definitions
•	 Defines the key terms used in the document.

1.4 References
•	 Identifies all documents, standards, and external and internal procedures to

be used in the plan. This section also identifies where the documents can be
found so that the readers of the plan can retrieve them.

2.0 SCM MANAGEMENT
•	 Gives information on the organization of the SCM team and the allocation

of responsibilities to teams and individuals, among other management topics.

2.1 SCM Organization
•	 Describes the organizational structure of the SCM team and how it fits into

the organizational structure with respect to other groups such as the project
team, the QA team, and top management. Also included in the structure are
clients (customers and vendors) and subcontractors, if any are involved in the
SCM activities. An organization chart depicting the structure is very useful
in this section. This section also describes the composition of the CCB and
other auditing and review teams that will be part of the SCM activities.

2.2 SCM Responsibilities
•	 Describes the duties and responsibilities of all those involved in carrying out

the SCM activities. This section identifies the responsibilities of the CCB and
other committees and boards necessary for CM, the structure of which is
defined in the previous section.

2.3 Relationship of SCM to the Software Process Life Cycle
•	 Relates the SCM activities to the different phases of the software development

life cycle. It spells out what SCM activities need to be performed during each
phase of the life cycle.

6518 Book.indb 177 12/30/14 1:25 PM

178 SCM Plans (SCMPs)

2.4 Interfaces to Other Organizations on the Project
•	 Describes how the SCM team will interact with other organizations in the

project such as QA, test, project management, and requirements and includ-
ing vendors and subcontractors.

2.5 SCM Responsibilities of the Organizations
•	 Describes the responsibilities—or what is expected—of the vendors, sub-

contractors, and other organizations in relation to the carrying out of SCM
functions.

3.0 SCM ACTIVITIES
•	 Identifies the tasks and functions that are required to manage the configura-

tion of the system as specified in the scope of the plan. This section deals with
the core SCM activities and how they are performed in the project.

3.1 Configuration Identification
•	 Describes how to identify, name, and document the functional and physical

characteristics of the CIs. Once the items are identified, they are acquired and
moved into the controlled environment.

3.1.1 Identification of CIs
•	 Identifies the items to be selected as CIs that will be controlled by the SCM

activities. This section gives a list of CIs in the project. Inclusion of a tree
structure showing the various CIs and their interdependencies is ideal.

3.1.2 Naming CIs
•	 Specifies the identification system, naming conventions, version numbers, and

letters used to identify the CIs.

3.1.3 Acquiring CIs
•	 Describes how the CIs are to be stored, how access to them will be controlled,

the details of the configuration libraries, the procedures for check in and check
out of CIs from the library, and other related information.

3.2 Configuration Control
•	 Explains the change management processes such as change initiation, change

disposition, change implementation, reviews, approval, and baselining.

3.2.1 Change Initiation
•	 Describes how to initiate a change. A change can be the result of a fault or

problem or the result of an enhancement or new feature. This section describes
the procedures to be followed to initiate a CR or PR so that the change man-
agement activities are started.

3.2.2 Change Evaluation
•	 Describes how the evaluation of a CR is carried out, including details on han-

dling problem analysis and problem classification. The section details how to
classify the changes or problems and how to do an impact analysis, among
other relevant information. The section also specifies the qualifications of the
people who will be doing the change or problem evaluation.

6518 Book.indb 178 12/30/14 1:25 PM

Contents of a Typical SCMP 179

3.2.3 Change Management
•	 Describes how a CR is processed. It spells out clearly procedures such as

those for receiving CRs, assigning CRs for evaluation, CCB meetings, and
dispositioning the CRs carried out.

3.2.4 Change Implementation
•	 Once the CR is approved it has to be implemented. Selecting the change

implementation team or person, conducting verification and validation, and
promoting the item to the new baseline are described in this section.

3.2.5 CCBs
•	 This is the apex body that decides the fate of the change requests. This sec-

tion describes the functioning of the CCB. If multiple CCBs are present, the
authority of each CCB must be specified and if more than one CCB of the
same authority is present in the project, then conflict resolution mechanisms
also should be documented.

3.3 CSA
•	 Details the recording the status of the CIs and reporting them to people who

need to know about them.

3.3.1 Identification of Information Needs
•	 Describes the information requirements of the project, including what kind of

information is required, who requires it, the nature of the requirement (e.g.,
routine or ad hoc), and the frequency of the reports.

3.3.2 Information Gathering Mechanisms
•	 Explains how status accounting information is gathered. Ideally the informa-

tion should be entered into the CMDB by the initiators of the SCM activities
rather than by the SCM person chasing the activities and updating the sta-
tus accounting data. For example, when a CR is initiated, if the person who
initiates the CR creates a record of that in the database, the job of informa-
tion gathering is easy. However, to accomplish this, the necessary forms and
access privileges should be given to the different users of the system. This
section describes the exact mechanism of capturing the information for sta-
tus reporting.

3.3.3 Reports, Their Contents, and Frequency
•	 Describes the various reports that will be created, their contents, and the

frequency of each report.

3.3.4 Access to Status Accounting Data
•	 The status accounting function cannot anticipate all of the information require-

ments of users and produce reports to meet all requirements. Also, in many
cases, information requests will be for ad hoc reports, which may be generated
only once. If the status accounting system is computerized, then an interactive
query facility can be made available to users to get this information. If such
a facility is available, this section will describe the procedures for using that
facility. In the case of manual processing, this section will describe how the
manual records can be accessed for ad hoc information needs.

6518 Book.indb 179 12/30/14 1:25 PM

180 SCM Plans (SCMPs)

3.3.5 Status Accounting Information Dissemination Methods
•	 Describes how and to whom the status accounting information will be

disseminated.

3.3.6 Release Details
•	 Details information such as what is contained in a release, to whom the release

is being provided and when, the media the release is on, known problems with
the release, known fixes in the release, and installation instructions.

3.4 Configuration Auditing
•	 Describes, for example, what types of audits are to be performed, the audit

procedure, frequency, and the auditing authority.

3.4.1 Audits To Be Performed
•	 Describes the different types of audits that will be performed and when they

will be performed. Typical audits include FCAs, PCAs, subcontractor audits,
and external audits.

3.4.2 CIs Under Audit
•	 Specifies the list of CIs that are to be audited.

3.4.3 Audit Procedures
•	 Describes the procedure to be followed for each audit, including the auditing

authority, the documents required, how the audit should be conducted, and
the format of the audit report.

3.4.4 Audit Follow-Up Activities
•	 Describes the activities that should be carried out after the audit such as

resolution of NCRs.

3.5 Interface Control
•	 Describes the coordination of the changes to the CIs with the changes to

the interfacing items outside the scope of the plan like the hardware system,
off-the-shelf packages, and support software. The plan must identify each of
these external items and should define the nature of the interface, the affected
groups, how the interface items will be controlled, and how the interface items
will be approved to be included as part of a baseline.

3.6 Subcontractor or Vendor Control
•	 Describes the activities necessary to incorporate the items developed outside the

project environment into the project environment, in particular, items that are
the responsibility of subcontractors and vendors. This section should describe
the SCM functions and activities that should be followed by the vendor or
subcontractor, mechanisms to ensure that they are followed, procedures to
audit the items that are submitted by the vendor or subcontractor, and the
items that must be supplied by the vendor or subcontractor. This section also
describes how the items will be received, tested, and placed under SCM and
how CRs to these items will be processed and implemented.

6518 Book.indb 180 12/30/14 1:25 PM

Summary 181

4.0 SCM SCHEDULES
•	 Describes the sequence of the SCM activities, their interdependencies and

relationship to the project life cycle, and project milestones. The schedule
will identify the life cycle phases or project milestones where the different
baselines (e.g., functional baseline, allocated baseline, and product baseline)
will be established. This section also establishes the schedule for the differ-
ent CAs. Graphical representation using PERT charts or Gantt charts help
to enhance the usefulness of this section.

5.0 SCM RESOURCES
•	 Identifies the software tools, techniques, equipment, personnel, budget, and

training necessary for the implementation of the specified SCM activities.

6.0 SCMP MAINTENANCE
•	 Describes the activities that are required to keep the plan current during the

life cycle of the project. The plan should be monitored and synchronized with
the activities of the project. This section describes the mechanism for syn-
chronization and identifies the person or team responsible for those activities.

Sample SCMpS

We have just looked at a generic structure for SCMPs that can be tailored to suit the
needs of individual projects. We have also discussed tips for writing good SCMPs.
As mentioned previously, it is a good idea to go through a few sample SCMPs of
similar projects before you start writing the SCMP.

Sample SCMPs can be obtained from a host of sources, but two of the easiest
sources are listed as follows:

•	 The Internet. Thousands of SCMPs covering a spectrum of projects—e.g.,
military, government, research, and commercial—of various sizes and com-
plexity are hosted on the Internet. You can use a search engine to locate
them. By spending a few hours on the Internet, you can browse through the
different types of SCMPs.

•	 ANSI/IEEE Std-1042–1987. This is the IEEE Guide to SCM. There are four
appendixes for this document, which are sample SCMPs for different types
of projects.

Also, anyone who is writing an SCMP will benefit tremendously from [1], which
is an excellent primer for SCMPs.

Summary

The SCMP is the document that defines the SCM system and how SCM is to be
practiced in a project. The SCMP documents what SCM activities are to be done,
how they are to be done, who is responsible for doing specific activities, when they
are to happen, and what resources are required.

6518 Book.indb 181 12/30/14 1:25 PM

182 SCM Plans (SCMPs)

The SCMP should be prepared irrespective of whether the organization is using
an incremental approach or using SCM tools. Preparing a good SCMP requires
knowledge of the SCM concepts and functions, SCM tools, SCM standards, software
engineering and QA procedures, and standards and knowledge of the organization
or project for which the standard is being written. The SCMP can be based on a
single standard or can be based on more than one standard.

The SCMP is a CI and should be updated and reviewed whenever required. The
SCMP should be prepared with the cooperation of all those who will be involved in
the functioning of the SCM system and should be audited by external SCM experts.
It is a good idea to go through some SCMPs before starting to write the plan. Hun-
dreds of sample plans are available on the Internet. Also, anyone who is writing
an SCMP will benefit tremendously from the document by Bounds and Dart [1].

Reference

[1] Bounds, N. M., and S. Dart, “CM Plans: The Beginning to Your CM Solution,” Technical
Report, Software Engineering Institute, Carnegie Mellon University, 1998.

Selected Bibliography

Arthur, J. D., et al., “Evaluating the Effectiveness of Independent Verification and Validation,”
IEEE Computer, Vol. 32, No. 10, October 1999, pp. 79–83.

Babich, W. A., Software Configuration Management: Coordination for Team Productivity,
Boston, MA: Addison Wesley, 1986.

Ben-Menachem, M., Software Configuration Management Guidebook, New York: McGraw-
Hill, 1994.

Berlack, H. R., Software Configuration Management, New York: John Wiley & Sons, 1992.
Bersoff, E. H., V. D. Henderson, and S. G. Siegel, Software Configuration Management, An

Investment in Product Integrity, Englewood Cliffs, NJ: Prentice-Hall, 1980.
Bourque, P., and R. E. Fairley (eds.), Guide to the Software Engineering Body of Knowledge,

Version 3.0, IEEE Computer Society, 2014; www.swebok.org.
IEEE Software Engineering Standards Collection 2003 (CD-ROM Edition), Piscataway, NJ:

IEEE, 2003.
IEEE, IEEE Standard for Configuration Management in Systems and Software Engineering

(IEEE Std-828–2012), Piscataway, NJ: IEEE, 2012.
Pressman, R. S., Software Engineering: A Practitioner’s Approach (8th Edition), New York:

McGraw-Hill, 2014.
Sommerville, I., Software Engineering (9th Edition), Reading, MA: Addison-Wesley Publish-

ing Company, 2011.
TechAmerica, Configuration Management Standard (ANSI/EIA-649-B), Washington, DC:

TechAmerica, 2011.
Whitgift, D., Methods and Tools for Software Configuration Management, Chichester, England:

John Wiley & Sons, 1991.

6518 Book.indb 182 12/30/14 1:25 PM

183

C h a p t e r 1 4

SCM Organization

introduction

CM—like any other management function—needs people to perform the vari-
ous activities and to produce results. CM is a discipline that applies technical and
administrative direction and surveillance to (1) identify and document the functional
and physical characteristics of a CI, (2) control changes to those characteristics,
(3) record and report change processing and implementation status, and (4) verify
compliance with specified requirements [1]. As you can see, this definition states a
lot of tasks—configuration identification, change management, change disposition,
change implementation, configuration control, status accounting, and CAs, among
others—that have to be performed for the SCM system to function properly.

To perform all of these functions effectively and efficiently, one needs procedures
and resources. In examining the various SCM procedures in the last few chapters,
it becomes obvious that the most important resource is people. Accordingly, for
any SCM system to function properly, there should be enough qualified people to
do the various functions.

The number of people on an SCM team will vary depending on the nature,
size, and complexity of the project. In the case of large and complex projects with
hundreds of programmers and thousands of programs, the SCM team will be big
with lots of full-time members, whereas in the case of small projects the project
leader might do all the SCM functions independently. Also, there are people whose
services will be required on an as-needed basis. For example, for a CR evaluation,
an outside expert might be called, and once the evaluation is over and the report
is submitted he or she will leave. There might also be permanent personnel on the
SCM team who are in charge of receiving the various CRs and PRs, ensuring the
completeness of these forms, assigning them to the right people for evaluation, coor-
dinating the CCB activities, and whatever else is necessary. This chapter reviews the
structure of a typical SCM team based on the different functions.

SCM and the Organization

We know that SCM is a support function, so let’s take a look at where and how
SCM fits into the organizational structure. Different organizational structures in
different organizations will require the SCM team to be structured or positioned
differently. In many cases, there will be a central SCM team that will take care of

6518 Book.indb 183 12/30/14 1:25 PM

184 SCM Organization

all the SCM activities of the different projects in the company. The SCM team here
will act as a support function and will use the members of the project team to get
the SCM activities done.

The main responsibilities of the SCM team in such an arrangement are to com-
plete the SCM activities of the different projects such as receive the CRs, assign the
implementation, and convene the CCB meetings. The advantage of this kind of setup
is that the central SCM team can have standardized procedures and policies enforced
for all projects and prioritize the SCM needs of the different projects based on the
overall company objectives. This kind of an arrangement is shown in Figure 14.1.

Some companies have a central SCM team along with individual teams for
each project. The central team creates the guidelines and policies and the general
organization-wide SCM plan and is responsible for the proper functioning of the
SCM system in the company as a whole. The individual teams associated with each
project customize the plans and procedures to suit the needs of the particular project
and are responsible for the SCM activities in the project. These SCM teams in the
different projects usually have a dual reporting arrangement in which they report
to the central SCM team leader and to the leader of the project with which they are
associated. This type of arrangement is shown in Figure 14.2.

In a third situation, there may be no central SCM team, but each project will
have its own SCM team. This is usually applicable to large projects, where the size
and complexity of the project warrants a full-fledged SCM team of its own. This
type of arrangement is shown in Figure 14.3.

Figure 14.1 Organizational structure in which a central SCM team deals with the different
projects.

6518 Book.indb 184 12/30/14 1:25 PM

SCM and the Organization 185

Figure 14.2 Organizational structure when a central SCM team and individual SCM teams are
used.

The SCM team needs strong support from management, because it does not
have the necessary muscle power to enforce its decisions like the line functions do.
However, if proper awareness is created about the importance of SCM and its benefits
and if the SCM system is designed in such a way that SCM approval is a prerequisite
for moving from one phase to another, the SCM team can get the necessary coop-
eration from the project team and other support functions to carry out its tasks.

Another important aspect that should be remembered is that the SCM team will
have to enlist the help of other professionals in the organization. The SCM team
will require help from the management team, the QA team, the project team, and
others to carry out the various functions. For example, the CCB’s permanent mem-
bers include management, QA, marketing, and project team representatives. Also,
for conducting CR evaluations or causal analysis, outside help might be required.
So a mechanism should be in place for determining how these human resources
will be made available to the SCM team. Ideally, the SCM team should make a
request to the concerned group and the group should cooperate. However, if the
cooperation is not forthcoming, the SCM team might need management support
to get the required personnel.

6518 Book.indb 185 12/30/14 1:25 PM

186 SCM Organization

SCM Organization

The CMO is the head of the SCM team. He or she is usually the person who was part
of the SCM system design team and has most probably written the SCM plan. This
person is responsible for all SCM activities in the project and reports to the CCB.
The main responsibilities of the CMO include setting up the SCM system, training
the SCM team, assigning duties and responsibilities, constituting the CCB(s) as the
case may be, coordinating between the project team and the CCB, managing the
change control activities, setting up the SCM libraries and other control mechanisms,
and coordinating between the audit team and the project team. He or she will be
part of the CCB and will ensure that the CCB meetings are convened according to
the schedule or whenever the need arises (emergency meetings).

Other members of the SCM team help the CMO in performing the SCM tasks.
These include both technical people and administrative personnel. The technical
people will be concerned with tasks like configuration identification, library man-
agement, change management, version control, release management, CAs, causal
analysis, and updating the configuration knowledge base. The administrative staff
will—among other things—ensure that meeting information is sent on time, the
minutes of the meetings are sent to the people on the distribution list, the decisions
made in the meetings are conveyed to the appropriate people, the status accounting
reports are delivered, and the skill inventory database is updated regularly.

Figure 14.3 Organizational structure in which there are independent SCM teams for each
project.

6518 Book.indb 186 12/30/14 1:25 PM

SCM Organization 187

Then there will be people who work with the SCM team on an ad hoc basis.
These people include those who conduct the CR evaluation, problem analysis, causal
analysis, and CAs and those who serve as subject experts in the CCB meetings.

So in a typical SCM setup, different people will carry out the various SCM
functions. Some of the people in an SCM environment are listed next and a brief
description given about what they do.

•	 Developers. Developers are the project team members who develop the soft-
ware system or product. They do the analysis, design, and coding.

•	 Testers. Testers conduct the testing of the programs developed by the develop-
ers. In most cases, the developers do the unit testing and hand over their pro-
grams to the testers. The testers do the module testing, the integration testing,
and the system testing. These people are responsible for coordinating the alpha
and beta testing phases. The testers originate the defect or problem reports,
make enhancement suggestions, and collect and collate the feedback from the
alpha and beta testing programs. Then they initiate the problem tracking and
change management process for each of the defects or enhancements found.
The role of the testers varies slightly from project to project (for example, in
some projects, there will be separate teams for alpha and beta testing), but
their main responsibility is to find the bugs and report them.

•	 QA representatives. The goal of a good QA program is to prevent defects from
occurring or recurring. So the main responsibility of the QA personnel is to
develop standards and guidelines for the different activities in the project such
as design, coding, and testing. They must also make sure that these policies
and standards are followed by everybody on the team. To ensure this, they
conduct quality audits. QA personnel also form part of the CCB and play a
vital role in the change disposition. In many organizations, it is the QA team
members who perform the CR evaluation, problem analysis, casual analysis,
and the knowledge base and help desk maintenance.

•	 Assigners. An assigner is the SCM team member responsible for scheduling
the tasks that are to be performed based on their severity and impact and
assigning these tasks to the other people in the team. Assigning the CRs for
evaluation, giving the problem reports for analysis, giving the task of imple-
menting a change to somebody, and ensuring that all activities are performed
on schedule are all the assigner’s responsibility. The assigner’s function may
also be performed by a pre-CCB screening committee [sometimes called the
software review board (SRB)]. The SRB may also be given some measure of
authority, by the CCB, to act on minor CRs and problem reports; such as,
approvals, rejections, and requests for additional information.

•	 Build manager. This is another SCM role whose responsibility is to handle
the various builds and releases. He or she is the person who is responsible
for such tasks as ensuring that the CIs are given the correct version numbers,
proper baselines are established, build files are accurately kept, and branch-
ing and merging of the file or files is done properly. The primary goal of this
person is to take all the necessary steps to ensure that the SCM system is
capable of configuring and building the system or its components completely
and accurately at any time.

6518 Book.indb 187 12/30/14 1:25 PM

188 SCM Organization

•	 Administrator. This is the person who does the database administration of
the various SCM databases and repositories, assigns access privileges to the
different team members, and makes backups, among other responsibilities.
This person works very closely with the build manager to ensure that the
build process proceeds without any problem.

We have already seen that many other people are involved in the SCM team.
The roles just mentioned are generally full-time jobs and are usually present in
every project that has SCM. The other personnel in the SCM team, possibly with
the exception of the CMO and a few administrative people, are called in as needed.
For example, the CCB members are called only in situations such as when a CR has
been submitted that needs to be resolved or when a decision has to be made about
the release of a product.

automation and SCM Team Size

With CM tools automating every possible aspect of CM, the number of people
required to manage the SCM functions is decreasing. However, some areas—analy-
sis, evaluation, and audits—still require human intervention. Also, not all projects
will use totally automated SCM tools; some projects will use tools that automate
certain areas such as change management, version control, build management or
system building, and status accounting. So depending on the nature of the project
and level of automation, the organization of the SCM team will vary.

Another factor that should be considered is the additional capabilities, fea-
tures, and functionality offered by the new-generation SCM tools. These tools are
highly complex and sophisticated and hence require highly trained specialists like
system administrators, database administrators, and release and build managers
to manage them effectively and efficiently. So even though SCM tools automate
the repetitive and monotonous activities, with the added capabilities, the number
of people required to manage the SCM system has not decreased considerably. The
advantages of automation include that people do not have to perform the repetitive
and tedious tasks, that the chances of errors are less, and that accurate and up-to-
date information is available, but not a significant reduction in the SCM team size.

Skill inventory database

Since the SCM team relies heavily on professionals from other groups in the orga-
nization to carry out its various functions., the SCM team should know whether
the people (with the necessary qualifications) whom they want are available and if
available where are they located and so on. The author has worked on many proj-
ects where one of the main problems faced by the SCM team was tracking down
the right people to do particular functions, such as impact analysis, problem evalu-
ation, and causal analysis.

In one particular project where the author was the CMO, this problem—the
task of finding the right people—was very acute. The company had more than 1,500

6518 Book.indb 188 12/30/14 1:25 PM

Skill Inventory Database 189

employees in five or six different offices. The skills and availability of people was
difficult information to get. So we used the idea of a skill inventory database. The
concept was borrowed from industrial engineering, where creating a skill inven-
tory of the shop floor workers has been used for implementing modern production
systems like Toyota’s. It is also used in small group manufacturing where finding
the people with the right skills fast is a necessity.

Using a skill inventory database in the SCM system proved such a success that
I have since used it in many projects with equal results.

Accordingly, it is a good idea for SCM teams to create a skill inventory database
of the company’s personnel. The database can store the details of each and every
professional whose services will be required by the SCM team. This includes top
management, the QA team members, the project team members, the SCM team
members, the vendor and subcontractor team members, the members of the hard-
ware group, and other support functions. An example of such a database is shown
in Table 14.1.

A skill inventory database will come in handy in large organizations where the
SCM manager or team needs to know details about staff, such as who can conduct
an impact analysis, who has the necessary qualifications to be part of the CCBs,
and who can conduct reviews, FCAs, and PCAs. In big organizations, the SCM
team may not know all the employees and the skill set each person has. Employee
turnover adds to this problem. CCB members who have left the organization have
to be replaced, orphan CIs (CIs whose authors or owners have left the company or
have been promoted and have more responsibilities than doing an impact analysis,
for example) have to be replaced. So it is very helpful for the SCM team to have a
skill inventory database to help find the right people for different tasks.

The skill inventory database captures the skills of every person in the company.
The SCM team should decide which skills need to be captured. For example, knowl-
edge of SCM procedures; experience in conducting quality audits, causal analysis,
and change evaluation; and knowledge of programming languages and database
management systems are all skills that could be captured in such a database.

The numbers in the columns in Table 14.1 represent the experience in years
for each skill. The number of years of experience in a particular field is not always
a good guide, however, to a person’s knowledge level and expertise in that field.
Nevertheless, it is the most easily available yardstick. Other criteria such as a merit

Table 14.1 Sample Skill Inventory Database

Name Thomas Barbara Ishtar Bob

Location/project L1/P1 L2/P2 L2/P2 L1/P2
SCM activities 7 2 0 0
Quality audits 4 0 3 0
Causal analysis 3 4 3 0
COBOL 10 0 5 2
DB2 7 0 3 2
CICS 7 0 3 2
Oracle 0 4 0 0
Visual Basic 0 5 0 0

6518 Book.indb 189 12/30/14 1:25 PM

190 SCM Organization

rating or point rating system can be used. If the company has a good personnel
evaluation system, then those ratings could be used instead of the number of years
of experience.

Although it is perfectly fine to store this information on an electronic spreadsheet,
it would be ideal if it were stored in a relational database, because this makes the
identification of the right people an easier task. For example, if you need a person
to do an evaluation of a CR that involves a program developed in the COBOL-DB2-
CICS environment, then you need a person who is familiar with the SCM activi-
ties and who has good knowledge of COBOL, DB2, and CICS. If you were using
a spreadsheet or a manual log, it would be a very time-consuming job to locate the
people you want. However, if the data were stored in a relational database, one
could get an answer by simply querying the database:

SELECT name, Location
FROM skill_inventory_table
WHERE SCM >= 2 AND COBOL >= 2 AND DB2 >=2 AND CICS >=2;

This query will bring up the names of all people who have two or more years
of experience in SCM, COBOL, DB2, and CICS. Then you merely choose from
the resulting list.

There are some overheads in maintaining the skill inventory database. Usually,
the skill inventory database is managed by the HR department. They need the list
of the skills possessed by each and every employee of the company. This is required
to identify the training needs of the employees, to forecast the skill requirements,
and to formulate the recruitment strategy, among other things. Accordingly, the
HR department usually asks employees to complete the skill inventory database
and update HR on a regular basis—as and when new skills are learned. The SCM
team can ask the HR department to include the list of the skills they want to be
included in the list. The responsibility for managing the skill inventory database is
ideal for the HR department, since this office is constantly in touch with employees
and knows which employees have left and which have joined the organization. The
SCM team can access the database whenever they want to get the necessary infor-
mation about the people they require to perform the various SCM functions. It is
important to remember that the skill inventory database is of little value if it is not
kept up-to-date. As mentioned previously, people leave the company, new people
join, and people learn new skills, all of which should be reflected in the database.

CCB Organization

The CCB is the apex body that decides on whether or not to carry out a change.
Depending on the size, complexity, and nature of the project, there will be a single
CCB, multiple CCBs, or even multilevel CCBs. In most projects, there will be only
one CCB. For small projects, there may not even be a CCB, in which case, the proj-
ect leader will decide whether to accept or reject a CR. For projects having a CCB,
the CCB will have both permanent and ad hoc members. The permanent members
include representatives of the management, project team, QA team, marketing team,

6518 Book.indb 190 12/30/14 1:25 PM

CCB Organization 191

and SCM team and, in many cases, client representatives. The ad hoc members are
people who are called (and whose expertise is required) in to resolve issues that the
CCB is not able to resolve—or not able to resolve without expert advice. Sometimes
the CCB may summon the change initiator or evaluator for clarifications. Figure
14.4 shows a sample structure for the CCB.

In some large and complex projects, more than one CCB will be required, with
each handling different modules of the project. This situation arises when the proj-
ect is very large and may be distributed geographically, so that a single CCB will
not be able to handle the disposition of all the CRs and problem reports. In cases
where multiple CCBs are present, there should be a “super CCB” (SCCB) or project
CCB (PCCB) to oversee the functioning of the CCBs and to resolve conflicts, if any,
between the CCBs. Figure 14.5 shows this type of setup.

In some cases, multilevel CCBs will be required, as shown in Figure 14.6. Here
the difference is that each level of CCB will handle a particular kind of CR or prob-
lem report. For example, a level-3 CCB will handle problems with low severity. Here
the CCBs are classified based on the types of CRs they handle, whereas in the case
of multiple CCBs they are classified based on the module or subsystem they handle.

Figure 14.4 Sample CCB organization.

Figure 14.5 Multiple CCBs.

6518 Book.indb 191 12/30/14 1:25 PM

192 SCM Organization

So in the case of a multiple CCB environment all the CRs from a particular
module will be handled by the same CCB, but in a multilevel CCB all the CRs with
the same severity level will be handled by a CCB. Multiple CCBs are useful when
the project is large and has many modules, and development takes place in differ-
ent locations. Multilevel CCBs are applicable to large projects that are complex in
nature, but the development occurs in one place. Here the multiple levels help to
resolve simple problems faster because the lower-level CCB would be comprised of
the module leader and an SCM representative, who can make decisions faster rather
than waiting for the full CCB meeting to happen. Thus, the load on higher-level
CCBs is reduced, and they can focus their attention on critical and severe problems
that will have huge impacts on costs and project schedules.

Summary

The place of the SCM team in the organizational structure depends very much on
the organization and varies from one organization to another. Irrespective of the
position in the organizational hierarchy, however, the SCM team performs the
same functions.

We have examined the organization of the SCM team and the different people
who play significant roles in the functioning of the SCM activities. We have also
considered the different types of CCBs and how they function.

Because SCM tools are automating more and more tasks, the role of the SCM
team and the tasks it has to perform are being reduced. As a result, in the future,
we may see reductions in the size of the SCM team, except in some areas such as
analysis, evaluation, and audits, where human intervention is still required.

Reference

[1] IEEE Standard Glossary of Software Engineering Terminology (IEEE Std-610–1990),
IEEE Software Engineering Standards Collection 2003 (CD-ROM Edition), Piscataway,
NJ: IEEE, 2003.

Figure 14.6 Multilevel CCBs.

6518 Book.indb 192 12/30/14 1:25 PM

Summary 193

Selected Bibliography

Alain Abran, A., and Moore, J. W., (Eds.), SWEBOK: Guide to the Software Engineering Body
of Knowledge (Trial Version), Los Alamitos, California: IEEE Computer Society, 2001.

Ben-Menachem, M., Software Configuration Management Guidebook, New York: McGraw-
Hill, 1994.

Bourque, P., and R. E. Fairley (eds.), Guide to the Software Engineering Body of Knowledge,
Version 3.0, IEEE Computer Society, 2014; www.swebok.org.

IEEE Software Engineering Standards Collection 2003 (CD-ROM Edition), Piscataway, NJ:
IEEE, 2003.

Marciniak, J. J. (ed.), Encyclopedia of Software Engineering (2nd Edition), New York: John
Wiley & Sons, 2002.

Pressman, R. S., Software Engineering: A Practitioner’s Approach (8th Edition), New York:
McGraw-Hill, 2014.

Sommerville, I., Software Engineering (9th Edition), Reading, MA: Addison-Wesley Publish-
ing Company, 2011.

Whitgift, D., Methods and Tools for Software Configuration Management, Chichester, England:
John Wiley & Sons, 1991.

6518 Book.indb 193 12/30/14 1:25 PM

6518 Book.indb 194 12/30/14 1:25 PM

195

C h a p t e r 1 5

SCM Tools

introduction

SCM tools are becoming more important in today’s complex software development
environments. Today a typical software development project consists of multidisci-
plinary teams, spread across different parts of the globe and working in networked
environments and different time zones. To avoid chaos and to bring in discipline
and improve development productivity, the role played by SCM tools is becoming
more and more important.

SCM tools are nothing new. They have existed in the mainframe and UNIX
environments for many years, and now they are available for every platform and
every kind of development environment. In fact, hundreds of SCM tools are avail-
able in the marketplace.

It is important to remember, however, that no SCM tool is a panacea for all
SCM problems. The purchase of a sophisticated tool is just one step toward effec-
tive SCM. Using the wrong tool, or using the right tool ineptly or insensitively,
makes SCM problems worse, not better [1]. This chapter examines SCM tools and
considers what they can do to automate the SCM process and improve develop-
ment productivity. We also discuss how to select an SCM tool that is best for your
project or organization and take a look at the question of whether to make or buy
your organization’s SCM tools.

Evolution of SCM Tools

Initially, SCM was just a means of controlling changes to the source code. Tools
like SCCS and revision control system (RCS) under UNIX were created for that
purpose, but their function was quite limited. Eventually, the ability to manage
revisions, compress deltas, handle binary file types, and increase security levels was
added—and source code control turned into version control.

SCM evolved into a more comprehensive process as developers realized the need
to track more than just changes to the source code. Today, SCM tools include such
diverse features as build management, defect and enhancement tracking, require-
ment tracking, release management, software production control, software pack-
aging and distribution control (the licensing and generation of serial numbers, CD
keys, and codes), and site management. The ability to identify components, recreate
deliverables, monitor problems and change requirements, and deliver a product of

6518 Book.indb 195 12/30/14 1:25 PM

196 SCM Tools

consistently high quality is the current goal of SCM. Thus, it involves monitoring
every phase of a software product’s life cycle.

SCM tools have come a long way from just managing the source code. They
are now responsible for one of the critical functions of software engineering and
help to keep projects on track and manage them effectively. Today’s SCM tools are
getting bigger, better, and bolder. They are bigger because they no longer manage
just code; they can manage the development of any object in the system’s life cycle.
They are better because they support parallel as well as incremental development.
They are bolder because they have expanded their functionality beyond the control
and management of objects and into the control and management of processes [2].

reasons for the increasing popularity of SCM Tools

There is no question that the market for SCM tools is very hot. Industry analysts
are forecasting steady growth rates for the SCM tools market. Why have so many
companies replaced their manual or semiautomated SCM systems with SCM tools?
Why are so many companies, which were using old SCM tools like SCCS or RCS,
changing to more sophisticated tools? Here are some reasons:

•	 Development time reduction. SCM tools reduce development time by improv-
ing development productivity and reducing mistakes.

•	 Increased business agility. Improved productivity and reduced development
time means less time is needed to get a product to market. This coupled with
the SCM tool’s ability to manage and track problems; fix them; rebuild the
systems easily, accurately, and quickly; and release them faster results in
improved customer satisfaction. So a company can be more agile and more
responsive to the needs of the customer without compromising product quality.

•	 Error reduction. SCM tools automate most of the monotonous and repeti-
tive tasks that were previously done by people. Thus SCM tools have greatly
reduced the opportunity for human error.

•	 Information integration. One of the major functions of SCM is to provide
sufficient, relevant, and accurate information about the software system to
the different people in the project—such as programmers, managers, analysts,
and auditors—allowing the software development and maintenance processes
to proceed smoothly. Earlier, people had to rely on reports provided by the
status accounting function. These reports were not capable of answering ad
hoc queries. However, today’s SCM tools have all the information users need
and can deliver them to users in any format that they want almost instantly.
This information integration capability and flexibility is one of the most
important advantages of SCM tools.

•	 Automation. SCM tools automate many processes, including configuration
control, defect tracking, status reporting, version control, and build man-
agement. These were the tasks that were considered the “necessary evils” of
manual SCM systems. By automating these tasks, SCM tools have improved
development productivity and given people more time for the system devel-
opment process.

6518 Book.indb 196 12/30/14 1:25 PM

Advantages of SCM Tools 197

These are some of the reasons for the increasing popularity of the SCM tools
market. As more and more companies join the race, the competition is getting hot-
ter, and SCM tool vendors are gearing up to meet the competition by offering more
features and better capabilities for their products. So the future will see a fierce
battle for market share and mergers and acquisitions aimed at gaining strategic and
competitive advantage. The ultimate winner in this race will be customers, who will
get better products and better services at affordable prices.

advantages of SCM Tools

Installing an SCM tool has many advantages, both indirect and direct. The indi-
rect advantages include a better corporate image, improved customer goodwill, and
customer satisfaction. The direct advantages include use of the latest technology,
flexibility, better analysis and planning capabilities, improved development efficiency
(people will have more time to work on developmental activities), information inte-
gration for better decision making, and faster response time to customer queries.
Some of these direct benefits are described in the following sections.

information integration

The first and most important advantage lies in the promotion of integration. The
reason SCM tools are called integrated is because they have the ability to update data
automatically between related SCM components. For example, it is only necessary
to update the status of a CR at one place, for example, in the change management
system; all the other components will automatically get updated. So when a devel-
oper checks in a component after making changes, the status of a CR automatically
changes from “assigned” to “complete.” The new files or files that are checked in
are automatically assigned the new version numbers. The dependency details are
updated to reflect the new change. The new versions are designated as the latest
versions of the items and so on. The next time a status report is created all of these
modifications will be reflected in that report.

The beauty of this system is that information updating happens instantaneously.
So you get up-to-the-minute information at your fingertips. This information inte-
gration leads to better decision-making and resolution of problems.

Another advantage of this integration is that the people who are involved in a
project are also connected to each other. This integration has tremendous potential
for improving productivity. As a result, one can have, for example, virtual CCB
meetings, on-line polls, and automatic notification.

Flexibility

A further advantage of SCM tools is their flexibility. Diverse multinational environ-
ments are covered in one system, and functions that comprehensively manage mul-
tiple locations and distributed and parallel development can be easily implemented.
To cope with globalization, distributed development, and sophisticated development
projects (development of large, complex, and mission-critical systems), this flexibility

6518 Book.indb 197 12/30/14 1:25 PM

198 SCM Tools

is essential. Moreover, it has major advantages, not simply for development and
maintenance, but also for management.

Better analysis and planning Capabilities

Another advantage provided by SCM tools is the boost to planning functions. By
enabling the comprehensive and unified management of related SCM functions (such
as configuration control, status accounting, and CAs) and their data, it becomes
possible to utilize fully many types planning tools, such as decision support systems
and simulation functions and what-if analyses. For example, we could simulate
the impact on the project cost and schedule of using more than one person on a
change implementation. Furthermore, it becomes possible to carry out flexibly and
in real time the filing and analysis of data from a variety of dimensions. Decision
makers can get the information they want and, as a result, make better and more
informed decisions.

Use of the Latest Technology

An additional advantage is the utilization of the latest developments in IT. SCM
tool vendors realized that in order to grow and to sustain that growth, they would
have to embrace the latest developments in the field of IT. Accordingly, they quickly
adapted their systems to take advantage of the latest technologies such as open
systems, client-server technology, and the Internet and intranets. It is this quick
adaptation to the latest changes in IT that makes flexible adaptation to changes
in future development environments possible. It is this flexibility that makes the
incorporation of the latest technology possible during the system design, develop-
ment, and maintenance phases.

Why Many SCM Tool implementations Fail

This section examines why many SCM tool implementations fail. SCM tools—if
chosen correctly, implemented judiciously and used efficiently—will raise productiv-
ity, shorten development times, improve responsiveness, and result in better customer
satisfaction. To use a tool efficiently, it has to be the right tool (right in the sense that
it integrates well with the organization’s business processes), and the people who
use the tool have to be properly trained. However, many projects or organizations
fail, because they use the wrong product, conduct an incompetent and haphazard
implementation, and suffer inefficient or ineffective usage.

SCM is first an attitude; second, a process; and only third, a set of tools [3].
Attitude refers to the feeling or mood of the people in the organization toward
SCM. Users of the SCM system have to be convinced of the real benefits of using
SCM. This can be done by educating staff about SCM’s benefits and exposing the
misconceptions about SCM. This is important because, if people believe SCM is
unnecessary, they will try to bypass it—and unless a consistent SCM process is

6518 Book.indb 198 12/30/14 1:25 PM

SCM Tools and SCM Functions 199

integrated into the development methodology, no one will know when to apply
SCM tools, or even what those tools are.

To work successfully, SCM solutions need a lot of factors to click. There should
be good people who know the SCM concepts and the project and organizational
details, the vendor should be good, and the vendor’s package should be the one
best suited for the company’s needs. The implementation should be planned well
and executed perfectly, and the end-user training should be done so that the end-
users understand the system and the effect of their efforts on the overall success of
the program.

SCM can be implemented in a variety of ways. It can be implemented in a
phased manner (the incremental approach) or it can be implemented in one shot
(the big-bang approach). Irrespective of the implementation methodology chosen,
the development process has to be mature, and the development environment and
the organizational culture must be conducive for the implementation of SCM and
its tools. If the implementation is done in an environment where personnel are not
ready for SCM and the work culture is not suited, then the implementation will
fail. Accordingly, the first step in the SCM implementation process is to make the
organizational environment suitable for SCM.

Organizations exist in different levels of process maturity. The ease and cor-
rectness with which they can execute a process depends on their maturity. As such,
it is generally not fruitful to impose a very sophisticated process on an organiza-
tion whose maturity is low. The maturity of an organization not only depends on
the skill sets of the individuals, but also on the chemistry of the team. This makes
improvement an incremental process. The lessons, habits, and practices learned
doing simple tasks provide the foundation to take the organization toward more
sophisticated tasks [4]. So the maturity level of the organization is very critical in
the success of an SCM implementation.

Also, many SCM tool implementations fail because they try to implement SCM
in the “tool” way rather than in the “process” way. As discussed earlier, SCM is
first an attitude, then a process, and only third a set of tools. One can implement
sophisticated, all-encompassing SCM tools, loaded with features, but if the people
who are using them do not know why they are doing a particular task or what hap-
pens when they do something [or the effect of their actions (or lack of it) on others],
then the chances of such an implementation succeeding are slim.

Thus, for an SCM tool implementation to succeed, the implementation has to
be planned well, people must be ready for SCM, the development process must be
in place, the selected tool should be well integrated with the process, and finally
everybody involved in the project should understand the importance of SCM and
the role each has to play to make the implementation a success.

SCM Tools and SCM Functions

The days when a single programmer developed an application independently are a
thing of the past. Today’s software development is a team effort. When more than
one person is involved in the development of a software system, it can lead to such

6518 Book.indb 199 12/30/14 1:25 PM

200 SCM Tools

complications as communications breakdowns, shared data problems, and simulta-
neous update problems. We have discussed how SCM systems can help solve these
problems. Manual SCM is a tedious, monotonous, and time-consuming process.
Many tasks like change management, record keeping, and status reporting are
repetitive in nature. Accordingly, we need to automate these tasks: A good SCM
tool should automate the project coordination and management tasks, support
repeatable processes, manage changes and issues, and automate the system builds.

In a manual SCM scenario, a developer or programmer spends more time on
nondevelopmental activities such as documentation, modification, and revision
of the requirements and design documents, and bug fixing. Another portion of
the nonprogramming time is spent on such tasks as handling CRs, tracking user
requirements, doing causal analysis, and creating status reports. Even though all
of these mundane tasks are necessary for the smooth functioning of a project, it is
a cardinal offense to waste the precious time of programmers and developers on
them; such jobs can easily be automated. This is where automated SCM tools can
be invaluable.

SCM tools automate manual tasks and set development teams free to actually
develop. Moreover, today’s software systems are more sophisticated and highly com-
plex, support multiple platforms (sometimes they are cross-platform), use complex
technologies, and are developed in distributed environments by diverse development
teams (with different cultural, social, educational, and ethnic backgrounds). In fact,
managing projects of this kind manually is almost impossible. Consequently, SCM
tools are no longer a luxury, but a necessity. Not having an SCM tool can become
a strategic disadvantage and can lead to catastrophic consequences such as failed
projects, cost and time overruns, and customer dissatisfaction.

The following sections examine the features of SCM tools that help automate
the SCM functions, reducing human intervention and improving productivity.

Version Management

Version management, a critical function of SCM, is the basis on which other func-
tions are built. Version management is the storage of multiple images of the develop-
ment files or set of related files in an application. With a good version management
system one can get an image—a snapshot in time of the development process—and
recreate the file or files as they were at that discrete point in time.

Any good SCM tool will support version management activities such as creat-
ing, working, and changing versions. A version consists of a file or a set of files,
each with a particular version label (i.e., a unique identification or name). The SCM
tools have the capability to define what file or files make up a version. Once a ver-
sion is defined, the user is able to check out the files that make up a version. The
SCM tool is able to identify the changes to the components of a version and then
create or define a new version. In this area—identifying the changes and creating
new versions—and in the system building (or build management) area, the version
management system works in conjunction with the change management system
and build management system so that the correct versions are incorporated into
the system builds.

6518 Book.indb 200 12/30/14 1:25 PM

SCM Tools and SCM Functions 201

Change Management

Most SCM tools completely automate the change control procedures and man-
age the repositories. When a CR is made, the information about it goes to all the
concerned personnel (e.g., management, project leads, and CCB members) so that
they can send their approval or disapproval immediately by e-mail or some other
messaging system. This eliminates the time lag between change initiation and dis-
position. Virtual CCB meetings and on-line polls are now standard with almost any
good SCM tool. The change management system can be configured (a rule-based
system) to automatically receive the CRs, process them based on a set of rules, get
the responses from the appropriate sources regarding the disposition, and allocate
the implementation work to qualified professionals and notify them regarding the
work allocated to them. All of these things can be done without human intervention.
This kind of workflow automation helps to improve productivity and shorten the
change process. Also, when a developer checks out the file(s)1, the change manage-
ment systems will begin the tracking of the activities that affect those file(s).

The change management system is also notified when the task of implement-
ing a change is allotted to someone. So only authorized personnel can check out
or make changes to the specific files. The change management system keeps track
of the modifications made to the change set and its components, and when the
change is completed and the items are checked in, the system can compare the
before and after images and create the change history and the delta and store the
items in the most efficient manner. Also, the details of the change process, such
as who initiated the change, which people were involved in the decision making,
who implemented the changes, how much time was taken for implementing the
change, and how the change was implemented are captured automatically. This
information is relevant to the status accounting function and helps in managing
the project more effectively.

We have seen that the configuration identification function is an element of
CM, consisting of selecting the CIs for a system and recording their functional and
physical characteristics in technical documentation. In an automated environment,
this type of information can be captured and updated automatically. The parsing
tools can determine the interdependencies of the various CIs so that when shared
components get modified, the system can alert users about other impacted items.
This automatic capturing of the component interdependencies saves a lot of time
that would otherwise be spent on impact analysis when a CR is initiated. With this
information already in the system, users just have to query the system repository
to determine the impacted items.

Most change management systems support team development, parallel devel-
opment, and distributed development. Many of the modern tools allow more than
one person to work on the same file or set of files. In parallel development, two or
more users may need to work on the same file, just as they would do in concurrent

1. A person can check out more than one file, because a CR implementation is rarely confined to a single file;
even if it is confined to a single file, information such as the associated analysis and design documentation
and user manuals also have to be updated.

6518 Book.indb 201 12/30/14 1:25 PM

202 SCM Tools

development. In the case of concurrent development, the branches are eventually
merged into a single item, whereas in the case of parallel development, the branches
will go ahead without merging. Parallel development is necessary when the develop-
ment teams are producing versions of the same component for different hardware
platforms or operating systems (also called variants).

Multiple development paths are usually supported with branches. Branching
allows users to store more than one path for the same file. In the case of concurrent
development, once the changes are made and the different people check in their files,
the system will compare the changes and do an automatic merging of those changes.
There is also the facility to do interactive merging, where the system will highlight
the changes made by the different people with respect to the ancestor object. The
systems can be configured to do automatic merging or interactive merging depend-
ing on the user’s preferences. There are certain pitfalls associated with automatic
merging, which can fail at times. The cases where automatic merging might work
are where two users edit the same file and make changes at different locations in
the file. Then, perhaps, the SCM tools can merge the changes. However, even this
simple looking case can produce bugs. The overall resultant file might have a logic
flow that is flawed. Similarly, there is the case where two users edit the same section
of the file where automatic merging cannot be done.

Change management systems keep a chronological record (or journal) of all
activities that are applied to the system components so that at any point any object
or component in the system can be brought back to any of the previous states. This
is helpful in cases where you need to unwind the impact of an emergency fix that
was done in the middle of the night, so that it can be thoroughly checked, tested,
and repromoted.

Another important and very useful feature of SCM tools is their graphical inter-
face. The tools use different colors, icons, and other features to help users absorb
information quickly and determine patterns and exceptions easily.

problem Tracking

Problem reporting and tracking is one of the activities that takes a lot of time and
effort. Problems have to be reported, analyzed, and fixed, and defect prevention
methods have to be carried out. The existing problem records (the knowledge base)
can be scanned for similar incidents that may have been solved already. This search-
ing is best done by a computer, especially when we are talking about large knowledge
bases. Computers can easily find the records that match the search criteria—in a
fraction of the time taken by a manual process.

The problem tracking components of SCM tools track the problem from its
origin to completion and capture the details of the problem, such as originator,
date of problem identification, cause of the problem, how and when it was fixed,
how much time was taken, and what kind of skills were needed. These details are
captured automatically as the activities happen. Modern problem tracking tools are
very sophisticated and have advanced features like automatic receiving of the PRs,
automatic categorization of the reports, rule-based actions, automatic notifying,
and alerting mechanisms.

6518 Book.indb 202 12/30/14 1:25 PM

SCM Tools and SCM Functions 203

Many tools are capable of automatically notifying the concerned personnel by
e-mail or pager messages about the arrival of a PR depending on predefined cri-
teria chosen, such as severity and impact. These tools are also capable of creating
alerts (automatic notification and problem escalation) based on the promotion of
the problem through stages of resolution.

promotion Management

As software systems are developed, they go through the SDLC process. Depending
on the life cycle model chosen, the phases will differ, but all software components
have to go through various phases such as analysis, design, development, test,
release, and maintenance. Promotion management tools automatically record the
phases that the CIs in the system go through and the various details such as when
each phase started and when it was finished. They capture information and create
trails, which will be very useful when one needs to know exactly what happened or
needs to recreate an event or an item before or after a particular event. For example,
if we know exactly what was done just after alpha testing, we can recreate an item
so that it is in the state it was in before the test, when it did not have any problems.

Obtaining this information and these facilities are possible in manual systems
also, but with an SCM tool the degree of detail that can be captured is almost infinite.

System Building

When the components of a software system are ready to be tested or shipped, we
do what is called system building. We combine all files and may compile them, link
edit them, and create an application. This build can be done for a subsystem, a
module, or an entire system, in support of integration testing, alpha or beta testing,
and system release. At this stage, capturing the details of each and every build and
the building process—such as which components were used in the build, what ver-
sions of the components were used, which operating system was used, which version
of the operating system, and what compiler and linker options were in effect—is
of paramount importance. This is because each build should be reproducible and
repeatable, and that reproduction has to be reliable and accurate. SCM must be able
to recreate, for example, the alpha test version of the system perhaps one year after
the actual testing was done. To do this, one needs the information mentioned above.

The SCM build management tools capture this information (in most cases
automatically) and help provide reliable, repeatable builds. The automatic source
code scanning, the dependency analysis capabilities, and the creation of build audit
trails (footprinting) are just some of the features of the SCM tools that save time,
shorten build cycles, and eliminate build errors by providing repeatable, automated
builds of software projects. The SCM tools make the cross-platform builds that
span multiple platforms, operating systems, and development environments easier,
faster, and more accurate.

Also, many of these systems maintain the history of the previous builds and
releases in their repositories. This helps when monitoring conflicts between the new
releases and any of the previous releases that are still in use.

6518 Book.indb 203 12/30/14 1:25 PM

204 SCM Tools

Status accounting (Querying and reporting)

Status accounting consists of the recording and reporting of information needed
to manage a configuration efficiently. With manual systems, one has to record all
events that will be needed later. This record keeping is a tedious and monotonous
job and requires effort by the many people who perform the different SCM func-
tions. There is also a limit to which the details can be captured. Also, the manual
reporting function basically relies on routine reports to satisfy the information needs
of the various participants in the software development process. Ad hoc queries are
always time-consuming and difficult to accommodate.

When one uses an SCM tool, however, as we have seen earlier, information
integration occurs. There is no need for active record keeping; the system monitors
all activities and keeps a record of them to the level of detail specified by the user.
Once the information is in the SCM tool’s database, it can be managed at will. The
powerful querying tools allow users to get accurate answers to their numerous and
varied information needs, when they need them. The reports can be generated in
any format specified by the user. Graphical interfaces and templates or wizards
are available to create a query and get the answers. This accurate and immediate
access to information is one of the most often developer-requested features of SCM
automation.

Cas

Auditing means validating the completeness of a product and maintaining consis-
tency among the components by ensuring that the product is a well-defined collec-
tion of components. For auditing requirements, one needs a history of all changes,
traceability between all related components in the product and their evolution, and
a log containing all details about work done [5]. The reporting features of the SCM
tools provide this information.

The reporting feature of the SCM tools identifies the differences between the
versions and releases. The ad hoc query facility of the tool helps answer any specific
questions that the auditor has. The SCM tools automatically record all activities
happening to the CIs and thus provide a comprehensive audit trail of the activities
performed on an item and the events that have happened. These reports and logs
help a great deal in automating the auditing process and make the CAs a lot easier
than the manual process.

access and Security

The information contained in the SCM tool is sensitive and should not be available
to all. Also, the items in the repository should be accessible only to those who have
the necessary authorization. In the case of manual systems, configuration manag-
ers will have to take action to prevent unauthorized access to files or information.
However, the SCM tools have features that aid in managing access to the system.

The system can be configured so that only people with the necessary authoriza-
tion will get to see the information or have access to the files. These access privileges

6518 Book.indb 204 12/30/14 1:25 PM

SCM Tools and SCM Functions 205

and security mechanisms can be enforced using the user ID and login password of
the users, so that the exact mechanism is transparent to them.

Users can log in to the system and access all information they are authorized to
see, and what they are authorized to see can be set based on the user ID (or designa-
tion, title, role). With distributed development scenarios, where developers access
the SCM information and files using the Internet, encryption methods are used to
ensure secure transmission of data and information across the Internet.

Customization

The era when you had to buy a tool and implement it as it came out of the box is
over. SCM tool vendors are now offering the ability to customize their tools. The
extent of the customizations varies from tool to tool. SCM tools are being enhanced
with customization facilities so that customers can easily modify certain features
of the tools (such as screen layout, colors, and state names, and transitions). More
complex customizations (such as changing the associated semantics, roles, access
rights, and transition conditions of the states) typically require source code changes
or additional scripts using triggers and event mechanisms. Vendors are moving
toward parameterizing these more complex customizations [6].

These customization capabilities will help customers, because they will be able
to get tools that perfectly match their requirements. Thus, instead of developing a
process around the tool, now customers can choose a tool that will integrate seam-
lessly with their development process.

Web Enabling

As with every other software market, SCM tool vendors are being forced to move
from a client-server to browser-server architecture to Web-enable their tools. The
popularity of distributed development makes Web enabling a must-have feature in
SCM tools. Today’s developers need to access the corporate databases and reposi-
tories when they are on the move and when they are working away from the office.
Also, different people working on the same project need to share central databases
and repositories for performing the various SCM activities. The most cost-effective
way to do this is to use the Web. The availability of high-speed Internet access and
technologies such as virtual private networks (VPNs) and better encryption meth-
ods make the use of the Internet a very cost-effective and secure medium in which
to do distributed development.

The previous section discusses the general characteristics of modern SCM tools
and their advantages. There are more than 50 SCM tool vendors in the marketplace,
and new players are entering the market. A list of the major SCM tools is provided
in Appendix A.

As described earlier, SCM tool selection is one of the critical factors for the suc-
cess of SCM implementation. The success of a company lies in selecting an SCM
tool that suits its needs and matches its profile. The next section examines how to
select the right SCM tool for your organization or project.

6518 Book.indb 205 12/30/14 1:25 PM

206 SCM Tools

SCM Tool Selection

SCM tools have gained popularity, and their usefulness has increased to a point
where software development without an SCM tool is almost nonexistent. Further-
more, manual SCM systems are not acceptable, except for very small, single-person
projects. All other projects benefit from the use of automated SCM tools.

SCM tools are now available in all sizes and shapes for all platforms and devel-
opment environments. Evaluating the SCM tools available in the marketplace and
then selecting one for your organization or project are critical parts of the process.
This decision can make or break an organization.

Of the more than 50 SCM tools available, the features they offer vary, as do
the technologies they support, the technologies they use, the architecture on which
they are built, and their available platforms. Each tool has its own strengths and
weaknesses. For example, some are better at change management, whereas others
have excellent build management and versioning capabilities. There are SCM tools
that cover the entire spectrum of SCM functionality, and there are tools that just
do source control.

Deciding which tool is suited to your organization is a difficult task. Each piece
of marketing literature of the tool vendors claims that their product is the best
among the lot and has all of the features you will ever need. So, if you go by what
is written in the product brochure or what the salespeople say, you will find it very
difficult to make a decision and might end up with the wrong choice. According to
Dart [6], “… such literature (the marketing literature of the tool vendor) is valuable
for giving the reader an overview of functionality and a glimpse at the differentiator
for that vendor’s offering. But, if you compare the literature or listen to a vendor’s
presentation, it would be very difficult to evaluate which package is the best or
which would be most suitable for your organization.” Accordingly, tool selection is
something that should be done in a systematic and scientific manner. This section
examines how to select an SCM tool that will suit your needs.

The most important factor to keep in mind when analyzing the different pack-
ages is that none of them is perfect, and this needs to be understood by everyone
on the decision making team. The objective of the selection process is not to iden-
tify a package that covers each and every requirement (a perfect fit). The objective
is to find a package that is flexible enough to meet the company’s needs—or in
other words, to find a tool that can be customized to obtain a “good fit.” Because
there are so many, analyzing all SCM packages before reaching a decision is not
a viable solution. It is also a very time-consuming process. So it is better to limit
the number of packages that is evaluated to less than five. It is always better to do
a thorough and detailed evaluation of a smaller number of packages than to do a
superficial analysis of dozens of packages. So the company should do a preevalua-
tion screening to limit the number of packages that is to be evaluated by the com-
mittee. The preevaluation process should eliminate those packages that are not at
all suitable for the company’s business processes. One can zero in on the few best
packages by looking at the product literature of the vendors, getting help from
external consultants, and, most importantly, finding out what package is used by
similar companies. It is a good idea to look around to find out how the different
packages are performing in environments similar to yours. Once you select a few

6518 Book.indb 206 12/30/14 1:25 PM

SCM Tool Selection 207

packages after the screening, you can call the respective vendors to request pre-
sentations or demos.

Dart [6] classifies SCM tools into three categories: version control tools, devel-
oper-oriented tools, and process-oriented tools. The SCM tool evaluation process
can be narrowed down to a few tools if the company knows which category of tools
it is looking for. The tools vary in features, complexity, and functionality, with the
process-oriented tools being the most sophisticated and having the most functionality.

A version control tool would typically suit a small company or a research and
development group that has a small number of releases and possibly no variant
releases. A developer-oriented tool would typically suit a medium- or large-sized
company that does not have a lot of formal processes defined and is not focused on
standards certification. The company might have many variant releases and need
strong support for parallel development and build management, as well as more
reliability from the CM repository. A process-oriented tool would typically suit a
large corporation with formal processes that need to be automated, that is focused
on process improvement in general, and that has sophisticated build management
and change management needs [6]. The preceding categorization of SCM tools can
be used to narrow the list of candidates in the preevaluation screening process.

After the decision to buy an SCM tool has been made, the company needs to
develop selection criteria that will permit the evaluation of all the chosen packages
on the same scale. To choose the best system, the company should identify the sys-
tem that meets the business needs, that matches the development process, and that
identifies with the development practices of the company. It will be impossible to
get a system that performs its development and maintenance functions in exactly
the same way as the company does, but the goal is to get the system that has the
least number of differences.

Selection process

The selection process is one of the most important phases of SCM implementation,
because the tool that you select will decide the success or failure of the project.
Because SCM tools involve a huge investment, once a package is purchased, it is not
an easy task to switch to another one. So it is a “do it right the first time” proposi-
tion. There is little to no room for error.

Selection Committee

It is a good idea to form a selection or evaluation committee to do the evaluation
process. The selection committee should be entrusted with the task of choosing a
package for the company. The package experts or consultants can act as mediators
or play the role of explaining the pros and cons of each package.

The evaluation committee should be made up of various representatives of the
user community [7]. It can include developers, testers, QA people, technical lead-
ers, build managers, and project managers. All provide perspective and ensure their
needs are addressed, while providing their own experiences, skill set, and processes
to address the three important areas apart from functionality requirements: usabil-
ity, performance, and scalability requirements.

6518 Book.indb 207 12/30/14 1:25 PM

208 SCM Tools

Working with Vendors

Once you decide to buy an SCM tool, the marketing executives of the different
vendors will swamp you. Each will have colorful and superbly produced brochures
and presentations claiming that their product is the best one for you. They will try
eagerly to convince you of that. Accordingly, you should have a strategy in place
for working with these vendors.

As mentioned, you should conduct a detailed evaluation of not more than five
packages that meet your preselection criteria. When the vendors arrive for their
presentations, you should be thoroughly prepared; otherwise they may overwhelm
you with their presentations and you will not have time ask questions. This point
is being stressed again and again because most vendors are able to make presenta-
tions that leave potential users dazzled, and without proper consideration of all
aspects, the selection may end up being based on a set of factors that is insufficient
for arriving at a well-informed and judicious decision.

So instead of just listening to presentations, you should be prepared to ask ques-
tions, prepared beforehand and addressing all of your concerns. The responses that
you get to your questions will help you either eliminate a vendor or strengthen his
or her case. The questions, if properly prepared and asked, will expose the weak or
problem areas, if any, that exist in the vendors’ products. Also, when you are asking
questions, it means that you are not taking anything for granted. It is a good idea
to prepare minutes of the meeting and ask the vendors to sign off on them. Another
way to do this is to send a detailed e-mail after the meeting, to the vendor, with
the points that were discussed. Ask for e-mail feedback to put on the record. These
procedures will prevent vendors from making false claims, and you can make them
accountable if they fail to deliver what they have promised.

The vendors should be asked to show testimonials and practical demonstrations
of the system. In addition, they should provide references for organizations where
the system has been implemented successfully. However, all vendors will also have
customers where the tools have failed. Getting those names and reasons for the
failure is more important than the success stories. While vendor representatives are
well prepared to tell their success stories, questions about failed implementations
usually reveal points and issues that they are trying to downplay. So it is important
to ask about failed implementations. Quite often, the vendor will send two rep-
resentatives to visit you, a marketing agent and a technical expert. Most of your
questions should be directed to the technical expert. The marketing expert should
be asked about such factors as warranties, licenses, cost, support, and training,
whereas the technical expert should be asked about the functionality and capabili-
ties of the system they are offering.

role of Technology

Existing technology will play a very important role in the SCM tool selection process.
Each organization has its own technological environment (e.g., how the develop-
ment process works, what kind of hardware and software it uses, and a preferred

6518 Book.indb 208 12/30/14 1:25 PM

Selection Criteria 209

database management system). These factors can greatly influence the selection
process in the sense that they can limit the number of packages available for evalu-
ation. So management must decide whether the SCM tool will be selected taking
the existing infrastructure into consideration or whether the existing systems will
not be considered (in which case some of them will have to be scrapped). This is a
hard decision, and it is always a better idea to find a package that is compatible with
the hardware, software, and technology the company already has in place. Also, if
the organization has the necessary infrastructure, then it can think of buying the
required components from the vendors and integrating them with the existing system.

For example, if an organization is using the operating system’s library manage-
ment system and is quite satisfied with it, then it can go in for a change management
and problem-tracking tool and not the complete offering from the vendor. Later, if
the organization wants to switch from the operating system’s library management,
it can purchase the remaining modules of the package. So it is not imperative to buy
all of the components offered by the vendor. The evaluation committee in associa-
tion with the vendor can select the required components and then integrate them
with the existing infrastructure. However, do not forget here to get the vendor’s
assurance (in writing) that the existing system will integrate smoothly and seam-
lessly with the purchased components.

Selection Criteria

SCM tools come in all sizes and shapes, with all of the frills, bells and whistles,
gizmos, and gadgets that you can imagine. So it is a good practice to specify selec-
tion criteria for evaluating the packages that survive the preevaluation screening.
The criteria can be in the form of a questionnaire, and a point system can be imple-
mented. This will help make the selection process more objective.

The questions should address the organization’s needs and concerns, and each
issue or question should be given a weight according to how critical that function
is for the company. For example, if the company is doing distributed development
and has development centers in different countries, then the ability to handle dis-
tributed development and Web features becomes an important criterion. Likewise,
the selection criteria should be divided into categories—vital, essential, and desir-
able—and points should be given to each criterion. This point rating system simpli-
fies the evaluation process, but remember that the importance of human intuition
(gut feeling) and judgment should never be underestimated.

The best method for preparing the selection criteria is to conduct a requirements
analysis—find out what the company needs. The requirements must reflect those
factors that the company considers indispensable for the successful running of the
business according to the company’s work culture and practices. A set of questions
that could form part of the selection criteria can be found in the following documents:

•	 Mosley, V., et al., “Software Configuration Management Tools: Getting Bigger,
Better, and Bolder,” Crosstalk: The Journal of Defense Software Engineering,
Vol. 9, No. 1, Jan. 1996, pp. 6–10.

6518 Book.indb 209 12/30/14 1:25 PM

210 SCM Tools

•	 Firth, R., et al., “A Guide to the Classification and Assessment of Software
Engineering Tools,” Technical Report CMU/SEI-87-TR-10, Software Engi-
neering Institute, Carnegie Mellon University, 1987.

•	 Berlack, R. H., Evaluation and Selection of Automated Configuration Man-
agement Tools, Amherst, NH: Configuration Management International,
1995.

Some examples of selection criteria are listed as follows:

•	 The package should have distributed development support.
•	 The package should support parallel development of variants.
•	 The package should have both automatic and interactive merging facilities.
•	 The package should have a a customizable report generation facility and the

facility to export the reports to other systems.
•	 The tool should support a footprinting feature for build management.
•	 The change management and problem tracking system should have the facil-

ity to carry out communication such as virtual CCB meetings, on-line polls,
and automatic notification.

•	 The system should have a graphical user interface.
•	 The performance of the system should be within in such-and-such limits.
•	 The vendor should have been in the business for at least “x” years.
•	 The package should have at least “x” number of installations out of which at

least “y” should be in organizations similar to your organization.
•	 The cost of the package with all the necessary modules should be less than

“x” dollars.
•	 The package should support incremental module addition. For example, the

company should be able to buy the core modules initially and then purchase
additional modules as and when desired.

•	 The vendor should provide implementation and postimplementation support.
•	 The vendor should train company employees on the package.
•	 The package must be customizable and the customization process should be

easy (something that can be done in-house).
•	 The package should be scalable or should be capable of growing with the

organization.
•	 The vendor’s policy and practices regarding changes such as updates and ver-

sions should be acceptable.

In this way, the issues, concerns, and expectations that the company has regard-
ing the package can be consolidated and made into a list. Then the items in the
list should be divided into the “vital-essential-desirable” categories. Subsequently,
using this list, each package should be evaluated. Many items in the list will have
descriptive answers. The committee should analyze these issues and assign points
to them.

One important thing to keep in mind is that whenever a decision is made, the
committee should discuss it and reach a consensus. In doing so, the chances of con-
flict between different functions (like the development team, QA team, and other
support teams) are reduced. Remember that the SCM tool belongs to all functions,

6518 Book.indb 210 12/30/14 1:25 PM

Selection Criteria 211

so it is better for decisions to be arrived at via a consensus. This will create the
notion that the tool belongs to everyone, and it furthers the idea that a commitment
from everyone is needed to make it happen. Most importantly, because both the
SCM experts (people who know the tools well) and project team members (people
who know the project and work culture well) are involved, they can point out areas
and issues that should be given more importance and the aspects that should be
scrutinized more thoroughly.

Another source from which the evaluation committee can get information about
the tools is independent research agencies and companies. These sources supply
information, comprehensive analyses, and comparison reports about the leading
tools. It is important to remember, however, that these reports, although excellent
sources of information and a single-point reference about the leading SCM tools,
are not totally unbiased, completely accurate, and totally objective. Therefore,
they should not be taken as gospel truth. Still, these reports can provide valuable
information about the tools. Accordingly, to get a complete picture of the SCM tool
marketplace, study at least a few reports by these research groups along with the
vendor’s literature. These reports analyze and compare the tools and their features,
predict market trends, and forecast the position of the different players in the com-
ing years, among other things. A number of companies and consultants do this kind
of analysis. Prominent among them are Ovum Limited (http://www.ovum.com),
the International Data Corporation (http://www.idc.com), and the Butler Group
(http://www.butlergroup.com). Sometimes trade magazines like Communications
of ACM, IEEE Software, IEEE Computer, and Application Development Trends
publish articles about SCM and its current state. This information is also worth
looking into because it is independent and not biased. In addition, Web forums can
give information about SCM tools and their pros and cons. These forums are run
by SCM professionals, and most SCM practitioners are members of them. Their
members range in experience from newbies to veterans who have worked on many
SCM tools and have spent years in the field. It is possible to get a lot of information
from these forums, and if you don’t get what you are looking for, you can always ask
and your query will be answered by experts. Tapping the potential of the worldwide
SCM community through the forums for tool selection (and for finding answers to
other questions) is a very cost-effective (as the membership to these forums is free)
and efficient way to select the SCM tool best suited for your organization and then
operating and maintaining it.

Once the committee has evaluated all the tools that have cleared the preevalu-
ation stage, listened to the vendor presentations and demos, and cleared pending
issues, it reaches a decision on which tool to buy. At that point, it is a good idea to
visit a few companies that have installed the particular package to see it in action.
Since many people will not admit when they have made a mistake, anything the
existing owners say about a package should be taken with a grain of salt. Neverthe-
less, visiting four or five installations should give the committee members a good
idea about the package. These company visits may not be practical for small firms
and, therefore, should be done only if you have the budget for such an activity and
if the team members feel the need. If the committee members feel that their deci-
sion is right, then the company can proceed with the purchase and implementation
of the chosen tool.

6518 Book.indb 211 12/30/14 1:25 PM

212 SCM Tools

If anybody is uneasy about some aspect or does not feel that the product meets
the expected standards, then the committee members should revisit the question of
which tool to choose and be prepared to do the analysis once again. The package
that received the maximum score in the point rating system need not be the one that
is best suited for the company. Accordingly, the extra time spent on analysis and
evaluation is not a waste; in fact, it could save the company from a potential disaster.

Tool implementation

Once the right tool has been selected, the next step is implementation. Making a
major change in a company, such as changing over to a new automated CM tool, is
both a significant opportunity and a major responsibility [8]. It is an opportunity
because it enables a company to address its CM problems and improve processes
to result in better management of its data and its development and maintenance
activities. At the same time, changing over is a major responsibility because of the
ramifications and the resources required to make the change. Many tricky techni-
cal, political, organizational, cultural, process-oriented, risk-related, and personnel
issues need to be addressed in making the change, and people need to be commit-
ted to the change.

Accordingly, to adopt an SCM tool successfully or to make the changeover from
one tool to another, careful planning is a must. All possible aspects of the imple-
mentation should be addressed satisfactorily before starting the implementation
or changeover. This includes the implementation of new procedures; the changing
responsibilities of users (with SCM tools, users get more freedom than with a man-
ual system, like the ability to check out and check in files and interactively merge
the changes); the changing responsibilities of the SCM team (because most of the
processes become automated, a significant reduction is seen in the size of the team);
and the role of the CCB members, QA members, and the audit team (they will have
to be trained in the new technologies, which enable them to conduct virtual CCB
meetings, on-line polls, and audits).

Many people will need to be trained or retrained on the new tool. Many will have
to be trained on the concepts of SCM and its functions. In the author’s experience,
it makes a tremendous difference if people are first trained regarding the concepts
of SCM and then trained on the tool. In this way, they can correlate what they are
doing with the tool with the actual SCM concepts and functions. If employees are
just trained to use the tool without understanding the underlying SCM concepts,
then they will be doing their tasks without knowing how their actions affect others.
Yes, it is possible to implement an SCM tool and use it without actually knowing
anything about the SCM concepts, but in the long run it is better to do it the right
way—that is, to provide training in the tools along with training on the SCM con-
cepts and how the concepts are implemented in the tool.

The following issues need to be addressed before the SCM implementation or
changeover begins: process, culture, roles, risk management, environment, applica-
tion, requirements, management, and planning [8].

The organization should address the current process and the new SCM process
and how the new tool will be different. The work environment and work culture

6518 Book.indb 212 12/30/14 1:25 PM

Tool Implementation 213

of the organization and whether they have to be changed or adapted to meet the
needs of the new tools need to be analyzed. This is important because a new tool
will bring about changes in the roles of users and give them more power, freedom,
and responsibility. The organization should be geared to handle this change.

The new roles of staff need to be clearly defined. Because most processes are
automated by the introduction of an SCM tool, many existing jobs will no longer be
needed, and many job profiles will change. The implementation team should make
the staff aware of the postimplementation scenario and what exactly will happen
to their jobs after the tool is implemented. This is important to secure the coopera-
tion of the users, which is a critical success factor for the tool.

The organization should also identify and assess the potential risk factors in
making the transition to the new tool and try to reduce or resolve them. In addi-
tion, the tool implementation team should consider which projects are going to use
the tool and which project will be the pilot project. If the tool is implemented for
a single project and not for the entire organization, then the team should answer
such questions as which subsystems of the project are to be under control of the
tool, whether the work given to the subcontractors will be put under the control
of the tool, and which module is going to be chosen for the pilot implementation.

The organization should also have a realistic knowledge of what they can expect
from the tool and what its limitations are. This information should also be given
to the users of the tool, because overexpectations about a tool can turn into dis-
satisfaction, misuse, lack of use, or noncooperation when the tool fails to deliver
what the user expects it to deliver. Accordingly, users should be educated about
the capabilities and limitations of the tool. During and after the implementation,
management support is essential for the success of the tool. So management must
take active interest in the tool and should designate one of the organization’s top
executives (with the necessary authority and firepower) as the leader of the tool
implementation team. As Dart [8] says, many brave decisions need to be taken,
resources have to be used, and schedules have to be altered, and for this one needs
a senior person at the helm of the implementation team. Finally, all of these issues
should be documented, and components such as plans, cost estimates, budgets, and
time schedules should be prepared before the implementation begins.

Once the planning stage is over, the implementation team in association with
the vendor’s representative can start the implementation. The tool can be first
implemented on the pilot project. Selecting the pilot project is another critical fac-
tor, because failure in the pilot project can end the implementation process. It is
necessary to carefully choose the pilot project, considering the project members,
the project environment, and other variables. The users in the pilot project have to
be given thorough training in the tool and the SCM concepts and in such areas as
how it is going to affect the work environment and how the processes are going to
be automated.

Choosing a high-profile project for the implementation is advantageous and at
the same time dangerous. It is advantageous in the sense that if the pilot project
is an unqualified success, then winning over company-wide acceptance is easy. It
is dangerous, because if it fails, everybody will know about it. Accordingly, if the
implementation team is sure about making the pilot implementation a success, it
is better to choose a high-profile project. If the tools have been chosen correctly, if

6518 Book.indb 213 12/30/14 1:25 PM

214 SCM Tools

the implementation is well-planned, and if the project team is well-prepared and
well-trained, then there is no reason why the project should fail. Also, with constant
monitoring during the initial phases, any signs of a disaster can easily be detected
and corrected. The pilot project will also give information about the organization
and its peculiarities that will be very useful when the company-wide implementa-
tion is done.

Any organization that is going to implement an SCM tool or change over to
a new SCM tool will benefit greatly by reading the Dart’s technical paper [8] and
Chapter 5 in [9].

Finally, please consider this caveat: The most critical factor determining the
success of any SCM tool implementation is the support of the people who use the
system. Even the best tools will fail if there is no user support. So the decision of
the committee should be a consensus decision. If some people’s views are overrid-
den by majority vote, then management should make every effort to make them
understand the reasons for the decisions and should spare no effort to win them
over. Disagreements are common in any group discussion, but the success of the
group lies in the fact that the decisions made by the group are owned by all members
of the group, that everybody emerges as a winner, and that the choice was made
by the group as a whole. This feeling is very important, because the company will
need everyone’s goodwill and support to achieve success during implementation
and after implementation.

SCM Tools: Make or Buy?

So far we have seen three possible scenarios for implementing an SCM system:

1. The manual system;
2. The semi-automated system, in which some components like the change

management system or the build management system are automated;
3. The integrated system, where the configuration management tools are inte-

grated into the development process.

Except for the first case, these implementation scenarios use some sort of SCM
tool. The question is whether to make the SCM tools in-house or to buy them.

Why can’t companies develop their own SCM tools? Developing an SCM tool is
a very complex and time-consuming process that requires a lot of skilled manpower
and other resources. Many companies have personnel on their payrolls who can
absorb the necessary knowledge and who have experience in developing sophisti-
cated systems. The problem is that SCM tool development is not the main business
of these companies. Instead, they should be directing all of their available resources
into improving their own products or services so that they can remain competitive
and better serve their customers and continue to grow.

SCM tool vendors are people who have invested huge amounts of time and effort
in research and development to create packaged solutions. SCM tool vendors spend
billions of dollars in research and come up with innovations that make the packages

6518 Book.indb 214 12/30/14 1:25 PM

SCM Tools: Make or Buy? 215

more efficient, flexible, and easy to implement and use. Also, with the evolution of
new technologies, vendors will be able to upgrade their products constantly to take
advantage of the best and latest advancements in technology, because their main
focus is on improving the capabilities of their tools.

Since designing and implementing SCM tools is not the business of most compa-
nies, or a focus of their executives, the systems developed by an in-house team will
never equal in quality, scope, functionality, or technology those created by software
firms. These software firms (SCM tool vendors) can produce sophisticated packages
and provide their clients with products that allow them to maintain a focus on their
own chief activities, thus improving revenues, profits, and shareholder returns. Dur-
ing the 1960s, 1970s, and 1980s, there were not many vendors that were producing
SCM tools; as a result, companies needing a specialized SCM tool often needed to
rely on their own devices and ingenuity to develop something that would suit their
needs. In today’s marketplace, there are many SCM tool vendors that are actively
pursuing all the niches and circumstances where SCM tools can solve problems for
development organizations.

However, situations do exist in which a company will have to develop or make
its own SCM tools. The main reasons remain factors such as the nonavailability of
tools suited for the company or the peculiar nature of the company or the project.
For example, an organization the author worked with had more than 2,500 profes-
sionals spread around the globe in more than 54 offices in more than 15 countries.
The main development was carried out in the headquarters with dedicated lines
connecting the client sites in different continents. The professionals were con-
stantly moving from one project to another and from one country to another. The
company had a central SCM team and individual teams within each project. The
company personnel were connected via e-mail. The main problem the SCM team
of the company faced was finding the appropriate people to deal with a CR evalua-
tion, problem evaluation, or auditing. Because employees were always on the move,
a person who was on a project today could be on another continent the next day.
So the configuration team was finding it difficult to allocate the tasks to the right
people. The solution was to create a skill inventory database of all the employees (as
described in Chapter 14) that was always kept current and up-to-date. The informa-
tion was stored in a relational database. In addition, the company had something
called a manpower allocation task committee (MATC) that assigned the various
professionals to the various locations and projects. The MATC records were always
current and updated because MATC did the allocation and coordinated the travel
plans. Accordingly, these details (the availability details) were imported from the
MATC database to the CM database.

The company also had a good performance evaluation system, which included
asking the employees to update their skill inventory—that is, how many years of
experience they had in each of their skills. The skills included programming lan-
guages, DBMS, GUI design, testing, and auditing. For each skill for which the
employee had more than six months of experience, he or she was asked to take an
on-line test. The test scores were multiplied by the experience in months to arrive at
a point rating system. So the configuration database had the employee availability,
the skill set, the competency level, and other statistics relevant to employees such as

6518 Book.indb 215 12/30/14 1:25 PM

216 SCM Tools

their work phone number and e-mail ID. The configuration team could query this
database and obtain details about people who were available currently for a task.
Because the contact information was also available in the database, the configura-
tion team could contact the concerned person immediately and assign the task. This
was a requirement that no tool supported, so the company had to make the tool
in-house. The company already had tools for most of the other SCM functions like
change management and system building, and this employee tracking tool integrated
seamlessly with the other tools and proved very effective in eliminating delays in
such processes as CR processing, PR evaluation, and auditing.

In another company, the problem was quite different. This organization had a
workflow automation system based on Lotus Notes. All the users in the company
were very familiar with the Lotus Notes environment. Bringing in an SCM tool
was discussed but discarded, because it would not integrate well with the existing
infrastructure. The author was in charge of the SCM implementation. The SCM
implementation team discussed the various options and found that the most cost-
effective solution was to build a tool in-house. Lotus Notes’s inherent strengths in
workflow automation, security administration, and Web features made it easier
to design and develop the SCM tool. The SCM tool that was finally developed
integrated seamlessly with the existing environment and was a huge success. Also,
there was no need for extensive training; the project members needed training only
in the concepts of SCM and how it was implemented in the system. Because all of
them were comfortable with the environment, the transition was almost painless.

To conclude, it is always better to buy SCM tools. Many tools are available free
of cost, but the main problem with them is lack of technical support. Also, these
tools will not be updated to take advantage of the latest technological developments.
Meanwhile, however, the commercial tools are getting better and bigger and have
more features. Moreover, they have been developed by people who specialize in
developing those types of tools, most of which can be customized to suit your needs.
Accordingly, unless, and until, your project or organization has a need that cannot
be fulfilled by the available tools, it is better to buy the tools rather than make them.

Summary

This chapter discusses SCM tools and their selection. Except for very small, single-
person projects, SCM tools can dramatically improve development productivity.
This chapter also discusses how to choose a tool that is right for an organization
and how to deploy the tool in that organization. Finally, the chapter examines the
decision about whether to make or buy SCM tools.

References

[1] Whiftgift, D., Methods and Tools for Software Configuration Management, Chichester:
England, John Wiley & Sons, 1991.

[2] Mosley, V., et al., “Software Configuration Management Tools: Getting Bigger, Better,
and Bolder,” Crosstalk: The Journal of Defense Software Engineering, Vol. 9, No. l, Jan.
1996, pp. 6–10.

6518 Book.indb 216 12/30/14 1:25 PM

Summary 217

[3] Weatherall, B., “A Day in the Life of a PVCS Road Warrior: Want to Get PVCS Organized
Quickly in a Mixed-Platform Environment?” Technical Paper, Synergex International
Corporation, 1997.

[4] Jasthi, S., “SCM Without Tears, “http://pw2.netcom.com/-siasthi/index.htm], 1997.
[5] Dart, S., “Concepts in Configuration Management Systems,” Technical Report, Software

Engineering Institute, Carnegie-Mellon University, 1994.
[6] Dart, S., “Not All Tools are Created Equal,” Application Development Trends, Vol. 3,

No. 9, 1996, pp. 45–48.
[7] Dart S., “Achieving the Best Possible Configuration Management Solution,” Crosstalk:

The Journal of Defense Software Engineering, September 1996, pp. 9–13.
[8] Dart S., “Adopting An Automated Configuration Management Solution,” Technical Paper,

STC’94 (Software Technology Center), Utah, April 12, 1994.
[9] Dart, S., Configuration Management: The Missing Link in Web Engineering, Norwood,

MA: Artech House, 2000.

Selected Bibliography

“Change Management for Software Development,” Continuus Software Corporation, 1998.
“Cost Justifying Software Configuration Management,” PVCS Series for Configuration Man-

agement White Paper, Intersolv, 1998.
“Software Configuration Management for Client/Server Development Environments: An Archi-

tecture Guide,” White Paper, Intersolv, 1998.
“Software Configuration Management: A Primer for Development Teams and Managers,” White

Paper, Intersolv, 1997.
Alain Abran, A., and Moore, J. W. (eds.), SWEBOK: Guide to the Software Engineering Body

of Knowledge (Trial Version), Los Alamitos, California: IEEE Computer Society, 2001.
Alder, P. S., and A. Shenhar, “Adapting Your Technological Base: The Organizational Chal-

lenge,” Sloan Management Review, Fall 1990, pp. 25–37.
Berlack, R. H., Software Configuration Management, New York: John Wiley & Sons, Inc., 1992.
Bochenski, B., “Managing It All: Good Management Boosts C/S Success,” Software Magazine

(Client/Server Computing special edition), Nov. 1993, p. 98.
Bones, M., “Technology Audit: True Software Suite,” White Paper, Butler Direct Limited, 1998.
Bouldin, B. M., Agents of Change: Managing the Introduction of Automated Tools, Englewood

Cliffs, NJ: Yourdon Press, 1989.
Bourque, P., and R. E. Fairley (eds.), Guide to the Software Engineering Body of Knowledge,

Version 3.0, IEEE Computer Society, 2014; www.swebok.org.
Cagan, M., and D. W. Weber, “Task-Based Software Configuration Management: Support for

‘Change Sets’ in Continuus/CM,” Technical Report, Continuus Software Corporation,
1996.

Chris, A. “Why Can’t I Buy an SCM Tool?” Proc. ICSE SCM-4 and SCM-5 Workshops (Selected
Papers), Berlin, Springer-Verlag, 1995, pp. 278–281.

Dart, S., “Past, Present and Future of CM Systems,” Technical Report, Software Engineering
Institute, Carnegie-Mellon University, 1992.

Dart, S., “Spectrum of Functionality in Configuration Management Systems,” Technical Report,
Software Engineering Institute, Carnegie-Mellon University, 1990.

Dart, S., “To Change or Not to Change,” Application Development Trends, Vol. 4, No. 6,
1997, pp. 55–57.

Dart, S., and J. Krasnov, “Experiences in Risk Mitigation for Configuration Management,”
Proc. 4th SEI Conference on Risk, Monterey, CA, November, 1995.

6518 Book.indb 217 12/30/14 1:25 PM

218 SCM Tools

Dart, S., Configuration Management: The Missing Link in Web Engineering, Norwood, MA:
Artech House, 2000.

Feiler, P. H., “Configuration Management Models in Commercial Environments,” Technical
Report, Software Engineering Institute, Carnegie-Mellon University, 1991.

Fichman, R. G., and C. Kemerer, “Adoption of Software Engineering Innovations: The Case of
Object Orientation,” Sloan Management Review, Winter 1993, pp. 7–22.

Hall, E. M., Managing Risk: Methods for Software Systems Development, Reading, MA:
Addison-Wesley, 1998.

Hurwitz, J., and A. Palmer, “Application Change Management-True Software, Inc.,” White
Paper, Hurwitz Group, 1997.

Kolvik, S. “Introducing Configuration Management in an Organization,” Proc. ICSE ‘96 SCM-6
Workshops (Selected Papers), Berlin, Springer-Verlag, 1996, pp. 220–230.

Marciniak, J. J. (ed.), Encyclopedia of Software Engineering (2nd Edition), New York: John
Wiley & Sons, 2002.

Mason, R. P., “Enterprise Application Management in the Age of Distributed Computing: The
True Software Approach,” White Paper, International Data Corporation, 1998.

Parker, K., “Customization of Commercial CM System to Provide Better Management Mecha-
nisms,” Proc. ICSE SCM-4 and SCM-S Workshops (Selected Papers), Berlin: Springer-
Verlag, 1995, pp. 289–292.

Pressman, R. S., Software Engineering: A Practitioner’s Approach (8th Edition), New York:
McGraw-Hill, 2014.

Sommerville, I., Software Engineering (9th Edition), Reading, MA: Addison-Wesley Publish-
ing Company, 2011.

Weber, D. W., “Change Sets Versus Change Packages: Comparing Implementation of Change-
Based SCM,” Proc. 7th Software Configuration Management Conf. (SCM7), Boston,
MA, May 1997, pp. 25–35.

6518 Book.indb 218 12/30/14 1:25 PM

219

C h a p t e r 1 6

Document Management and
Control (DMC) and Product Data
Management (PDM)

introduction

Software development is an activity that produces a lot of documents. According to
Visconti and Cook [1], low-quality, poor, obsolete, or missing documentation is a
major contributor to low product quality and high development and maintenance
costs. Documentation is the written record of what the software is supposed to do,
what it does, how it does it, and how to use it.

Virtually everyone agrees that good documentation is important to the analysis,
development, and maintenance phases of the software process and is an important
software product. It can be said that to develop high-quality software products, high-
quality documentation is a must. Most information and documentation these days
is in digital form, and its format is completely different from that of conventional
documents. State-of-the-art tools are available to share and convey information as
efficiently as possible. All software projects involve the production and control of
documentation.

According to Wallace [2], there are mainly four types of documents that are
produced by a software development project:

•	 External deliverable (permanent): Permanent documentation as a deliver-
able from the project (e.g., “help” information, user manuals, and training
materials);

•	 External deliverable (temporary): Temporary documentation that is an exter-
nal deliverable from the project but that has no value once the project has
been completed (e.g., discussion papers, draft documents, and interim prog-
ress reports);

•	 Used by project team (permanent): Permanent documentation to support
the maintenance and enhancement of the system (e.g., design specifications,
database definitions, source code, and process diagrams);

•	 Used by project team (temporary): Temporary documentation that is only
for internal communication (e.g., ideas, issues, control, and working papers).

The above factors—permanency and target audience—affect the requirements
for quality, review, and update. For example, external deliverables need to be of high
quality, whereas internal documents may be informal and incomplete; permanent

6518 Book.indb 219 12/30/14 1:25 PM

220 Document Management and Control (DMC) and Product Data Management (PDM)

documentation will need to be updated as circumstances change, but temporary
documentation will usually be left unchanged or disposed of after use.

There will be many types of documents with varying purposes, natures, and life
cycles. Some documents like standards and guidelines that are used in projects are
produced even before the start of the projects, and many of these documents (like
standards) are created by other organizations. After the development project has
been completed, documents will still be produced during the operation and mainte-
nance phases. Many documents get updated and modified during the course of the
project. This will make the older versions obsolete, and their continued usage can
create a lot of problems. The large amount of documents makes it more difficult to
locate the information required. Thus, it is essential that all the project stakehold-
ers—from clients to end users—use the correct version of the documents. This is
an enormous and difficult task—one that requires the institution of systematic and
scientific procedures and methods to manage the creation, classification, modifica-
tion, change, distribution, and archiving or deletion of the documents. The process
that ensures that everyone in a project uses the current and correct versions of the
documents, that changes made to the documents are effected in all copies of the
document, and that unauthorized changes are not made to the documents is called
DMC. DMC is an integral part of CM.

The primary purpose of DMC is to provide the right users with the right infor-
mation at the right time. It should provide an efficient way of sharing knowledge,
information, and thinking among the project’s participants. All participants should
find it easy to consult the project’s documentation repository to find all content
that is relevant to their interests. It should be equally easy for them to lodge in the
repository any documented information that they feel is of value to the team—in a
systematic and controlled manner.

document Life Cycle

Like software products, documents have a life cycle. They also start as an idea
or concept, and once they are used satisfactorily, they are either archived or
destroyed. DMC activities focus on enabling documents to service their users
during the life cycle. The documentation process records information produced
by a life cycle process or activity. The process contains the set of activities that
plan, design, develop, produce, edit, distribute, and maintain those documents
needed by all concerned, including managers, engineers, and users of the system
or software product.

The different phases of the document life cycle are creation, storage, publish-
ing, viewing, modification, review, approval, retention, archiving, and disposal.
Figure 16.1 shows the document life cycle phases. These phases are not linear; many
phases occur more than once during the life cycle. For example, once the document
is created, published, and viewed, modifications or changes are made. Once the
modifications are made, the document is reviewed by a competent authority. Once
the reviewer approves the changes, the documents are again published and viewed.
This modification, review, and approval process happens many times during the
life cycle of a document. Unauthorized modification and publishing without proper

6518 Book.indb 220 12/30/14 1:25 PM

Document Life Cycle 221

review and approval can cause problems for the users of the document. Preventing
this from happening is the job of a good DMC system. Next, we examine the dif-
ferent phases of the document life cycle in a little detail.

document Creation

Documents can be created in a number ways and from a number of sources. Docu-
ments can be written by people in your organization, external consultants, or partner
organizations or can be bought from external sources. Usually, standards, statutory
regulations, and guidelines are developed by external organizations. Documents
developed by consultants include implementation guidelines and programming
standards where the consultant has more expertise than company employees. If
your organization works with other organizations or develops products for other
organizations, documents like design specifications and interface control docu-
ments might come from those organizations. Then, there are documents that are
created by your own organization like project plans, SCM plans, requirements
specifications, design documents, test plans, and user manuals. These documents,
which can come in a variety of formats and on a variety of media using a variety
of tools, can be text, images, sound, video, or a combination of all the above. All
the documents that are created or are procured from external sources should be
subjected to review and approval by authorized personnel before being placed in
the document library.

Figure 16.1 Document life cycle.

6518 Book.indb 221 12/30/14 1:25 PM

222 Document Management and Control (DMC) and Product Data Management (PDM)

document Storage

Documents are stored depending on the format. Paper documents need to be stored
in filing cabinets, while digital documents need to be stored on a hard disk. The
place where the documents are stored is called the document library. The library
contains all the active documents that are needed by the project. With the advances
in technology and the reduction in the cost of digital storage and retrieval mecha-
nisms, most documents today are stored in digital form on a server that the project
participants can access. The document library should have control and safety mea-
sures that prevent unauthorized viewing, modification, and deletion.

publishing

Publishing includes activities related to document presentation. The same content
or data could be presented in different formats—such as text, graphs, and video
clips. The ability to separate the content of a document from its format is increasing.
Accordingly, the same sales data could be presented as a text document, a spread-
sheet, or a set of graphs. Each presentation format has its own advantages. Keeping
the content and format independent of one another gives the publisher the flexibil-
ity to choose the format that is best suited for each situation. Another function of
publishing is to combine the different documents or different document elements
(e.g., text, pictures, and sound) in a single document and make them accessible to
users. Even though the different document elements exist in the document library
separately, the process of combining them should be transparent to users.

Viewing

The documents are created and stored so that end users can view the documents. In
most cases, users will be employing the same tools used for creating the document
for viewing. This could create problems if users do not have the tools with which
the document was created. To avoid this problem, the document management uses
standard formats like XML, HTML, and PDF. In other words, more and more
tool independence is achieved. In this way, presentation tools like Web browsers
and PDF readers are not part of the DMC system. This approach has dramatically
improved the accessibility of documentation and information sharing.

Modification or Change, review, and approval

Once documents are created and published, and as people start using them, the
need for modification or making changes arises. The modification could be due to
many factors including errors in the documentation, changes in the environment for
which the document was created, change in technology, and change in organization’s
priorities. All changes to documentation should be in writing and processed in a
manner that ensures prompt action. All changes will be documented by a formal
change procedure and will be approved by the technical authority responsible for
originating and revising the document. Once the need for changing the document

6518 Book.indb 222 12/30/14 1:25 PM

Documentation and SDLC Phases 223

has been identified, the document is checked out from the document library, and
the changes are made. Any other documents impacted by the changes in the current
document are also changed. The modified documents are reviewed and approved
by authorized personnel and then returned (check-in) to the document library and
given a new version number. This is similar to the change control process described
in Chapter 8.

records retention

With time, the value of many documents will diminish, and maintaining these docu-
ments is a waste of space and effort. Documents fall under three categories—docu-
ments that do not have any value after the completion of the project, documents that
have value as reference material for future projects, and documents that should be
retained to satisfy some statutory requirement or contract regulations.

Documents and records that fall into the last category come under the purview
of records retention. The records retention policy will usually be specified in the
SCM plan—detailing decisions regarding documents that are to be retained and
for how long. Accordingly, the records and documents that are to be retained will
not be destroyed until the specified period of time has passed.

document disposal

The documents that are not needed after the completion of the project like status
reports, internal memos, and draft versions are permanently deleted to free up
storage space. Document disposal need not occur only at the end of the project.
It can be a periodic activity. Deleting unwanted and obsolete documents from the
document library will reduce clutter and will improve the efficiency of document
retrieval systems. A word of caution: before any documents are removed or deleted
from the project, the organization’s records retention policy should be reviewed
and complied with.

archiving

Records and documents that have a sustaining utility exceeding storage costs are
preserved permanently in an archive for long-term storage. The difference between
records retention and archiving is that retention is performed to carry out some
legal or contractual obligation and has a time dimension attached to it, whereas
archival work is done because of the value of the document as a reference material,
and there is no time limit for how long the archived documents will be kept. Usu-
ally, documents are archived to magnetic media or some other backup mechanism.

documentation and SdLC phases

We have seen that of the various documents used during the software life cycle,
some documents such as standards and guidelines are available much before the

6518 Book.indb 223 12/30/14 1:25 PM

224 Document Management and Control (DMC) and Product Data Management (PDM)

requirements analysis or conceptualization phase. Many documents are created
during the development phase; many more documents are created during the opera-
tion and maintenance phases. Most documents undergo revisions and modifications
during the course of the development of the product. Table 16.1 outlines some
typical documents used during the development, operation, and maintenance of a
software system.

Table 16.1 Documentation and SDLC Phases

Document name C
on

ce
pt

u
al

iz
at

io
n

R
eq

ui
re

m
en

ts
 D

efi
ni

ti
on

Sy
st

em
s

A
n

al
ys

is
 &

 D
es

ig
n

C
od

in
g

&
 U

ni
t

T
es

ti
ng

In
te

gr
at

io
n

T
es

ti
ng

Im
pl

em
en

ta
ti

on

O
pe

ra
ti

on
 &

 M
ai

nt
en

an
ce

R
et

ir
em

en
t

Standards and guidelines X X X X X X X X

Project plan (PP) X X X X X X X

SCMP X X X X X X X

RDD X X X X X X X

SAD X X X X X X

SDD X X X X X X

CRs X X X X X X

PRs X X X X X X

Impact analysis report X X X X X X

SCM documentation X X X X X X X

CSA reports X X X X X X

STS X X X X X X

STP X X X X X X

UTS X X X X X

UTP X X X X X

Audit and review reports X X X X X X X

Test results X X X X X

User documentation X X X X

Enhancements requests X X X

6518 Book.indb 224 12/30/14 1:25 PM

DMC 225

dMC

DMC is the discipline of creating and managing the documents used in a project.
The primary objective of this discipline is to ensure that documents are created,
stored, changed, used, and disposed of in a systematic and scientific manner. This
system ensures that the right information is available to the right personnel at the
right time. It also makes sure that unauthorized access, modification, and corruption
of documents does not happen; that any change made to a document is made after
formal approval; and that once the changes are made the documents are reviewed
and approved before they are reissued for use. The use of the DMC process should
achieve the following objectives:

•	 Identify all documents to be produced by the process or project;
•	 Specify the content and purpose of all documents and plan and schedule their

production;
•	 Identify the standards to be applied for development of documents;
•	 Develop and publish all documents in accordance with identified standards

and in accordance with nominated plans;
•	 Maintain all documents in accordance with specified criteria.

ISO 9001 [3] specifies that organizations must establish and maintain docu-
mented procedures to control all documents and data including, to the extent appli-
cable, documents of external origin such as standards. Documents and data can be
in the form of any type of media, such as hard copy or electronic media.

Documents and data must be reviewed and approved for adequacy by authorized
personnel prior to issue. A master list or equivalent document control procedure
identifying the current revision status of documents should be established and be
readily available to preclude the use of invalid or obsolete documents.

Changes to documents and data should be reviewed and approved by the same
functions or organizations that performed the original review and approval, unless
specifically designated otherwise. The designated functions or organizations should
have access to pertinent background information upon which to base their review
and approval. Where practicable, the nature of the change should be identified in the
document or the appropriate attachments. The documentation should be traceable,
handled, stored, responsive to change requests, and consistent with the SCM plan.

The organization must establish and maintain procedures for controlling all
documents to ensure the following [4]:

•	 That they can be found;
•	 That relevant copies of appropriate documents are available at all locations

where operations essential to the effective functioning of the quality system
are performed;

•	 That they are periodically reviewed, revised as necessary, and approved for
adequacy by authorized personnel;

•	 That current versions of relevant documents are available at all locations
where operations essential to the effective functioning of the environmental
management system are performed.

6518 Book.indb 225 12/30/14 1:25 PM

226 Document Management and Control (DMC) and Product Data Management (PDM)

•	 That obsolete documents are promptly removed from all points of issue and
points of use, or otherwise assured against unintended use;

•	 That any obsolete documents retained for legal or knowledge preservation
purposes are suitably identified.

Documentation must be legible, dated (with dates of revision) and readily iden-
tifiable, maintained in an orderly manner, and retained for a specified period. Pro-
cedures and responsibilities should be established and maintained concerning the
creation and modification of the various types of document.

According to IEEE/EIA 12207.0 [5], every document should have the follow-
ing parts:

•	 Title or name
•	 Scope and purpose;
•	 Intended audience;
•	 Procedures and responsibilities for inputs, development, review, modification,

approval, production, storage, distribution, maintenance, and configuration
management;

•	 Schedule for intermediate and final versions.

In addition, documents should have the following:

•	 Date of creation;
•	 Copyright information;
•	 Identification (an identification scheme should be developed that will be

descriptive and give an indication of the date of creation, revision, and name
of the document);

•	 Created by (name of the organization, department, and person);
•	 Distribution list (list of people to whom the copies of the documents are

distributed);
•	 Change history [list of changes (additions, deletions, or modifications) with

date of change and signature of the persons who authorized, reviewed, and
approved the change];

•	 Security classification (indicating whether the document is for the general
public or classified and restricted for certain users);

•	 Suitable identification marks (line or symbols) indicating the places where
changes have been made—in the case of revised documents;

•	 Table of contents;
•	 Glossary of terms used in the document;
•	 Errata (if any).

According to ISO 10007 [6], to protect the integrity of the configuration and
to provide a basis for the control of change, it is essential that CIs, their constituent
parts, and their documentation be held in an environment meeting the following
conditions:

•	 It is commensurate with the environmental conditions required (e.g., for com-
puter hardware, software, data, documents, or drawings).

6518 Book.indb 226 12/30/14 1:25 PM

PDM and DMC 227

•	 It protects them from unauthorized change or corruption.
•	 It provides means for disaster recovery.
•	 In the case of software, data, documentation, and drawings, it permits the

controlled retrieval of a copy of the controlled master.
•	 It supports the achievement of consistency between the as-built or produced

state of a configuration and the as-designed state.

Operation of the DMC system during the project should be made as easy and effi-
cient as possible, but without losing the degree of control and audit that is required.
Usually, the task of DMC is performed by the SCM function. Individual partici-
pants should be able to access and request changes and enhancements and point
of errors to the documents. There should be well-defined procedures, authorities,
and controls for approving the CRs, checking out, making the changes, reviewing,
approving, checking in, and promoting the documents.

The DMC system should also track changes to documents that come from
external sources like standards and new versions or updates of the standards, and
other external documents should be incorporated whenever necessary. For example,
consider a situation where a revised version of a standard that is used in the proj-
ect has been released. This standard was used for creating some other documents
(e.g., a QA manual) used by the project. In such cases, the new standard should be
brought under the document control, all the documents affected by the revision to
the standard should be identified, and the necessary modifications should be made.

The documentation manager should know the status of each document and
should have a reporting mechanism (similar to the CSA) to know such information
as which documents are under creation and their estimated date of completion, how
many documents are under review, how many people are using a particular docu-
ment, and whether the obsolete versions should be deleted or archived.

At the end of a phase or stage of the project, all planned deliverables should have
been completed, finalized, approved, and distributed. Internal documents should
also have been completed, subjected to the defined reviews, and finalized. Quality
audits should be conducted to ensure that all planned items had been produced in
accordance with the defined controls and procedures.

At the end of the project, permanent items will be retained for future use (for
example, for the maintenance and support phase), and external deliverables will
be distributed to the customers or end users, and master copies will be maintained.

pdM and dMC

Management of product data is an activity that exists in the manufacturing industry.
Product data—text and drawings—were traditionally archived on paper. However,
advancements in technology and the proliferation of computers have greatly reduced
the need for paper documents, and today product data is stored in a digital format.
The business environment is becoming highly competitive as companies have to
compete on a global basis. To compete in today’s highly competitive marketplace,
manufacturers must find new ways to reduce cost, improve quality, improve devel-
opmental productivity, and reduce the time to market. PDM is a discipline that

6518 Book.indb 227 12/30/14 1:25 PM

228 Document Management and Control (DMC) and Product Data Management (PDM)

allows organizations to become more competitive by better managing and control-
ling their product data.

Software is becoming more and more important, and almost all systems from
toy planes to fighter planes are controlled by software systems. Both software pro-
fessionals and hardware engineers have to work hand-in-hand to create the products
that are required today. This collaboration necessitates that professionals from both
disciplines learn about how the other side is performing its activities. Accordingly,
today’s software professionals should learn the fundamentals of PDM to be more
competitive and help their counterparts who are engaged in the design and produc-
tion of hardware in a better and more efficient manner.

Many of the functions that are performed by PDM are closely related to DMC.
In both PDM and DMC, the activities performed to manage the product or project
data are the same or similar. While PDM keeps track of the data and documents
related to the hardware artifacts, DMC does the same for the software artifacts.
Thus, it is beneficial and necessary to be aware of the close relationship that these
two disciplines share.

Overview of pdM

PDM is the discipline of controlling the evolution of a product and providing other
procedures and tools with accurate product information at the right time in the right
format during the entire product life cycle [7]. So PDM involves supporting depart-
ments such as manufacturing, marketing, sales, and purchasing. It also involves sup-
porting the organizations vendors, subcontractors, and business partners. PDM is
also known as collaborative PDM (cPDM), product information management (PIM),
PLC management (PLCM), and electronic PDM (ePDM), among other monikers.
PDM performs the following functions to achieve its objectives:

•	 Data vault management: Every PDM system has a centralized data vault where
all the master copies of all the documents, drawings, and other data is stored.
The data vaults can be filing cabinets, secured directories in a computer sys-
tem, or even databases. The data stored in these data vaults can come from
various applications such as data from computer-aided design (CAD), com-
puter-aided engineering (CAE), computer-integrated manufacturing (CIM),
operating instructions, service manuals, drawings, technical specifications,
and reports. In addition to this data, the PDM system stores information about
the various documents (called metadata) like the title, date of creation, names
of the persons created, review and approval of the document, and history of
changes made. The metadata is used to search the database for a particular
document or information.

•	 Workflow management: During the development of a product, many thou-
sands of parts may need to be designed. For each part, files need to be created,
modified, viewed, checked, and approved by many different people, perhaps
several times over. What is more, each part will call for different develop-
ment techniques and different types of data—solid models for some, circuit
diagrams for others, and finite element analysis (FEA) data for others. As

6518 Book.indb 228 12/30/14 1:25 PM

Overview of PDM 229

if this is not confusing enough, work on any of these master files will have
a potential impact on other related files. As a result, there needs to be con-
tinuous cross-checking, modification, resubmission, and rechecking. With all
these overlapping changes, it is all too easy for an engineer in one discipline
to invest considerable time and effort in pursuing a design that has already
been invalidated by the work someone else has done in another part of the
project. Bringing order to this highly complex workflow is what PDM systems
do best. In particular, they keep track of the thousands of individual decisions
that determine who does what next.

•	 Product structure management: Every product is made up of thousands of
component parts. A product can have many subassemblies, each of which
can be made of many more subassemblies. A product structure is a division
of parts into a hierarchy of assemblies and components until it reaches the
lowest level—the component level. The product structure is comprised of com-
ponents and the properties of the components and the relationship between
them. The major activities performed by product structure management are
identification and control of product configurations, linking product data to
the structure, and transferring the product structure and other data between
PDM and material resource planning (MRP) and enterprise resource plan-
ning (ERP) systems.

•	 Classification management: This function deals with the classification of
standard components in a uniform way. The main objective of classification
is to promote the reuse of components. The components are classified and
information (attributes) about them is stored in the PDM database, in such
a way that promotes reuse. The designers can search the PDM database for
components that are suited for their purpose, and only if such a component
does not exist, they need to think of a new component. By improving reusabil-
ity, the number of components in a product can be reduced, which can result
in shorter design times, fewer parts to purchase, and reduced time to market.

•	 Communication and notification: Workflow management supports automatic
notification and communication. The system can be programmed to automati-
cally send notification when specified events occur (such as when an item has
been checked in to the database or a change has been approved). Users can be
given the authority to subscribe to the notification that is of interest to them.
This automatic notification improves the overall awareness of the project team
members about what is happening in the project.

•	 Query management: As you can imagine, you need to be able to “get at” the
components and assembly data by a variety of routes. You can move up and
down a classification tree, pick your way through a product structure, sim-
ply call up the data you want by searching for it by name or part number, or
search for groups of data by specifying an attribute or combination of attri-
butes. The query management function allows you to do this using querying
languages like SQL or graphical interfaces.

In today’s highly competitive business environment, the challenge is to maxi-
mize the time-to-market benefits of concurrent engineering while maintaining con-
trol of your data and distributing it automatically to the people who need it, when

6518 Book.indb 229 12/30/14 1:25 PM

230 Document Management and Control (DMC) and Product Data Management (PDM)

they need it. PDM systems cope with this challenge by holding the master data in
a centralized secure vault where its integrity can be assured and all changes to it
monitored, controlled, and recorded.

data Management

Manufacturing companies are usually good at systematically recording component
and assembly drawings but often do not keep comprehensive records of attributes
such as “size,” “weight,” and “where used.” As a result, engineers often have prob-
lems accessing the information they need. This leaves an unfortunate gap in their
ability to manage their product data effectively. PDM systems should be able to
manage attribute and documentary product data, as well as relationships between
them, through a relational database system. In the world of information explosion
where too much data is being generated, a technique to classify this information
easily and quickly needs to be established.

Classification is a fundamental capability of a PDM system. Information of
similar types should be capable of being grouped together in named classes. More
detailed classification would be possible by using “attributes” to describe the essen-
tial characteristics of each component in a given class.

process Management

Data management, which includes organizing data so that it is easy to access, refer
to, and cross-reference, is comprised of passive procedures. Process management, on
the other hand, is about controlling the way people create and modify data—active
procedures. Process management systems normally have three broad functions:

1. They manage what happens to the data when someone works on it.
2. They manage the flow of data between people.
3. They keep track of all the events and movements that happen in functions

1 and 2 during the history of a project.

Engineers create and change data for a living. The act of designing something
is exactly that. A solid model, for example, may go through hundreds of design
changes during the course of development, each involving far-reaching modifications
to the underlying engineering data. Often, engineers will wish simply to explore
a particular approach, later abandoning it in favor of a previous version. A PDM
system offers a solution by acting as the engineer’s working environment, meticu-
lously capturing all new and changed data as it is generated, maintaining a record
of which version it is, recalling it on demand, and effectively keeping track of the
engineer’s every move. Thus, when engineers are asked to carry out a design modi-
fication they will have all the information they need in the PDM system. Since the
PDM system stores the documents and drawing in a central database, the access to
which is controlled, the chances of two people working on the same component is
eliminated. Also, once the modifications are complete and the item is checked in,

6518 Book.indb 230 12/30/14 1:25 PM

Benefits of PDM 231

the automatic notification feature will inform all the concerned parties about the
change, thus preventing the production or purchase of obsolete and unwanted items.

PDM systems should not just keep comprehensive database records of the current
state of the project, they should also record the states the project has been through.
This means that they are a potentially valuable source of audit trial data. The ability
to perform regular process audits is a fundamental requirement for conformance
to international quality management standards such as ISO 9000, EN 29000, and
BS 5750. However, project history management is also important to allow you to
backtrack to specific points in a project’s development where a problem arose, or
from which you may wish to now start a new line of development. The PDM system
captures the changes and modifications to the components and the system. This cre-
ates a work history for the product development. This level of historical tracking,
as well as providing comprehensive auditing, also permits the active monitoring of
individual performance.

Benefits of pdM

Some of the benefits of PDM systems are reduced time to market; improved design
productivity, creativity, and accuracy; better control of the project; and better
engineering change management. Properly managed data will help productivity
significantly even when a single workgroup is using it. However, PDM achieves
its real potential in an enterprise-wide environment, supporting and coordinating
the activities of many teams. The benefits result from managing data throughout
product life; sharing of data or information among users; supporting concurrent
processes; and reducing product cost through increased reusability, development
productivity, and accuracy. The following sections discuss the benefits of PDM.

reduced Time to Market

This is the major benefit of a PDM system. Three factors serve to place limits on
the speed with which you can bring a product to market. One is the time it takes to
perform tasks, such as engineering design and tooling. Another is the time wasted
between tasks, as when a released design sits in a production engineer’s inbox wait-
ing its turn to be dealt with. The third is time lost in rework. A PDM system can
do much to reduce all these time limitations:

•	 It speeds up tasks by making data instantly available as it is needed.
•	 It supports concurrent task management.
•	 It allows authorized team members access to all relevant data, all the time,

with the assurance that it is always the latest version.

improved design productivity

With a PDM system providing the engineers with the correct tools to access data
efficiently, the design process itself can be dramatically shortened. By reducing the
time engineers need to spend searching for the right information and tools and

6518 Book.indb 231 12/30/14 1:25 PM

232 Document Management and Control (DMC) and Product Data Management (PDM)

allowing them to concentrate on designing, an efficient PDM system gives engineers
more time to design.

improved design and Manufacturing accuracy

An important benefit of PDM systems is that everyone involved in a project is operat-
ing on the same set of data, which is always up to date. This eliminates overlapping
or inconsistent designs even when people are operating concurrently. Naturally, this
leads to far fewer instances of design problems that only emerge at manufacturing.

Better Use of Creative Team Skills

Designers are often conservative in their approach to problem solving for no other
reason than the time penalties for exploring alternative solutions are so high. The
risks of spending excessive time on a radically new design approach that may not
work would be unacceptable. PDM opens up the creative process in three important
ways. First, it keeps track of all the documents and test results relating to a given
product change, minimizing design rework and potential design mistakes. Second,
it reduces the risk of failure by sharing the risk with others and by making the data
available to the right people fast. Third, it encourages team problem solving by
allowing individuals to bounce ideas off each other using the packet-transfer facil-
ity, knowing that all of them are looking at the same problem.

data integrity Safeguarded

The single central vault concept ensures that, while data is immediately accessible
to those who need it, all master documents and records of historical change remain
absolutely accurate and secure.

Better Control of projects

PDM systems enable you to retain control of projects by ensuring that the data
on which they are based is firmly controlled. Product structure, change manage-
ment, configuration control, and traceability are key benefits. Control can also be
enhanced by automatic data release and electronic sign-off procedures. As a result,
it is impossible for a scheduled task to be ignored, buried, or forgotten.

a Major Step Toward Total Quality Management

By introducing a coherent set of audited processes to the product development cycle,
a PDM system should go a long way toward establishing an environment for ISO
9000 compliance and total quality management (TQM). Many of the fundamental
principals of TQM, such as “empowerment of the individual” to identify and solve
problems are inherent in the PDM structure. The formal controls, checks, change
management processes, and defined responsibilities should also ensure that the

6518 Book.indb 232 12/30/14 1:25 PM

PDM and SCM 233

PDM system you select contributes to your conformance with international qual-
ity standards.

pdM and SCM

PDM is a class of enterprise software that manages product data and relation-
ships—facilitating innovation and increasing engineering productivity. It allows
you to manage, control, and access data surrounding new product design, engineer-
ing, and manufacturing processes. By providing controlled and secure global data
access, PDM empowers organizations to deliver higher quality products to market
faster and more efficiently. This process impacts the entire life cycle of a product,
as employees at each phase in the product development process can access the right
information at the right time.

SCM, as discussed previously, is the discipline of identifying the configuration
of a system at discrete points in time for the purposes of systematically controlling
changes to this configuration and maintaining the integrity and traceability of this
configuration throughout the system life cycle. SCM is a collection of techniques
that coordinate and control the construction of a software system. Today’s software
systems consist of a myriad of component parts, each of which evolves as it is devel-
oped and maintained. SCM ensures that this evolution is efficient and controlled,
so that the individual components fit together to form a coherent whole.

Accordingly, we can say that while PDM ensures that product development
proceeds smoothly, SCM makes sure that software development is done efficiently.
Today most products—both hardware and software—are becoming more and
more complex. Another fact is that in today’s environment neither software nor
hardware can exist in isolation. Software is the integral part and the driving force
in almost all machines and systems from mission-critical applications like control-
ling the operations of satellites and intercontinental ballistic missiles (ICBMs), air
traffic control (ATC) systems, managing the functioning of banks and hospitals,
and handling the airline and railway reservation systems to performing mundane
tasks like operating a door locking system.

In the past the SCM and PDM disciplines have existed and evolved with little
interaction. The SCM and PDM disciplines can help an organization to achieve
greater efficiencies in its product development, marketing, and customer support
efforts. However, the days of SCM and PDM working in isolation are gone. To
survive, thrive, and successfully compete in today’s highly competitive business
environment, organizations must conceive, build, test, and market high-quality
products in the most efficient and effective manner. Jobs such as customer support,
bug fixes, product enhancements, and product evolution must be done quickly (at
Internet speed) and with minimum wasted effort. To achieve these goals, the SCM
and PDM disciplines must be integrated.

Only when the hardware and software development teams fully understand
what is happening in the “other world,” only when the hardware-software bound-
aries disappear, and only when seamless information integration occurs between
the hardware and software development environments will organizations be able

6518 Book.indb 233 12/30/14 1:25 PM

234 Document Management and Control (DMC) and Product Data Management (PDM)

to realize their full potential and become market leaders. If this is to happen, orga-
nizations should integrate their SCM and PDM efforts.

pdM resources

There are many sources for learning more about PDM. However, software profes-
sionals need to be familiar with PDM and how it relates to SCM. The best book
toward that effort is the following:

•	 Crnkovic, I., U. Asklund, and A. P. Dahlqvist, Implementing and Integrating
Product Data Management and SCM, Norwood MA: Artech House, 2003.

Additional resources for comprehensive information about PDM are listed as follows:

•	 Antti Saaksvuori, A., and A. Immonen, Product Lifecycle Management, Ber-
lin: Springer Verlag, 2003.

•	 Belliveau, P., The PDMA Tool Book for New Product Development, New
York: John Wiley & Sons, 2002.

•	 Burden, R., PDM: Product Data Management, Eau Claire, WI: Resource
Publishing, 2003. PDM Information Center (http://www.pdmic.com/).

•	 Rosenau, M. D., et al., The PDMA Handbook of New Product Development,
New York: John Wiley & Sons, 1996.

•	 Workflow Management Coalition (http://www.wfmc.org/).

Summary

Low-quality, poor, obsolete, or missing documentation is a major contributor to low
product quality and high development and maintenance costs. DMC helps to produce
high-quality software by managing and controlling—in a scientific and systematic
manner and using well-defined procedures and controls—documents through all
phases of a product’s life cycle. Accordingly, this chapter reviews the requirements
specified by the various standards for the proper functioning of the DMC process.

PDM is the discipline of controlling the evolution of a product and providing
other procedures and tools with accurate product information at the right time in
the right format during the entire product life cycle. PDM and DMC are closely
related and perform similar functions to achieve their goals. SCM is a collection
of techniques that coordinate and control the construction of a software system.
Because today’s products rely on tightly integrated hardware and software compo-
nents, system and software engineers and project and product managers need to
have an understanding of both PDM and SCM.

References

[1] Visconti, M., and C. Cook, “Software System Documentation Process Maturity Model,”
Proceedings of the 1993 ACM conference on Computer science, 1993, pp. 352–357.

[2] Wallace, S., The ePMBook, http://www.epmbook.com/, 2004.

6518 Book.indb 234 12/30/14 1:25 PM

Summary 235

[3] ISO, Quality systems—Model for Quality Assurance in Design, Development, Produc-
tion, Installation and Servicing (ISO-9001: 2000), Geneva, Switzerland: ISO, 2000.

[4] ISO, Environmental Management Systems—Specification with Guidance for Use (ISO-
14001: 1996), Geneva, Switzerland: ISO, 1996.

[5] IEEE, Industry Implementation of International Standard ISO/IEC 12207: 1995, (ISO/
IEC 12207) Standard for Information Technology—Software Life Cycle Processes (IEEE/
EIA 12207.0-1996), New York: IEEE, 1998.

[6] ISO, Quality management—Guidelines for Configuration Management [ISO-10007:
1995 (E)], Geneva, Switzerland: ISO, 1995.

[7] Crnkovic, I., U. Asklund, and A. P. Dahlqvist, Implementing and Integrating Product
Data Management and SCM, Norwood, MA: Artech House, 2003.

Selected Bibliography

Bourque, P., and R. E. Fairley (eds.), Guide to the Software Engineering Body of Knowledge,
Version 3.0, IEEE Computer Society, 2014; www.swebok.org.

IEEE, IEEE Standard for Software User Documentation (IEEE Std-1063-2001), New York:
IEEE, 2001.

Pressman, R. S., Software Engineering: A Practitioner’s Approach (8th Edition), New York:
McGraw-Hill, 2014.

Sommerville, I., Software Engineering (9th Edition), Reading, MA: Addison-Wesley Publish-
ing Company, 2011.

Wallace, S., The ePMBook, http://www.epmbook.com/, 2004.
Watts, F. B., Engineering Documentation Control Handbook (2nd Edition), Norwich, NY:

Noyes Publications/William Andrew Publishing LLC, 2000.

6518 Book.indb 235 12/30/14 1:25 PM

6518 Book.indb 236 12/30/14 1:25 PM

237

C h a p t e r 1 7

SCM Implementation

introduction

Implementing an SCM system in an organization is not an easy task, because the
implementation needs support from a lot of departments, from top management to
the developer or programmer. It probably involves changing the way the organization
is doing software development and maintenance. The SCM system will introduce
new procedures and controls, and people will have to follow those procedures to
get something done.

In a non-SCM scenario, changes could be made at will, but once SCM is imple-
mented change management procedures have to be followed. SCM also brings
accountability, because all events are recorded and these records could be used to
trace the person who made a particular change or modified a program’s source code.
Thus, resistance to SCM may be a factor that can create many a problem during
an SCM implementation.

As with any project, SCM implementation also cannot succeed without the
complete cooperation of all people involved, whether it is the top managers who
will use the status accounting reports to monitor the project or the developer who
has to follow the SCM procedures. This chapter examines some of the techniques
that will help overcome resistance to SCM and any other problems during an SCM
implementation.

Managing the implementation

The nature of the SCM implementation is such that it is best handled within a project
management context. The implementation involves a series of activities that do not
fit naturally into the normal business cycle of events. These activities are of finite
duration. They have an endpoint, after which any further work should become
absorbed into the normal business activity. SCM also requires allocated resources
and the development of specific skills. It is multidisciplinary and team-oriented. The
complexity is compounded by the need to involve an increasing number of people
over time, distracting them from their normal activities. Thus, this way of working
tends to contrast with the software development process businesses.

For project management to be effective, it needs to have the right environment.
One of the main reasons for a failed project can be the wrong environment. This
can take many forms, including a counterproductive organizational culture or inad-
equate corporate commitment or sponsorship.

6518 Book.indb 237 12/30/14 1:25 PM

238 SCM Implementation

preimplementation Tasks—Getting ready

There are at least two truisms that fit most SCM projects: Implementation will be
painful, and financial benefits realized in the first year will be minimal. Preparing
your company for implementation is almost as important as the project itself. Too
often, in justifying a project, we downplay the risks and pain of implementation,
afraid that the truth will mean disapproval. However, brutal honesty at the onset
is always better than giving team members false expectations. If employees believe
the project will progress painlessly, they will only get discouraged when a problem
does occur. If you tell employees the truth, they can anticipate pitfalls and prepare
for them.

It is important to let everyone know that after many months of implementa-
tion preparation, system operations may not go smoothly, and the pain can last as
long as three to four months more even if everything has been done correctly. If the
implementation goes well, all the better, but if things go wrong as they sometimes
will, everyone will be much more understanding. You can get to the same point
with all the same problems and be viewed with either approval or disdain depend-
ing on how well you have prepared your company. Often, project promoters claim
new systems will impact the bottom line immediately. However, experience shows
that many systems benefits do not occur until the second year.

importance of preparation

Management too often plunges into SCM being less than fully informed, or worse
yet with very limited or no knowledge of what to expect. Often, there is a misconcep-
tion that the skills necessary to select SCM software and then implement it already
exist in the organization. Some skills may exist but rarely to the extent necessary
to effectively implement SCM within a reasonable time frame. Enter the consulting
“experts” from a systems integration firm (often labeled as management consultants)
who helped sell you the system, with a software business partner. Worse, when the
implementation “experts” arrive, some of them are so inexperienced that it should
make you quickly reassess implementation risk. It is of paramount importance
with such a high risk and reward ratio that you be absolutely certain the necessary
knowledge and skills are present in your implementation team.

Another commonly overlooked issue and, therefore, one that is not well pre-
pared for, is IT change. Often the IT infrastructure changes required to enable the
implementation of a new SCM system are not given the high priority they deserve.
Certainly, business issues, rather than those related to technology, should drive the
implementation of SCM. However, it is the understanding and skills of the IT per-
sonnel that supports the technology that enables the business process issues to be
improved. Failing to consider that new IT is going to require preparation through
education, in order to understand the new technology, is asking for trouble. For
example, the IT staff of the organization is very knowledgeable about COBOL and
HP-UX, but its new SCM will be using very different technology. IT personnel’s
understanding of the new technology is an absolute requirement for a successful

6518 Book.indb 238 12/30/14 1:25 PM

Before You Leap 239

SCM implementation. Furthermore, the IT personnel have to make the technology
transition fast. If the necessary technology adoption and infrastructure transition
are not done well, it will at the very least, delay the project.

One of the biggest problems that many have had with implementing SCM is
misunderstanding what SCM is all about and underestimating what it takes to
effectively implement. Driving SCM preparation and implementation, senior oper-
ating management cannot relegate critical decisions to workers who may not have
the background or temperament for this type of decision-making.

Companies need a well thought out and comprehensive process that will help
plan, guide, and control the entire SCM implementation effort. Starting an implemen-
tation with an undocumented, skimpy, or untailored implementation methodology
is an open invitation to disaster and at the very least, a long, drawn-out implementa-
tion. Everyone from the boardroom to the stockroom needs to clearly understand
their roles and responsibilities for implementation and above all, encourage dialogue
that will get people focused on the business objectives as well as early identification
or correction of any problems. In addition—and no small matter—the questions
of how, when, and who will be accountable for results must be an integral part of
this understanding. An implementation that is going astray becomes recognizable
when repeated schedule slippages surface. As time moves on, the schedule, missed
problems starts to compound the implementation quality, as the invariable response
is to start taking shortcuts and bypassing critical business issues.

Before You Leap

An SCM system is a very powerful computer tool, and organizations can gain a lot
of competitive advantage by implementing one. Unfortunately, many SCM projects
have not been effective and hence unable to achieve the results envisaged. As the cost
of an SCM implementation project is very high, it is critical for an organization to
make the project a success and start deriving benefits from it as fast as possible. The
characteristics of a successful SCM implementation project are described as follows:

•	 A well-defined project organization structure that details the project planning,
execution, and monitoring mechanism;

•	 An attitude that stresses business transformation instead of process automation;
•	 An approach that brings about the proper integration of people, processes,

and technology through effective management of change;

Companies need a well thought out, comprehensive process to help plan, guide,
and control the entire SCM implementation effort. Before the nitty-gritty of soft-
ware selection begins, management should know how current strategy, processes,
and supporting systems work and whether any changes should be made before the
new information system is introduced. The preimplementation stage is the time to
reconsider the way you do business and to make a detailed analysis of the require-
ments and the expectations of the new information system. Optimization of software
development processes rather than technical innovation should be the focus of an

6518 Book.indb 239 12/30/14 1:25 PM

240 SCM Implementation

SCM implementation project. Start defining software needs by examining current
processes that govern your flow of information and material throughout the order-
to-delivery process and ultimately the entire supply chain. There is a common ten-
dency to shortcut this important activity, but you will pay—sometimes dearly—in
time and money for avoiding this essential step.

Take the time to evaluate your SCM plan before you commit to software acqui-
sition and installation. Doing it right the first time is the only way to go. There
are many people out there who wish they had taken a brief pause to evaluate their
direction. The following questions do not cover every possible contingency but they
should be used to stimulate thought and discussion and the right action:

•	 How do we want to run our business?
•	 What problems need to be resolved?
•	 Do we know and understand our priorities?
•	 Do we fully understand our “as-is” condition versus our “could-be” process?
•	 Have we defined an action plan for preimplementation preparation activities?
•	 What tasks will be accomplished and by what dates?
•	 What are the “missing links” in our software of choice?
•	 What are the real costs, benefits, and timetable going to be?
•	 Do you have an executive-level SCM champion that provides the necessary

link to top management?
•	 Who will implement SCM and make it work?

Implementing a high-end SCM system for a large organization is a complex
and lengthy project that requires a vast amount of resources (e.g., money, person-
nel, hardware, software, and communications network) and that could result in
huge losses if it fails. In the case of SCM implementation, failure is not an option.
It is a “do-it-right-the-first-time” kind of project, because most organizations will
not recover from a failed implementation. Careful and meticulous planning and
preparation is required for the successful implementation of the SCM system in the
organization. Small organizations have options like implementing lightweight and
open-source SCM systems or going in for source code repositories (discussed fur-
ther in Chapter 20), which have a lower risk of failure and are easy to implement.
Many of these options are free, and others are not very expensive.

This chapter describes the preimplementation tasks that need to be done to
ensure a successful implementation. The preimplementation planning session is a
multifunctional event that recognizes the SCM project on a formal basis. One of
its primary goals is to develop the project plan. A project is a solution that is sched-
uled for success. The project planning session is a meeting that usually lasts one or
more days and consists of all the critical stakeholders of the SCM system from both
internal and external sources. The project planning session will define the main
problems with proposed solutions. The planning session will determine what must
be done, who will do it, how it will be done, when it will be done, its cost, and the
services and materials needed to do it. The output of the project planning session
is the project plan, which will serve as a guide to implement the software and help
to build ownership in the system. The main tasks that should be performed during
this session are listed as follows:

6518 Book.indb 240 12/30/14 1:25 PM

Before You Leap 241

•	 Assembling the participants—stakeholders;
•	 Conducting a feasibility study review;
•	 Creating a project mission and vision statements;
•	 Determining the organizational structure;
•	 Determining the modules to be implemented;
•	 Creating the core team;
•	 Establishing the training needs;
•	 Establishing the data conversion or migration strategy;
•	 Establishing interfaces;
•	 Determining work estimates;
•	 Determining the cost of consultants;
•	 Calculating the implementation time;
•	 Identifying constraints;
•	 Establishing policies and guidelines.

assembling the participants

One of the first steps of the project planning session is to assemble the critical
stakeholders of the project. This should include all people who have a direct influ-
ence over the project in terms of how the resources should be allocated. It should
also include any potential members of the company who may participate or have
an influence on the SCM core team. Participation in the project planning session
is not an optional exercise. Because of the critical need for strong support in an
SCM project, all members having a stake in the project need to participate. The full
participation of senior management should not be overlooked. Any critical stake-
holder who refuses participation in the project places the SCM implementation at
risk, usually a high risk. The project planning session and the SCM project simply
cannot take place successfully without the participation of the key stakeholders.

Feasibility Study review

After the team is assembled a review of the feasibility study and needs analysis
should be conducted. The feasibility study document contains the results of the
investigation as to the feasibility of the SCM system in the organization. It contains
the factors that will affect the SCM implementation—the ones that will assist and
the ones that will create problems. The needs analysis will essentially be the justi-
fication for the project. The needs analysis document reports information such as
why the SCM system is needed, which functional areas need maximum focus, and
which areas need to be improved.

project Mission and Vision Statements Creation

In this step, the mission and vision of the project is determined and documented.
The vision should be a global statement that is continuous and ongoing. The mission
statements will consist of the major milestones of the project. Mission statements
should have specific expiration dates and be measurable in nature so that they do
not become vision statements. They can be broken down by functional module. The
expected completion date for each module should be documented as expressed by

6518 Book.indb 241 12/30/14 1:25 PM

242 SCM Implementation

the appropriate critical stakeholders. If they have not determined a critical comple-
tion date, then do the mission statements now and add the date later. The projected
completion date will be calculated in a later step of the project planning session.

determination of Organizational Structure

The organizational structure is determined to decide how the implementation is to
proceed. Some organizations will be clearly separated by geographic facilities. Oth-
ers may be clearly separated by different business divisions controlled by separate
management functions. The purpose of this exercise is to show the major areas of
the business that may install the software independently or at different times.

determination of the Modules To Be implemented

Using input from the needs analysis, vision and mission statements, and the organi-
zational structure, the next step is to establish the modules to be implemented. Other
independent software packages that may be interfaced may also be implemented with
the rest of the SCM system. Include all possible sources that will integrate or affect
the implementation of the SCM system. The modules of the SCM system may not
correlate with the needs of the organization. It may be helpful or even necessary, to
have an SCM system application consultant present to explain what functional need
of the organization translates into the appropriate functional module of the SCM
software. After the translation has been made, a complete list can be established.

Creating the Core Team

This session has several purposes. They include: (1) determining the structure of
the SCM team, (2) assigning SCM core team members to modules and phases,
(3) determining the team members’ percentage of participation, (4) adjusting
percentage equivalents, and (5) calculating full time equivalents. The type of
SCM team structure to be used in the implementation should be decided. Other
positions outside the core SCM team such as steering committees, management
consultants, technical consultants, and application consultants can be applied and
arranged to support the selected core team structure. Before one is chosen over
the other, the advantages and disadvantages should be clearly understood by all
critical stakeholders. After the structure of the team is established, by input from
participants of the project planning session, each member must be assigned to a
functional area and the percentage of time to be dedicated must be determined.
The number of positions and the amount of time that SCM team core members
will dedicate can vary considerably from the beginning of the project to the end.
This can become quite evident when the project is broken up into phases and
one person participates in more than one phase. Different phases may require
different participation levels from different people.

Establishing the Training needs

In this step, the educational and training needs are established. Here, education
refers to providing information about SCM basics, best practices, needs and benefits,

6518 Book.indb 242 12/30/14 1:25 PM

Before You Leap 243

different modules and how they function, and such general topics. The training
imparts information specific for the company in that they will teach the users how
to use the SCM system specifically for the business. Each training class will be
custom-developed based on how the software is set up and used.

Determine how much education will be required, the type of education, and the
number of participants. Educational classes will generally be predefined, standard-
ized training packages. The focus of education should be the critical stakeholders,
senior management, and SCM team core members. Some areas to consider for
education include fundamental SCM concepts, business management techniques,
SCM functional modules, and best practices.

Make a listing of all the participants who will be attending in each category.
SCM educational modules are generally available from SCM vendors and service
providers. They are standardized educational programs to help students learn the
functionality of the software. Make a complete listing of SCM functional modules
with each team member who will be attending. It may be helpful and even neces-
sary, to have an SCM application consultant assist in the assignment of people
to SCM functional educational training classes. Education for SCM functional
modules should be further broken down by the phase in which the modules will
take place.

When determining the total amount of educational needs, the end users should
not be included in these figures. Some SCM team members will have the need for
both education and training. For SCM team members who will receive both edu-
cation and training, the educational portion should be included in the educational
section, and the training portion should be included in the training section.

Establishing the data Conversion or Migration Strategy

The goal in this step is to establish what needs to be converted or migrated and how
it is going to be done. Almost every functional module will require information from
the legacy system. The two primary methods of converting data are manual and
electronic. When performing this step, it may be helpful to have an entity diagram
and file structure specification of the SCM system. Application consultants can
provide helpful insight into the critical files that require data for the successful use
and implementation of the SCM system. In most cases, either electronic or manual
methods may be used. However, before one is chosen over the other, the advantages
and disadvantages of each approach should be clearly understood.

Some areas to consider for data conversion include open accounts receivable,
open accounts payable, chart of accounts, accounts payable history, accounts receiv-
able history, open sales orders, sales order history, open purchase orders, purchase
order history, item master, item on hand balance, bills of material and routings,
open engineering change orders, engineering change order history, open work
orders, work order history, customer master, vendor master, fixed assets, project
planning session, general ledger balances, employee master files, payroll history,
and payroll balances.

Many other areas are also available for consideration. It is best to have experi-
enced people from the legacy system working together with application consultants
to fully understand the complete need.

6518 Book.indb 243 12/30/14 1:25 PM

244 SCM Implementation

Establishing interfaces

The goal of this step is to identify any interfaces that require development. This
section is for the required interface programs between systems for which none
exist. If the SCM implementation strategy chosen is a big bang approach, it may
then require few or no interfaces. Projects that are phased and have high-degree
process characteristics need a large number of interfaces. Other software packages
that need to connect and communicate with the SCM system should be included
here. Interface programs can be developed using electronic methods or SCM team
members or clerical staff can perform them using manual methods. Before one is
chosen over the other, the advantages and disadvantages of each approach should
be clearly understood. It may be helpful to use application consultants or techni-
cal consultants to explain critical interface points for the new SCM system. It is
best to have company employees with a strong knowledge base of the legacy SCM
system working together with knowledgeable SCM application consultants to fully
understand the critical interface points.

determining Work Estimates

The work estimates for all the activities from planning sessions to training and
maintenance after installation of the SCM project should be determined in advance.
A wide variety of events are represented that will consume the majority of the
resources dedicated to the project. Performing work estimates in SCM systems
is far from an exact science. However, if careful research was done prior to the
purchase of the software, general estimates are possible with some degree of accu-
racy. Communication with outside references can provide estimates of how much
work was performed and how long it took. Using these estimates from references
combined with experienced honest application and technical consultants, reason-
able numbers can be obtained. Estimates should be made for each activity for
each phase or process section. The estimates for the work to be performed should
be in days. The number of days is not based on how long someone thinks it will
take from beginning to end, but rather on how long it will take based on a person
working full time on that particular event. This is the equivalent of man hours or
in this case, man days.

Cost of Consultants

It is better to establish the scope of the project or how much work needs to be
done, in advance. With our previous section determining the available amount of
resources, we can now move into our next section, which helps us determine the
amount of time it will take. Most SCM projects benefit from some degree of con-
sultation. This consultation can occur at management, functional, and technical
levels. The amount of outside consultation that will be needed is dependent upon
many different factors. Some factors that will increase the need for consultants
include large complex installations, multilanguage characteristics, complex business
process flows, lack of ownership, lack of participation by SCM team members, and

6518 Book.indb 244 12/30/14 1:25 PM

Before You Leap 245

sudden changes in leadership. The amount of consultation assistance needed for an
SCM project can vary tremendously. When and where a consultant may be needed
is very difficult to predict in the early phases of an SCM project. For purposes of
increasing ownership and participation, it is better to limit the role of consultants
and use them for critical areas.

Calculation of implementation Time

Three characteristics working together—scope, resources, and time—will affect
every SCM project. The scope of the project has already been defined in the previous
steps. The available resources have been calculated through percentage equivalents
into full time equivalents. The remaining step is to calculate the completion date.
If a company increases the scope of its SCM implementation, then it will need to
increase the time or available resources, or both. Similarly, when a company decreases
the available resources used to work on the project, then the scope will need to be
decreased, or the available time will need to be increased, or both. By changing any
one of the three characteristics the other two are affected.

Once the scope, time, and resources have been calculated, a graphical timeline
should be developed using a variety of project management software tools. The
timeline will represent a high level showing the major phases or processes, activities,
sequence of activities, events that will operate in parallel, start dates, and comple-
tion dates. A graphical timeline is an important part of the project planning session.
The graphical representation of the elements of the project helps make it a valuable
tool for discussion.

identifying Constraints

All constraints of the project should be identified and documented. A constraint is
any business activity or external factor that will inhibit or affect the outcome of the
SCM implementation in some negative way. The source of information should come
from all the critical stakeholders of the SCM implementation. One of the key fac-
tors on which to focus is identifying any activities that will potentially compete for
the time of SCM team members. Some examples of business activities or problems
include lack of people, data integrity problems, people unwilling to change, other
implementations, change of personnel, and new products or services.

Establishing policies and Guidelines

Project policies and guidelines form consistent methods for dealing with situations
and events that occur in a project. Some areas in which to consider policies include
problem resolution, software modifications, configuration settings, business process
flows, meetings, budget changes, resource acquisition, general communications,
conversion strategies, contingency plans, project status meetings, training guides,
and user guides.

6518 Book.indb 245 12/30/14 1:25 PM

246 SCM Implementation

in-House implementation—pros and Cons

A question that many people ask is why can’t the company carry out the SCM imple-
mentation by itself? To successfully set up and implement a perfectly functioning
SCM package is not an easy task. One cannot go in for a trial and error method of
implementation strategy due to the huge investment involved. The consequences of
a failed SCM implementation can be quite catastrophic. It might put the organiza-
tion out of business. Also, the SCM implementation process cannot go on for a long
time. It has to be completed within a reasonable time period.

To successfully carry out the implementation within a reasonable time frame, the
in-house people who are designated to do the job should possess certain knowledge
and skills. To start with, the company should have many people who are experts
with the SCM package and with technical issues. Implementing the SCM software
means assigning the optimum values to the various parameters and variable ele-
ments of the system. Experience has proven that a good professional needs at least
one year to become reasonably good in operating an SCM system, and this should
involve hands-on practical experience. As you cannot become an expert by reading
product brochures and on-line help files, you have to have practical implementa-
tion experience.

Many software vendors have their own team of consultants whose responsibility
it is to implement software packages following a standard approach or methodol-
ogy. Definitely, these people know the product and can be of great value during
implementation. However, developing a good software package and successfully
implementing it are two entirely different propositions. So, a good package vendor
need not be good at implementing its product. Also, each group of people in an
implementation project (e.g., vendors, consultants, in-house team, and users) has
a definite role to play in the implementation. So if the same party is performing
multiple roles, it can create problems when a conflict arises. For example, if the
vendor is doing the implementation, the vendor’s consultants may not be as open
to the ideas of the in-house team as third-party consultants, because the vendor’s
consultants will have a mindset that will prevent them from seeing the other side’s
perspective.

Besides having a very good knowledge of the product, the people who are to
implement the SCM system should possess the following skills:

•	 Knowledge of how to organize and run a project of this magnitude. This
calls for good organization skills, project management skills, team man-
agement skills, and knowledge of scientific methods of software project
management.

•	 Experience in handling problems and issues that arise during the implemen-
tation. No implementation will be a smooth process; there will be problems
such as cost overruns and time overruns. Knowing what to do in these situ-
ations is vital for the success of the project.

•	 Good people skills. Any SCM implementation will face resistance from the
employees. The resistance could be due to many factors including ignorance
of the product, fear of unemployment, fear of training, and fear of technology.

6518 Book.indb 246 12/30/14 1:25 PM

SCM Implementation Plan 247

So, it is important that the people in the implementation team be good dip-
lomats adept at diffusing crisis situations.

•	 Good leadership skills. SCM implementation will involve dealing with a lot
of people, and good leadership and communication skills are very effective.

•	 Excellent training skills. Every SCM project involves considerable amount
of training at various levels and in various details. There will be familiariza-
tion programs for all the employees; there will be executive programs for top
management; there will be functional training for the implementation team
members; and there will be end-user training.

In today’s business environment where the trend is to reduce manpower and
focus more on the company’s core competencies, it becomes even more difficult
to take the total responsibility of the SCM implementation and get it done using
in-house resources. If the company is planning to do the SCM implementation in-
house, it might have to hire experts and have them on the company’s rolls. This is
an expensive proposition because once the implementation is complete—the post-
implementation phase—you will not need that many experts to keep the system
running. You will need, only a handful of people—perhaps just a few of them in
each functional area—to effectively handle this postimplementation scenario. So, if
the company is planning to do the SCM implementation all by itself, then it will be
adding a lot of resources and spending a lot of money on training, most of which
will not needed after the package implementation.

It is therefore, always a better idea to leave the implementation—or most of
it—to the people who are specializing in that and concentrate the company’s efforts
on preparing its personnel to administer the package after it is implemented. Once
these employees have been trained—during the course of the implementation—they
can help the company in its implementation efforts in other units of the company
or provide training to other employees in using the system, among other jobs. So
by getting the employees trained during the implementation, the company can save
a lot of money it may otherwise have spent in hiring trainers.

In summary, it is better for companies to concentrate on their business and leave
the job of SCM implementation to people who are in that business. However, to
get maximum benefit out of a packaged solution, company personnel should par-
ticipate fully during the implementation of the package. The company should plan
the participation so that its people play an appropriate role in the implementation
project and will have enough experts in-house, once the implementation is over.
The company should bring in the “know how” and experience that will guarantee
the best possible use of the acquired package.

SCM implementation plan

Before implementing an SCM system in an organization or project, it is crucial that
the implementation process be planned. Implementation planning includes develop-
ing the implementation strategy and implementation schedule and organizing the
implementation team.

6518 Book.indb 247 12/30/14 1:25 PM

248 SCM Implementation

The implementation plan documents the who, what, why, where, when, and
how of the project. It is the outcome of discussions with affected people and involves
negotiations over resources, timescales, and costs and their agreement. It should be
realistic; otherwise, if timescales are too short, potential disruption will be built
into the plan, and if timescales are too long, the momentum can be lost. The plan
provides a guide to the project and is used to monitor progress. It enables people
to carry out a set of interconnected tasks in a coordinated manner. Setbacks are
highlighted and remedial action established. If necessary, dates are rescheduled.
Importantly, the plan is communicated to all who need to know about the project,
making them aware of progress and changes.

The implementation plan should address all concerns such as existing proce-
dures, the effect of the SCM implementation on the procedures, how it will affect
the employees, the work environment of the organization, the SCM awareness of
the employees, and the creation of SCM user manuals.

The most basic plan will identify all the activities, those doing them, and the
time frame. A project plan can be handwritten or produced using some computer
application. Spreadsheets offer simplicity and are readily available. Furthermore,
they can easily be distributed to others since a spreadsheet tends to be a standard
tool on many PCs. Alternately, specialized packages are available such as Microsoft
Project. These capture a lot of detail about the project, enable different views of the
project, such as timescale or critical path, and facilitate the reporting of many dif-
ferent issues (e.g., costs, resource usage, and overdue activities). The key concern is
the amount of complexity to be organized, manipulated, and updated—a function
of the amount of detail required. So it is necessary to ask what detail is going to
be useful. Another consideration is the distribution of the plan. With a specialized
package, not all intended recipients may have the required software, raising the
dilemma of what to distribute and how.

A project plan outlines the major tasks, the estimated duration (usually specified
in months), the resources required, and the people who will be doing the tasks. The
high-level plan gives an overview of the project and can be used by top manage-
ment for monitoring the project. However, this high-level plan cannot be used by
the person who is responsible for day-to-day activities of the project—the project
manager. The project manager will develop a detailed project plan, where the high-
level plan is broken down into a lot more detail with the time windows being weeks
or days rather than months. Additional columns may be used to identify start dates,
end dates, amount of work (hours), estimation of percentage completion, lateness,
costs, and any other issues deemed relevant. Some tasks will be dependent upon
the completion of others (interdependencies), while other tasks can run in parallel
(concurrent engineering).

Timescales should be realistic. If they are overly optimistic, then the project will
soon fall behind and is unlikely to catch up. This will have the effect of demoralizing
the team. Likewise if the timescales are too long, momentum may never build up,
and delays may result from inertia. Having produced a plan, it is then important to
maintain that plan against progress, revising it as necessary. When problems arise,
so do the potential for delays. It can be argued that it is better to push out dates
rather than not get it right, since a sloppy solution may reemerge at a later date
with a magnified impact.

6518 Book.indb 248 12/30/14 1:25 PM

Implementation Strategy 249

risk assessment

Even the most detailed of project plans can go astray for events that could have been
anticipated and prevented. Accordingly, it is prudent to carry out a risk assessment.
The aim is to anticipate possible problems, to assess their likelihood of occurrence
and their intensity of impact, and, finally, to establish how they can be prevented
or best handled if prevention is not possible (e.g., causal analysis).

There are various approaches to risk assessment. For many, the prerequisite for
understanding what is involved in a risk assessment is denied by the virtue of never
having been here before. To keep it simple, one should adopt a basic approach,
starting by recognizing that the project has the potential to fail. The first question
that should spring to mind is: why?

The first task is to understand what is involved. Risk assessment should be done
at the first possible opportunity. It should be done by an individual or team of expe-
rienced professionals. An appreciation of what is involved will enable assessors to
determine potential risks. An insight into potential issues can be gained by reviewing
the main problems experienced by others. Many tend to be people-related. Technol-
ogy and methodological issues tend to be of lesser prominence. The result may be
an unwieldy, long list. In this case it may be desirable to establish which risks are
the most important and to focus on those. Each risk is assessed for how severely it
can impact the project and the business and the likelihood that it will occur. This
is a subjective process, and the views of others can aid this. If a risk has a high
severity and a high likelihood of occurrence, it requires immediate attention. Like-
wise, risks rated with low severity and a high likelihood of occurrence will require
attention if they are not to be disruptive. Cases where there is a low likelihood of
occurrence can be put to one side. Note that they are not discarded. This process
prioritizes those issues that need attention. The result should be a reduction in the
likelihood that things will go wrong. However, while it is proposed that this assess-
ment is carried at the outset of the project, it should be regularly revisited. Process
developments and changes in project conditions may raise the profile of risks that
were previously viewed as insignificant.

implementation Strategy

One of the key decisions is the scope of the implementation. One option is to undergo
a complete switch-over from any old systems to the new system, the “big-bang”
approach. Another option is to introduce the software in stages, with core func-
tionality first and additional functionality rolled out in successive stages. In both
situations, there is the option of whether to have both the old and new systems run
in parallel. Consideration should be given to a number of factors:

•	 Speed or urgency of implementation;
•	 Availability of people for carrying out the implementation tasks;
•	 Availability of time for training all users;
•	 Cost;
•	 Confidence in the new system;

6518 Book.indb 249 12/30/14 1:25 PM

250 SCM Implementation

•	 Disruption to operations;
•	 Total timescale.

Whichever option is decided, those involved in the implementation must remem-
ber that they will spend a lot of time on development work, time that would other-
wise be spent on normal duties. Thus, the question arises about how these normal
duties are to be fulfilled. One option is to recruit temporary staff to carry out
normal tasks. However, this assumes that the required skills can be acquired. An
additional option may be available for those programs or organizations that are
running multiple projects: a pilot project. The organization would select one project
that could be representative of the others, ideally a project that is not too large, and
implement SCM for that project—running the SCM pilot as a project unto itself.

The implementation plan should identify the implementation strategy, that
is, whether the incremental approach or the big-bang approach will be used and
whether SCM will be implemented in all projects simultaneously or instead intro-
duced in a pilot project.

When the incremental approach is used, full SCM functionality is not imple-
mented in one step. The different functions are introduced one by one. For example,
the organization might choose to implement the change management system first and
then the other functions at a later date. The advantage of the incremental approach
is that the company can get feedback on the implementation and how it is received
and possibly fine-tune the implementation strategy based on the feedback received.
Another advantage is that it can spread the investment over a period of time.

The advantage of the big-bang approach is that the company can start reap-
ing the full benefits of SCM soon after implementation. The big-bang approach is
effective if the organization is mature and conducive to SCM, and personnel are
ready for the SCM. Here, there is no room for error—it is a “do it right the first
time” proposition. Implementing SCM in a pilot project is a good idea, because
it will give the implementation team a feel for the issues in an actual implementa-
tion, the peculiarities of the organization, and its work environment. A successful
pilot project can be used as an effective tool for convincing staff and alleviating
any doubts and eliminating fears about SCM. However, the pilot project must be
selected carefully—it should be a project where the team members are willing to face
the challenge of doing something new, have an open mind, and can adapt to new
systems. There is nothing like a successful pilot project implementation to convince
others why they should also implement SCM in their projects.

Budget

With the costs identified (during the planning stage), a budget can be established. It
should also be anticipated that problems and unforeseen issues are likely to result
in additional expenditure. Whether an allowance is made for this is a policy deci-
sion by the finance management. Actual expenditure is monitored against budget
for the duration of the project. Variances to be aware of include high consultancy
costs, particularly in the early stages of the project, and low training costs. Details

6518 Book.indb 250 12/30/14 1:25 PM

Cost 251

of consultancy costs should be identified during the selection process and moni-
tored to avoid overspending. Unless the project specification has changed between
then and the implementation, this estimate should roughly reflect what is incurred.
If there is a significant variance, it is necessary to ask why this has occurred. The
other major cost to monitor is training. When there is an indication that budgets
are going to be overspent, it tends to be the training budget that suffers. However,
training is one area is often reported as being inadequate.

Cost

It is unlikely that a financial director would support the idea of unlimited fund-
ing for an SCM implementation project. Instead, from a control stance, a budget
needs to be established. This will be based upon an estimate of the likely costs.
In identifying where the costs are likely to arise, consideration should be given to
the following:

•	 Hardware;
•	 Operating system;
•	 Database license fee;
•	 Core software license fee;
•	 Additional module license fee;
•	 Additional seat license fee;
•	 Third-party software license fee;
•	 Integration of third-party software;
•	 Software customization;
•	 Project management;
•	 Consultancy;
•	 Training;
•	 Living and travel expenses (also travel time);
•	 Software maintenance or warranty renewal;
•	 Upgrades.

Much of this cost information will be provided by the vendor. While it is likely
that the vendor will provide a specific figure for each item, this may only be an
estimate. Whilst the costs of the software can be precisely stated, where there is
uncertainty about what is involved, the cost will only be an estimate. This is likely
to be the case for such items as consultancy, which history suggests is an area for
potential overspent. In this case, an upper and lower value, and the expected value
should be sought to give a fairer reflection of the potential cost exposure.

While some of these costs will be one-off (e.g., hardware, training, and consul-
tancy), others will be ongoing (e.g., maintenance). To get a better picture of the cost
exposure, a long-term perspective should be taken. A meaningful time horizon is
five years. By the time that five years has passed, it is quite possible that the appli-
cation will have been reviewed and a new budget established for additional work,
such as an upgrade or additional functionality.

6518 Book.indb 251 12/30/14 1:25 PM

252 SCM Implementation

Not to be overlooked are the indirect costs, which are mainly internal costs.
These can include the following:

•	 Time and consequent cost of employees involved in the project;
•	 Cost of temporary personnel to replace those involved in the project;
•	 Cost incurred due to other activities not being carried out costs related to

off-site travel and sustenance (e.g., off-site training);
•	 Costs related to the internal resources, such as the implementation team or

work team, who administer and maintain the system and provide internal
technical support.

The annual maintenance fee may be surprising in how significant a proportion
of the total budget it is. Is it worth asking what is provided for this fee? Obviously,
each situation will be different depending on a host of variables, including the
complexity of the processes affected, the number of users, the amount of custom-
ization, and dependency upon consultants. It should be possible to pin down most
of the costs, especially the main costs, to a lower and upper value and also a most
likely cost. However, the unexpected can disturb this picture. Some costs will not
be readily apparent and can be overlooked. Alternatively, they may be underesti-
mated. It is not uncommon for the yearly cost to be in the neighborhood of 10%
of the initial cost outlay.

The danger arises when a budget is set, but costs during the project continue
to escalate. This is particularly true with regard to consultancy and training costs.
Overspending on consultancy is often compensated for by a cutback in training.
This is not helped by the fact that training costs tend to be underestimated in the
first place. The dilemma faced is that having started the project, so much has been
invested in it that it must finish—but at what cost? This raises the need for cost
control throughout the project. Project planning software may have the facility for
attaching costs to resources used in activities planned. This can provide a means
for determining indirect costs. Upon completion of the tasks, the plan is updated
to reflect the actual resources used and the time taken. This gives an indication of
the actual cost incurred. It is particularly useful for gauging the costs of internal
personnel.

From a practical point of view, the one area where costs are most likely to get
out of control is the use of consultants. On-site attendance of vendor personnel can
boost costs if uncontrolled, or the unexpected occurs. Thus, it may be desirable
to contrast the estimated costs of personnel on a “time and materials” basis with
a fixed-cost implementation. While the latter may be more expensive at quotation
stage, the reality may be the opposite. Typically, SCM tool consultants (whether
independent or the vendor’s representative) will cost in access of $1,000 per day.

Cost-Benefit analysis

Once the need has been defined and the costs identified, it is useful to determine
what the benefits are and whether the benefits justify the cost. This justification
can strengthen the argument about the need. However, the dilemma arises as to
how to carry out this justification. The SCM implementation is by its very nature

6518 Book.indb 252 12/30/14 1:25 PM

Performance Measurement 253

a complex activity. It involves many people who need to act over a long period of
time in a coordinated manner to produce a coordinated way of working using a
technology that may not function precisely as desired.

A similar case can be made for the determination of the benefits. While the
tangible benefits of reduced stock holding may be readily quantified, the increased
revenue resulting from more efficient operations will prove difficult. Furthermore,
the quantification of any intangible benefits will prove difficult. However, from a
practical viewpoint this exercise is not required to be, and cannot be, an exact sci-
ence. The aim is to get a useful picture of the situation in terms of what to expect.
Through the application of models, such as “six sigma,” the company should see a
considerable drop in software defects as a result of implementing SCM activities.

The identified costs are assessed within the context of what is understood
about the future and the benefits likely to be gained. With a time horizon likely to
be five years, much can happen in that time. Thus, the approach should be simple
with assumptions clearly defined. This analysis can also be used to establish refer-
ence points or benchmarks. These can be used to assess progress and whether the
anticipated benefits are achieved. Furthermore, it is prudent to be cautious about
potential gains. History suggests that costs will overrun, and benefits will fail to
materialize. This is aside from the skill required of the project manager in control-
ling both the costs and the realization of the benefits.

Finally, consideration must be given to the context within which the justifica-
tion is being used. Who is producing the justification? How will others use these
benchmarks—now and in the future? If the situation changes in the future, then
the relevance of a specific benchmark may change. All too often, planners cast
forecast numbers into stone, yet ignore when conditions change, making these
numbers nonsense.

performance Measurement

The notion of performance is associated with the concepts of control and targets.
We have already seen three performance related measures—costs, time, and benefits.
However, an SCM implementation has a notorious reputation for being overspent
and late and failing to realize benefits. Furthermore, with the timescale long, it is
not practical to wait until the operation phase to find out if everything is function-
ing as intended.

The project plan identifies what tasks need to be done. The aim is then to carry
out the tasks. It is desirable to have some indication that tasks are taking place as
required and that they have accomplished what was intended of them. The assump-
tion is that when a task is done, it achieves an objective(s). Thus, the training of
a user should result in a user being able to perform a set of tasks better or gain a
better understanding of SCM concepts.

For each step or series of steps of the implementation, objectives can be defined
that, if achieved, represent progress. By achieving these deliverables, there is less
likelihood of problems arising at a later date as a result of an earlier event. Con-
versely, failure to achieve these deliverables and the subsequent progression to the
next stage will increase the likelihood of potentially significant problems arising

6518 Book.indb 253 12/30/14 1:25 PM

254 SCM Implementation

at a later stage. Furthermore, progress can be monitored in a methodical manner.
Each task or set of tasks is evaluated as to its successful completion (e.g., whether
training has been effective, whether documents are complete, or whether processes
are fit for the purpose).

Together, the four measurables (cost, time, benefits, and deliverables) present
different dimensions for measuring the performance of an implementation. Often,
it is only the cost and time dimensions that are monitored. Understandably, these
have a visible effect on the finances and operations of the business. Rarely are the
benefits assessed. It can be argued that monitoring benefits is carried out after the
event, so what is the value of monitoring beforehand? However, by assessing whether
benefits have been achieved or not (and the reasons), an opportunity is created to
learn from what has happened. These lessons can then be applied to further phases
in the implementation.

The use of deliverables provides the opportunity to assess the effectiveness of
what is being done. However, conflict may arise. Ensuring that a task is properly
completed may involve an unanticipated increase in the amount of work and lead
to it being late. While the deliverable has been met, it is at the expense of two other
measurables—time and cost. So when it comes to determining whether the proj-
ect has been a success, consider which measurable is being used. This dilemma is
magnified when targets are misused as a tool to blame someone or to score points
over others. It is important to remember that while measurables provide a means
to assess progress and attainment, they in themselves do not determine success.
They merely provide reference points for further action. They are not a substitute
for managing people in such a way that they give their best and more.

SCM implementation Team

The SCM implementation project is a joint effort of many groups of people—the
in-house implementation team, the package vendor’s team, outside consultants,
end users, and company management. This section discusses how to organize the
internal resources of the company for an SCM implementation.

The most frequently asked question is, “Who within the company should par-
ticipate in the project?” The natural response is everyone who is involved in the
SCM process—developers, QA team, project leaders, support personnel, market-
ing team, and top management. Because the SCM system is an integrated pack-
age, almost everyone in the company must participate in one way or another. The
functionality of today’s sophisticated SCM systems will extend to practically every
sector of the company.

The usual organization of the implementation team takes the following format.
The person who manages the implementation is the project manager. The project
manager reports to an executive committee, which reviews progress and resolves
any territorial, resource, or policy disputes. The CEO or MD leads the executive
committee and sponsors the project.

Working for the project manager are the members of the project management
team, who carry out the various tasks for implementing the system. They are the

6518 Book.indb 254 12/30/14 1:25 PM

SCM Implementation Team 255

people who set up the infrastructure, produce documentation, and train employees.
The tool vendor will appoint one or more of its consultants to provide support to the
project manager, manage the client account, and coordinate other vendor resources.
Vendor consultants advise about best working practices and software functional-
ity and assist with technical issues. Training is provided in the first instance by the
vendor to the project management team through either the consultants or specialist
trainers. Once the project team has developed and proven the new way of doing
things, it produces the procedural documentation and trains other employees.

However, just because everyone in the company should be involved in the proj-
ect, we do not mean that everybody should stop their jobs and join in the SCM
implementation effort, thus virtually stopping the company’s day-to-day function-
ing. Still, the company will need an owner or sponsor for the project—somebody
who is going to lead the implementation. This should be a senior person who has
knowledge of the SCM system and the organization and the necessary authority
to make decisions and implement them. Then the company will need at least one
professional from each major department to carry out a specific project function.
Roles will vary in complexity and time involved, but all are equally important for
the success of the implementation.

It is very important for all business functions having some relation to the SCM
system to be represented adequately in the project team—from the top level to the
lowest level of operation. This is important because these are the key people who
will make the SCM system acceptable to everyone in their own departments. So
if the implementation team is comprised of people from all departments, from all
levels, they can convey what they have learned about the SCM system and help
overcome the initial resistance the system is bound to face.

The implementation of the SCM system demands that the managers and opera-
tional staff understand how the new information environment is going to work.
They should be given a clear picture about what is to be changed in the current
setup and what additional facilities the new technology will give the end user. This
is important because the new technology and the additional responsibilities that
arise when the new system is in place can overwhelm many people. So it is impor-
tant to give everybody involved an idea of what to expect before the project starts.

For the right level of participation to occur, a group of representatives selected
from various departments of the company will need to involve themselves in several
levels. Some members of the project team will work on the project full-time—in
tandem with the in-house experts, external consultants, and the vendor’s team.
Others will help coordinate the tasks of the different sections and make available
all the resources required to the implementation team. Management representatives
will monitor the progress of the project and make decisions and corrective actions
to keep the project on-schedule and within budget. Other members will participate
part-time during workshops and training.

One important thing to keep in mind is that the effective participation of in-
house personnel is not possible without the full commitment of top management.
It is the responsibility of top management to see to it that the people who are des-
ignated to the implementation team on a full-time basis are not interrupted in any
other way or with any other work.

6518 Book.indb 255 12/30/14 1:25 PM

256 SCM Implementation

Composition of the implementation Team

Who should be assigned to the implementation team? This is a very important
question, because the success of the implementation and the continued functioning
of the system depend on these people and their ability to grasp the new tasks and
technologies.

Once the SCM system is implemented, the current processes and procedures
will be replaced by new ones. The job descriptions and responsibilities will undergo
some changes. Information integration will happen, and many processes will be
automated. An action taken by an employee can trigger a lot of procedures and
affect a lot of other functions—almost instantaneously. The technology will bring
with it a series of new concepts and resources that must be mastered and correctly
used to get the best out of the SCM system. The format, the speed, and the content
of the management information systems will change. The decision-making process
will change because the decision makers will be able to get accurate information,
in the form they want, when they want it. The SCM packages will institute new
development models and practices.

So the company should appoint its best and most efficient employees to the
implementation team. The company should invest in these people and create oppor-
tunities for them to excel within the company so that they can grow with it. At the
same time, however, these are the people who are actually running the business,
who do not have time for anything else, and who everybody will turn to in a crisis.
Nevertheless, it is these people who should be assigned to the implementation team.

SCM implementation is a very complex and sophisticated project, involving
technological as well as cultural changes. It is not the place for people without ini-
tiative, dedication, and enthusiasm. It is not the place for people who do not have
any team skills or who have communication problems. It is not the place for people
whom the boss does not want. In fact, assigning some people just because they are
the only ones available is one of the worst mistakes that management can make.
Such an action could jeopardize the entire project. The SCM implementation proj-
ect needs people who can grasp new ideas quickly, who have an open mind to new
technologies and concepts, and who love challenges. These people should have a
never-say-die attitude and should be capable of working as a team.

These people will have a lot of demands placed upon them. They will need to
develop a detailed understanding of how the software works, pick up new skills,
such as process mapping; carry out totally unfamiliar tasks, such as prototyping
and training; and deal with problems that they normally would never encounter,
including establishing which process path is the more acceptable. These men and
women will be pioneers as they take their organizations through untested environ-
ments and uncharted waters, so their ability to think quickly, improvise effortlessly,
innovate fast, and act without hesitation is critical to the success of the project.

So when faced with the decision of assigning members to the implementation
team, management should be willing to send their best staff members. Invariably,
these people are those whose work cannot be interrupted and responsibilities cannot
be delegated. Nevertheless, the company has to find a way. If the company decides—
early enough—who they are going to send, and if those people are informed, they
might be able to train replacements to do their work until they return. Sending the
best people is worth the effort.

6518 Book.indb 256 12/30/14 1:25 PM

SCM Implementation Team 257

Those selected—the pioneers—will have greater demands made upon their
time. They are likely to work long hours for many months, including weekends,
to cover their normal duties and their project tasks. During this time, it may be
necessary to restrict when they take their holidays to avoid their coinciding with
a critical stage in the implementation. The continual intrusion into free time may
affect family life and needs to be accommodated. For this reason, it would not be
unreasonable to review remuneration or holiday entitlement for team members. It
should be acknowledged that people have their own learning styles and different
rates of working, particularly when dealing with the unfamiliar. As time passes,
team members need to be watched for loss of interest, resentment, or burnout and
handled with care. If team members leave the company, bringing replacements up
to speed will cause delays.

Organization of the implementation Team

Figure 17.1 shows the organizational chart for a typical implementation team in
medium to large companies. For a small company, there is not much difference in
the organization except that the team size will be smaller, and the executive com-
mittee and the project management committee might be merged. At the top of the
chart is the executive committee headed by somebody from top management. Then
there is the project management team, followed by the technical and administra-
tive support personnel. Then we have the work team. Let’s look at the functions of
each team in some detail.

Chief Executive Officer (CEO)

The most senior role is that of the CEO. This person has two key responsibilities.
The first is to promote the vision of what can be achieved using the implementation
as the opportunistic catalyst for change. How radical this vision is depends upon
the individual and also senior colleagues, for these colleagues should share and
make their own contribution towards this vision. The vision of what needs to be
achieved must reflect what the organization’s capabilities. Irrespective of whether

Figure 17.1 Organization of the SCM implementation project.

6518 Book.indb 257 12/30/14 1:25 PM

258 SCM Implementation

the organization has the capability to move mountains or only molehills, its focus is
upon progress. However, the greater the ambition, the more commitment is required.
This is particularly true in the case of senior and middle management, who, in a
changing environment, are traditionally the most resistant. It is the CEO’s role to
assess this capability and lead accordingly.

The other responsibility is sponsorship of the project. This means that the
CEO needs to give support to the project in such a way to promote its importance,
support the position of the project manager, bring into line dissenting middle and
senior managers, act as arbitrator, and carry out any other activities that ensure that
the project does not flag, including replacing the project manager if necessary. To
avoid cynicism, the CEO needs to ensure that the gap is bridged between speech-
making and action.

Executive Committee

The executive committee is a group of senior management personnel that represents
the interests of the company management and that is headed by the person who
is in charge of the SCM project implementation (sponsor), a person in whom the
company places its highest confidence—someone who is considered a leader, who
has the necessary authority, and who carries enough clout within the company.
Usually, the CEO or a very senior manager will be the sponsor for the SCM imple-
mentation. In the case of large corporations, the CEO or top management may not
be members of the executive committee as they will be busy with strategic planning
and decision-making. In such companies, the responsibility of SCM sponsorship will
be entrusted to somebody in the top or middle management, usually to somebody
who reports to the chief technology officer (CTO) or chief information officer (CIO).

Irrespective of the title of the sponsor and the executive committee members,
their primary function is to make sure that everybody knows that SCM has strong
management backing and support. Also, these people should have enough authority
(or direct access to people who have authority) to make and implement decisions
that are required for the smooth progress of the implementation.

The committee should also include the external consultant’s representative and
a consultant from the package vendor.

The executive committee defines the objectives, monitors progress, and quickly
resolves issues that are brought to its attention. It ensures that the conditions are
right for the implementation. This means that the committee eliminates any pos-
sible conflicts of interest the project team members may experience. It also means
that the project manager is able to escalate concerns to the executive committee,
that the concerns will be acted upon, and that the extra time and effort of those
involved will be recognized. The executive committee also ensures that corners are
not cut for the sake of convenience and is committed to removing any barriers that
may hinder progress and the realization of benefits. The committee should be aware
of, and adjust for, possible discord between the discipline of project management
and its own management style, particularly if project management is not a familiar
practice within the organization.

The executive committee is responsible for monitoring and evaluating the proj-
ect and its progress. The committee is the body that approves budgets and initiates

6518 Book.indb 258 12/30/14 1:25 PM

SCM Implementation Team 259

corrective actions when things are not going according to plan. So the committee
should establish a reporting and monitoring mechanism by which it will be kept
abreast of progress. The monitoring mechanism should have facilities to alert the
committee about impending disasters and delays well in advance so that corrective
and preventive measures can be taken. The committee should meet at least once a
week and in the event of emergencies. The project manager reports to the executive
committee at the weekly business review meetings to enable required discussions
to take place.

External Consultants

The role of external consultants in the implementation is to advise the project man-
ager and the implementation team in all areas where there are no in-house experts.
The cost of using the external consultants is a huge drain on the implementation
budget and should be kept to a minimum. If a company is already using an SCM
system, has previous experience in implementing SCM systems, or has employees
with the necessary expertise, then it can limit the number of external consultants
to the minimum. However, in the case of companies who are doing an SCM imple-
mentation for the first time and whose employees do not have much experience, it is
absolutely a must to get professional help; otherwise, it may face such consequences
as failed implementations and poorly designed and implemented SCM system. In
conclusion, the principle should be use external experts when the company does
not have in-house expertise; otherwise, use the in-house experts.

Project Manager

The pivotal role in an SCM implementation project is that of the project manager.
The project manager is the catalyst—he or she makes things happen. A project
manager has a can-do attitude and is a communicator, diplomat, and facilitator
who is knowledgeable about the business, credible within the company, impervious
to criticism, and resilient. The project manager is also an administrator, keeping
records about project progress, maintaining the project plan, handling correspon-
dence, and checking invoices.

Project managers can become ineffective if there is no demonstrable support from
the top. Also, project managers may need things from people over whom they have
no authority. If they are well-liked, they may sway people to cooperate. However,
problems will arise, as in the case where members of the project team split their
time between their normal duties and those of the project. Operational demands
will prevail when it comes to deciding which takes priority. Likewise, decisions
about tasks may lead to the desire to shift work from one department to another.
While it may make sense to make this change, the departmental head may object.
The department may already be overstretched, and head count may be an issue.
The sponsor must deal with these and other predicaments. Thus the roles of project
manager and sponsor are complementary and essential for success. There are cases
of projects that have progressed well and then stumbled following the sponsor’s
departure. Tasks that should take days take months, because the project manager
does not have the status to complete the tasks that the sponsor has.

6518 Book.indb 259 12/30/14 1:25 PM

260 SCM Implementation

Project Management Team

The project management team is headed by the project manager and is comprised
of the technical leader (leader of the external consultant team), the vendor’s project
manager, and the implementation project manager. The project manager will report
the project’s progress, problems, and other issues to the executive committee.

The project management team is responsible for conducting the scheduled work,
administering the project, and communicating with the in-house team and the con-
sultants. The team members should monitor the implementation team’s progress,
assess the amount and quality of the contribution of the team members—both
in-house and consultants, and resolve issues that exist. Since the project manage-
ment team has the project manager, the consultant team’s head, and the vendor
team’s head, most problems can be resolved at this level. If any problems cannot
be resolved at this level, then the project manager will escalate it to the executive
committee for resolution.

The project management team should also ensure that company personnel and
consultants are working together as a team and that there is full cooperation between
the two groups. They are also responsible for ensuring that the consultants are
transferring their knowledge to the in-house team and that all the documentation is
done properly. The project management team should make sure that even after the
external consultants and vendor representatives leave, the system will run smoothly.

Work Team

The work team is comprised of people who will actually perform the tasks set forth
in the project plan. These tasks range from migrating the project information to
the new system, to user training, to monitoring the start-up of the new system. The
people on this team should be the best in the company and should dedicate their
full time and attention to the SCM implementation project.

Team members need a knowledge of the company’s work culture and environ-
ment, awareness of company policies and regulations, good analysis skills, team
spirit, a cooperative attitude, good communication skills, patience, persistence,
self-confidence, and, above all, sound common sense.

The work team normally includes hired consultants and the in-house team.
These consultants should have a good understanding of the software that is being
implemented. That is why they are hired in the first place. These consultants most
certainly must have participated in the implementation of similar projects before.

The company’s in-house team is the people with the knowledge of how the
company works. They are the people who are going to use and run the system in
the future. They and the consultants together decide on how the system should
work. The in-house team members will be the first people to receive training on
how to operate the software. They must know how the system works to evaluate
the impact of the software on the company’s current business processes. They will
also discuss with the consultants and the package vendor the level of customiza-
tion the product will require to function properly in the company. The work team
will test the system once it is installed. The work team will also participate in the

6518 Book.indb 260 12/30/14 1:25 PM

SCM Implementation Team 261

training of the end users of the system. The in-house team will contain people
from the company’s various functions or departments. The work team will also
have hardware engineers who will manage the technical requirements of hardware,
network, and software.

The work team manager should hold regular meetings that bring the team
together so that they are all aware of what is happening. This is an opportunity for
progress to be reviewed, for issues to be highlighted and for problems to be shared.

Consideration should be given to the team’s work environment. The ideal setup
is a dedicated room where people can work undisturbed. This room should have
plenty of wall space so that charts can be hung on the walls. It should be equipped
with networked PCs, tables, shelving for documentation, and flip charts. Laptop
links should be available so that consultants can link their equipment into the net-
work. This room will serve as the nerve center for the project. As well as a work
environment, it will hold project meetings and serve as a training venue. This room
need not be abandoned after the implementation is over, since it can serve as an
operations room for continuous improvement teams and as a training venue for
new recruits, those wishing to upgrade their skills, or those wishing to test out
refinements to processes.

Technical Support Team

The function of the technical support team is to create an environment that is suit-
able for the implementation of the software. The team size of the technical support
team is directly proportional to the size of the work team; usually the team size is
three or four. This team works very closely with the work team and takes care of
issues like data migration, data backup and recovery, hardware infrastructure, and
performance tuning of the databases.

In short, the technical support staff is responsible for ensuring that the machines
will be up and running, the network is functional, and the hardware infrastructure
is in good shape for the work team to implement the software package. These are
the people who will be doing these activities once the implementation is over and the
system is live. So they should interact with the consultants and the package vendor
to assess any special arrangements or hardware or maintenance and backup and
recovery procedures that may be required for the system.

Administrative Support Team

The job of the administrative support team is to make the life of all others on the
implementation team easier, so that they can concentrate on their tasks and be more
productive and efficient. Here also the team size will be three or four. The support
teams’ responsibilities include making available the workspace, tables, conference
rooms, telephones, stationery, filing cabinets, and any other resource required by the
project team (including, of course, refreshments!). Other duties include arranging
the meetings and conferences, making photocopies of documents and circulating
them to the right people, and any other administrative tasks that make the life of
the work team easier.

6518 Book.indb 261 12/30/14 1:25 PM

262 SCM Implementation

We have reviewed the organization of the SCM implementation project team.
Each implementation project is different and will have its own characteristics. As
a result, there will be some changes in the exact constitution of the teams, but the
basic components should be there for the proper functioning of the implementa-
tion project.

How the implementation Team Works

So far we have seen how the project implementation team is organized. At the top
is the executive committee, and one of the main responsibilities of the executive
committee is monitoring and evaluating the progress of the project. The executive
committee should develop a management and reporting mechanism so that members
know what is happening to the project on a regular basis. This section examines
how this is done.

How can the company establish an information base to determine whether the
work is progressing according to plan? How will the company decide that the present
course is the correct one and will lead to the successful completion of the project?

One of the main roles of the members of the executive committee is to check
and verify that the work that is being done is satisfactory and that the momentum,
morale, and enthusiasm of the work team who are per forming the tasks are main-
tained. During executive committee meetings, the members should receive reports and
other information from the project managers as to how the work is progressing and
whether everything is going according to schedule. The executive committee should
receive data that induces it to maintain confidence in the implementation process.

Before the implementation starts, the external consultants and company repre-
sentatives prepare a work plan. This plan details each and every activity that needs
to be carried out and when they should be carried out. The consultants should lead
the process of work plan preparation, because they have experience implementing
the same package in similar conditions. The in-house team should point out the
issues that are specific to the company and help the consultants create a realistic
work plan.

The work plan or the project plan forms the basis for project tracking and moni-
toring. The project plan contains numerous activities, the person-hours required to
complete them, and the resources needed to perform the tasks. The project plan is
often built using a project management package (such as MS Project) that permits
one to focus on planned activities from various perspectives—the chronological
sequence or timetable, specific activities and who is responsible for them, the prereq-
uisites for carrying out a specific task, or a PERT chart of the activities. Preparing
the project plan using such a tool helps improve the quality of the plan and makes
it easier to make changes and adjustments.

Once the project is under way the plan can be updated on a regular basis and
the “planned versus actual” reports can be produced in varying detail and in vary-
ing formats including graphical. The project management software can generate
comparisons between the actual and planned completion dates, expenses, and other
similar criteria. These software tools allow responsibilities to be assigned to differ-
ent persons—so it is easy to find out who is lagging behind.

6518 Book.indb 262 12/30/14 1:25 PM

SCM Implementation Team 263

Keep in mind, however, that, irrespective of whether the plan is created manually
or by using a software package, all the parties involved—the executive committee,
the vendor, the consultants, and the in-house team—should be in agreement with
the contents of the plan.

How often should the executive committee monitor the project? The answer is,
“It depends.” If the company has really assigned its best personnel to the job, then
there will be a natural monitoring of the project’s daily activities. The company
professional assigned to serve as the project owner or sponsor is in an ideal posi-
tion to evaluate how things are going. Because company-wide SCM implementa-
tion projects last for several weeks or months, it is quite adequate for the executive
committee to meet once a week or once in two weeks (with a provision to hold
emergency meetings when necessary).

Another choice is to set up milestones in the project plan and have a meet-
ing when the milestone’s planned completion date is over. However, there are
no hard and fast rules regarding how frequent the executive committee should
meet. During the final stages of the project, when the system is being tested, the
committee might need to meet more frequently to discuss the various issues that
could arise.

It is the task of the project management team to report to the executive com-
mittee and present the facts and figures. Because these meetings are managerial in
nature, the project management team should prepare a presentation that describes
the situation at a level of detail appropriate to the audience. Very technical topics
should be condensed, and excessive use of jargon should be avoided. It is a good
idea for the material used in the presentation to serve also as documentation of the
status of the project to that date. This is important, because, in order to track the
progress at future meetings, it may become necessary to recall the issues presented
in a previous meeting, so as to explain why the evolution of the work has taken a
particular route.

Another objective of the executive committee meetings is to address the issues
that involve decisions by top management. Such decisions will not be made at every
meeting, but when they have to be made, they need careful preparation. The project
management team should circulate details about the issues well in advance so that
the committee members can do their homework and come prepared for the discus-
sions. It is the duty of the project management team to analyze alternative solutions
and their advantages, disadvantages, and consequences and circulate them to the
committee members well in advance of the meeting.

So in an SCM implementation project, the work plan or the project plan is of
paramount importance. Adherence to the plan, along with constant monitoring and
the taking of appropriate corrective actions before the project gets out of control,
will ensure the success of the project. The key players in project tracking and moni-
toring are the project management team and the executive committee.

To guarantee that a complex and sophisticated project that requires technologi-
cal and cultural changes in the company will reach its conclusion successfully, it
is not enough to sell it or approve it. The project team needs to resell it constantly,
by demonstrating that it is evolving in an appropriate manner toward the stage at
which benefits will be generated as initially anticipated.

6518 Book.indb 263 12/30/14 1:25 PM

264 SCM Implementation

problem resolution

During the implementation, many issues will be raised and require resolution. The
danger is that some of these issues, having been identified, will be forgotten only to
surface at a later date, perhaps after the system is live. Thus, ideally, there should
be an agreed procedure for recording issues and their resolution. Whether this is
by use of a flip chart or a more sophisticated process, it should be accepted prac-
tice that when an issue is raised, it is recorded. When the issue has been resolved,
it can then be marked as closed. By adopting a simple approach, unresolved issues
are highlighted. This may reveal that some issues have simply been ignored for the
time being. Alternatively, it may reveal issues that need additional support, perhaps
an executive decision or vendor support. By keeping track of problems, they can be
dealt with systematically, thereby reducing the likelihood of something unpleasant
manifesting at a later date.

System issues

Although much of the attention focuses upon the upfront activities of the implemen-
tation, in the background there is a lot of work dealing with the technical issues.
Tasks include the installation and commissioning of both hardware and software.
These tasks will be identified on the project plan, but those involved will normally
be the IT systems personnel. Technical support will be provided, as required, by
the appropriate vendors. From an SCM perspective, there are a few questions that
should not be overlooked:

•	 How does the system perform when the SCM application is under heavy use?
•	 How quickly will storage space be consumed when the system is live?
•	 What is the backup procedure?
•	 Can the live domain be duplicated so that work can be done in the other

domains, such as new process development, without affecting the live domain?
•	 How many alternative domains can be created? How long will the transfer

take?
•	 What happens when two people try to access the same data?
•	 Does the system lock, and if so how is it unlocked?
•	 Is it necessary to change the locations of PCs and printers?
•	 If the intention is to use preprinted stationery on dedicated printers, can this

be done, and if so what is involved and when is the time to do it?
•	 How secure is the system?
•	 How will user access be selectively restricted? Is it by screen or by field?
•	 How are passwords managed?
•	 What user menus need to be generated, and how will this be handled?
•	 Is there an automatic logout facility if an account is logged-in and not used

for a period of time?
•	 What is the disaster recovery procedure?

6518 Book.indb 264 12/30/14 1:25 PM

Consultants 265

This is not an exhaustive list, but it reveals the diversity of issues that need to be
addressed. The earlier these issues are identified, the more time there is for dealing
with them. A minor detail like a dedicated printer for preprinted stationery may
prevent purchase orders from being issued if the printer cannot be configured so that
the required data prints correctly. In a live situation, the delay involved in finding a
solution as to how purchase orders will be printed if the printer cannot be configured
could result in operational stoppages due to materials not being available. Likewise,
users need to be issued passwords and trained in the logon procedure. Issues like
what happens if users forget their passwords should be addressed and solved.

Consultants

Business consultants are professionals who specialize in developing techniques and
methodologies for dealing with the implementation and the various problems that
will crop up during the implementation. They are experts in the administration,
management, and control of these types of projects. Each will have many years of
implementation experience with various industries and have knowledge of time-
tested methodologies and business practices that will ensure successful implemen-
tation. They will be good at all phases of the implementation life cycle right from
package evaluation to end-user training. The only problem is that they are expen-
sive—very expensive.

There are many myths and ambiguities about the consultants and the role they
play in an SCM implementation. Several of these myths are listed—and refuted—
as follows.

•	 Employing a consultant or consulting firm can make the implementation
successful. This is not true as the success of the SCM implementation depends
on top management support, good planning, the right package selection, an
excellent implantation team, and a host of other factors. A consultant can
help educate you and point you in the right direction, but the success of the
SCM implementation project is within your hands, and employing a consul-
tant cannot make an implementation successful.

•	 Consultants should lead the project. Consultants are hired for their expertise,
and they should function in an advisory capacity. The person leading the proj-
ect should also be the project owner, one who will stay with the organization
long after the implementation is complete. Making consultants project leaders
is a recipe for disaster as they will go to another company after implementation.

•	 Consultants know everything. Yes, consultants are hired for their knowledge
and expertise. However, assuming that they know everything is wishful think-
ing. Consultants do not know how every company works or its business details.
Also, the experience and expertise, and hence knowledge, of consultants dif-
fer. Accordingly, ensure that employees learn from the consultants whatever
they can—knowledge transfer. Once the employees become knowledgeable,
consultants become redundant.

6518 Book.indb 265 12/30/14 1:25 PM

266 SCM Implementation

•	 Having more consultants will increases the chances of success. In fact, having
too many consultants is a sure recipe for failure. Too many consultants can
create too many views and opinions and can slow down the decision-making
and reaction times. So, limit the number of consultants, but make sure the
ones you have are the best you can afford.

•	 Consultants who are expensive and who have fancy degrees are better. Consul-
tants should be judged by their reputation in the field—how they are regarded
by other experts, how many projects they have consulted for, and how varied
their experience. Consultancy fees and degrees are not at all yardsticks of
excellence.

Consultants provide a wide variety of functions, often filling in gaps. Some of
the positions that consultants can fill include project manager, team leader, team
member, service representative, and end user. A consultant’s success depends upon
a number of factors including computer literacy, conceptual skills, software knowl-
edge, industry knowledge, maturity, problem-solving capability, communication
skills, and organizational skills.

The success of any particular consultant can vary tremendously from company
to company and from situation to situation. Surprisingly (to some), a consultant’s
industry and software knowledge does not correlate strongly with his or her success
or capability to help a company. Case after case has identified consultants lacking
in software and industry knowledge who were, nevertheless, able to consistently
outperform other consultants considered the most knowledgeable in software and
industry. These consultants show strong interpersonal communication skills, are
self-starters requiring little or no training, and have good computer literacy, problem-
solving capability, and conceptual skills.

Choosing a consultant or consultants is an important decision that can affect
the success of the SCM implementation. It should be done with great care as the
right consultants can steer the SCM implementation clear of pitfalls and lead it to
on-time completion. Before choosing a consultant, the project team should consider
the following:

•	 Experience: Do they have experience in the organization’s particular industry?
•	 Success rate: How many successful implementations have they completed?
•	 Size and scope: What are the sizes of the companies and number of users

involved in their previous implementations? What was the scope of those
implementations? Were they big-bang or phased?

•	 Continuity: Do the consultants provide ongoing service and support? What
is their annual retainer for support after implementation? What are the terms
and conditions for such an arrangement?

•	 Training: How good is the knowledge transfer? Will the consultants train
company employees so that they can implement the SCM system in other
offices or branches of the organization? Do the consultants train employees
to operate and maintain the system independently?

Many of the big consulting firms, having forecasted the SCM boom, invested
a great deal of money in developing a range of consulting services in this field and

6518 Book.indb 266 12/30/14 1:25 PM

Consultants 267

assigned many of their professionals to become specialists in the various aspects
of SCM packages and their implementation. These firms researched the various
products, developed an in-depth understanding of each product’s strengths and
weaknesses, worked by the side of the SCM vendors, confirmed that the vendor’s
package worked, learned the tricks and techniques of the trade, determined the pit-
falls and mistakes that should be avoided, and thus created a pool of experts who
could handle the SCM implementation without failure.

Thus, consultants are people who have made the business of SCM implemen-
tation their business and invested huge amounts of money and manpower toward
that purpose. So when you want to obtain the services of these consultants, the
first question you should ask is, “Are they going to be expensive?” The answer is a
definite YES. The consultants will be expensive, so the company will have to for-
mulate a plan to make the best use of the money spent on consultants. If we study
the statistics, we can see that a well-selected, integrated system that is successfully
implemented and successfully working usually pays for itself in a relatively short
period—between 10 and 30 months. If you analyze the cost breakdown, you will
find that the most expensive part of the implementation was the consultation charges.
For a typical SCM implementation, the cost of consultants is 1.5 to 3 times every
dollar invested in the software product. This sounds amazing, but it is true and it
is also true that the software will pay for itself—the software cost, the consultant’s
charges, and other expenses incurred during implementation—in the above-men-
tioned period (10–30 months). However, the catch is that the product has to be the
right one, and the implementation has to be successful. That is why the expertise
of the consultants becomes invaluable, and the money spent on good consultation
is never wasted. So finding the right consultants—people who have the necessary
know-how and who will work well with the company personnel, those who will
transfer their knowledge to the company’s employees and who are available in case
their services are required again—is very important.

Consultants provide three general categories of services—management, appli-
cation, and technical. Service providers divide consultants into these three general
categories. Some consultants can perform two of these categories, but it is rare to
find consultants who can perform all three.

Management consultants focus primarily on the function of management as it
relates to the organization of resources and business process flows. Management
consultants often participate in project management and provide high-level direc-
tion for the overall successful implementation and use of an SCM system.

Application consultants focus on the process of communicating, teaching, dem-
onstrating, and configuring software for the business process flows. A manage-
ment consultant may consult on how to perform a business process flow, whereas
an application consultant would show the company how to perform the business
process flow in the new software.

Technical consultants deal with technical issues such as database conversions,
source code modifications, communication protocols, operating systems, software
installation, hardware systems, and integration programs. Technical consultants
work closely with application and management consultants.

It can be difficult to estimate the proper ratio of management, application, and
technical consultants required for a particular SCM project. Even slight changes in

6518 Book.indb 267 12/30/14 1:25 PM

268 SCM Implementation

the SCM implementation strategy can affect the ratios. The ratios fluctuate between
the beginning and the end of an implementation.

role of the Consultants

The role of the consultants is very familiar to all of us because we have seen many of
them in action. The company places its trust in the consultants for the achievement
of its business objectives. In fact, it is a better practice that the contract between the
company and the consultants should have all the performance clauses in place. The
consultants should guarantee the success of the project and should be able to show
results (quantifiable results like reduction in cycle time, increased response time,
and improved productivity) to the satisfaction of company management.

Consultants are responsible for administering each of the phases of the imple-
mentation so that the required activities occur at the scheduled time, at the desired
level of quality, and with the effective participation of all those who must participate.
For keeping the promises that the consultants have made during the negotiations,
they have to transform their approaches and methodologies into detailed work plans.
Methodologies will have to be converted into tasks and should be allocated to the
right people. The time schedule for each phase and each task has to be determined,
and the project plan has to be finalized.

Consultants should add value to the project. They bring know-how about the
package and about implementation—know-how that is not included in the standard
documentation. This know-how (also known as practical knowledge) is derived
from their expertise, which stems from practical experience. Because the consultants
have seen many projects and have made or seen many mistakes, they can avoid the
phenomenon of “reinventing the wheel.” They will know what will work and what
will not. Thus, by eliminating the trial-and-error method of implementation and
doing it right the first time the consultants help to save huge amounts of money,
time, and effort.

Consultants should also know how to remain impartial while questioning cur-
rent company processes in an effort to promote better businesses practices and bet-
ter implementation results. They should strive to improve the company’s business
processes so that the software package can be used as it was originally intended to,
by its developers. Refining the company’s processes can only optimize the perfor-
mance of the system and maximize future user satisfaction. Consultants are also
responsible for analyzing and clearly addressing customization issues. They must be
able to distinguish between the “must-have” and “nice-to-have” items and decide
on the level of customization. This is an area where consultants have to use their
diplomatic skills, as company personnel might want to customize all the aspects. It
is the duty of the consultants to present the advantages and drawbacks of each area
and reach a consensus decision, which should also be the right one. Consultants
need to position themselves in such a way as to balance their loyalty to the client
and the project, with that of defending the package vendor, when such a defense is
technically correct. This is indeed a very difficult job (like a tightrope walk), and
that is why consultants are paid such huge amounts for their services.

It is the duty of the consultant to understand the total context and scope of the
envisioned work and to know when to alert company management about actions

6518 Book.indb 268 12/30/14 1:25 PM

Package Vendors 269

and decisions that must be undertaken so that the job will not be compromised, and
the implementation will not be jeopardized. Maintaining technical documentation
on the project also falls within the duty of the consultant. Consultants will leave
once the project is complete, but the knowledge of the project cannot depart with
them. So consultants should create a knowledge base and train enough people so
that the work they have started is continued.

Contract with the Consultants

Consultants are another group of people who play a vital role in the SCM imple-
mentation project. Compared to the package, the consulting services are of a more
subjective nature. It is difficult to measure whether the company is getting its money’s
worth from the consultants. The company’s objective is to make the package work
successfully as documented in the vendor’s manuals. What the company expects
from the consultants is that they will make the project a success, that the implemen-
tation will be completed without time and cost overruns, that the user training will
be done to everybody’s satisfaction, and that the consultants will train a group of
people (and transfer their knowledge) so that when they leave there will be enough
employees in the company who can carry on the work.

Even though the consulting services are subjective in nature, the company can
include performance and penalty clauses in the contract. For example, the company
and the consultants can agree upon the completion date and the implementation
budget and the projected improvements (e.g., x% increase in productivity and y%
reduction in response times) and then include these in the contract. Then, the con-
sultants can be held accountable. The following are some of the points that should
be included in the contract with the consultants:

•	 The profile of the consultant’s team with resume of each member;
•	 The consulting fee and payment conditions;
•	 The time schedule and implementation budget;
•	 The projected improvements in quantifiable terms and the time required for

showing the results;
•	 The implementation methodology;
•	 The terms and conditions of knowledge transfer and employee training;
•	 A list of deliverables (e.g., reports, manuals, and knowledge bases);
•	 Other specific activities the consultants are supposed to do;
•	 The reporting mechanism to the company management;
•	 Project monitoring and status reporting systems.

package Vendors

Vendors are the people who have developed the SCM packages. They are the people
who have invested huge amounts of time and effort in research and development
to create the packaged solutions. If one studies the history of SCM packages and
finds out how each package evolved, then it soon becomes evident that every SCM
package grew out of the experience or opportunity of a group of people working in

6518 Book.indb 269 12/30/14 1:25 PM

270 SCM Implementation

a specific business who created systems that could deal with certain business seg-
ments. With the SCM marketplace becoming crowded with more and more play-
ers entering the market and competition increasing, today’s SCM packages have
features and functionality to cater to the needs of businesses in almost all sectors.
SCM vendors spend crores of rupees in research and come up with innovations that
make the packages more efficient and flexible and easier to implement and use. Also,
with the evolution of new technologies, vendors constantly have to upgrade their
products to use the best and latest advancements in technology.

Choosing the right software vendor goes beyond evaluating software function-
ality. There has been a gradual movement among a handful of the largest software
vendors to take a one-size-fits-all posture. Some vendors believe functionality rat-
ings are no longer important since all software systems are beginning to look alike.
While appearances may tend to support this theory, reality paints a different picture.
Merely having a particular function does not guarantee that users will be able to
capably work with it. If two vendors offer a function required in a specific industry
segment, and one specializes in deploying it in that segment while the other does
not, the difference can be dramatic. The one-size-fits-all garment may fit everybody,
but does it look good on everyone?

Vendor selection is not a popularity contest, and bigger does not always mean
better. While the financial stability, ensured longevity, and broad spectrum of offer-
ings provided by the top vendors are good reasons for selecting them, size is not
without its downside. Size breeds bureaucracy, and bureaucracy hampers personal
attention and agility. While smaller vendors that are not quite household names may
carry increased risks in the area of long-term longevity, they may actually provide
a better solution if they specialize in your industry segment rather than covering a
broad spectrum of industries.

You have the greatest leverage with your vendor once you have made the deci-
sion to buy its software but have not yet issued the purchase order. Waiting for the
end of their quarter can help you get the best price. Also, view the financial stability
of your future relationship as important—you will receive positive support from
your vendor as long as it is profitable for the vendor to do so. The relationship is
a balancing act. Interest your vendor in getting the job done right, on-time, and
within budget, but watch out for penalties that may increase project pressure and
sour the relationship.

It is important to remember that vendors, as long as they provide working soft-
ware and capable personnel, really have very little responsibility for your overall suc-
cess. Responsibility for success of failure lies within the four walls of your business,
and if you import failure in the form of a third party, it’s still your responsibility.

Vendors and Vendor Management

Nowadays most SCM systems use some sort of tool. (In other words, manual
SCM systems are very rare). So the implementation team should include vendor
representatives. Because the vendors are the people who know the tool best, they
definitely have a role to play in the implementation. The vendor should supply the
product and its documentation as soon as the contract is signed. Once the contract
has been exchanged, the vendor will guide the company, in particular the project

6518 Book.indb 270 12/30/14 1:25 PM

Package Vendors 271

manager and his or her team, through a series of events culminating in the use of
the tool. The project manager, as with all the other resources, will need to manage
the vendor so that everything progresses as intended.

One cautionary word concerns the power of the vendor. The vendor potentially
has the upper hand in the client-vendor relationship. The client, having signed the
contract and perhaps having given a preliminary payment, will be reluctant to ter-
minate the relationship should the vendor fail to meet expectations. Consultants
may not be available due to split commitments. Software bugs may not be fixed
when required. Software links may simply not work. These all contribute to delay.
It is the project manager’s task to manage this.

The vendor will most likely appoint a single point of contact, the vendor’s
project manager. The role of this person will be to provide support to the project
manager, advise upon and agree to the project plan, manage the client account, and
coordinate vendor-provided resources. A procedure should be agreed on between
the two managers about how work done by the vendor is to be authorized by the cli-
ent. The vendor’s project manager will be the first point of contact for resolution of
problems whether they are technical, best practice–related, or pertaining to vendor
invoices. Within the contract, there should be a clause defining how problems are to
be handled and the timescale allowed. If problems are not resolved, then an escala-
tion path should be defined identifying the people to be contacted. Communication
should be backed up in writing. This reduces the likelihood of misunderstandings.

Only after the software is delivered can the company develop the training and
testing environment for the implementation team. The vendor is responsible for fix-
ing any problems that the implementation team encounters in the software. So the
vendor should have a liaison officer who constantly interacts with the implementa-
tion team. Another role the vendor has to play is that of the trainer—to provide the
initial training for the company’s key users, people who will play lead roles in the
implementation of the system. These key users are the ones who will define, together
with the consultants (external experts), how the software is to serve the company.
These in-house experts will decide how the functionalities are to be implemented, as
well as how to use or adapt the product to suit the company’s unique requirements.
So it is critical that these key users be given thorough training on the features of the
package. Vendor training should show key users how the package works, what the
major components are, how the data and information flow across the system, what
is flexible and what is not, what can be configured and what cannot, what can be
customized and what should not, the limitations, the strengths, and weaknesses.

The objective of vendor training is to show how the system works, not how it
should be implemented. This means that the vendor demonstrates the product as
it exists and highlights the available options. The employees participating in the
vendor training should try to understand the characteristics of the package and the
impact of the system on the company’s business processes. The trainees should use
these training sessions to question the vendor on all aspects of the system.

The external consultants (or the package or SCM experts) also have a role to
play during this vendor training. They should participate in the training sessions
to evaluate how the users react to the reality that is starting to take shape from
the detailed presentations and demos. Consultants should also ask questions that
the vendors are trying to avoid and the users are unaware of. This is the best way

6518 Book.indb 271 12/30/14 1:25 PM

272 SCM Implementation

to present the real picture to the users, and it will also prevent the vendors from
making false claims.

The project manager should monitor and control the costs incurred by the ven-
dor. By monitoring the amount of time that the vendor’s personnel are on-site, it is
possible to monitor consultancy costs, a potential area for overspending. Mistakes
do happen, and it is advisable that vendor’s invoices are checked. Queries should be
brought to the vendor’s attention for resolution, for which there should be a provi-
sion within the contract regarding the withholding of payment. Finally, the project
manager should ensure that the vendor is paid and on-time.

role of the Vendor

First and foremost, the vendor should supply the product and its documentation as
soon as the contract is signed. Only after the software is delivered, can the company
develop the training and testing environment for the implementation team. The ven-
dor is responsible for fixing any problems in the software that the implementation
team encounters. So the vendor should have a liaison officer who should constantly
interact with the implementation team.

Another role the vendor has to play is that of the trainer—to provide the initial
training for the company’s key users, people who will play lead roles in the imple-
mentation of the system. These key users are the ones who will define, together
with the consultants, how the software is to serve the company. In other words, it
is these in-house functional experts who will decide how the functionalities are to
be implemented, as well as how to use or adapt the product to suit the company’s
unique requirements. So it is critical that these key users are thoroughly trained on
the features of the package. Vendor training should achieve the goal of showing key
users such information as how the package works and what its major components
are, how the data and information flows across the system, what is flexible and what
is not, what can be configured and what cannot, what can be customized and what
should not, the limitations, and the strengths and weaknesses.

Now some of you might ask, “We are hiring consultants who are experts in
the package, so why can’t we get training from the consultants?” This is true. Most
consultants are capable of providing sound training for the packages. However, we
are hiring the consultants to implement the system. The objective of the vendor train-
ing is to show how the system works, not to show how it should be implemented.
This means that the vendor demonstrates the product as it exists and highlights
the possible options available. The employees participating in the vendor training
should try to understand the characteristics of the package and the impact of the
system on their business processes. The trainees should use these training sessions
to question the vendor on all aspects of the system.

The consultants also have a role to play during this vendor training. They should
participate in the training sessions to evaluate how users react to the reality that
is starting to take shape from the detailed presentations and demos. Consultants
should also ask questions that the vendors are trying to avoid and of which the
users are unaware. This is the best way to present the real picture to the users, and
it will prevent vendors from making false claims.

6518 Book.indb 272 12/30/14 1:25 PM

Package Vendors 273

The role of the package vendor does not end with the training. The vendor
also plays an important project support function and must exercise quality control
with respect to how the product is implemented. It is the vendor who understands
the finer details and subtleties of the product and who can make valuable sugges-
tions and improvements that could improve the performance of the system. It is
also in the best interests of the vendor that this participation continues, because if
the implementation fails, most of the blame will fall on the vendor. In addition, a
successful implementation means another satisfied client, improved goodwill, and
good referrals. So the vendor will continue to participate in all the phases of the
implementation mostly in an advisory capacity, addressing specific technical ques-
tions about the product and technology.

The vendor has other responsibilities, also. There will be “gaps” between the
package and the actual business processes. The software might have to be custom-
ized to suit the company’s needs. Customizing means altering the product so that it
is suited for the company’s purposes. The choice of whether to customize or not is
one that can have enormous impact on the project, and it often constitutes a point
of conflict between consultants and users. However, if the decision to customize
has been taken, it is the vendor’s duty to carry out the necessary modifications.
This is because only the vendor knows the product well enough to make the neces-
sary changes without affecting the other parts. Moreover, the company must get a
guarantee (in writing) from the vendor that despite the customization, it will benefit
from the future software improvements introduced by the vendor.

Contract with the Vendor

Most software vendors (for that matter all the people involved except the employ-
ees) will have standard contracts drafted by their legal department that include
clauses to safeguard their interests. The contracting company’s legal department
should go through the contract, and if it finds the terms and conditions agreeable,
sign the contract.

In reality, however, the contract signing process is not this smooth. Often, it
will require lawyers from both sides to sit together and iron out differences. The
package vendor will have copyright clauses in the contract. As the creator of the
package, it is their intellectual property. So any abuse or misuse of the package by
the contracting company will be a violation of the copyright. Sometimes, the con-
tracting company might want access to the source code and the design documents,
so that they can make the required modifications—customization—to the source
code. However, package vendors usually will not want this. The main reason for this
reluctance is that once the package vendor gives the source code and design docu-
ments, it is very easy for anybody who has access to these documents to misuse it.

Also, it is better to give the task of customizing the package—by modifying
the source code—to the package vendors themselves. The vendor has developed the
package and will have a better knowledge of the source code. The vendor will have
the complete knowledge of the impact of a change to the entire system. Another
point that should be remembered is that the relationship between the SCM vendor
and the contracting company is not a one-time affair. The vendor should be made a

6518 Book.indb 273 12/30/14 1:25 PM

274 SCM Implementation

partner in the company’s future plans. The vendor will be upgrading its product as
the technology advances, adding new modules and features. The company should
get the benefit of these upgrades. Being an existing customer, the company should
get preferential treatment. The contracting company should include clauses to make
these things happen. One problem of the company modifying the source code is that
it might prevent the contracting company from getting support on upgrades and
future versions. So, it is best to leave the customization to the vendor. However, if
the contracting company is not sure about the stability of the vendor and its con-
tinued existence, then the contract can include clauses to keep a copy of the source
code and the design documents with a third party (like a bank) and release it if the
vendor disappears from the scene or stops support for the product. This agreement
will be agreeable to the vendors also.

So the contract with the vendor should address—in addition to issues about
source code and modifications—the following points:

•	 Value of the software and conditions of payment;
•	 List of deliverables (e.g., software and documents);
•	 Mode of delivery and installation help;
•	 Copyright and ownership issues;
•	 Software licenses;
•	 Third-party software compatibility, integration or interfacing, and integra-

tion support;
•	 Operating system;
•	 Hardware or liability;
•	 Conditions and concessions for acquiring complementary modules in the

future or for increasing the number of end users;
•	 Cost of implementation training;
•	 Cost of end-user training;
•	 Annual maintenance fee;
•	 Warranty or guarantee terms;
•	 Terms and conditions for the receipt of new versions or upgrades;
•	 Details of technical support (e.g., on-site or telephonic);
•	 Terms and conditions for customization;
•	 The profile of the vendor’s team who will be assisting the company in

implementation;
•	 Other specific responsibilities assigned to the vendor;
•	 Cancellation of license.

The above is by no means a comprehensive list. You will have to add clauses
that are specific to your case. The objective is to protect the company’s interests
and whatever is needed for this protection should be in the contract. Obviously, the
content should be rigorously checked and the requisite amendments and additions
made. Particular attention should be paid to the meaning of the words used, in
particular the subtle differences of specific words. The requirements definition and
subsequent amendments should be included. The content should take into account
all eventualities for the lifetime of both the software implementation and its license.
Things to watch out for include the following:

6518 Book.indb 274 12/30/14 1:25 PM

Training and Education 275

•	 Payment profile. One possible consideration is to schedule payments in line
with the attainment of targets and deadline.

•	 License fee based on named users or number of concurrent users.
•	 Contingencies for when a software bug prevents the implementation of a spe-

cific functionality and the bug fix will only be available in the new upgrade
available at a later date?

•	 The process for controlling software modifications and their testing and the
warranty period?

•	 Who owns software customizations and the associated intellectual rights?
•	 Who has responsibility for sourcing new hardware, and what happens if it

can be sourced cheaper elsewhere?
•	 Cost of transferring software from old to new hardware and who will bear

them?
•	 Restrictions on who can use the software (e.g., satellite operations);
•	 Entitlements for additional service;
•	 Response procedure for problems including escalation route;
•	 Escrow arrangements should the vendor go into receivership.

These are just a few pointers. In view of the size of the investment, the safest
recourse is to seek legal expertise. Indeed, it may be prudent not to dismiss the sec-
ond choice of vendor should negotiations breakdown.

Training and Education

SCM implementation is primarily a people project. A majority of the people problems
like employee resistance, noncooperation, and improper use of the SCM system.
are the result of ignorance, fear of failure, and fear about the future. Most experts
and SCM implementation veterans agree that the best way to combat this issue is
through comprehensive training and education of the users of the SCM system.

Training is perhaps the most misjudged activity of the implementation life cycle.
A major complaint is that not enough training is done. One of the most common
mistakes of all SCM implementations is underestimating the time and cost of training
end users. Although training is a project-managed activity, it appears to be widely
neglected or is inconsistent in application. Furthermore, since the greater part of
training takes place toward the end of the implementation cycle, when it looks like
overall costs will exceed budget, training is the first activity to be curtailed.

The major pieces of the SCM training process are described as follows.

•	 Planning: Identifying the elements needed to structure the training direction.
•	 Budgeting: Determining the investment required to create the infrastructure

and impart the training.
•	 Staffing: Determining resources (internal and external) and needed prereq-

uisite skills.
•	 Partnering with the business: Developing a shared responsibility and success

plan.
•	 Organizational issues: Red flags to look for that could impact the plan and

coping strategies.

6518 Book.indb 275 12/30/14 1:25 PM

276 SCM Implementation

•	 Curriculum development: Discussing best practices for SCM projects.
•	 Implementation: Rolling out the training.

Overview of Training

This section provides an overview of the main issues to be considered when embark-
ing upon the training activity. Although it may be convenient to take an informal
approach to training whereby people “pick up knowledge and skills as they go
along,” this is unpredictable in terms of a successful learning outcome. A more
formal approach to training tends to involve the following stages:

•	 Defining learning objectives: What will the learner be able to do as a result
of the training?

•	 Determining content: What skills and knowledge are to be developed?
•	 Planning: When and how will the training be delivered? What resources,

materials, and facilities are required? How will the content be structured?
•	 Delivery: The experience of the learner.
•	 Assessing learners: Have the learners met the objectives?
•	 Reviewing effectiveness of the training session: What went wrong? What can

be done better?

Those at the receiving end of the training are initially the project team members
and the system administrators and then later in the project they are such personnel
as the developers, QA team, testers, project leaders, and managers. Each group of
learners will have different requirements. Thus, the nature of the training is likely
to be different for each different stream of learners.

Training that occurs too far in advance of the go-live date will likely be forgot-
ten. Training that occurs too late will not be done in time and can lengthen the
stabilization period. In order to fit training between the current time and the go-
live date, the firm must consider the amount of time in that gap and the amount of
time required by the users to learn.

The amount of training required is a function of the particular module for which
users are being trained. In some cases, it can take up to six months for users to get
comfortable and proficient with the SCM software.

Time spent on training is time not spent on day-to-day activities. Not surpris-
ingly, there have been a number of different solutions used to ensure that workers
get enough time off for training. Employees can put in extra hours to accommodate
training hours. Still other firms have made use of temporary employees.

The hours assigned to training signal how important it is to the implementation.
Training scheduled during working hours indicates its importance, whereas train-
ing scheduled outside of working hours suggests that training is not as important
as day-to-day responsibilities.

The most pressing activities often get the most attention, to the detriment of
other, less pressing activities. This means that productive work usually receives
greater attention than training activities and that user SCM training might be
pushed aside if firms do not ensure that users take it seriously. As a result, firms

6518 Book.indb 276 12/30/14 1:25 PM

Training Costs 277

have introduced different penalties and incentives. In some companies, training is
deemed mandatory for certain critical users.

Training end users on how to use an SCM system is a mix of technology, pro-
cesses, and domain-area content in order to provide a context for the system. Oth-
erwise, training can become a useless exercise. It is always better to train on the
concepts first and then show the end users how to use the system. When the end
users have a good idea about why things are done, they will learn the tasks required
to accomplish those processes faster.

Most training programs come from an analysis of what the specific company
has and what it needs to accomplish. Almost all SCM approaches to training have
an element of classroom training. However, other formats used include training
over the Internet, computer-based training, and self-study. Based on conversations
with consultants, one approach that is consistently well accepted involves designat-
ing a member (or group of members) of the client organization as “super users or
champions,” who can then be responsible for training others. Training super users
has a number of advantages. First, this approach has been found to facilitate buy-in
from users, because those who supply the training are people the users know. Sec-
ond, the existence of super users shows other users that learning about the system
is important. Third, developing super users develops an important understanding
at the user level.

Because SCM engagements are often behind schedule, firms may try to speed
up their training. The ability of firms to speed up training depends on the firm’s
needs, personnel, and previous training. Some personnel are likely to be quicker
learners or are able to spend more time on training than other personnel. The
training will likely be faster to the extent that the new system is similar to the old
system. However, trying to speed up the training is potentially dangerous, with a
high risk of failure.

Training Costs

Training costs will vary across SCM implementations. The training budget can be
15–20% of the total project budget. Training is one of the most important hidden
costs of an SCM implementation. In most cases, there will always be training cost
overruns. So there should be a provision to allocate addition budgets for training
when required. The organization can reduce the training costs by first training a
batch of employees and then making them trainers so that they can train their col-
leagues. This training will be more effective as people will be more receptive to
ideas and more open about their own ideas, fears, and concerns when the training
is conducted by a person they know. Some of the items that contribute to training
costs are described as follows:

•	 Training planners and content developers: For training to be done properly, it
has to be planned well, and for this the training needs of the employees must
be identified. Once the needs are identified, the content that will address those
needs have to be developed. The people who do this—external SCM training
consultants and internal experts—have to be paid.

6518 Book.indb 277 12/30/14 1:25 PM

278 SCM Implementation

•	 Hardware infrastructure: To create a training center, the training team will
have to spend money on infrastructure like computers, training aids, and
stationery and also on classrooms and labs to facilitate effective and uninter-
rupted training.

•	 Software: This includes the demo or training versions of the SCM software
that is being implemented and other software packages like word processors,
spreadsheets, presentation software, e-mail programs, and Web browsers
that are necessary to make employees computer-savvy and proficient in the
SCM package the organization is implementing. All the employees need not
be given training in all the SCM modules; after an overview of how the dif-
ferent modules work and how they are interrelated, employees can be given
comprehensive training on the SCM module that he or she will be working
and also on the necessary software package that he or she will have to use
for effective communication.

•	 Trainers: These include the salary of the trainers—both in-house experts and
external consultants. One way to minimize the cost of trainers is to train a
batch of employees as trainers.

•	 Vendor consultants and training materials: The vendor should provide the
training materials and training consultants for the initial phases—until the
in-house trainers are being trained and are capable of conducting training on
their own. The vendor should also provide updated training materials and
conduct refresher courses for the in-house trainers as and when upgrades
and changes are done to the SCM system. These issues and associated costs
should be negotiated during the package selection and should be part of the
SCM budget.

•	 Support staff: The cost of people who do the various administrative tasks
should also be accounted for in the training budget. These people are impor-
tant as they are the ones who have to ensure that all the people are trained and
that the training goes on smoothly. Their tasks include scheduling employees
into appropriate courses, tracking completion, scheduling make-up courses,
and adjusting training schedules. They are the ones who should contact the
vendor consultants and other SCM consultants when the need arises and when
the in-house trainers need additional training.

The above list by no means is an exhaustive one. As discussed previously, the
training costs will depend on such factors as the organizational culture, current
knowledge, and existing infrastructure. So the amount of money that needs to be
spent on each of the above items and others will vary among organizations.

need and importance of Training

We have seen that many SCM implementations fail and that many more fail to
deliver the promised results. What is behind SCM disasters? Most implementation
experts have pointed out that the main culprit of failed SCM implementations is
the end-user training. Experts say that the technical training of the core team of
people who are installing the software is done properly and there is no problem

6518 Book.indb 278 12/30/14 1:25 PM

Need and Importance of Training 279

in that aspect. The problem lies in the education of the broad user community of
managers and employees, who are supposed to actually run the software develop-
ment with it. This training is not done properly, resulting in the wrong and improper
usage of the system.

Many studies have revealed the fact that as few as 10–15% of SCM imple-
mentations have a smooth introduction that delivers the anticipated benefits. The
remaining firms either experience teething problems or a significant shortfall in
delivered benefits, and the difference between the successful 10–15% and the rest
is better training.

Everyone knows that training is important, especially SCM software vendors.
They earn handy revenues from “design once, recycle many times” training courses.
The third-party training firms, who conduct courses on how to operate an SCM
vendor’s system, also know the importance of training. The variety of training
formats available is amazing—on-site training, Web-based virtual classrooms,
computer-based training, knowledge warehouses, video courses, self-study books,
context sensitive help screens—an almost endless menu to suit almost every need
and budget.

SCM training has become a giant business in its own right, and the training
business is expected to grow exponentially. The logic is inexorable—the better the
training, the faster you will see the business metrics move in the direction you are
looking for. However, the problem with such training is that it is not good enough.
It is just a walkthrough of the system and teaches users what to do. This will not
help users to understand what they are doing and why.

The education should impart to users the ability to figure out the underlying
flow of information through the business itself. The program should explain such
factors as SCM basics, the business processes, how the SCM system functions,
how it automates the business processes, and how the action of a user affects the
entire organization. The focus should shift from mere training to providing educa-
tion—with greater emphasis on education. Education will tell the users why they
are doing it and help to win support for the project as it will enlighten the users.
Training, on the other hand, will only tell them what to do and how to do it. There
is a tendency for companies to fall into the trap of putting employees through
training programs that are too software-specific. This kind of a training program
will ignore the fact that SCM systems are designed to operate by codifying a set
of business processes.

Another problem is that training typically occurs at the end of the implementa-
tion cycle, when activities are often running late and being compressed. So train-
ing, too, gets squeezed in as a last-minute activity. Accordingly, it is important to
time the start training programs so that they will be nearly over when the system
goes live and then continue for a few more sessions to clear the issues faced during
the actual interaction with the SCM system. One of the results of not providing a
proper training program is that users fail to appreciate the consequences of their
actions, often with disastrous results. Informal practices that worked fine in the era
of paper procedures or stand-alone legacy systems can have catastrophic effects on
an integrated SCM environment.

Training in how to operate the system will not, however, help the middle manager
see far enough down the road to decide to forgo the short-term benefit of shipping

6518 Book.indb 279 12/30/14 1:25 PM

280 SCM Implementation

product “come what may.” Only a broader based, holistic education in the company’s
SCM-mediated business processes will do that. If end-user and middle-management
training is so important, why it is not given more priority? Companies have begun
to wake up to the fact that training is a key requirement.

Training phases

The training strategy should include two phases of training—one before implemen-
tation and the other during and after implementation. The implementation of the
project commences with the training of the project team so that members are able to
carry out their tasks. During the implementation and after the implementation, end
users are trained on SCM basics, process changes, and how to use the SCM system.

preimplementation Training

Implementation of the first phase of the training strategy is the training activity that
relates to the training of the project team and the system administrators. For the
project team, the focus of the training will be understanding the functionality of
the software. Training on such subjects as best practices, process mapping, training
skills, and documentation may be provided by the vendor, but this will vary from
vendor to vendor. A local higher educational establishment or other training orga-
nization may be able to fulfill any gaps. The training of the system administrators
will focus on technical aspects of system installation, maintenance, report writing,
and any other identified issues.

The objective of the training is to transfer knowledge and skills about the appli-
cation, implementation practices, and operational best practices from the external
trainers to designated internal personnel. Whilst most of this will be done in more
formal proceedings, the transfer of knowledge about the software functionality tends
to be done on a more informal basis. However, since this transfer of knowledge
about the functionality need not be effectual, it is worth examining this specific
area more closely.

Content

Team members’ understanding of application functionality is critical for the effective
development and introduction of new processes. Without it, it becomes impossible
to make the most of what is an expensive investment. While the presales demon-
strations will promote the merits of the functionality of the software, its drawbacks
may be withheld.

The first true exposure to the software comes when it becomes necessary to make
the functionality do what is required of it. There are various levels of knowledge
and skills required by the project team to develop business processes that utilize
the software. Each member requires knowledge about how to navigate around the
system and the detail of the functionality of concern.

A content matrix is the most useful reference for training developers, and it will
grow into a huge, complex document over the life of the project. Simply put, the

6518 Book.indb 280 12/30/14 1:25 PM

Training Phases 281

matrix lists the skills that should be imparted and tasks that must be taught and
information to be presented for each job role in the new environment. In its final
form, it will not only guide development but also provide a completion checklist.
Another useful document, using the curriculum matrix as its basis, is an employee
job map that will map employees in each department to appropriate job roles and
necessary training required, giving a departmental and end-user snapshot of the
training needed.

The vendor’s consultants should be the experts on how the software functions.
It must be expected that these consultants will sit with team members, going though
the screens and fields for the processes of interest. This training mode tends to be
hands-on. This is an ideal opportunity for the team members to learn. In time, each
person should build up a good understanding about specific parts of the application.
Their aim is to be able to experiment with different ways of using the software and
to transfer this knowledge to others. These key users are responsible for ensuring
that they learn as much as they can about the functionality.

If there is concern about whether project team members are developing the
required knowledge and skills, then it may be desirable to assess them. How this
is done should be established in consultation with the vendor, as that is where the
expertise resides. However, gaps in a person’s knowledge and skills will become
readily apparent as he or she starts to try and work with the application indepen-
dently. It is expected that this person will attempt to fill these gaps as they reveal
themselves at the earliest opportunity.

Planning

Training planning normally begins during initial phases of the SCM implementa-
tion project, preferably during the project planning phase. It is during the project
planning phase that the details of how to go about the implementation are decided.
This is an excellent time to begin assessing organizational readiness and the cur-
rent levels of end-user skill and knowledge in relation to those that will be needed
in the new environment.

Many companies find that planning for SCM training is a multiphased process.
The extent and detail of the project plan grows over several months, as companies
uncover new facts and come to fully understand the scope of the initiative. There is
no mystery to planning. All you really need to know is when to begin, the level of
effort you need to apply, and the plan deliverables you need to develop. As the SCM
project evolves, you can adjust and add detail to your plan and begin to schedule
the work to be done.

The effort needed to perform the training assessment varies widely, depending
upon project scope and how many people are affected. To do a thorough assessment
of the training needs of an organization, it is better to form a team comprised of an
experienced SCM training consultant and an experienced and senior person form
the HR department of the organization.

The organization must allocate the time and budget to conduct the assessment,
which will involve interviews with each end-user group and its manager, the execu-
tive team, selected SCM project team members, and support departments such as
human resources, IT, and training.

6518 Book.indb 281 12/30/14 1:25 PM

282 SCM Implementation

An SCM training consultant can help the organization in constructing the
questions and strategies for conducting the training needs assessment. After the
assessment, the organization will have the following information:

•	 Training plan for the end-users: A detailed analysis of what they know (cur-
rent skill set) and what they need to know (required skill set) and a training
program to impart the skills that are lacking.

•	 Pretraining orientation plan: This plan should contain details and plans of
the business skills and knowledge end users must obtain before SCM training
begins, along with a time schedule for completing this training.

•	 SCM training team training plan: This plan should define the talent mix and
resources required for the SCM training team. It should also identify the
resources committed and needed for analysis, design, development, deliv-
ery, and administration of training. The plan should also point out the gaps
between requirements and available talent and identify strategies for obtain-
ing or developing resources.

•	 Training delivery plan: This plan should answer basic questions about how
the curriculum is going to be developed and delivered. It should contain
an overview of tools needed, logistical challenges, technical infrastructure
requirements, training environment, and training delivery mechanisms. It
should also provide an initial timeline for rollout of education and training.

Despite the informal nature of some of this training, it can all be planned. Dates
can be established and people and locations organized. The emphasis of this phase
is upon organizing and planning the training. External trainers carry out this deliv-
ery. The training is likely to comprise a mixture of formal workshops in a group
environment and informal individual sessions. Most of the training will take place
at the client’s site in the project team room and will be delivered by the vendor.

More than one person should develop the necessary skills in each area as this
reduces dependency upon that one person and prevents delays arising because of
that person’s other commitments. When completed, this training plan will become
part of the project implementation plan and be monitored accordingly.

User Training (during and after implementation)

The end user and managers are trained during implementation and after the imple-
mentation. The aim is to disseminate throughout the organization the project team’s
knowledge and skills relating to the application and the new processes. The expected
outcome is the trainees being able to use the system.

Content

For this phase, a program can be developed that covers all the areas required. It can
be organized into different themes to reflect different topics and audiences. While a
general overview will appeal to everyone, the specialist areas will only be relevant
to a limited number of people.

6518 Book.indb 282 12/30/14 1:25 PM

Training Phases 283

Some areas that will be relevant to everyone are SCM basics, business process,
changed business procedures, automation of tasks by SCM, and fundamentals of
computer usage like passwords, encryption, and security. Not to be overlooked is
the fact that there may be new users who have no keyboard skills. If that is the case
a touch-typing (typing without looking at the keyboard and searching for the keys)
course can be organized. A better option will be to install touch-typing training
software and ask the employees to learn it and pass the course.

Two audiences can be distinguished—end users and managers. While the former
will be interested in how to use the system, managers will be more interested in how
to get information from the system. Users can be further differentiated into casual
users, normal users, and reflective users. The interest of casual users is limited to
being able to perform certain tasks when required of them. Normal users are regu-
lar users of a specific suite of functions. Their main interest is using the system to
do their job. Reflective users will want a deeper understanding of how the system
works so that they can solve problems and make improvements. Thus, it may be
appropriate to distinguish two levels of training: that essential to carry out tasks
and a more detailed session on the finer points of the system.

The format of this training will tend to be structured into formal training
workshops based around a PC. The data should ideally be that which they will be
using when live so that real-life situations can be simulated. This may require data
setup preparation. While the training material should be task-oriented, it will be
explanatory in order to encourage an appreciation of why things are done in the
way that they are. The project team room can be made available for trainees to
practice on their own as a follow-up to the training courses. The trainers will be
the new “experts” on the system, the project team members.

The timing of the training should be such that there is not a long gap between
receiving training and using the application. A refresher course may need to be con-
sidered as a contingency. The cost of the training should be monitored against budget.

Planning

At the detailed level of each individual session, its preparation will be strength-
ened by its plan. The training plan should include the training objectives, trainer,
trainer qualifications, audience, level and computer literacy of the audience, time,
location, facilities required, content and content structure, method, resources or
materials, and cost.

Training, assessment, and review

The training is complemented by an assessment to ensure that it has been success-
ful and that the knowledge assimilation is satisfactory. During the training, the
trainer will be confronted by a mixture of attitudes and expectations. While there
will be those with a positive outlook, there will be others who have a negative
view about the situation. Likewise, some may have high expectations about the
quality of training and fail to appreciate the inexperience of the trainers. Thus,
the trainers need to be aware that they may not be well received and be able to

6518 Book.indb 283 12/30/14 1:25 PM

284 SCM Implementation

respond accordingly. This highlights the importance of the trainers being trained
in the training process.

Training should result in the trainees developing the requisite skills being taught.
To ensure that this is being done, some form of assessment should be carried out.
The emphasis is upon assessing what level of skill or knowledge has been attained.
However, it should be remembered that the trainees are less likely to retain this
knowledge or skill the longer the time that passes before they are required to use it.
Thus, the assessment may only reveal what the person is capable of attaining rather
than providing an indication that the person is competent at a specific task. It may
be necessary to provide refresher courses closer to the go-live.

After each session has been completed, it should be reviewed to reflect upon the
problems and to assess what worked and what could have been done better. The
issues raised may be concerned with the material being presented and highlight the
need for its revision. Alternatively, it may highlight issues with people and the need
to establish a strategy for handling them. Each situation will be different, but each
will contribute to an accumulating wealth of experience that, when continuously fed
into subsequent training sessions, will make these sessions more successful learning
experiences for the trainees.

Training Strategy

A training strategy can be developed defining the training policy and outlining the
training program. Each stream will be identified and outlined in terms of the above
stages. The strategy will provide an overview of the training objectives, identifying
the people involved and the different streams and the content of each stream, orga-
nized into courses and sessions. A plan will provide an overview of where, when,
and how the training will be delivered. Preliminary consideration will be given to
the assessment of the learners. How can their knowledge and skill competencies be
assessed? Furthermore, consideration is given to the effectiveness of the training and
how this is assessed. Finally, the projected cost will be calculated. These costs can
then be used to set a budget. The resultant strategy provides a framework within
which to go about the training activity.

If the company accepts the strategy, it can be implemented. If the strategy is not
accepted then it needs to be reviewed. A core issue is the company’s commitment
to training. The right balance needs to be struck between getting the training right
and the training being cost-effective.

The training strategy has two objectives—the transfer of knowledge from the
vendor’s personnel and external consultants to the organization’s key personnel and
the dissemination of this knowledge throughout the organization. More precisely,
the learning objectives establish what the learner should be able to do as a result of
the training. Knowledge may be sought, particularly if related to operational best
practices. One then has to ask how this knowledge can be used within the company.
However, it is likely that the main thrust of training is upon the development of
skill competencies in the use of the software functionality.

The executive committee needs to have sufficient understanding of what is
involved in an implementation project so that it appreciates the potential problems

6518 Book.indb 284 12/30/14 1:25 PM

Success Factors 285

and can give the commitment and support that is required. This is particularly true
for project sponsors. Their lack of appreciation of the issues may result in their
viewing the implementation as just another project and lead to their distancing
themselves from it. They may have a poor understanding of the roles and responsi-
bilities of all the participants and when problems arise, may fail to appreciate that
their involvement is required.

The members of the project team need to develop knowledge and skills that
will enable them to establish how to best use the functionality for the operation
and maintenance phase. Since the members of the project team will become the
trainers of other employees, they need to develop the skill to be able to formulate
and deliver a training course. Users need to have the skill for using the functional-
ity relevant to their roles. They should understand the basic concepts of SCM and
how to perform the day-to-day activities in the SCM system. Others who require
training include managers, who should have at least an appreciation of what the
system does. Ideally, project managers should have a good understanding of all
aspects of the system so that they can be effective in dealing with any issues raised.

A select number of people will require more specific technical training so that
they can design databases, write scripts, manage users, generate reports, and query
the database for specific ad hoc requirements.

System administrators need to be able to set up the system and then maintain
it. They will require knowledge about how to handle system security and deal
with technical problems. They will need to develop a level of understanding of the
functionality so that, at some stage after implementation when the project team is
disbanded, they are able to manage the system smoothly.

Additionally, over time it can be expected that the SCM tool will evolve to some
degree along with the company and projects that it serves. From time to time, it
may be necessary to conduct additional training sessions to keep everyone abreast
of the changes that have been implemented.

Success Factors

The biggest impact of SCM implementation is on the corporate culture, and the
success of an SCM implementation depends on the people using it. To change the
skills, habits, and attitude of the employees toward the SCM system and to make
the employees see the potential benefits of the SCM system for themselves and the
organization, the organization should give them proper training and assurance
that their jobs and careers are safe and that they will benefit from the changeover.
Training has to play a critical role in the success of an SCM system—during its
implementation and during its operation. Six steps to handle the cultural changes
that arise from implementing a new technology (like the SCM system) are described
as follows:

1. Start early: Though the time frame in which employees need to change work
habits may be short, you can prepare them for the new system and reduce
the emotional impact of the change by starting early with targeted informa-
tion campaigns and good training.

6518 Book.indb 285 12/30/14 1:25 PM

286 SCM Implementation

2. Align the leadership team: Make sure they not only understand the nature
and benefits of the SCM system, but also the issues surrounding employee
acceptance. The leadership should also constantly reassure employees and
promise that they will do that is possible to make the transition to the new
system as smooth and painless as possible.

3. Set reasonable expectations: Employees should understand that, in the short
term, they are only expected to achieve a basic level of competency. Beyond
this transition period, there will be many opportunities to excel and pro-
vide unique contributions. Setting high expectations will demoralize the
employees when they fail to achieve them. It is always better to set realistic
expectations, provide the right environment for the employees to excel, and
then reward the excellence. Also, inform the employees that there is a settling
down period for things to fall into the groove and advise them that only after
the system has stabilized will they see the true benefits of the new system.

4. Communicate specifically and continually: Each level and area of the organi-
zation has its own needs and issues. Develop a plan that addresses the unique
situation of specific groups but uses consistent and ongoing communication
methods to keep staff updated on progress and involvement opportunities
during the implementation period. Whether it is good news or bad news,
convey that to the employees and inform them about the steps the organiza-
tion is taking to deals with the problems, if there are any.

5. Identify new work teams and roles early: SCM systems bring large adjust-
ments to work roles and responsibilities. Identify and communicate these
changes early, so employees affected fully understand and mentally prepare
for the new environment.

6. Develop competency: Competency will provide comfort to most employees
facing the new environment. Make sure everyone has a solid overall under-
standing of how work flows through the new system. Then allow weeks
of hands-on practice performing new job tasks in the system after formal
training.

Three key elements to effective SCM implementation training for employees
are described as follows:

•	 Train the trainer or, in other words, SCM end users: All organizations will
have employees who have an aptitude for teaching and training. These peo-
ple should be identified and trained to train others. These trainers will have
more credibility and acceptance among the employees as they are part of
the workforce. As these people have worked with the company, they have
hands-on experience and are able to identify with the trainees and answer
their questions better than the external consultants or trainers. In addition,
these internal trainers can be leveraged to provide functional support during
and after go-live.

•	 Allocate plenty of time for SCM implementation training: Many compa-
nies do the employee training as an afterthought once the implementation is
over. This is a sure recipe for disaster. Effective training is arguably the most

6518 Book.indb 286 12/30/14 1:25 PM

Employees and Employee Resistance 287

important and critical part of the SCM implementation. Rushing the process
and compromising on the quality or duration of the training program can
result in costly failures.

•	 Reinforce training with more comprehensive organizational change manage-
ment activities: Discussions surrounding employee changes should begin well
before end-user training. As new business processes and changes are defined,
employees should be kept in the loop so they’re not blindsided during formal
training—or worse yet, at go-live. Top management should address and resolve
all issues like employee fears, uncertainties, and doubts about the new system
well in advance so that the employees are fully behind the SCM implementa-
tion and participle in the training programs without any distractions.

SCM projects can go a long way toward making adoption easier when focused
on effective training that ensures that employees are not overwhelmed, and defi-
cient, at cutover. When properly prepared, most employees will support changes
to the corporate culture, embrace the new SCM system, and adopt new values that
ensure success.

Employees and Employee resistance

Primarily, SCM implementation is not a technology or process project—it is a
people project. To succeed during and after implementation, the SCM system needs
full and complete support of all the end users of the system. The end users are the
people who will be using the SCM system once it is in place. These are the people
who were doing the functions that are being automated or computerized by the
SCM system. With the implementation of the SCM system, the old job descriptions
will change and the nature of the job will undergo drastic transformation. It is
human nature to resist change. When we are talking about implementing an SCM
system, we are talking about change on a very massive scale. So, there will be fear
of the system replacing existing jobs, as many functions will be automated. Also,
people will be afraid of the amount of training they have to undergo and learn-
ing they have to do to use the new system. Job profiles will change; job responsi-
bilities will undergo drastic alterations; and people will be forced to develop new
skill sets. If these fears are not addressed and alleviated well in advance, you are
asking for trouble.

It should be worth noting the fact that while SCM systems eliminate many
existing jobs, they create many new ones—with more responsibilities and value
addition. It is easy to see that the automation of the business processes through
technology can eliminate the jobs of many employees whose function is to record,
control, calculate, analyze, file, or prepare reports. However, it must be pointed out
to the employees that the same automation also creates many more opportunities
for employees because they can get away from the monotonous clerical work and
transform themselves into highly valued individuals in a new and challenging work-
ing environment using the most modern technology. If the company can succeed in
making its employees accept this fact and assist in making the transformation (by

6518 Book.indb 287 12/30/14 1:25 PM

288 SCM Implementation

giving them training), then the major (and most critical) obstacle in the path of an
SCM implementation is solved.

reasons for Employee resistance

Change is happening faster that most people care to think about. What is more
important, change is happening faster that most people care to accept. In fact, most
people do not want change! The premise is that change is not always good—that
somehow it will have a negative impact. Today, technology is exponentially advanc-
ing. It is very difficult to keep pace and stay abreast with these technological develop-
ments. We are in a constant state of change, and continuous change and continuous
improvements in the abilities of companies to do things better, faster, and cheaper
is an absolute must for survival in this brutally competitive world.

The main reasons for the resistance toward change are fear of failure, fear of
being redundant, and fear about the uncertain future. We will now examine these
reasons in more detail.

Fear of Being redundant

The biggest fear shared by people in companies going in for SCM implementation
is the loss of their job. As soon as the decision about the SCM implementation is
announced, rumors about the new system automating all the tasks and making
people redundant will start floating around. When a company talks about SCM
and automation, the immediate reaction is that computers will replace people.
There is some truth in this fear. There are many instances where computers have
made people redundant. However, what most people fail to hear and the gossip-
mongers forget to tell is that the people who were doing the manual jobs before
computerization were able to get better jobs with higher salaries once they learned
the new system and how to use the computers. So if a person is willing to adapt to
the changes and to learn the new systems and new way of doing business, then he
or she does not have anything to fear. There is a very good chance of getting better
jobs with higher salaries.

Fear of Failure

Another fear that must be addressed in the planning phase is how to handle peo-
ple’s fear of failure—the fear of not understanding or being able to work within an
automated environment. Many companies make the serious mistake of not insist-
ing on a very thorough training program that will ensure the employees have the
knowledge and a confidence level for adapting and using the new systems to the
maximum benefit of the company.

Many view training as an expense to be cut. Beware of those that claim they
can reduce this expense as the results have proven increases in hidden costs to the
firm that often exceed the perceived savings. Training is an item that should receive
the most serious attention by professional implementers. Once it is determined in

6518 Book.indb 288 12/30/14 1:25 PM

Dealing with Employee Resistance 289

scope and budgeted for, it should become a sacred cow and be adjusted only by the
implementer due to project scope changes.

Fear of the Future

Openly discussing and announcing the purpose of implementation and what it
means to the employees of the firm can help to address the fear of the future. Nor-
mally SCM implementation investment is made so the firm can compete and grow
the business. It may be implemented to survive, thrive, and become competitive.

Whatever the future expected from the implementation, it must be made openly
clear to all who are expected to participate in making it successful. A feeling of
excitement must be built from the ground up, in order for people to enthusiastically
embrace the SCM system as the key to their future. Without a feeling of confidence
that things are going to be good, they may never try it at all! If they decide not to
give the system their full support, you will not be successful in your implementation.

dealing with Employee resistance

Implementing an SCM system is a change, and it is human nature to resist change.
Accordingly, any SCM implementation will face some amount of resistance. The
main reason for this resistance is fear—fear and uncertainty about what will hap-
pen. In the case of SCM implementations, too, there will be fear among the employ-
ees. There will fear about such things as what the new system is all about, what
changes it will introduce, how it will change job profiles, how many jobs will be
made redundant, and how many employees will lose their jobs.

It is quite natural that end users will be skeptical about the new system. How-
ever, for an SCM implementation to succeed, the cooperation of everyone involved
is an absolute necessity. If employees are not convinced about the importance of the
SCM system and the benefits of using it, they will not be fully cooperative. This can
result in the failure of the system. It is very important, therefore, that users be won
over before implementing the system. Forcing the system on unwilling people will
only harden their resolve to revolt. The best way to deal with employee resistance
is to educate employees about the new system and assure them about their jobs.
The following sections examine some of the techniques used to deal with employee
resistance.

Training and Education

One main reason for the resistance is ignorance. People always have a lot of mis-
conceptions about SCM—e.g., it will increase work load, it will make jobs redun-
dant, it will change the way business is done, or it will introduce limitations on
the freedom of the employees. More problems have arisen during implementation
from all levels of a company because people were uncertain of their future upon
completion of a successful implementation. However, if the SCM implementation
team backed by the management spends a little time and effort educating users

6518 Book.indb 289 12/30/14 1:25 PM

290 SCM Implementation

about SCM and how it will help both the company as well as the users, then user
resistance can be reduced—if not fully eliminated. Remove the uncertainty for all
in the company by telling personnel what is going to happen after the implementa-
tion of the SCM system.

Very few disagree that training is important. The problem, however is, that
many projects tend to focus on training users on how to use the new system prior
to go-live. While this is certainly important, it does not address other issues such
as how key processes will be affected by SCM. In addition, not enough companies
take advantage of ongoing training tools such as on-line help and ongoing refresher
training.

Training is one of the most dangerous and expensive items to be compromised
or circumvented. The lack of preparatory and reinforcement training or inadequate
training can cause wrong and inefficient use of the system and result in very direct
damaging expense to the firm and even more dangerous indirect expense.

implement an Organizational Change Management program

An organizational change management program is much more than just training.
Organizations should ensure that they are holding regular workshops with end
users and management, involving them in process and organizational design work-
shops, and keep users informed of such information as the purpose of the project,
the progress, and why SCM is being implemented through formal and informal
communications.

Creating SCM Champions

Another method of reducing resistance is by creating champions. According to
Mosely [1], one of the most efficient ways to transition to new technology is to
find a well-respected potential user of the technology. This should be a person
who knows the business well, embraces change, and is respected in the organiza-
tion. Train the user on the process and the technology, have this user evaluate the
technology, and encourage this user to champion the merits of the technology to
coworkers and management.

The champion becomes the expert user, facilitator, and trainer of the tool. He
or she will also be the key to help other employees understand and learn the value
of SCM and how it affects their jobs. Accordingly, all the members of the imple-
mentation team and the pilot project team are potential champions. There will
always be people who adapt to change slowly and maybe even begrudgingly; do not
look to them to be your champion. Instead, look for the people who are the first to
embrace change and adopt new technology and who are always looking for a way
to do things better. That is the kind of person you want for a champion.

pilot projects

Implementing the SCM system in a pilot project is a good idea because it minimizes
the risk of failure. This is because the entire implementation team can concentrate on
the pilot project. The SCM system can be tested before going in for company-wide

6518 Book.indb 290 12/30/14 1:25 PM

Dealing with Employee Resistance 291

deployment. Any issues that were not anticipated during the planning stage that
are encountered during the pilot implementation can be considered, and the imple-
mentation plan can be refined and fine-tuned. During the pilot implementation, the
existing data of the pilot project is migrated to the SCM system; team members are
given training on the SCM concepts and how to use the SCM system (and tools, if
tools are used). The implementation team monitors the various implementation issues
such as how people find the system, their feedback, tricky issues in the implementa-
tion, the learning period, how long it takes for the users to get comfortable with the
system, and whether the user manuals and other implementation documentation
are satisfactory or need revisions or modifications.

Based on the experiences of the pilot project implementation, the implemen-
tation plan and the implementation guide will be revised and modified. The pilot
project will warn the implementation team about potential problems and how such
pitfalls could be avoided. Also, a successful pilot project is a morale booster for the
implementation team and a good marketing tool.

involve Employees in SCM process

The more involved employees are in the SCM decision and implementation, the
more ownership and buy-in they will have into the project. This is not to say that
every single employee should be involved. However, involving more employees than
just senior management in the decision and implementation planning process will
go a long way to make people feel more ownership, which inevitably results in less
resistance in the future.

address issues of Fear, Uncertainty, and Self-Esteem

Each and every one of the levels within an organization must be addressed in over-
coming resistance to change. The first thought in anyone’s mind when SCM imple-
mentation is discussed is, “What’s in it for me?” If the answer must be self-generated,
then it will probably be on the pessimistic side, yielding a negative outcome percep-
tion. This critical issue should be addressed early in any project and at every level.

There is no such thing as communicating too much with employees. The more
they know about why your organization is selecting SCM, how it will benefit the
company, and what it means to them and their jobs, the less resistant they will be
to changes when they are implemented.

Factual representations of what will happen to people within the organization,
how the implementation will take place over what period, milestones during the
project, and managing expectations of all (from the shop floor worker to senior
manager) are absolutely necessary if a successful on-time and on-budget project is
the goal.

Manage Expectations

Managing expectations of problems to be expected during the initial and final
phases is the biggest challenge. Due to such factors as lack of top management
commitment, spread of rumors, mistakes on the part of the implementation team,

6518 Book.indb 291 12/30/14 1:25 PM

292 SCM Implementation

and actions by the pessimists and skeptics, your implementation efforts can be
derailed. Never let this type of activity impact a project. It will result in failed
implementations if allowed to go unchallenged. So, the project manager and the
implementation team should monitor the mood and attitude of the employees and
their expectations and concerns and take corrective action before problems get
out of control.

In the planning stage, these elements must be addressed and be well-documented
for later firefighting, if necessary. If planning is thoroughly completed prior to imple-
mentation, most of these elements will be insignificant to nonexistent because they
will have been dealt with early on. Further, if expectations are openly adjusted and
well-documented during changes in project scope or circumstances, you can avoid
surprises and be ready to deal with any problem that arises. If you are not prepared,
then sudden and unexpected developments can surprise you, and by the time you
formulate a strategy and implement it, it will be too late and usually can result in
the loss of confidence in the project or you or both.

Contract with the Employees

The employees who are on the implementation team are trained on the SCM package
at the company’s expense. Once they have acquired the knowledge, completed the
training, and participated in the implementation, their market value will improve
exponentially. So it is natural that they will find better and more lucrative job offers.
However, if these key employees leave the company without any warning or without
making any alternative arrangements, then the company’s performance will suffer.
So, it is in the best interests of the company to sign a contract with the employees
before they are put on the implementation team and given training. The main clause
of the contract with the employee should be that they should not put the company in
a position where the smooth running of the SCM system is interrupted. If they want
to leave, they can leave; even the most stringent contract cannot hold them back;
but before leaving they should give the company enough notice. They should also
train another person to a level where he or she can handle the duties of the person
leaving. The contract can also stipulate that no employee can leave the company
in the middle of the implementation project, whether it is their first or fifth. The
chances of an employee leaving during his or her first implementation are rare. It
is once they have gained experience that they want to leave. Suppose the company
has implemented the system in two divisions and is planning implementation in
the third and suppose that the implementation is halfway. If, at this point, a key
employee leaves, it will affect the implementation very badly. The contract with the
employees should take such situations into consideration.

One word of caution, however, if the company can retain the employees by
other means like offering attractive salaries, stock options, and a challenging and
comfortable work environment, then adopting such a strategy is a much better
way than enforcing a contract. Employees are the most important asset of any
company, and it is in the interest of the company to trust them and keep them
happy and satisfied.

6518 Book.indb 292 12/30/14 1:25 PM

SCM Implementation: The Hidden Costs 293

Company-Wide implementation

Once the pilot project has been successfully implemented and the implementa-
tion strategy and other items such as user manuals and technical guides have been
revised and modified, the implementation team can proceed to company-wide
implementation, in which the SCM system is implemented in all the projects in the
company. This involves (1) training users in SCM and SCM tools and procedures,
(2) migrating data to the tool repositories, (3) assigning roles and responsibilities to
the project team members wherever necessary, and (4) monitoring the SCM system
until it reaches a stable state.

As SCM is implemented in more and more projects, and as people learn of the
benefits of an SCM system, the job of the implementation team will become easier.
Project team members should be given adequate training, and there should be
enough documentation (e.g., user manuals, FAQs, and how-to guides) so that new
people joining the project will not have difficulty getting the necessary training and
information regarding the SCM tool and SCM concepts.

SCM implementation: The Hidden Costs

SCM implementation promises great benefits, but what are the costs involved?
Exactly how much will a company have to pay to have an SCM system? In most
cases, the SCM implementation costs exceed the budget. Why is this? Even a well-
planned and thought-out budget is often exceeded. This section examines the areas
that most planners miss accounting for in their budgets—in other words, we discuss
the hidden costs of SCM implementation.

Although different companies find different hurdles and traps in the budgeting
process, those who have implemented SCM systems agree that some costs are more
commonly overlooked or underestimated than others. Armed with insights from
across business, SCM implementation veterans agree that one or all of the following
four areas are most likely to result in budget overruns: (1) training, (2) integration
and testing, (3) data conversion/migration, and (4) external consultants. Each is
discussed in the following sections.

Training

Training is the unanimous choice of experienced SCM implementers as the most
elusive budget item. It is not so much that this cost is completely overlooked as it
is consistently underestimated. Training expenses are high because workers almost
invariably have to learn a new set of processes, not just a new software interface.
Training is the first item that gets cut when budgets have to be squeezed—a major
mistake, says most SCM implementers. A successful training experience will account
for a minimum of 10–15% of the total project budget. Unwise companies that
scrimp on training expenses pay the price later. Training costs cannot be avoided,
but there are a few ways to keep the price tag under control. One way is train an

6518 Book.indb 293 12/30/14 1:25 PM

294 SCM Implementation

initial batch of employees who can then train their colleagues in turn. This solves
two problems: (1) The huge training bills of consultants are reduced, and (2) because
the training is done by their own colleagues, resistance to change is reduced and
people will be more ready to accept the new system. In fact, it is a good idea to
identify these would-be trainers early in the implementation phase and make them
part of the implementation group, so that they will have hands-on experience and
will understand the “big picture.”

integration and Testing

Today’s SCM systems are very complex systems. Interfacing with those systems is
not an easy task. Testing the links between SCM tools and other corporate soft-
ware—links that have to be built on a case-by-case basis is another essential cost
that is easily missed. Most companies will have some development environments
that will not integrate with the SCM tool and will have to be separately interfaced.
In most cases these integrations are costly.

data Conversion or Migration

It costs money to move existing project information to the new system. Most data
in most legacy systems is rubbish. However, most companies seem to deny that their
data are dirty until they actually have to move it to the new client-server setups. As
a result, those companies are more likely to underestimate the cost of data migra-
tion. Nevertheless, even clean data may demand some overhaul to match the process
modification necessitated or inspired by SCM tool implementation.

data analysis

There is a misconception that SCM vendors spread: that you can do all the analy-
sis you will want within their product. Often, however, the data from the SCM
system must be combined with data from external systems for analysis purposes.
Users with heavy analysis needs should include the cost of a data warehouse in the
SCM budget and should expect to do quite a bit of work to make it run smoothly.

External Consultants

The extravagant cost of external consultants is a well-known fact. Like training
expenses, this cost is hard to circumvent. Choosing a lesser known SCM tool to
avoid premium-priced consultants does not necessarily help. When users fail to
plan for disengagement from the existing system, consulting fees will overshoot the
budget. To avoid this, companies should identify objectives for which its consult-
ing partners must aim when training internal staff. It is a good practice to include
performance metrics and time schedules for the consultants. For example, a spe-
cific number of the company’s staff should be trained to a certain specified level of
expertise within a specified time.

6518 Book.indb 294 12/30/14 1:25 PM

Summary 295

Brain drain (Employee Turnover)

It is accepted wisdom that SCM success depends on staffing the project with the best
and brightest from the business and IS. The software is too complex and the business
changes too dramatically to trust the project to just anyone. The bad news is that
a company must be prepared to replace many of those people when the project is
over. Though the SCM market is not as intense as it once was, consulting firms and
other companies that have lost their best people will be hounding yours with higher
salaries and bonus offers than you can afford—or that your HR policies permit.
Huddle with HR early on to develop a retention bonus program and to create new
salary strata for SCM veterans. If you let them go, you will end up hiring them—or
someone like them—back as consultants for twice what you paid them in salaries.

Continuing Maintenance

Most companies intend to treat their SCM implementations as they would any
other software project. Once the software is installed, they figure, the team will be
scuttled and everyone will go back to his or her day job. But after SCM, the imple-
mentation team members should not be sent back to their previous jobs as they are
too valuable. They have worked intimately with the SCM system, SCM vendors,
and external consultants. They know more about the sales process than the sales
people and more about the manufacturing process than the manufacturing people.

Companies cannot afford to send their implementation project team members
back into the business because there is so much to do after the SCM software is
installed. Just writing reports to pull information out of the new SCM system will
keep the project team busy for a year at least. And it is in this analysis and insight—
that companies make their money back on an SCM implementation. Unfortunately,
few IS departments plan for the frenzy of post-SCM installation activity and fewer
still build it into their budgets when they start their SCM projects. Many are forced
to beg for more money and staff immediately after the go-live date, long before the
SCM project has demonstrated any benefit

Summary

In this chapter, we discuss how to implement the SCM system in an organization.
We examine how to monitor the implementation project and why it is important
to do the monitoring. We determine that one of the most critical factors in the suc-
cess of an SCM implementation is the participation and cooperation of the users.

In addition, we discuss the different methods of making the implementation a
success, including the role of external consultants, vendor participation, user edu-
cation, and having in-house champions. We also describe the factors that result in
cost overruns and how to tackle them. Furthermore, we consider the permanent
nature of SCM systems and how the organizations should gear up to live with them
and reap the full benefits from them.

The key message is that an SCM implementation is characterized by its com-
plexity. There are lots of issues that need to be recognized and handled. Many can

6518 Book.indb 295 12/30/14 1:25 PM

296 SCM Implementation

be identified during the planning stage, but some issues will come up during the
implementation. Accordingly, organizations should have a plan to deal with these
uncertainties.

Every situation is unique. The complexity of the SCM implementation is such
that one cannot anticipate the unexpected, particularly when people are involved.
So the project management team should monitor what is happening and pay close
attention to the details, no matter how trivial they might appear.

The SCM implementation cannot succeed without the cooperation of employ-
ees. Employees should be involved in every phase to ensure that they use the system
properly and willingly. Most technical issues can be fixed. People problems are
more difficult to fix, if they can be fixed at all. The evidence of people problems
are employee turnover, disputes, and low levels of motivation. Accordingly, the
implementation should place the highest priority on employees and their problems.

Reference

[1] Mosley, V., et al., “Software Configuration Management Tools: Getting Bigger, Better,
and Bolder,” Crosstalk: The Journal of Defense Software Engineering, Vol. 9 No. 1, Jan.
1996, pp. 6–10.

Selected Bibliography

Bourque, P., and R. E. Fairley, eds., Guide to the Software Engineering Body of Knowledge,
Version 3.0, IEEE Computer Society, 2014; www.swebok.org.

Buckley, F. J., “Implementing a Software Configuration Management Environment,” IEEE
Computer, July 1994, pp. 56–61.

CM Crossroads: The Configuration Management Community (http://www.cmcrossroads.com/).
Dart, S., “Achieving the Best Possible Configuration Management Solution,” Crosstalk: The

Journal of Defense Software Engineering, September 1996.
Dart, S., “To Change or Not to Change,” Application Development Trends, Vo1.4, No. 6,

1997, pp. 55–57.
Dart, S., Configuration Management: The Missing Link in Web Engineering, Norwood, MA:

Artech House, 2000.
Estublier, J., “Software Configuration Management: A Roadmap,” Proceedings of the Confer-

ence on the Future of Software Engineering, Limerick, Ireland, 2000, pp.279–289.
Feiler, P. H., “Software Configuration Management: Advances in Software Development Envi-

ronments,” Technical Report, Software Engineering Institute, Carnegie-Mellon Univer-
sity, 1990.

Irish, D. E., “Putting the Horse Before the Cart: Preparing Your Staff for Project Management
Software,” Proc. ACM SIGUCCS 2001, Association of Computing Machinery, 2001,
pp. 59–62.

Kolvik, S., “Introducing Configuration Management in an Organization,” Proc. ICSE ‘96 SCM-6
Workshops (Selected Papers), Berlin: Springer-Verlag, 1996, pp. 220–230.

Moor, S. R., J. Gunne-Braden, and K. J. Gleen, “Enterprise Configuration Management—Con-
trolling Integration Complexity,” BT Technology Journal, Vol. 15, No. 3, July 1997, pp.
61–72.

6518 Book.indb 296 12/30/14 1:25 PM

Summary 297

Pressman, R. S., Software Engineering: A Practitioner’s Approach (8th Edition), New York:
McGraw-Hill, 2014.

Sommerville, I., Software Engineering (9th Edition), Reading, MA: Addison-Wesley Publish-
ing Company, 2011.

Tellioğlu, H., and I. Wagner, “Negotiating Boundaries: Configuration Management in Software
Development Teams,” Computer Supported Cooperative Work (CSCW): The Journal of
Collaborative Computing, Vol. 6, No. 4, 1997, pp. 251–274.

Thompson, S. M., “Configuration Management—Keeping it all Together,” BT Technology
Journal, Vol. 15, No. 3, July 1997, pp. 48–60.

6518 Book.indb 297 12/30/14 1:25 PM

6518 Book.indb 298 12/30/14 1:25 PM

299

C h a p t e r 1 8

The Different Phases of SCM
Implementation

introduction

We have learned that SCM is a set of activities that must be performed throughout
the life cycle of the software system. Even though SCM activities can be initiated at
any stage during a project’s life cycle, it is better to have the SCM system in place
from the very beginning.

Company management should be convinced about the need for and importance
of having an SCM system, preferably during the early stages of the project. Also,
the people who will be using the system—including the developers, the project lead-
ers, the QA team members, and company management—should be made aware of
the benefits of a good CM system. The benefits of SCM as discussed in Chapter 4
could be used for this purpose.

SCM systems are capable of delivering dramatic productivity improvements, cost
reductions, and error or defect reductions, among other benefits. SCM can improve
customer goodwill, because the company will be able to provide customers with
better quality products and better technical support. By educating project personnel
on the benefits and values of SCM, the myths about SCM—such as, “SCM is noth-
ing more than just additional documentation,” or “SCM is additional work”—are
dispelled and the need for SCM becomes obvious. Also, today’s SCM tools are so
sophisticated and advanced that they make the whole process of performing SCM
functions much easier than before.

There is a misconception that SCM is only for big companies and large projects.
In the author’s opinion, SCM should be implemented in all software projects—irre-
spective of the size of the project and organization—for the very reason that change
is inevitable in all projects, and unmanaged and uncontrolled change is trouble all
the way. Companies that use the scientific methods of software development from
the very beginning—that is, even when they are small—have a workforce and
work culture that is more willing and able to learn new technologies and adapt to
changes and implement new procedures. The programmers and managers of these
companies have gotten used to standard software engineering practices and pro-
cedures, and the work cultures of these companies evolve around these practices.
New employees joining the company will also follow the procedures and methods,
because peer pressure will be high.

The advantage of this scenario is that the methodologies and procedures will
produce dramatic results in such companies, because people are doing things because

6518 Book.indb 299 12/30/14 1:25 PM

300 The Different Phases of SCM Implementation

they believe in them, not because they have to do it. Consider SCM; everyone knows
that SCM is not easy. It is difficult to keep a good SCM system (a system that is
efficient and effective) up and running. However, the effort is worth it. Still, if an
SCM system is to become a success and deliver the promised results, the people
who are involved have to be convinced of its worth. Just doing SCM for the sake of
getting some certification will not produce the results that it is capable of.

This chapter aims to explain the objectives and phases in the life cycle of an
SCM system, from conception to retirement, and discuss how these events may be
sequenced. The organizational culture and the nature of projects will differ from
company to company. So two SCM implementations can never be identical; they
will vary depending on factors such as the size, nature of projects, complexity of
projects, development methodology, and organizational culture. The objectives,
the different phases, the sequence of these phases, and other details of the SCM
implementation will vary greatly from organization to organization.

It is important for company management, project leaders, consultants, devel-
opers, SCM personnel, and other stakeholders to have a good understanding of
the large-scale conceptual picture of SCM and SCM implementation. Without the
capability to understand the big picture, SCM practitioners can become lost. It is
important to have a solid foundation for understanding the big picture so that the
practitioners can understand the details of what they deal with on a day-to-day
basis and how it relates to the rest of the project and impacts on the rest of the
organization.

There are two basic characteristics common to all SCM implementation proj-
ects—objectives and phases (or events).

Objectives of SCM implementation

Objectives are the major high-level characteristics that can have a great impact
upon the success of an SCM project. The objectives include characteristics such as
the following:

•	 Speed;
•	 Scope;
•	 Resources;
•	 Risk;
•	 Complexity;
•	 Benefits;
•	 Speed.

Speed of a project is directly related to the amount of time that a company has
before the completion of the SCM implementation or the amount of time that the
company would like to take for the implementation. The speed of the project in
the context of this chapter is how much time the company would like to take in
implementing the system. The amount of time that the company actually takes may
be dramatically different. The amount of time that the company would like to take
should be the figure used when developing a project plan.

6518 Book.indb 300 12/30/14 1:25 PM

Objectives of SCM Implementation 301

Scope

The scope of the project includes all of the functional and technical characteristics
that the company wants to implement. A company installing a full-fledged SCM
system would have a much greater scope than a company installing a change man-
agement and defect tracking system.

resources

Resources are everything that is needed to support the project. This includes people,
hardware systems, software systems, technical support and consultants. All the dif-
ferent resources of an implementation have one thing in common—money.

risk

The risk of a project is a factor that impacts the overall success of the SCM imple-
mentation. Success is measured by factors such as overall user acceptance, return
on investment (ROI), time to implement, etc. High-risk situations are less likely to
possess these characteristics.

Complexity

Complexity is the degree of difficulty of implementing, operating and maintaining
the SCM system. Companies of different sizes, business environments and organi-
zational cultures have different levels of complexity. A multi-billion dollar corpora-
tion that has development sites and teams spread across the different parts of the
world and working in different time zones is generally much more complex than a
company with 50 employees occupying one geographical location.

Benefits

Benefits are the amount to which the company will utilize functionality of the SCM
system for software development, maintenance and other support activities. The
SCM tools automate almost all aspects of the CM activities; they make the job of
the developers, managers, and other stakeholders easy and improve the develop-
ment productivity. To get the maximum benefit out of an SCM implementation, the
system should be built around the software development process and organizational
procedures followed by the organization. Better integration of the SCM system
with the software development and maintenance process will result in high-quality
products, reduction in number of defects, faster bug fixes, quicker incorporation of
enhancements, better customer service, etc. which leads to improved customer sat-
isfaction and goodwill. This will result in satisfied customers and improved brand
image, which will lead to an increase in market share and profits.

Each of these objectives can be rated on a scale from low to high. Interrelation-
ships exist between the different objectives. For example, companies that attempt to
install an SCM system with low resources and high complexity and at high speed
would place themselves at high risk. Readjusting risk to a low value would cause

6518 Book.indb 301 12/30/14 1:25 PM

302 The Different Phases of SCM Implementation

other objectives to change their value based on other factors such as complexity.
In addition to the interrelationships, there exist various dependencies between the
objectives. A good example of such a dependency is between speed and risk of the
SCM implementation. A quickly implemented SCM system tends to be at higher
risk than one implemented at a slower pace, taking the necessary precautions. When
deciding on an SCM implementation plan, the various objectives and their inter-
relationships and dependencies should be taken into consideration.

different phases of SCM implementation

Like any project, SCM implementation goes through different phases. There are
no clear separating lines between these phases, and in many cases, one phase will
start before the previous one is completed. Still, however, a logical order is fol-
lowed. The logical order is the order in which the phases are listed. As mentioned,
some overlap occurs between the phases, but the third phase cannot start before
the second phase and so on. There are two way to implement an SCM system in
an organization—company-wide implementation (also known as the “big-bang”
approach) and project-by-project implementation (the incremental approach). Irre-
spective of whether an organization chooses the big-bang approach or incremental
approach, the SCM implementation phases described in the next sections will have
to be done for each project, as each project has its own peculiarities and needs. The
advantage of the big-bang approach over the incremental approach is that many
phases, such as training, tool selection, and tool implementation can be done for
all the projects simultaneously, which can result in the reduction of training and
implementation expenses.

Here, do not confuse SCM implementation with the installation of the SCM
tool. The SCM tool used for each project can be the same but need not be. Usually,
when an organization chooses an enterprise-wide CM (ECM) tool, all the projects
in the organization will be using the same tool, but that may not always be the case.
In such cases, the tool implementation will be done only once and as and when new
projects are started, depending on the specific requirements of the project, factors
such as the controlled libraries and workspaces are allocated.

One thing that should be remembered is that the SCM system is unique for each
project, and the phases described in this section will have to be repeated for each
project (maybe with the exception of tool installation). Perhaps, as time goes on
and as most of the employees are trained in SCM basics and SCM tools, the time
and effort spent on training might decrease. However, we have to consider that
new employees who join the organization will have to be trained. Furthermore,
in a given project, new team members will need to be trained. Also, there will be
changes such as product upgrades, new functionality in the new versions of the tools,
new policies, and new standards and regulations. All of these factors will require
further employee training. Accordingly, as more and more employees get trained in
SCM, the cost of training will come down, but the training activities will have to
continue—training is a never-ending process. SCM tools will last through several
years and many projects and will be retired only when they become obsolete. This
is discussed further in the section on SCM tool retirement.

6518 Book.indb 302 12/30/14 1:25 PM

Different Phases of SCM Implementation 303

It is also important to remember that each of the phases discussed in the follow-
ing sections consists of many subphases or events. These events will be discussed in
later chapters. Some of these events are needs (requirements) analysis, request for
information (RFI) and general research, ROI analysis, request for proposal (RFP),
reference site examinations, hardware sizing, vendor site surveys, SCM tool selection,
contract negotiations, customization decisions, documentation, end-user training,
audits, performance measurements, and ongoing education and maintenance. Note
that all of the phases discussed in this chapter may not be applicable in all cases.
For example, in a small project where a single person is responsible for SCM, there
will not be an SCM team and SCM team training; or if the organization has already
identified an SCM tool, then the preselection screening and tool evaluation phases
(part of SCM system design) are not required.

The different phases of the SCM implementation are listed as follows and illus-
trated in Figure 18.1:

Figure 18.1 Different phases of SCM implementation.

6518 Book.indb 303 12/30/14 1:25 PM

304 The Different Phases of SCM Implementation

•	 SCM system design;
•	 SCMP preparation;
•	 SCM team organization;
•	 SCM infrastructure setup;
•	 SCM team training;
•	 Project team training;
•	 SCM system implementation;
•	 Operation and maintenance of the SCM system (configuration identification,

configuration control, CSA, and CAs);
•	 Records retention;
•	 SCM system retirement.

The initial phases—from SCM system design to SCM infrastructure setup—are
performed by the SCM system design team with the help and support of company
management. SCM team training is done jointly by the SCM design team and SCM
experts (outside consultants or in-house experts). If SCM tools are used, then the
training on those tools is given by the tool vendor’s representatives or in-house tool
experts.

The project team members are trained by the SCM team members, the design
team members, the tool vendor’s representatives, and SCM experts. Here the role
of the SCM experts and the SCM system design team members is to develop a loy-
alty among employees for SCM. Because these people will be quite senior in the
organizational hierarchy and have the necessary stature, they can convince people
better than the SCM team members. So these top-level people should give their
support, pledge their allegiance, and give an overview of SCM and its benefits to
the employees. Training on the details and the day-to-day operational formalities
can be handled by the SCM team members. The support and encouragement of top
management and the full cooperation of all people involved are essential factors in
the successful implementation and smooth functioning of any SCM system.

A question that naturally arises is: how can SCM team members and project
team members be trained on the SCM system before the system is implemented—
,that is, how can somebody be trained on some thing that does not exist? Actually
the system exists, but it has yet to be implemented. The SCM system is designed;
procedures are documented and defined in the SCMP; and the tools that are going
to be used are selected, purchased, and put in place. The SCM team and project
team training takes place so that people can use the systems properly. Accordingly,
the main objective of the training is to establish the best practices and to convince
users about the need for, importance of, and benefits of the SCM system—the one
they are going to use.

The SCM system implementation phase involves installing the SCM tools and
assigning duties and responsibilities. Once the tools and the necessary procedures
are in place, the SCM team, developers, QA personnel, and other parties who will
be using the system will work under the supervision of the consultants and tool
vendor representatives to iron out any problems that might arise and to fine-tune
the system. Once the problems are identified and solved, the system starts work-
ing smoothly, and the employees become confident about running the system, it is

6518 Book.indb 304 12/30/14 1:25 PM

Different Phases of SCM Implementation 305

handed over to the employees. From this point onward, the operation and mainte-
nance phase starts; it will last until the system is retired.

Although the SCM implementation phases may seem very linear and distinct
from each other, in reality, throughout an actual implementation, the phases are
quite fluid. In addition, the phases are repeated. For example, even the SCMP can
undergo changes. So if it is felt that the current system needs changes, the changes
are incorporated into the SCMP, and if that change necessitates training, then that
is done. Everyone involved in the SCM process is informed about the changes made
to the SCMP. The change management procedures are repeated many times—every
time a change request is initiated. Status accounting, the function that records the
happenings and reports the information, is a routine task. SCM audits and reviews
are also done quite often depending on the criteria specified in the SCMP.

We now examine each phase in some detail.

SCM System design

Once project management or company management decides to support SCM, the
SCM system must be designed. If the company already practices SCM and already
has guidelines, then the job is easy. The job of the designers is to tailor the company
guidelines to suit the needs of the particular project.

Here, one important thing to remember is that no two projects are the same. So
even if the guidelines are taken from similar projects, it is necessary to customize
them to suit the needs of the current project. The standards and guidelines must be
customized depending on the nature of the project—some portions might need to
be modified; some project-specific things might need to be added; and unwanted
portions might need to be deleted. For example, if the guidelines talk about sub-
contractor control, and the current project does not have any subcontracted items,
then that can be deleted.

The SCM system design team should include the project manager, the person
who is going to be the SCM team leader, and key personnel from the project team
and the QA department. It is not a good idea to have too many people on the design
team; it will only result in lowering the productivity of the team. The responsibilities
of the SCM design team include (but are not limited to) development of the SCM
system, customization of the SCM system (if guidelines already exists), preparation
of the SCMP, maintenance of the SCMP, selection of the SCM team, and constitu-
tion of the CCB.

If the company does not have any guidelines for the development of an SCM
system, then SCM standards can be used, as discussed in Chapter 11. The design
team defines the scope of the SCM system, what activities it will perform, how they
will be performed, which activities will be automated, what tools will be used, what
method will be used for version numbering, and how release management will be
accomplished, among other issues.

The SCM system design team also makes decisions such as whether to use tools
and whether to make them or buy them. In addition, the SCM system design team
determines whether to use a manual system or an SCM tool. The decision about
whether to make or buy the tool is also taken by the design team. If the team decides

6518 Book.indb 305 12/30/14 1:25 PM

306 The Different Phases of SCM Implementation

to buy tools, then it will evaluate the tools available in the market and select the
tool that is best suited to the needs of the company.

The team also decides the composition of the SCM team. The team size varies
depending on the nature and size of the project. Large projects will have a full-fledged
team with many people, whereas a small project may have a team comprised of a
single person or a person working part-time. The design team also determines the
constitution of the CCB and defines guidelines for its functioning.

Once all issues regarding the SCM system have been finalized, the details are
documented. This document is called the SCMP.

SCMp preparation

As we have seen, the SCM system design team decides on the particulars of the SCM
system that is to be used. Once the system details are finalized, the decisions and
procedures have to be documented. This document is called the SCMP. The idea
behind the SCMP is to ensure that all members of the SCM team and the project
team are aware of the procedures and the duties and responsibilities that each one
is supposed to carry out. It will also tell them what resources are to be used and
how they are to be used. It acts as a guideline in the resolution of conflicts. Accord-
ing to the IEEE [1], the SCMP should contain the following sections: introduction,
management, activities, schedules, resources, and plan maintenance. Chapter 1
introduces SCMPs, and they are described in more detail in Chapter 13.

The SCM design team prepares the plan and distributes it among the members.
This document forms the basis for SCM training. The plan also contains a section
that lists the procedures required to keep it up-to-date. So the plan is constantly
reviewed, and any required changes are made to it. The SCMP is also an item that
is placed under configuration control, which happens once the plan is finalized,
reviewed, and approved. It usually forms part of the functional baseline, because
the SCMP is typically created during or before the requirements phase. Accordingly,
once a baseline is established for the SCMP, all changes to the plan will have to be
made in accordance with the change management procedures.

SCM Team Organization

As we have seen, the SCM team size can vary from a single person to a full-fledged
team depending on the many variables that can have an impact and influence on
of the project. The SCM system design team selects the members of the SCM team
and allocates responsibilities to each member.

The constitution of the CCB and its workings are also finalized. The CCB usu-
ally consists of the SCM team leader and one or two key team members in addition
to the project team leader, a QA representative, a marketing team representative,
and, in some cases, client representatives.

SCM infrastructure Setup

While the SCM team is formed and their responsibilities assigned, the infrastruc-
ture facilities that will help the team function properly must also be arranged. The

6518 Book.indb 306 12/30/14 1:25 PM

Different Phases of SCM Implementation 307

SCM is not a one-week or one-month affair. It is a continuous function that will
be there for the entire life cycle of the project. So the SCM team needs permanent
facilities, not makeshift arrangements. The final form will ultimately depend on the
size of the project and SCM team. Ideally, the SCM team should have a separate
office that is close to the project with which it is associated. This type of a setup is
required for manual SCM systems in fairly large projects.

Today, most companies use SCM tools, and more and more SCM functions
are being automated. SCM tools give a lot of power and capabilities to the devel-
opment team. However, it is important to remember that SCM tools have become
more complex and sophisticated. Their capabilities are no longer limited to change
management, defect tracking, or source code control. They perform additional tasks
like automatic status journaling and status accounting, branching and interactive
merging, and automatic check-out and check-in. The additional functionality and
capabilities of the new-generation SCM tools have resulted in the need for highly
specialized personnel—e.g., SCM administrators, database administrators, and
build and release managers—to operate and maintain SCM systems. So in today’s
scenario, the SCM team consists of highly specialized personnel who devote their
full time to managing and maintaining the SCM system.

SCM Team Training

The members of the SCM team may be veterans with many SCM projects under
their belts, or they may be novices with no knowledge of SCM. The idea behind
SCM team training is to familiarize the team members with the discipline of SCM
and train to practice it in a particular project.

Team members are trained on how to carry out their duties and responsibilities
in the most efficient and effective manner and told what they are supposed to do
and not supposed to do. If SCM tools are being used in the project, then the team
members trained on the tools also. In addition, they are briefed about their access
privileges and rights. Because the CM process is a job that involves a lot of tact and
diplomacy, such training should also have a module on effective communication.

As mentioned in the previous section, the increasing popularity of SCM tools
and the level of automation that is being achieved by these tools have reduced the
role of the SCM team. In a manual SCM system, where all SCM functions were
carried out manually, full-fledged SCM teams were required. Today, however, with
the high degree of automation and more and increasing number of capabilities and
responsibilities being given to development team members, the number of tasks that
need to be performed by SCM team members has declined considerably.

project Team Training

The success of an SCM system depends on the participation and cooperation of
the project team members and on the understanding and dedication of the SCM
team. Accordingly, training project team members about the fundamentals of SCM
and its concepts, advantages, and benefits is necessary. Also, project team members
should be briefed on how they are to participate in SCM functions and carry out
SCM activities. If the project uses automated tools for change management and

6518 Book.indb 307 12/30/14 1:25 PM

308 The Different Phases of SCM Implementation

problem reporting and tracking, for example, then the project team members should
be trained to use those tools.

Both the SCM team training and the project team training are continuous
activities, and provisions should be made to keep it that way. Training never ends;
it is an ongoing process. This is because new people will join the teams and exist-
ing members will leave. Accordingly, new members need to be trained, possibly by
an outgoing member or some other person designated by the project management.

The training of both of these teams is based on the foundation detailed in the
SCMP. The SCMP details how SCM is to be practiced for the particular project,
and all training activities should be based on that.

SCM System implementation

This phase involves the installation of the SCM tools and assignment of duties and
responsibilities for the tool administrators and users. Once the tools and necessary
procedures are in place, the SCM team, developers, and QA personnel and other
parties who will be using the system will use the system under the supervision of
the consultants and tool vendor representatives. These external consultants and
vendor representatives will help the employees—e.g., SCM administrators, SCM
team members, developers, QA personnel, testers, build and release managers, and
management—to properly use the installed SCM tool. The SCM administrator needs
to set up the databases, workspaces, and libraries and should configure the tool for
the organization or project. The vendor representatives will guide the administrator
in this process and help him or her to understand the intricacies of the tool. They
will also give him or her training on how to scale the different parameters as the
project and team size increases. The consultants and vendor representatives will
also help customize the tool to suit the organization’s development processes and
procedures. Once management and employees become confident about indepen-
dently operating and maintaining the SCM system, the services of the consultants
and the onsite presence of the vendor representatives are terminated, and the system
is handed over to employees.

Operation and Maintenance of the SCM System

After the external consultants and the tool vendor representatives leave, handing
over the system to the in-house personnel, the responsibility for managing and
maintaining the system will fall on all the users of the system. During this phase the
major SCM activities—configuration identification, configuration control, status
accounting, and CAs—are performed. These four activities or phases, which form
the core of the SCM activities, are discussed in detail in Chapters 7–10.

The SCM tool administrator will be responsible for such tasks as the regu-
lar upkeep and trouble-free operation of the system allocation of disk space, and
management of the controlled libraries. The SCM system administrator will also
be in constant touch with the tool vendor, so that any new upgrades or patches
that are released can be installed without delay. The SCM team members, if any,
will be responsible for managing the day-to-day SCM activities like change request

6518 Book.indb 308 12/30/14 1:25 PM

SCM Tool Retirement 309

processing, arranging reviews and audits, check-in and check-out, and build and
release management. The developers, testers, and other support personal will follow
the guidelines provided for carrying out the different operations like initiating change
requests, making changes, performing impact analysis, and conducting audits. The
project managers will use the system’s querying and reporting capabilities for project
monitoring and tracking. It is during this phase that the SCM system will produce
dramatic improvements in development productivity and product quality and also
in the organization’s capability to react to change.

records retention

Before retiring the project or software system, the documents or records of the SCM
system must be archived, retained, or destroyed. SCM systems accumulate a lot of
documentation and records during the life time of the project. With the passage of
time, the information contained in the documents declines in value. Such records
are removed from active accessibility. Depending on the nature of the record, it is
destroyed immediately upon deactivation or is kept in retention for a defined period
of time. The documents that do not have any value once the project is retired are
disposed of. The documents that have some value either due to legal or contractual
obligations are kept in retention for the period specified by the law or contract.
The documents that have a sustaining utility exceeding storage costs are preserved
permanently in an archive.

SCM System retirement

The final phase in the life cycle of an SCM system is retirement. During the retire-
ment phase of the project, the SCM system for that project is also retired. Once
record retention and archival work is completed, the SCM team members assigned
to the project are released for other projects.

SCM Tool retirement

Modern SCM systems use SCM tools for performing SCM activities. SCM tools
support many projects and last several years. During this period, tools are upgraded
as and when tool vendors release new versions. After many years of service, a stage
is reached when any further maintenance would not be cost-effective. This could
happen because the size, nature, and complexity of the projects have increased, or
because new tools that offer considerably more advantages (e.g., a higher level of
automation, smaller SCM teams, or increased functionality) have come onto the
market, making the current tool obsolete.

Another reason for retiring an SCM tool is that technological advancements
have made the existing tool obsolete. The hardware on which the tool runs has to be
replaced by a different (more powerful and less expensive) machine with a different
operating system, and it is cheaper to install a new tool rather than upgrading or
modifying the existing one. In each of these instances, the existing tool is retired,
and a new one is installed in its place.

6518 Book.indb 309 12/30/14 1:25 PM

310 The Different Phases of SCM Implementation

Why Many SCM implementations Fail

Many SCM implementations fail miserably during the initial stages of the opera-
tional phase itself or fail to deliver the promised benefits. Why does this happen?
The following are some of the most common reasons:

•	 Lack of top management buy-in, commitment, and support;
•	 Improper planning and budgeting;
•	 Use of the wrong SCM tool;
•	 Lack of training;
•	 Work culture of the organization.

Lack of Top Management Buy-in, Commitment, and Support

One of the most common reasons for a failed implementation is lack of top man-
agement support. Top management must be clearly convinced of the importance of
SCM, how it can be used as a competitive weapon, and how the company can fail
if a scientific mechanism like SCM is not available to manage and control change.
If management is aware of the potential benefits of SCM and dangers of not hav-
ing an SCM system, it will give its full backing and the necessary organizational
resources to implement the best SCM system possible. When employees know that
the SCM implementation has full management backing, they will also want the
system to succeed. There will be a lot of issues that arise when the SCM system is
implemented, including change of procedures and reassignment of employees. If
management can assure employees that their jobs are secure, that assurance will
go a long way in ensuring employee cooperation. Top managers should also talk to
employees regarding the benefits of the SCM system and how the company can get
ahead of the competition by reaping the benefits of the system.

improper planning and Budgeting

Before starting the SCM implementation project, detailed planning involving all
the major stakeholders is necessary for the success of the project. It is during this
phase that the company needs to make decision such as which procedures to fol-
low, which tools to buy, and how large a budget to allocate for implementation
and maintenance. If this planning is not done properly, then many factors may be
overlooked, resulting in such problems as selection of the wrong tool, insufficient
funds, or inadequate team members. All these can lead to the failure of the project.
To avoid this, companies should take the planning phase seriously and do meticulous
research before taking any action. Also, there should be a provision in the plan to
revise and update it as the implementation progresses.

Use of the Wrong SCM Tool

We have seen that no two organizations are the same and that each organization
requires an SCM tool that is best suited for its organizational environment, work
culture, and development procedures. Accordingly, the SCM planning team should

6518 Book.indb 310 12/30/14 1:25 PM

Summary 311

take all these factors into account before deciding on a tool. They should research
the available tools, match them with the organization’s requirements, visit companies
where the tools are installed to see them in action, and discuss end-user training,
tool updates, and upgrades. Only when all the members of the team are convinced
that a specific tool is best suited for the organization should the team make the pur-
chasing decision. Never rush the purchasing decision; the time spent on researching
and analyzing before the purchase is worth the effort.

Lack of Training

One of the main reasons the SCM fails is due to the resistance of users. The resis-
tance is often the result of ignorance and fear—ignorance about the tool and fear
of additional work or unemployment. These factors can be corrected by giving
proper training. Training should be given at different levels on different aspects of
SCM implementation. The top management should address the employees’ fear of
losing their jobs as many tasks get automated by the tool. They should also pledge
their allegiance to the SCM system and make it clear to employees that the SCM
system is essential for the success of the organization in this highly competitive
business environment. The SCM team members, tool vendors, and external consul-
tants should explain the principles of CM and its advantages on a day-to-day basis,
including how it reduces rework and defects. Most users think of SCM as a system
that creates more paperwork or documentation. Such myths about SCM should be
debunked. SCM tool vendors and external consultants along with in-house experts
should train users in how to efficiently use the tool and explain how SCM tools can
make their lives easier and help them create high-quality products without chaos
and confusion. Once users are convinced of the potential of the SCM system, the
system will succeed; without user buy-in, even the best SCM system will fail.

Work Culture of the Organization

The work culture of the organization is very important for the success of SCM. If
the organization has a workforce that is willing to learn new things and change to
new technologies, then there will be no problems for SCM implementation. How-
ever, if employees resist change and see the introduction of formal methods as a
means to assign accountability, they will perceive the new technology as something
negative. Accordingly, the basic mindset of the workforce needs to be changed. This
is important not only for the success of SCM, but also for the success of process
improvement initiatives like CMM, SPICE, and Bootstrap. To change the employee
mindset, the two critical factors required are top management support and proper
training.

Summary

SCM implementation changes the way people have been doing things, and lots of
new procedures are introduced for the functioning of SCM. Resistance to SCM
implementation is natural, because it is human nature to resist change. Making

6518 Book.indb 311 12/30/14 1:25 PM

312 The Different Phases of SCM Implementation

people accept SCM and implementing SCM are difficult because of the myths sur-
rounding SCM, such as ideas that it causes additional work and more documentation.

Most people are not aware of the potential benefits of SCM. For an SCM system
to succeed and deliver those benefits, an organization has to design a good system,
install procedures, and train the SCM team and project team. Once these tasks are
done, there is a natural tendency to feel satisfied or complacent about what has been
achieved by the implementation team.

This is why the postimplementation phase is very critical. SCM functions are
continuous and should be performed throughout the life cycle of the project. To reap
the full benefits of an SCM system, the system should get project-wide and company-
wide acceptance. To get project-wide acceptance for an SCM system, every member
of the project should be made aware of the need, importance, and benefits of SCM.

Just as courtships and honeymoons are different from marriages, living with an
SCM system is different from installing it. Implementing a good SCM system is not
an easy job, but it is how the projects mesh with the SCM system that determines
the value that is received from it. It is how the SCM system is used in the project
that makes the difference. Even a well-designed system can be a failure if the people
using it are not cooperative.

Reference

[1] IEEE Standard for Software Configuration Management Plans (IEEE Std-828–1990),
IEEE Software Engineering Standards Collection 2003 (CD-ROM Edition), Piscataway,
NJ: IEEE, 2003.

Selected Bibliography

Fredrick, C. R., “Project Implementation of Software Configuration Management,” Proceedings
of the 1981 ACM Workshop/Symposium on Measurement and Evaluation of Software
Quality, 1981, pp. 49–56.

Wingerd, L., and C. Seiwald, “High-Level Best Practices in Software Configuration Manage-
ment,” Technical Report, Perforce Software (http://www.perforce.com/perforce/best-
practices.html).

6518 Book.indb 312 12/30/14 1:25 PM

313

C h a p t e r 1 9

SCM Deployment Models and Transition
Strategies

introduction

The different SCM deployment options available to an organization include tradi-
tional license or on-premises deployment, hosted deployment, software as a service
(SaaS), or the on-demand model. The two transition strategies available are the
big-bang and incremental strategies. This chapter discusses these different options
and their advantages and disadvantages.

Traditional License or On-premises deployment

On-premises technology has the same meaning as owning your computer hardware
and software. You own the equipment (hardware), and you own your software.
Most of the software we have used in the past is on-premises and owned by us. It
is just like buying an office building. You pay for your software once or finance it.
Then you pay for the ongoing maintenance and upkeep. In this arrangement, you
are responsible for maintaining it, for fixing it when it breaks, for making sure it is
meeting your needs, and for keeping it up and running. Some organizations have
internal IT departments to handle all of this, and others use outside companies to
help them. Also, in many cases, there are multiple helpers (people or organizations)
either internal or external.

advantages of On-premises SCM System

The advantages are listed as follows.

•	 They give the user the greatest control and flexibility, just like owning your
own office building.

•	 You do not have to check with anyone if you want to make modifications.
•	 You control your data and manage it any way you wish.
•	 You can build your systems to your own specifications to meet the specific

needs of your organization.
•	 A copy of the software runs on your computer equipment for your use and is

not shared with anyone outside of your organization.

6518 Book.indb 313 12/30/14 1:25 PM

314 SCM Deployment Models and Transition Strategies

•	 You can leverage the existing investments and reduce costs by using the hard-
ware and software you already own.

•	 With an on-premises solution, you can easily connect with legacy systems.
While some cloud solutions can connect with existing equipment, on-premises
solutions can always do so.

•	 On-premises solutions are not subject to fluctuations in performance or avail-
ability due to the Internet (although on-premises solutions are not necessarily
faster than hosted ones) and can guarantee predictable performance.

•	 On-premises solutions can be faster than a remote-hosted solution due to the
inherent delays in data traveling long distances. For any computing solution,
latencies are due to two things—computational time and transmission time.
An on-premises solution reduces the distances traveled to meters or less. A
remote solution can be hundreds of kilometers away.

•	 You can ensure compliance with security and other policies that require on-
premises solutions.

•	 You have complete control of who accesses your systems, your software, and
your data.

disadvantages of On-premises SCM System

The disadvantages are listed as follows.

•	 High initial costs;
•	 Long-term capital investment;
•	 Costly and complex software implementation, maintenance, and upgrades.

Cloud Computing

Cloud computing is the delivery of computing as a service rather than a product,
whereby shared resources, software, and information are provided to computers
and other devices as a utility over a network (typically the Internet) [1]. Having the
ability to provision a server in minutes with the required applications preinstalled
is just one of the ways in which cloud differs from the traditional way of ordering
a server, where you had to wait for days to have the server operating system and
applications installed [2].

The ability to dynamically provision and deprovision based on demand, going
well beyond the ability to just quickly add or remove environments, makes the
cloud the most advanced platform to dynamically respond to increases in demand
and automatic allocation of additional capacity to meet the user load. So instead
of providing physical hardware, a data center, and applications, we can do those
things in a virtual environment. Virtualization is the creation of a virtual, rather
than physical, version of something, such as an operating system, a server, a storage
device, or network resources. Virtualization has made it possible for IT organiza-
tions to decouple logical infrastructure from physical infrastructure and thereby
deliver more flexibility to provide and manage value-added services.

6518 Book.indb 314 12/30/14 1:25 PM

Cloud Computing Models 315

The National Institute of Standards and Technology’s [3] definition of cloud
computing identifies “five essential characteristics.” They are described as follows.

•	 On-demand self-service. A consumer can unilaterally provision computing
capabilities, such as server time and network storage, as needed automatically
without human interaction with each service provider.

•	 Broad network access. Capabilities are available over the network and accessed
through standard mechanisms that promote use by heterogeneous thin or
thick client platforms (e.g., mobile phones, tablets, laptops, and workstations).

•	 Resource pooling. The provider’s computing resources are pooled to serve
multiple consumers using a multitenant model, with different physical and
virtual resources dynamically assigned and reassigned according to consumer
demand.

•	 Rapid elasticity. Capabilities can be elastically provisioned and released, in
some cases automatically, to scale rapidly outward and inward commensurate
with demand. To the consumer, the capabilities available for provisioning
often appear unlimited and can be appropriated in any quantity at any time.

•	 Measured service. cloud systems automatically control and optimize resource
use by leveraging a metering capability at some level of abstraction appropri-
ate to the type of service (e.g., storage, processing, bandwidth, and active
user accounts). Resource usage can be monitored, controlled, and reported,
providing transparency for both the provider and consumer of the utilized
service.

Cloud Computing Models

Cloud computing is a general term for every computing model that involves deliver-
ing hosted services over the Internet. These services are broadly divided into three
categories: infrastructure as a service (IaaS), platform as a service (PaaS) and SaaS.
cloud computing providers offer their services according to the above mentioned
fundamental models.

iaaS

IaaS is a provision model in which an organization outsources the equipment used
to support operations, including storage, hardware, servers, and networking com-
ponents. The IaaS provider owns the equipment and is responsible for housing, run-
ning, and maintaining it. The consumer of IaaS services usually has control over the
configuration aspects of the resource, such as which operating system to run on a
virtual machine or how to utilize the storage resource. The consumer typically pays
on a per-use basis. To deploy their applications, cloud users install operating-system
images and their application software on the cloud infrastructure. In this model,
the cloud user patches and maintains the operating systems and the application
software. cloud providers typically bill IaaS services on a utility computing basis;
the cost reflects the amount of resources allocated and consumed.

6518 Book.indb 315 12/30/14 1:25 PM

316 SCM Deployment Models and Transition Strategies

paaS

PaaS is a service that offers a computing platform to its customers. PaaS is a way to
rent hardware, operating systems, programming language execution environments,
storage, Web server, and network capacity over the Internet. The service delivery
model allows the customer to rent virtualized servers and associated services for
running existing applications or developing and testing new ones. In the PaaS
models, cloud providers deliver a computing platform. Application developers can
develop and run their software solutions on a cloud platform without the cost and
complexity of buying and managing the underlying hardware and software layers.

SaaS

In SaaS, users are provided access to application software and databases. cloud
providers manage the infrastructure and platforms that run the applications. SaaS
is sometimes referred to as “on-demand service” and is usually priced on a pay-
per-use basis. In the SaaS model, cloud providers install and operate application
software in the cloud, and cloud users access the software from cloud clients. cloud
users do not manage the cloud infrastructure and platform where the application
runs. This eliminates the need to install and run the application on the cloud user’s
own computers, which simplifies maintenance and support.

Cloud applications are different from other applications in their scalability—
which can be achieved by cloning tasks onto multiple virtual machines at run time
to meet changing work demand. Load balancers distribute the work over the set
of virtual machines. This process is transparent to the cloud user, who sees only a
single access point.

SCM and Cloud Computing

The popularity of cloud computing has changed the SCM function also. According
to Amies, et al., the purposes of SCM tools have become merged in some cases. The
SCM tools themselves have become virtual appliances that can be instantiated as
virtual machines and saved with state and version. The tools can model and man-
age cloud-based virtual resources, including virtual appliances, storage units, and
software bundles. The roles and responsibilities of the actors have become merged
as well with developers now being able to dynamically instantiate virtual servers
and related resources [4].

As discussed earlier, in the cloud you can provision virtual machines, stor-
age, and test data. However, setting up the instances manually in the cloud is not
very practical. Alternatively, you can make use of automated provisioning tools to
automate the entire array of provisioning tasks in the cloud. Automated provision-
ing is the ability to deploy an IT service by using predefined procedures that are
carried out electronically without human intervention. Automated provisioning
depends upon a predefined specification. This specification or procedures essen-
tially constitute a declarative representation of how you want your system to be
provisioned. The provisioning tools will execute the specifications and procedures.

6518 Book.indb 316 12/30/14 1:25 PM

Hosted System Deployment 317

In cloud computing, automated provisioning tools makes the task easy and error-
free. Also, if one is using sophisticated tools for automated provisioning, the job
does not need a highly skilled professional; anyone with a basic knowledge of the
commands and the necessary permissions can do the job. Monitoring software can
be used to trigger automatic provisioning tools when existing resources become
too heavily stressed.

Cloud computing and SCM in cloud computing are still in their infancy. The
number of automated provisioning tools, SaaS SCM tools, organizations moving
to the cloud, and organizations leveraging their on-premises development environ-
ment with the on-demand cloud environment are all increasing. So cloud comput-
ing, software development, and SCM in the cloud all have a bright future and will
continue to grow in quality and quantity as more and more innovations make tasks
easier, error-free, and faster.

Hosted System deployment

The traditional SCM solutions can be hosted off site. The system has the capabil-
ity to access real-time data from anywhere without using complicated and costly
remote access software. When you host your SCM system on an ISP server, then it
becomes hosted SCM.

Two terms connected to the cloud and hosted environment are PaaS and IaaS.
As discussed earlier, PaaS refers to the virtual renting of servers, hardware, storage,
operating systems, and other data storage capacities. PaaS offers hardware to run
your software package. IaaS is similar to PaaS but deals more with the components
such as Internet connectivity and virtual desktops.

When you want to run your SCM system on a hosted environment, you use
the PaaS and IaaS. In such cases, you own your software and allow someone else
to provide the computer equipment to run it. The computer equipment resides at
the hosting company’s facility, and you access your software over the Internet. Just
like an office or factory building lease, you can design the environment and have
exclusive access to it; the building is maintained by the property owner or manager,
but you are responsible for the use of your space and its contents. With a hosted
computing arrangement, you specify and design the needed computer equipment (the
environment), you have exclusive access to the equipment, the facility that houses
the equipment is maintained by the hosting company but you are responsible for
the software, the maintenance of your software, and the related data.

In the above mentioned scenario, it is possible to have different arrangements
with regard to ownership of the computer equipment. In some cases, the hosting
company will provide the computer equipment and all related maintenance. It will
typically support the equipment and include the maintenance and support costs
with your regular monthly fees. In other cases, you may purchase your computer
equipment on your own and allow the hosting company to house it and maintain
it for you.

Typically, software implementations, maintenance, and upgrades are as costly
and challenging in a hosted environment as they are in an on-premises environ-
ment. Depending on whether or not the hosting company provides the computer

6518 Book.indb 317 12/30/14 1:25 PM

318 SCM Deployment Models and Transition Strategies

equipment or you buy it, the costs for housing and maintaining the equipment can
be expensive, coupled with the upfront costs for purchasing software licenses and
optionally computer equipment. In this model, you will have an ongoing, recurring
cost for your hosting fees.

advantages of a Hosted SCM System

The advantages of a hosted SCM system are listed as follows:

•	 You “own” the software and only pay once beyond the maintenance which is
usually between 15% and 20% of the cost of the software. If you stop paying
maintenance, the software will continue to work at the version you are on.

•	 Your data is in a very secure data center that may also have or offer multisite
redundancy in case of disaster. Backups are made reliably, and you can con-
nect from almost anywhere

•	 You can still bring your application back in-house, if you want, with little
interruption. Most hosting centers use “virtual” servers like VMWare or
Microsoft Hyper-V. This enables you to take your “server” and run it on your
own physical hardware quickly.

disadvantages of a Hosted SCM System

The disadvantages of a hosted SCM system are described as follows:

•	 The monthly hosting cost may exceed in-house costs over the long term,
depending on variables such as other nonhosted solutions you have in house.

•	 If your office Internet connection goes down, you have no access to your sys-
tem. Redundant Internet lines to your office can help alleviate this risk but
will incur more costs.

•	 If you want to integrate other solutions to your SCM system, you usually have
to have that solution supported and installed at the hosting center. as it is
difficult for local applications to real-time-integrate with hosted applications.

•	 You need a fair amount of bandwidth, which will result in higher usage
charges.

SaaS or On-demand deployment

SaaS is a concept in which you rent everything including your computing equipment
and your software. SaaS specifically refers to software that is delivered on-demand
over a network. The software itself is not licensed or owned by the end user. It is
provided as a service. SaaS model offerings are typically smaller. This is normally
best for organizations with limited complexity, size, and global presence. SCM
system providers host SaaS models on their own infrastructures instead of locating
the systems on-premises at the purchasing organization.

SaaS differ from traditional hosted services in three ways:

6518 Book.indb 318 12/30/14 1:25 PM

SaaS or On-Demand Deployment 319

•	 SaaS technology is purchased on-demand, typically in per-minute or hourly
increments.

•	 SaaS is elastic, with dynamic provisioning that lets users buy only as many
services as they need.

•	 The provider completely manages the entire range of services, which means that
users typically only need a computer and Internet connection to access them.

In the SaaS model, the vendor will have full control of the application and not
the customer, whereas in the case of hosted system, your data and your application
can be placed on the server that you control. SaaS provides instant gratification,
taking mere minutes to be up and running.

In this model, you pay a monthly, quarterly, or annual fee and simply use “the
system.” Just like in a furnished rental office, you only pay a monthly fee, and there
is nothing to own or maintain. You access the system through the Internet and
have no responsibility for the computing environment including any maintenance
to your system. Your system provider is responsible for upgrading your software
and hardware, for making sure everything is working, and for expanding your
computing resources as your needs increase. In this case, you simply sign in to your
system and go to work.

The costs with a SaaS or rental model are typically consistent and predictable
over a period of time. Most SaaS companies will charge a monthly, quarterly, or
annual fee for access to the system, and there are no other costs to incur. In addi-
tion, just like the hosting model, you will have an ongoing, recurring cost as long
as you use and access the system but your upfront investment costs are minimal.

advantages of SaaS SCM Systems

The advantages of SaaS SCM systems are described as follows:

•	 SaaS solutions can be financially attractive as the initial investment is low.
•	 SaaS SCM solutions can be implemented with relative ease and integrated

faster into the organization’s day-to-day operations than their on-site SCM
counterparts. In fact, most SaaS SCM solutions can be up and running in
days, rather than months or even years, as may be the case with traditional
on-site SCM software.

•	 Often, the services component of implementation and future upgrades is
bundled into the monthly fee. It may be easier to swallow $200 per user per
month than $150,000 for a new SCM solution. Even if the $150,000 is actually
cheaper over 5–10 years, the cash savings is very attractive to some companies.

•	 With traditional licensed SCM software, organizations typically must wait
for the next release to benefit from the latest features, upgrades, or security
patches. In addition, the cost, complexity, and potential disruption of mov-
ing to a new on-site software version often cause some organizations to defer
upgrading to the newest release. This, in turn, prevents employees from taking
advantage of the latest productivity-enhancing tools consistently being added
to the applications. SaaS SCM systems, however, eliminate this common

6518 Book.indb 319 12/30/14 1:25 PM

320 SCM Deployment Models and Transition Strategies

problem. Under this delivery model, the provider continuously and unobtru-
sively adds the latest features and upgrades, which means that users can be
assured that they’re actually using the latest technology.

•	 To be truly SaaS, it is likely the applications were recently developed. This
gives many SaaS applications a “fresher” look and feel and more modern tech-
nology than older applications that were moved into the cloud or are hosted.

disadvantages of SaaS SCM Systems

The disadvantages of SaaS SCM systems are described as follows.

•	 Although cheaper upfront, the monthly fees, can add up over time to be sub-
stantially more than an “on-premises” solution. SaaS vendors will typically
overinflate the cost of in house IT and upgrades, and on-premises vendors
will typically underestimate those costs. Do your own realistic analysis of
the whole picture and look at it over 10 years, which seems to be the life of a
major SCM system these days. SaaS can have additional fees for extra band-
width and storage.

•	 There is nothing to keep an SaaS vendor from increasing the monthly fees a
year or two down the road after you have invested time and money in imple-
menting the system. With SaaS, if you do not pay, you lose access to your
system, period. With on-premises, if you stop paying maintenance, your soft-
ware continues to operate at the current version level.

•	 Some SaaS vendors have contracts that do not even allow you to retrieve you
own data until they are paid in full. This possession of data can be a big stick-
ing point once the lawyers start looking at the contracts.

•	 Organizations do not own the code in most SaaS models, have limited rights
and control, and are at the full mercy of the vendor should the vendor decide
to take a different product direction or find itself bankrupt.

•	 The total cost is still ambiguous. As more data and connections grow by the
day with a deployment, changing SaaS vendors raises mounting complications
with the advent of time. Migration plans across vendors or to on-premises
solutions are unclear and complicated due to business processes latched onto
vendor functionality and varying metadata and standards and process flows.

•	 As the SaaS model is still early in enterprise adoption maturity, most vendors
still have customer-friendly policies. As more businesses move to the SaaS
model, the deals favor the vendor. Unless rights are stated upfront today,
buyers will lose leverage over time.

•	 When the interface is HTML/Web only, many solutions are slower for “heads
down” data entry or are missing the richness of a traditional windows appli-
cation such as right mouse click drill downs. If you bring up a defect list,
many systems will show you 20 records at a time, and you hit a “next” but-
ton to browse the next set, whereas a premise/windows application can scroll
through thousands of records quickly.

•	 Since SaaS vendors are starting up quickly and many are only operating due
to venture capital or other equity money, their long-term survival is ques-
tionable as the inevitable consolidation occurs. If your SaaS vendor goes

6518 Book.indb 320 12/30/14 1:25 PM

SaaS or On-Demand Deployment 321

bankrupt—even if it gives you a chance to get your data—it could take months
to reimplement a new system. Can your business survive that interruption?
With premise systems, if the vendor goes out of business, you can move to a
new solution at your own pace.

•	 SaaS can be challenging when expanding to multiple projects or geographi-
cal locations in a large organization, and there may not be significant cost
savings with an SaaS model in complex deployments involving sophisticated
business processes.

•	 Most SaaS solutions have only a limited ability to customize, and integration
of SaaS solutions with existing legacy systems can be very challenging.

•	 Regarding data security, the customers have to trust the vendor. So if the
vendor’s security infrastructure and policies are not sound and foolproof,
then there will be security issues that can seriously compromise the organi-
zation’s operations.

•	 The operational transparency is less in the case of the SaaS model, as custom-
ers do not have clear visibility into the system’s health.

•	 SCM implementations are people projects and are difficult to manage. So
the relative inflexibility of SaaS will force organizations to change their busi-
ness processes, which can magnify the organizational change management
challenges.

When an organization is implementing an on-premises SCM system, it can take
effective measures to secure and safeguard the data and its security and privacy.
However, in the case of an SaaS solution, these issues are handled by the solution
provider or vendor. So, if you are considering an SaaS SCM solution, be sure to ask
potential solution providers the following security-related questions:

•	 What is your privacy policy? Your solution provider should have a well thought
out and documented privacy policy that is compatible and acceptable to your
organization.

•	 What level of security do you use to ensure the safety and integrity of criti-
cal data? To safeguard your data on-site, your prospective solution provider
should use a combination of intrusion detection system (IDS) and intrusion
prevention system (IPS) products and apply antivirus at various network
layers. It should also utilize deep-packet inspection (DPI) or an application
level firewall technology that scans all levels of packet transmission. Finally,
it should also use secure socket layer (SSL) or https-encrypted transmission
to ensure Internet security.

•	 Is your equipment housed in a state-of-the-art facility? Your prospective
vendor’s data center should be secure and strong and capable of withstand-
ing natural calamities.

•	 Please describe your facility’s physical security arrangements. Are they in
place 24 hours a day, seven days a week, and 365 days a year? The solution
provider should have well-defined and robust security arrangements that are
in place at all times.

•	 Do you contract with an independent, third-party organization to conduct
periodic external and internal vulnerability scans? In addition to maintaining

6518 Book.indb 321 12/30/14 1:25 PM

322 SCM Deployment Models and Transition Strategies

an intrusion-response system and a prepared response plan, your prospec-
tive solution provider should frequently commission both routine and unan-
nounced security audits.

•	 How often do you back up data, and where are the backups stored? A rigor-
ous program of data backup and off-site storage in a secure location remote
from its main data center should be in place.

•	 Do you offer full hardware redundancy to avoid the negative consequences
of a power failure? The data center and backup location should have redun-
dant power supplies, such as battery and diesel generator backups, to avoid
the negative consequences associated with a power failure.

•	 How do we ensure that our hosted SCM solution will remain affordable and
viable as our business requirements and competitive environment evolve? As
the demand for SaaS solutions grows, the solution provider will gain more
leverage and will be in a position to dictate terms and conditions. So what
assurances can the vendor give that they will not take you for a ride when
the situation favors them? The solution is to agree on the rates, the rate of
increase in rates, and other costs and get these things in writing.

•	 Does your staff include a highly qualified operations team that monitors the
site 24 hours a day, 365 days a year? Your prospective vendor should employ
many certified security experts, including those with the preferred certified
information systems security professional (CISSP) designation.

We have considered the different methods for deploying SCM systems. The
beauty of modern SCM packages is that you have options to choose from during
your SCM software selection. You can either deploy a solution by hosting it inter-
nally on your own servers (traditional SCM), or if you would rather not deal with
the software, you can have it hosted somewhere else (SaaS). So which model is best?
In many cases, there is no one best answer on whether or not to move your business
application to the “Cloud.” Your business circumstances, management reporting
requirements, and operational needs all impact your decision. Changing business
management systems is costly, time-consuming, disruptive, and not without risk.
Having the ability to off-load much of the overhead and maintenance of on-premises
computing provides businesses with more stable and reliable systems. However,
there are some considerations that will help bring some clarity. They include the
availability of internal IT resources, the SCM time horizon, and the company size.
In deciding whether to use a SaaS platform, companies may take the following fac-
tors into consideration:

•	 Simplicity: In general, SaaS is simpler to deploy from a technical perspec-
tive. Because you do not need to purchase additional servers or physically
install the software yourself, you can simply get started with a basic Internet
connection.

•	 Flexibility: Because traditional SCM is installed on your servers and you
actually own the software, you can do with it as you please. You may decide
to customize it or integrate it to other software, for example. Although any
SCM software will allow you to configure and set up the software as you

6518 Book.indb 322 12/30/14 1:25 PM

SaaS or On-Demand Deployment 323

like, SaaS is generally less flexible than traditional SCM in that you cannot
completely customize or rewrite the software. Besides, SaaS vendors are more
likely to provide only one version, whether you need the upgrade functions
or not, and since the software is delivered over the Web, you have no choice
but to accept them.

•	 Control: Many companies find that they do not have as much control over SaaS
software as they would like, relative to traditional SCM. This is especially true
of midsized or large companies with well-defined business processes that can-
not be changed to fit the software. Small companies can generally adapt their
business processes to the software more easily than large organizations can.

•	 Accessibility: SaaS uses the Internet to access systems once deployed, and the
systems are maintained off-premises. Since SaaS is entirely accessed through
the Web, you are in trouble if the Internet goes down. Traditional SCM does
not require Internet reliability, provided your users are accessing the software
from inside your company’s network.

•	 Cost: In general, SaaS can be deployed at a much lower initial cost and a
lower total cost of ownership; companies can avoid expensive licenses and
complex hardware and software infrastructure, and there is no technology
maintenance needed. This type of cost-effectiveness can be attractive to smaller
businesses, but the ongoing annual payment or monthly fees can be higher
for SaaS because you are paying to use the software on a subscription basis.
It can become costly as you grow and add employees to the system.

•	 Integration: Companies that have implemented traditional SCM typically have
applications that run on the same platform. They have avoided tough integra-
tion issues and improved visibility into operations. Integration is a major issue
for SaaS companies, which need to provide on-premises integration for their
customers to integrate cloud applications with existing legacy applications.
A company with SaaS will find it very difficult to integrate hosted software
from a variety of vendors using middleware from yet another vendor.

•	 In-house IT expertise: Use SaaS when you lack internal IT resources. Busi-
nesses benefit from SaaS when they do not have IT resources to dedicate to
installing and managing applications.

•	 SCM time horizon: Another consideration is the length of time your organiza-
tion plans to use the system. For short-term deployments of small companies,
SaaS is a better choice as it can provide lower costs, but for longer durations,
the SaaS model will be less expensive.

•	 Company size: SaaS is normally best for organizations with limited com-
plexity, size, and global presence. For large organizations with worldwide
presence and complex business models, on-premises deployment is the best,
as they will have their own IT departments and can enjoy data security and
flexibility of operation.

Of the different SCM deployment methods, the traditional on-premises SCM is
still the de facto choice. Nevertheless, other deployment options are being considered
and are becoming popular. Advancements in areas like data security and Internet
access will spur the growth of other deployment methods. Also, SCM vendors are

6518 Book.indb 323 12/30/14 1:25 PM

324 SCM Deployment Models and Transition Strategies

offering SaaS and Web-based solutions, and this will help in reducing the total cost
of ownership and time to implement the system.

When deciding which method to choose, make sure you understand the costs,
responsibilities, limitations, and future obligations associated with the different
models and then select a deployment method that is best suited for your organiza-
tion. There is little doubt that SaaS SCM represents the wave of the future. SaaS
offers some unmatched benefits including scalability, ease of upgrade, and lower
IT administration needs. However, SaaS introduces inherent business continuity
risks associated with the relinquishment of data control. Unless businesses choose
to outsource the hosting of their on-premises systems, they can avoid these risks.
Table 19.1 summarizes the factors that should be considered and which model to
choose based on those factors.

Deciding between SaaS and on-premises systems will inevitably be one of trade-
offs. The key to making an effective decision is to prioritize business requirements
across an expected investment horizon. Only then will a company be in a position
to make a value-maximizing SCM decision.

SCM Transition Strategies

Selecting and implementing a new SCM system and the process changes that go
with it is unquestionably a complex undertaking. Regardless of a company’s size
and perceived resources, an SCM implementation is not something that should be
approached without a great deal of careful planning. Among companies that have
been through a less than fully successful SCM implementation, five reasons for poor
results show up consistently:

•	 The implementation or transition strategy chosen was not the one suited for
the organization.

•	 The implementation took much longer than expected.
•	 Preimplementation preparation activities were done poorly, if at all.

Table 19.1 SaaS Versus On-premises Choice Matrix

SaaS On-premises

Business process Simple business process Complex or unique business
process

Immature or undefined
business processes

Well-established business
processes

Employees Low tenure High tenure
Business model Stable, little change Volatile, constantly changing
Company size Small to medium Medium, large, or global
IT skills Limited Sophisticated
IT infrastructure Little to none Well-established
Integration with other
systems

Little to none Need for integration to other
applications

Control Little need or desire Require control

6518 Book.indb 324 12/30/14 1:25 PM

SCM Transition Strategies 325

•	 People were not well prepared to accept and operate the new system.
•	 The cost to implement was much greater than anticipated.

The most important factor that decides the success of an SCM implementation
is the transition strategy. This section discusses the various transition strategies,
their advantages and disadvantages, and the suitability of each of them.

An SCM implementation strategy determines how the SCM system will be
installed. Different companies may install the same SCM software in totally dif-
ferent processes. The same company may implement different SCM software in the
same approach. There are three commonly used methodologies for implementing
SCM systems. There are several transition strategies but most of them are variants
of the two basic types, listed as follows:

•	 Big-bang;
•	 Phased.

These techniques focus on the strategy of how to make the transition from a
legacy system to a new SCM system. SCM implementations all begin with a simple
question: how do we make the transition from our legacy SCM system to the new
SCM system? The selection of the transition strategy that is best suited for each orga-
nization is crucial as a wrong strategy can result in a failed or flawed implementation.

Three pillars—process, people, and technology—support any SCM implemen-
tation. Failure to use any one of these or failure to use them in the best possible
manner can result in improper implementation. Understanding the relationships of
SCM transition strategies between the process, people, and technology will assist
the SCM implementers to better understand what type or combination of types of
SCM transition strategy is best. We now consider each of these transition strate-
gies in detail.

Big-Bang Strategy

In this strategy, companies lay out a grand plan for their SCM implementation. The
installation of SCM systems of all modules happens across the entire organization
at once. The big-bang approach, which promises to reduce the integration cost in
a thorough and careful execution, dominated early SCM implementations, and it
partially contributed to the higher rate of failure in SCM implementations.

Today, not many companies dare to attempt it. The premise of this implementa-
tion method is treating SCM implementation as the implementation of a large-scale
information system, which typically follows the SDLC. However, an SCM system
is much more than a traditional information system in the sense that the implemen-
tation of SCM continuously calls for the realignment of business processes. Many
parties involved in SCM software systems are not IT professionals. SCM more than
automates existing business processes; it transforms the business processes.

In the big-bang strategy, the company moves from the existing or legacy system
to the new SCM system on a specific date. All the business functions performed in
the legacy system across the entire enterprise are simultaneously transferred to the
new legacy system during a period of one day or a weekend. The big-bang strategy

6518 Book.indb 325 12/30/14 1:25 PM

326 SCM Deployment Models and Transition Strategies

is seldom used and not often recommended by SCM vendors, systems integrators,
and service providers. Many companies struggle in deciding whether the big-bang
approach is the right choice for them.

One of the reasons given for not using the big-bang approach is that it con-
sumes too many resources to support the go-live of the SCM system. High failure
rates have plagued users of the big-bang approach, but high failure rates have also
been associated with other strategies! Success in using the big-bang strategy comes
with careful preparation and planning prior to using big bang. It is not a question
of whether the big bang is a good approach for SCM systems. The success of the
big-bang strategy depends on how well an organization plans and prepares itself
prior to implementation.

Large-scale scientific and technical projects requiring mass coordination are
often successful when using careful preparation and sound planning. Large and
complex projects such as building very large structures like bridges, skyscrapers,
satellites, space shuttles, fighter planes, and ships have been undertaken successfully
in the past and also in the present. In all these projects, success has depended on the
amount of planning that went into the design and resource allocation. However,
most of these projects are far more complex than implementing an SCM system in
a company.

With careful planning and preparation, companies using the big-bang strategy
can be just as successful (if not more) as with any other approach. The big-bang
strategy offers the following advantages if properly used:

•	 Its overall cost of implementation is less because no interface programs are
required to communicate between the legacy system and the new SCM system.

•	 It eliminates all of the sequencing and decision-making of implementing one
module at a time.

•	 It is well-designed for rapid implementations.
•	 It creates a strong central focus for all the SCM team members.
•	 It can avoid complex integration issues.

However, there are disadvantages also, including the following:

•	 Careful planning and preparation for the go-live consumes a large amount
of time and requires a large financial expenditure.

•	 A bottleneck of critical resources such as lack of funds and nonavailability of
professionals during the implementation can result in failed implementations.

•	 The recovery process, if something has gone wrong, is more difficult in this
approach; it is a do-it-right-the-first-time project;

The consequences of a failed implementation can range from anything such as
a huge financial loss to the company going out of business.

phased implementation

In the phased approach, the SCM system is implemented for one project at a time,
and after that goes live, the implementation starts for the next project and so
on. Modular implementation reduces the risk of installation, customization, and

6518 Book.indb 326 12/30/14 1:25 PM

SCM Transition Strategies 327

operation of SCM systems by reducing the scope of the implementation. The success-
ful implementation of one project can benefit the overall success of an SCM system.

Interface programs are common in their use for the phased approach or any
situation that contains phasing. These interface programs are required to bridge
the gap between the legacy SCM system and the new SCM system until the new
SCM system becomes fully functional. A good example is where project A goes
live on the new SCM software while project B still remains active on the legacy
SCM system.

The phased approach is closely related to the big-bang technique. The advan-
tages of this approach are described as follows.

•	 It allows companies to implement one project at a time before another is
attempted.

•	 Many companies feel more comfortable taking this steppingstone approach.
•	 The total number of resources needed at any one given point in time may be

less.
•	 Additional flexibility may also be gained in the scheduling of people.

There are disadvantages too. These are described as follows.

•	 This approach consumes a large amount of technical resources because of
the conversion and interface programs that are required between the two
SCM systems.

•	 The overall cost and time to implement is usually higher using this approach.
•	 Higher turnover rate can also be expected among key SCM team members

because of the lengthy durations that generally accompany this approach.

Choosing a Strategy

The factors that could cause a company to choose one SCM strategy over another
are technical resource availability, number of users, consultant availability, structure
of the SCM team, deadlines, reliability, and hardware resources.

If you are going to develop a global process model for your company, then a
big-bang approach is extremely beneficial. You can concentrate all needed expertise
within one location and build a so-called competence center. Once you develop a
rollout kit, containing such items as work instructions, training materials, plan of
approach, detailed planning, templates, example deliverables, standard or custom-
ized software components, parameter setting, a chart of accounts, and hardware
requirements, you will see dramatic lower implementation costs and much quicker
implementation and stop local sites from reinventing the wheel. One factor that
impacts employee buy-in is the determination of how exactly the SCM system will
be implemented. The big-bang approach implies that the SCM system goes live for
all projects at the same time. This approach forces all employees to use the new
system with no opportunity to fall back on the old and often results in temporary
business disruptions. The phased approach in which companies implement the
SCM for one project and only after its successful completion move on to the next

6518 Book.indb 327 12/30/14 1:25 PM

328 SCM Deployment Models and Transition Strategies

project can help avoid business disruptions, but it may also create some resistance
to change within departments.

Summary

This chapter deals with the different deployment models and the transition strate-
gies of SCM implementation. The deployment models covered in this chapter are
on-premises deployment, hosted deployment, and SaaS or on-demand deployment.
The two transition strategies that are discussed are the big-bang and incremental
approach. The discussion of each topic covers their advantages and disadvantages
and details factors to consider in choosing a deployment model or transition strategy.

References

[1] Wikipedia, Cloud Computing, http://en.wikipedia.org/wiki/Cloud_computing.
[2] Evolven, Cloud Configuration Management Solution, http://www.evolven.com/solutions/

cloud-configuration-management.html.
[3] Mell, P., and T. Grance, The NIST Definition of Cloud Computing, National Institute of

Standards and Technology, U.S. Department of Commerce, September, 2011.
[4] Amies, A., et al., “Develop cloud applications with Rational tools,” IBM developerWorks,

June 5, 2012, (http://www.ibm.com/developerworks/cloud/library/cl-rationaltools/index
.html).

6518 Book.indb 328 12/30/14 1:25 PM

329

C h a p t e r 2 0

Source Code Repositories

Overview

A source code repository or source code hosting facility is a place where large
amounts of source code are kept, either publicly or privately. They are often used
by multideveloper projects to handle various versions and handle conflicts aris-
ing from developers submitting conflicting modifications in an organized fashion.
They help developers submit patches of code in a structured way. Often these Web
sites support features like sample code, code review, version control, bug tracking,
release management, translation systems, mailing lists, support forums, and wiki-
based documentation.

Source code hosting Web sites have changed the way software development is
done. It has affected small-scale projects by individuals and start-up companies, as
well as massive open-source projects involving hundreds of developers and thou-
sands of testers and quality assurance personnel. Since these hosting Web sites have
features required for high-quality software development, the software development
at those sites happens in an orderly and structured manner and follows time-tested
best practices. Also, the user community and the support forums help the develop-
ers who are stuck, thereby moving the projects forward. Due to the open and col-
laborative nature of most of the hosting Web sites, many resources like buildpacks
(collections of scripts for compiling applications) and sample code are freely avail-
able, thus improving the productivity as well as the quality of software development.
The popularity of these Web sites are increasing and will continue to increase as the
software development community—open-source projects, small firms, start-ups,
and individuals—has found this model of development cost-effective (often free, in
fact), efficient, and more productive.

One of the major concerns in using code-hosting Web sites is that the provider
might close shop, and you will lose all your source code and data. However, with
the increasing popularity of distributed version control systems, you always have a
full copy of your code and version history, and as long as you have a good backup
system, you can migrate from one provider to another easily. Most of the repository
providers have tools that make these migration easy and painless.

Software development in a Code repository

To develop software or collaborate on software development, you should first cre-
ate a repository or “repo” on the hosting Web site. After creating your repository,

6518 Book.indb 329 12/30/14 1:25 PM

330 Source Code Repositories

you must download and install the desktop client of the hosting software onto your
local computer. You then download the source code of the project that you want
to enhance or modify and work on it in your local development environment. The
desktop client monitors this development and manages the uploading and download-
ing from and to the repository, performing such tasks as committing the changes
and doing version control on the local machine.

Once you are satisfied with your work and have tested it, you submit it to the
Web site for review and, if it is accepted, merge it with the master branch of the
project code. If you are working on a development project, you will download the
specifications the project leader has created and assigned to you and write the source
code for that. Here also, once you have finished coding and testing, you submit it
to the repository for reviewed and discussion, and if it is found acceptable, it will
be pulled into the project codebase.

The owner of the software under development or the project maintainer will
create a repository for the project. There are two popular models of collaborative
development—the fork and pull and shared repository models. The fork and pull
model is mainly used for enhancing a project or creating a new project using the
source code of another project as the starting point. The shared repository model
is mainly used by small teams and organizations for software development.

The fork and pull model lets anyone fork an existing repository and push
changes to their personal fork without requiring access be granted to the source
repository. This model is mainly used for helping someone with software develop-
ment (e.g., bug fixes and enhancements) or creating new software from an existing
code base. In this model, you should create a fork or clone of the existing project
in your repository. A fork is a personal copy of another user’s repository that lives
in your account. When contributing to an open-source projects you will have a
fork of the source code repository in your local development environment. Here,
you can make your changes and commit them locally to create a revision history,
allowing changes to be tracked and easily rolled back if required. Changes com-
mitted locally can then be submitted to the upstream project for inclusion in the
next release. Once contributors are satisfied that their changes are worthy of con-
sideration by the project maintainers, they raise a pull request. Pull requests are
proposed changes to a repository submitted by a user and accepted or rejected by
a repository’s maintainers.

Forks allow a developer to make changes freely to a project without affecting
the original. In the case of collaboration, once you make changes or enhancements,
the changes must be pulled into the source repository by the project maintainer.
This model reduces the amount of friction for new contributors and is popular
with open-source projects because it allows people to work independently without
upfront coordination. Forks remain attached to the original, allowing the develop-
ers to submit a pull request to the original’s author to update with your changes.
Pull requests are useful in the fork and pull model, because they provide a way to
notify project maintainers about changes in your fork. You can also keep your fork
up-to-date by pulling in updates from the original.

The shared repository model is more prevalent with small teams and organiza-
tions collaborating on private projects. Everyone is granted push access to a single

6518 Book.indb 330 12/30/14 1:25 PM

How Will Repositories Help Software Companies? 331

shared repository, and topic branches are used to isolate changes. Pull requests are
used in the shared repository model to initiate code review and general discussion
about a set of changes before they are merged into a mainline or master branch.

So the code hosting Web sites make the software development process—main-
tenance, enhancements, as well as new development—efficient, effective, and pro-
ductive. Things like version control and change management are easily taken care
of by the software. For example, a CR in a traditional setting would require the
CCB to meet and then approve the CR to come into effect, whereas in this sce-
nario, the pull request will trigger a discussion at the end of which the change is
reviewed and, if accepted, is merged without a physical meeting. Working at one’s
own convenient time, working from anywhere in the world, and working from
different time zones are some other advantages of this model of software develop-
ment, and all these advantages are realized without sacrificing the quality of the
software that is developed.

How Will repositories Help Software Companies?

Source code repositories are a great help for software development. Irrespective of
whether you are an individual, a group of three or four developers, a start-up, a small
company, or a medium sized business, you can make your software development
process more efficient, effective, and productive using the source code repository. The
quality of the code will improve because of the collaborative model of development.

When you create software in a Web-based source code hosting repository, there
are many things already taken care for you. You are not beginning from scratch;
you have all the necessary tools and help available at your disposal. It is like mov-
ing into a furnished apartment instead of an empty one. Repositories offer many
features such as version control, bug tracking, chat rooms, discussion groups, and
support forums. You and your team members can make use of all these features to
create better software. Since the repositories operate on a collaborative-community
model, you can ask for help from others if you are unable to find a solution for
your problem. Experts in different technologies in the community will answer your
queries, and you can have discussions to find the best solution before going ahead.
This will help in improving the quality of the code you are creating.

Another advantage of these repositories is that you can avoid reinventing the
wheel. Since there are many developers and groups sharing the same space with
you, most of the things you want, like code snippets, scripts, and validation func-
tions will be available for immediate use, thus cutting down on development time.

Flexibility is another great feature of this development environment. Flexibility
includes flexibility of time and location. You can work from anywhere in the world
and at any time of day. Since these Web sites work in the asynchronous mode, you
do not have to have face-to-face meetings with your colleagues. You can work
when you are most productive and yet have meaningful interaction with your team
members, thereby making you flexible without compromising on quality. The chat
sessions and support and discussion forums can handle an asynchronous mode of
communication. So if you send a request or query to your team member, he or she

6518 Book.indb 331 12/30/14 1:25 PM

332 Source Code Repositories

will answer when it is convenient. This type of time and location independence
improves work satisfaction and results in happy employees.

So, with their feature-rich development environment, community support model,
and flexibility, source code hosting Web sites help software companies without the
time and resources to set up such infrastructure to develop high-quality software.
With these repositories, you can start development within minutes after you sign
up. Most Web sites offer free facilities for open-source projects, individuals, and
small teams and charge a nominal fee for organizations that want private reposito-
ries. This is a real blessing for small companies and start-ups, as they do not have
to invest too much capital in setting up the infrastructure.

Features available at Source Code repositories

Source code repositories have many features that make tasks such as coding, code
review, code enhancement, bug tracking, bug fixing, and version control easy, fast,
and painless. Some of the major features are described as follows.

•	 Version control: All the repositories usually have two or three version control
systems enabling you to choose the one that you prefer. These version con-
trol systems help you in such tasks as creating a version history, branching,
merging, and forking (or cloning). Accordingly, you will be automatically
using version control from day one, thus eliminating the chaos and confusion
caused by their absence.

•	 Bug tracking systems: Bug tracking or error tracking is another feature of
these repositories. These systems help in creating bug reports, evaluating
them, fixing them, getting the bug-fixed version reviewed, and then merging
the bug-fixed version into the main branch.

•	 Sample code: In repositories, sample code, code snippets, scripts for running
applications, and reusable functions created by the development community
are available. You can use these as is or improve them so that people can have
better code. This availability of reusable code and scripts and the facility to
modify and improve them and then make the better versions available to the
development community is the beauty of the collaborative development model.

•	 Discussion forums: The discussion forums are available for all topics that
relevant to the developers. One can make queries, solicit opinions and sug-
gestions, and ask for help in solving problems in these discussion forums.
The members of the forum include experts in each field and experienced and
seasoned veterans who have seen it all and are willing to help and mentor
newbies. Developers can make use of these forums not only to improve the
code but also for their own professional development. Getting advice from
the gurus of the field is not only inspiring but also a way to learn from their
experience.

•	 Help and documentation: The Web site provides detailed on-line help and
exhaustive documentation so that beginners can start without an expert to
help them. Most of the repositories are easy to manage, but doing advanced
functions like forking, branching, raising a pull request, and merging, might

6518 Book.indb 332 12/30/14 1:25 PM

Factors to Consider When Choosing a Repository 333

be difficult to do without some assistance. The help and documentation pro-
vides step-by-step instructions (with figures) on how to perform each task
with examples. This will save a lot of time for newbies. Also, they will learn
the correct method of doing things from the very beginning, thus developing
good working habits.

The preceding are the most important features available at repositories, but
there. are many more. Visit any hosting site to learn about additional features.

Factors to Consider When Choosing a repository

There are several factors to take into account when choosing a repository. Some of
these are outlined in the following:

•	 Does the repository have a pricing package that is suitable for you?
•	 Does the repository support the programming language or languages of your

choice? Different repositories support different programming languages.
Choose a repository that supports the language that you are using.

•	 Does the repository offer database support? If your project needs a database,
then choose a repository that offers a database.

•	 What functionality do you need now? Depending on your project you might
need a version control system, including a Web interface for such things
as on-line code-browsing, mailing lists, list management and archives, bug
trackin, software package hosting and publishing, statistic reporting, support
and discussion forums, help and documentation, project and release manage-
ment, and access control. You should consult with the feature set offered by
the repositories and make sure that you are getting all you need.

•	 How easy is it to upgrade to additional functionality in the future?
•	 Does the repository have your preferred version control and bug tracking

systems?
•	 Does the Web site support both public and private repositories?
•	 How easy is it to integrate other things you run separately (e.g., a Web site)

with the repository?
•	 How good is the support for your integrated development environments

(IDEs) of choice?
•	 Is there support for authentication systems such as OpenID or SSH keys?
•	 Does the Web site host projects that are similar to yours?
•	 Is the upload and download speed acceptable?
•	 How easy is it to backup the entire repository?
•	 How established and stable is the repository?
•	 How good is the user support?
•	 How much effort do you have to put into repository maintenance?
•	 What are the service-level agreements for uptime, downtime, time to fix out-

ages, and bandwidth?
•	 How easy will it be to transfer not just your code, but your community, to a

new site in case the repository is closing shop?

6518 Book.indb 333 12/30/14 1:25 PM

334 Source Code Repositories

advantages and disadvantages

This section discusses some of the advantages and disadvantages of source code
repositories.

advantages

The advantages of software code repositories are desribed as follows:

•	 The initial investment is quite low and will be a financially attractive option
especially for individuals, small teams, start-ups,s and small companies.

•	 The setup time is only a few minutes, so you can be up and running within
minutes after you sign up with a service provider. This will help developers
to start working from day one.

•	 The learning curve is very small, and the developers in your team or company
can become proficient within a matter of hours.

•	 The development environment uses time-tested best practices, and hence
developers will be using these best practices, thereby improving the quality
of the software created.

•	 The development model is very flexible. Developers can work from any loca-
tion and at any time. This location and time independence gives developers
a lot of flexibility and will go a long way in improving their job satisfaction
and happiness. Satisfied and happy employees tend to be more productive and
produce high-quality work.

•	 The collaborative nature of the work environment will benefit the developers
as they can take the help of more experienced and knowledgeable colleagues
when they face a problem or have queries.

•	 The availability of such things as reusable code snippets and scripts will
improve the productivity and quality of the software created.

•	 The features of the version control and bug tracking systems combined with
the discussion forums eliminate bureaucratic processes like CCB meetings.

disadvantages

The disadvantages of software code repositories are detailed as follows:

•	 Even though the monthly or usage fee is low, the service provider can increase
the rates at any time. Such an increase can have an impact on financial plan-
ning and projections.

•	 The service provider can close shop at any time, and if you do not have a
foolproof backup strategy, all your data can be lost. If you have a backup,
you have the option of migrating to another provider, but sometimes the
transition can be rough.

•	 The source code repositories are still early in enterprise adoption maturity,
and most vendors still have customer-friendly policies. As more businesses
move to these Web sites, the deals will start favoring the vendor.

6518 Book.indb 334 12/30/14 1:25 PM

Summary 335

Summary

A source code repository or source code hosting facility is a place where large
amounts of source code are kept, either publicly or privately. These Web sites sup-
port features like sample code, code review, version control, bug tracking, release
management, translation systems, mailing lists, support forums, and wiki-based
documentation.

Source code hosting Web sites have changed the way software development is
done. It has affected small-scale projects by individuals and start-up companies, as
well as massive open-source projects involving hundreds of developers and thou-
sands of testers and QA personnel. This chapter reviews the working, features,
advantages, and limitations of source code repositories.

Selected Bibliography

Hong, N. C., Choosing a Repository for Your Software Project, Software Sustainability Institute
(http://software.ac.uk/), 2013.

Wikipedia, Comparison of open-source software hosting facilities, http://en.wikipedia.org/wiki/
Comparison_of_open_source_software_hosting_facilities.

6518 Book.indb 335 12/30/14 1:25 PM

6518 Book.indb 336 12/30/14 1:25 PM

337

C h a p t e r 2 1

Implementation Challenges

introduction

There are few information systems whose design and implementation challenge
a company like SCM. Done right, a new SCM implementation can dramatically
improve the software development and maintenance processes. But when an imple-
mentation fails—or takes a prolonged and arduous course—huge amounts of money
and effort may be misspent. This chapter discusses the following challenges faced
before, during, and after an SCM implementation:

•	 Inadequate requirements definition;
•	 Resistance to change;
•	 Inadequate resources;
•	 Lack of top management support;
•	 Lack of organizational readiness;
•	 Inadequate training and education;
•	 Inaccurate expectations;
•	 Poor package selection;
•	 Poor project management;
•	 Customization issues;
•	 Poor communication and cooperation;
•	 Data quality costs;
•	 Hidden implementation costs;
•	 Improper operation or use.

The frequency of such challenges has increased over the last few years, suggesting
that companies are having increased difficulty implementing their SCM software.
Regardless of the size or needs of an individual company, strong organizational risk
mitigation and change management can address many of the issues cited above. Pro-
cesses such as project planning, resource deployment, segmented communications,
targeted training, and strong data conversion plans serve to minimize the negative
effects of change, decrease the durations, and increase the success of implementa-
tions. Because of the resource and staffing constraints most small- or medium-sized
businesses face, it is critical that they recognize the great impact that organizational
change efforts—both in the executive suite and among end users—have on imple-
mentation success. Regardless of which software package is chosen, a company
that does not devote time and effort to ensuring that its staff is aligned and trained
and that its leaders are clear on the parameters needed for SCM success such as the

6518 Book.indb 337 12/30/14 1:25 PM

338 Implementation Challenges

project priority, timeline, and staffing needs is apt to see an SCM project stretch
well past the initially projected time frame.

implementation Challenges

We now examine implementation challenges in detail. SCM implementations are
more likely to fail, be delayed, cost more than forecast, or fail to deliver full func-
tionality than they are to succeed. It is important to be aware of how SCM as a
technology has evolved, its strengths and weaknesses, and the nature of important
implementation challenges. Further, it is important to understand how SCM and
legacy system metadata can be used to simplify implementation and help organiza-
tions best plan for this exciting new challenge. When considering SCM as a potential
solution to specific organizational challenges, major considerations include solving
the implementation challenges. The following sections examine implementation
challenges in detail.

inadequate requirements definition

Inadequate definition of requirements is one of the major challenges faced by the
implementation team. The requirements definition should clearly specify the issues
and problems that the SCM system is supposed to solve and the additional capa-
bilities expected from the system. If the requirements are properly specified, then
the implementation team can go about their job, including selection of the SCM
package that is best suited to meet these needs and determining the areas where cus-
tomization is needed and the functions where the organization’s business processes
should be changed. All these are important for the successful implementation and
operation of the SCM system. Failing to provide these (which is the management’s
responsibility) could result in problems such as selection of the wrong SCM pack-
age, unnecessary customization, and lack of employee retraining, all of which can
result in the failure of the SCM implementation.

resistance to Change

Implementing an SCM system is a change, and it is human nature to resist change.
So any SCM implementation will face some amount of resistance. Users will be
skeptical about the new system. However, for an SCM implementation to succeed,
the cooperation of everyone involved is an absolute necessity. SCM is first an atti-
tude, then a system. So, if employees are not convinced of the importance of SCM
and the benefits of using an SCM tool or system they will not be fully cooperative,
which can result in the failure of the system. It is very important, therefore, that
users be won over before implementing the system. Forcing the system on unwilling
people will only harden their resolve to revolt.

A primary reason for the resistance is ignorance. People always have a lot of
misconceptions about SCM—including that it will increase workload or hinder
creative work. However, if the SCM implementation team, backed by management,

6518 Book.indb 338 12/30/14 1:25 PM

Implementation Challenges 339

spends a little time and effort educating users about SCM and how it will help the
company and the users, user resistance can be reduced—if not fully eliminated.

Another method of reducing resistance is by creating champions. One of the most
efficient ways to transition to new technology is to find a well-respected potential
user of the technology. Train the user on the process and the technology, have him
or her evaluate the technology, and encourage him or her to champion the merits of
the technology to coworkers and management. The champion becomes the expert
user, facilitator, and trainer of the tool. There will always be people who adapt to
change slowly and maybe even begrudgingly; do not look to them to be your cham-
pions. Instead, look for people who are the first to embrace change and adopt new
technology and who are always looking for ways to do things better. That is the
kind of person you want for a champion.

inadequate resources

SCM implementation is a very costly affair that requires a variety of resources—
including money, people, software, and hardware. It is unlikely a company’s man-
agement will support the idea of unlimited funding for an SCM implementation
project. Accordingly, a budget, based upon an estimate of the likely costs, needs to
be established. There are many items that will be missed during the preparation of
the budget but will consume money during the implementation. The long imple-
mentation period will escalate many costs. Another resource that is always in short
supply is skilled and motivated personnel from the organization. Getting the right
people with the necessary skills, aptitude, and enthusiasm is one of the most dif-
ficult tasks faced by SCM implementation teams. These inadequacies in resources
can create many challenges to the SCM implementation.

Lack of Top Management Support

The commitment of top management to the diffusion of innovations throughout an
organization has been well-documented. In particular, early in a project’s life, no
single factor is as predictive of its success as the support of top management. The
roles of top management in IT implementations include developing an understand-
ing of the capabilities and limitations of IT, establishing reasonable goals for IT
systems, exhibiting strong commitment to the successful introduction of IT, and
communicating the corporate IT strategy to all employees. Research on project
failures shows that project cancelations occur when senior management delegates
progress monitoring and decisions at critical junctures of the project to technical
experts. The importance of top management support is instrumental in the suc-
cess of all SCM implementations. So, going ahead without solid backing from top
management is a sure recipe for disaster.

Lack of Organizational readiness

The main challenge in the successful implementation of SCM system is the prepared-
ness of the organization for a new system of functioning. Management should make

6518 Book.indb 339 12/30/14 1:25 PM

340 Implementation Challenges

sure that the organization, the work process, and the employees are amenable to
adapt to the SCM system.

inadequate Training and Education

The role of training to facilitate software implementation is well-documented in
the MIS literature. Lack of user training and failure to completely understand how
enterprise applications change the software development and maintenance processes
frequently appear to be responsible for problem SCM implementations and failures.
SCM projects appear to have a six-month learning curve at the beginning of the
project. At a minimum, everyone who uses SCM systems needs to be trained on
how they work and how they relate to the software development and maintenance
process early on in the implementation process. Although many companies use con-
sultants to help during the implementation process, it is important that knowledge
is transferred from the consultant to internal employees. Companies should provide
opportunities to enhance the skills of employees by providing training on a continu-
ous basis to meet the changing needs of the business and employees.

inaccurate Expectations

Information system failure has been defined as the inability of an IS to meet a specific
stakeholder group’s expectations, and successfully managing user expectations has
been found to be related to successful systems implementation. The expectations
of a company may exceed the capabilities of the system. SCM systems may fail to
meet expectations despite positive contributions to the organization if the systems
are oversold by the vendor. Careful deliberation of success measurement as well as
management of expectations by the implementation manager of SCM projects are
important factors. Management of expectations has an impact through all stages
of the implementation life cycle.

The first thing to realize when considering SCM is that inaccurate expectations
are the norm. Most SCM implementations today result in cost and schedule over-
runs. These outcomes are due to a lack of understanding of SCM implementation
complexities. Routinely, the cost of implementing and the time required to imple-
ment are underestimated, while the scope of what organizations are able to imple-
ment are overestimated.

poor package Selection

Selecting a good SCM solution provider is another challenge. You must analyze
the capabilities of the SCM service provider and make sure that the provider has
the capabilities and the expertise to provide you with a good solution. The choice
of the package involves important decisions regarding budgets, time frames, goals,
and deliverables that will shape the entire project. Choosing the SCM package that
best matches the organizational information needs and processes is critical to ensure
minimal modification and successful implementation and use. Selecting the wrong
software may mean a commitment to architecture and applications that do not fit
the organization’s strategic goal or business processes.

6518 Book.indb 340 12/30/14 1:25 PM

Implementation Challenges 341

poor project Management

While many in the IS business consider project management an oxymoron, its impor-
tance in IT projects is well-documented, and numerous methodologies and man-
agement tools exist. Project management activities span the life of the project from
initiating the project to closing it. The contingency approach to project management
suggests that project planning and control is a function of the project’s character-
istics such as project size, experiences with the technology, and project structure.
The vast combination of hardware and software and the myriad of organizational,
human, and political issues make many SCM projects huge and inherently com-
plex, requiring new project management skills. Specifically, proper management of
scope is critical to avoid schedule and cost overruns and necessitates having a plan
and sticking to it. A project scope that is too broad or ambitious can cause severe
problems. Customization increases the scope of an SCM project and adds time and
cost to an implementation. The minimal customization strategy, which allows for
little if any user suggested changes and customizations, is an important approach
for managing the scope of an SCM project. The high implementation risks of SCM
projects imply the need for multiple management tools such as external and internal
integration devices and formal planning and results controls.

Customization issues

Because SCM attempts to permit organizations to capitalize on planned information
sharing and cost avoidance, they make sense when existing organization procedures
and data structures can be successfully adopted to match those implemented by
the SCM. Most organizations discover how compatible the new SCM is with their
existing systems and processes when they turn on the new system. When they realize
that the SCM differs from the system it is replacing, organizations are faced with
the possibility of either customization or tailoring the SCM. There are two basic
choices for customization:

•	 Modifying the SCM to match the organizational processes or data structures;
•	 Modifying the organizational processes or data structures to match the SCM.

Choices 1 and 2 require an understanding of SCM and organizational processes
and data structures. Most organizations approach the customization or tailoring
decision without the proper information required to reach a good decision.

poor Communication and Cooperation

Communication is the oil that keeps everything working properly. Communication is
essential within the project team, between the team and the rest of the organization,
and with the client. Poor communication between implementation team members
and other organizational members has caused many implementations to fail. A key
factor for the successful implementation of SCM systems requires a corporate culture
that emphasizes the value of sharing common goals over individual pursuits and the
value of trust between partners, employees, managers, and corporations. As SCM

6518 Book.indb 341 12/30/14 1:25 PM

342 Implementation Challenges

systems are cross-functional and above departmental boundaries (e.g., development,
maintenance, and QA), the cooperation and involvement of all involved is critical.
SCM’s potential cannot be leveraged without a strong coordination of effort and
goals across business and IT personnel.

data Quality Costs

A data management study performed by Price Waterhouse Coopers [1] revealed two
troubling facts about organizational data quality:

•	 Only 15% of companies are very confident of the data received from other
organizations;

•	 Only one in three companies are very confident about the quality of their
own data.

Poor quality data input can be fatal to SCM projects. Just imagine the lack of
confidence that the new system engenders if it delivers bad data more easily than
the legacy system.

Hidden implementation Costs

There are many items that are missed or that will consume more money than than
allotted in the implementation budget. These cash shortages will hinder a smooth
implementation, and if the company does not have sufficient reserves to bear the
additional expenditure, the implementation will have to be left incomplete. Chapter
17 discusses the hidden costs of SCM implementation.

improper Operation or Use

The most crucial challenge is the optimal utilization of the SCM software solution.
You can have the best SCM solution implemented, but if its resources are not utilized
to the fullest, the whole initiative goes to waste. However, if it is deployed appro-
priately, SCM solutions can create dramatic changes in your business performance.

Summary

There are few information systems whose design and implementation challenge a
company like enterprise resource planning. Done right, a new SCM implementation
can dramatically improve business processes. However, when an implementation
fails—or takes a prolonged and arduous course—huge amounts of money and effort
may be misspent. This chapter describes the challenges faced before, during, and
after an SCM implementation.

The main challenges of an SCM implementation include inadequate defini-
tion of requirements, resistance to change (lack of buy-in), inadequate resources,
inadequate training and education, lack of top management support, unrealistic

6518 Book.indb 342 12/30/14 1:25 PM

Summary 343

expectations of benefits, miscalculation of time and effort, poor communications,
software business process incompatibility, poor project design and management,
and poor SCM package selection.

Reference

[1] PriceWaterhouseCoopers, Data Quality 2004 Survey, PriceWaterhouseCoopers
(www .pwc.com), November, 2004.

6518 Book.indb 343 12/30/14 1:25 PM

6518 Book.indb 344 12/30/14 1:25 PM

345

C h a p t e r 2 2

SCM Operation and Maintenance

introduction

Most companies treat SCM implementation as projects, with the assumption that
someday these projects will end. And they are right; the implementation project
will end, but the SCM system cannot end with the implementation. In fact, once
the implementation phase ends and staff have started using the SCM system, the
real benefits of the SCM will be seen. An SCM system is not a project; it is a way
of life. No organization can say, “We’re finished,” and few ever will. There will
always be new modules or features and versions to install, new persons to be
trained, new technologies to be embraced, and refresher courses to be conducted.
Even if an organization can declare final victory on the implementation of SCM,
it will need more time to gain real business value from the SCM system. So SCM
implementation requires a lifelong commitment by the company management and
users of the system.

Ideally, when the SCM system goes live, people switch from their old practices to
those required by the new system. If everyone is properly trained, then each person
will know what he or she has to do when the new system is in place—the opera-
tion and maintenance (O&M) phase. If the processes have been properly tested,
then operations will progress smoothly. If the data migration has been properly
handled, then the data will make sense to those using it. The success of this phase
is measured by the lack of problems. However, the implementation is not finished.
Work then begins on realizing the benefits of the new system. If problems are expe-
rienced during the O&M phase, mechanisms need to be in place to deal with them.

When problems arise there should be a problem response mechanism that deals
with them and that everyone is aware of. This mechanism should be simple and
provide a means for tracking progress in resolving the problem. When a problem
is identified, it should be reported to the person assigned with responsibility for
coordinating problem resolution. This usually will be the project manager. Initial
investigation will reveal whether the problem is readily resolved or requires further
investigation or whether it is something that needs to be transferred to the vendor
for resolution. Details about the problem are required, including a description of
what was being done at the time the problem arose. The problem coordinator will
establish who is going to deal with the problem and keep track of progress in resolv-
ing the problem. Readily resolved problems can be closed off quickly. The rest need
to be monitored to ensure that they are being addressed. If this sounds a lot like
the issues covered earlier concerning software problems, you are correct. To go a
step further, quite often a company will use its existing software problem reporting

6518 Book.indb 345 12/30/14 1:25 PM

346 SCM Operation and Maintenance

mechanism to deal with SCM system problems and issues. The benefit here is that
nothing new has to be developed to deal with SCM-specific problems and issues.
This is another benefit of the SCM system.

The permanent nature of the SCM system has numerous implications. The fol-
lowing sections discuss some of them. SCM implementation is just the beginning.
For any organization to succeed and reap the benefits of the SCM system, it has to
take action while keeping in mind the permanent nature of the system.

Employee relocation and retraining

One problem the SCM implementation can present is what to do with the existing
SCM teams. This is applicable only in cases where an organization had large SCM
teams and decided to introduce an SCM tool. The SCM tool will automate most of
the SCM functions, and many jobs in the SCM team will become redundant. So the
company should have a plan to relocate these people whose jobs are taken over by
the SCM tool. However, the tools will also create new job openings as they eliminate
old ones. The complexity of today’s SCM tools makes it necessary to have special-
ists to manage and maintain these tools. Today’s tools need database administra-
tors, system administrators, operations personnel, and build and release managers,
among other professionals. So the team members who have lost their jobs due to
the introduction of the SCM tool can be given training and assigned to these jobs.

The development of new processes will result in the emergence of new job
descriptions. Automation of manual tasks and the creation of new tasks make this
inevitable. However, people tend to be resistant to change. Thus, human resource
personnel need to be involved at an early stage in the implementation. The impli-
cations relating to changes in job descriptions need to be handled in an agreeable
and friendly manner. Throughout, the benefits of what is being pursued should be
promoted as well as the well-being of those affected. In organizations where change
is a pervasive feature of life, this should not be a problem. In organizations where
change is unknown, this has the potential to become a big issue. Handled carefully,
everyone should emerge smiling.

Organizational Structure

Most organizations create implementation project offices and appoint project man-
agers with the assumption that the project will end and life will go back to normal.
However, it will not. Accordingly, organizations need a new organizational struc-
ture that reflects the ongoing need for SCM-related activity—not a project office.
“Sponsorship” is one example of the need. Many companies appoint senior executive
sponsors for implementation projects. Their expectations are probably that these
executives will go back to their responsibilities once the installation is over. How-
ever, many companies do SCM implementation on an incremental basis. That is,
they install the core modules first and then the additional modules until full SCM

6518 Book.indb 346 12/30/14 1:25 PM

Knowledge Management 347

functionality is achieved. Who is going to oversee those changes and ensure that
they fit with the rest of the business? If the executive sponsor is temporary, who
will ensure that the system and the business evolve hand-in-hand? The company
should assign a person who is willing to take the ownership of the SCM system on
a long-term basis.

roles and Skills

The post-SCM organization will need a different set of roles and skills than an
organization with less integrated systems. At a minimum, everyone who uses these
systems needs to be trained on how they work, how they relate to the business
process, and how a transaction ripples through the entire company whenever they
press a key. The training will never end; it is an ongoing process. New people will
always be coming in, and new functionality will always be entering the organization.

Many companies use consultants to help with the implementation process. This
in itself is not a bad idea, but the problem is how most companies use consultants in
SCM implementations. They do not transfer knowledge from consultants to internal
employees. Because these systems are going to be around for quite some time, it
is very important for company employees to have good knowledge (as good as the
consultants) about how these systems work and how they can be configured to fit
the organization. The person in charge of the implementation must make sure that
consultants allow employees to work side-by-side with them on the implementation
project, and before they leave, tap the most knowledgeable consultants on long-term
system evolution issues.

In every business function and department that is affected by SCM, organiza-
tions will need one or more people who know the system and its relationship to the
departmental processes. It is these people who have to save the system in the early
days after system installation. It is these people who have to guide, motivate, and
help their colleagues by working with them. They will answer questions, find needed
workarounds, and let you know what is working and what isn’t. These people will
be the SCM team representatives—the champions—in each department. These
people should have a dual reporting relationship with their managers and the SCM
Manager. It is also useful to convene meetings of these people once in a while so
that they can share knowledge and compare notes.

Knowledge Management

It is imperative that the knowledge and experience that is gained during SCM
implementation and after is captured on an ongoing basis and made available to
all. So when somebody encounters a problem, he or she can look up the knowledge
base to determine if such a problem has occurred before. When new problems are
identified and solved, they should be added to the knowledge base. Thus over a
period of time the knowledge base will provide answers to most problems. In this
way, even if a key employee leaves, the knowledge will remain with the company. A

6518 Book.indb 347 12/30/14 1:25 PM

348 SCM Operation and Maintenance

number of companies have successfully implemented this strategy through a FAQ
interactive database.

SCM Tools and Technology

Once SCM tools are introduced, the way in which the companies conduct SCM will
change. With SCM tools, automation and new technologies will arrive. Companies
should make it a point to familiarize users with these technologies and find ways to
motivate them to use them. For example, most SCM tools can send notifications to
the CCB members regarding a CR that was submitted. The CCB member can see
the details of the CR and then query the SCM database to analyze its implications.
So the CCB members can send their replies almost immediately. For this to happen,
however, the CCB members should make use of these technologies. One member
abstaining from this process can delay the CR disposition. So the company should
have a plan to train and then motivate its employees to get the best out of the new
features and facilities that are available to them.

Most systems can be configured to have an escalation mechanism—a mecha-
nism that can escalate the issue to a higher authority if something does not happen
within a specified period of time. For example, the system could be configured to
send a mail notification to the supervisor of a CCB member if that member has not
replied within a specified period. In such cases, senior managers should find out
why the person is not using the technology and take the necessary steps to get him
or her involved. Many people are dazzled by the technology or are afraid to use
it. These fears should be alleviated to facilitate the proper functioning of the SCM
system and to get the maximum benefit from the system.

As we have seen, the success of an SCM system is not primarily dependent on
the sophistication or features of the tools that are installed. It is the attitude and
cooperation of the people—the users—that allow SCM systems to deliver the qual-
ity and productivity improvements of which they are capable.

review

Once the implementation is complete, and the organization has started to use the
system and has reached a stable state, a review of the system must be performed.
The review, which aims to answer the following questions, provides an opportunity
to learn from the implementation.

•	 Does the software do what is expected of it?
•	 What are the outstanding or emergent issues?
•	 What can be learned from the implementation?
•	 What could have been done better? How can this be used in future?
•	 What timescale or budget is required to deal with the remaining issues?
•	 Has the project been a success? This is particularly invaluable if there are suc-

cessive phases involving the introduction of additional functionality.

6518 Book.indb 348 12/30/14 1:25 PM

Operation of the SCM System 349

The review should also elicit feedback from users and managers. This feedback
may reveal issues that can be readily addressed such as the provision of extra train-
ing or the modification of existing procedures.

Operation of the SCM System

We have seen the postimplementation scenario of the SCM system. It is during the
O&M phase that the SCM system delivers the full benefits of which it is capable.
However, this will not happen automatically. Although you have an excellent SCM
system and a good tool and have completed the implementation successfully, you
cannot assume that everything will go on nicely and without any problems.

The O&M phase of the SCM system is different from that of the software
system(s). In the case of software, the operational phase commences when the system
is turned over to the customer. Hence, the system is operational. The maintenance
phase is implemented at the same time if the customer is paying the developing
organization to maintain the system after delivery (i.e., for bug fixes, enhancements,
and modifications). Otherwise, the system is considered “turn-key,” and all activity
ceases when the system is delivered (i.e., customers or buyers are on their own). In
the case of the SCM system, the O&M phase starts once the system is implemented
and the software development starts.

The operational and maintenance phase has to be carefully planned. During
the O&M phase, the SCM sponsor should monitor the progress of the SCM system
with the assistance of the project manager. The SCM sponsor or senior SCM man-
ager is the most logical person to become the head of the SCM team—the CMO.
He or she has experience, knowledge, and contacts with tool vendors and external
consultants and has worked closely with the “SCM champions” in the organiza-
tion. Accordingly, appointing this person as the CMO team is a very good idea as
things will be easier for him or her than anyone else.

The main objective of the O&M phase is to ensure that the SCM system achieves
its projected benefits—the users are satisfied, and there are no conflicts. The orga-
nization of the SCM system and SCM team will depend on the nature of the orga-
nization. As described in Chapter 14, there can be a central SCM team or there can
be independent SCM teams for each project. In either case, the SCM team members
report directly or indirectly to the CMO. The CMO maintains close relationships
with the other support departments such as development, QA, testing, marketing,
and technical support so that he or she can coordinate the SCM-related activities.
For example, the marketing department has the major say in deciding the release
date of a product, but there may be other factors that decide the release date like
unfinished enhancements or unfinished changes, which only the development team
is aware of. By coordinating and communicating with the representatives of all the
various departments that have a role in the SCM activities, the CMO can eliminate
interdepartmental conflicts and make sure that all departments are working toward
a common goal.

The main activities of the CMO are ensuring that SCM activities are performed
correctly, coordinating the SCM issues with the various departments, assessing the

6518 Book.indb 349 12/30/14 1:25 PM

350 SCM Operation and Maintenance

deficiencies in the system and correcting them, assessing the training needs of exist-
ing and new users and giving them training, liaising with top management, giving
progress reports, and obtaining resources.

interdepartmental Coordination

As mentioned earlier, for the SCM system to function smoothly, the cooperation of
all the departments is necessary. These departments might have conflicting interests.
The marketing department might want the maximum number of features and the
release of the system as early as possible. The development team might not be able
incorporate all the enhancement requests and features and complete the develop-
ment per the time schedule of the marketing team. The financial department might
want to give additional resources to a project as there will be cost overruns. Man-
aging these conflicting requirements is a very difficult task. The CMO can act as a
liaison among these departments and between these departments and the company
management and arrive at solutions that are satisfactory to all. For example, if the
marketing team wants an early release of the product, then some of the features
could be assigned to the next release.

SWOT analysis

The CMO and the SCM team can assess the strengths, weaknesses, opportunities,
and threats (SWOT) to the SCM system. The strengths should be reinforced so
that they become ingrained in the organizational culture. The weaknesses should
be rectified through appropriate corrective actions, so that the organization can be
competitive. The opportunities and threats are identified at the strategic level by
the management. However, these should be converted into operational level tasks
and be performed by the various departments in the organization. For example, if
the technical service department of the organization is finding it difficult to provide
timely and quality service to the customers, it poses a threat to the organization as
customers will become dissatisfied and might move to another vendor. If the SCM
team can create a help desk of all the problems that have occurred in the past and
how they were fixed, then the technical support team will be able to answer cus-
tomer queries quickly (if the help desk has a previous instance of such a problem).
If the help desk is kept up-to-date by adding the new problems and their fixes, over
a period of time, the efficiency of the technical support team will increase dramati-
cally. Similarly, many threats that affect the organization at the business level can
be solved using SCM activities as SCM keeps track of all the activities, changes,
problems and their solutions.

documentation

During the implementation phase, the SCM plan is prepared, and the SCM system
is designed. During the course of the implementation, the plan will be revised and
updated to reflect the changes that occurred during implementation. The SCM plan
is the fundamental document for performing SCM activities. It is the job of the
CMO to ensure that all the SCM team members and the members of the organiza-
tion have access to the latest copy of the SCM plan.

6518 Book.indb 350 12/30/14 1:25 PM

Operation of the SCM System 351

During the training phase, the vendors and the external consultants will prepare
user manuals, procedures, and best practices documents for training and reference.
These documents (their latest versions) should also be accessible to all users of the
system. Such documents can be hosted on the company intranet or on the Internet
(in the case of distributed teams). Access to these documents can be restricted or
controlled using usernames and passwords.

Procedures and work instructions describe how tasks are carried out, the lat-
ter in more detail. Procedures and work instructions include process descriptions,
roles and responsibilities, and process flow. The production of these documents is
not a task for one person, but for those who define the processes. The process of
producing this documentation commences during the SCM system design stage
and develops through the implementation phase, at the end of which it is finalized.
The procedures can be either in hard copy or in electronic form and can be posted
on the company intranet or the company Web site. These procedures are actually
part of the documentation control and should be revised following the appropriate
change management procedures. Only the latest copy should be available for viewing.

Training

Training is a never-ending activity. One of the main tasks of the CMO or the SCM
team is training new employees on the SCM concepts, tool usages, procedures, and
best working practices. For this, the SCM team can conduct an induction program
at regular intervals and ask the project managers to send their new team members
for the training at the earliest possible occasion. Once the new employees are given
the SCM training and told how SCM is practiced in the organization, they will do
things the “right way” from the beginning.

audits and reviews

SCM tools allow most activities like check-in, check-out, and CR initiation to be
performed by the developer. The SCM team should conduct periodic audits to ensure
that these activities are performed correctly (i.e., check to ensure that people are not
attempting to check things back into to the library without first going through the
authorized review procedures). The SCM plan and the SCM system should also be
reviewed and audited periodically.

The CMO should find qualified auditors and reviewers so that the CIs can be
reviewed during the development stage and the FCAs and PCAs can be conducted
before the system is handed over to the customer. The procedures and checklists for
these reviews and audits should be developed and made available to the reviewers
and auditors. The SCM database should be updated with the information regard-
ing these reviews and audits.

CCB Formation

Another task of the CMO is the formation of CCBs. The number of CCBs in a
company will vary depending on the size and complexity of the projects. Whether
it is a single CCB or multiple CCBs or SCCBs or PCCBs, it is the job of the CMO

6518 Book.indb 351 12/30/14 1:25 PM

352 SCM Operation and Maintenance

to find the qualified personnel for the CCB. Usually the CCB is chaired by the
CMO or a senior member of the SCM team. Once the CR is initiated, the change
management activities should be performed without any delay, so that the problem
is resolved as soon as possible.

SCM database Management

The CMO or the SCM team should also ensure that SCM database is up-to-date and
not corrupted so that the status accounting function can be performed accurately.
If the integrity of the data in the SCM database is not accurate, the information
produced will be outdated, wrong, and useless. The status accounting function is
the eyes and ears of the project and company management for tracking the progress
of the project. So the SCM team should make it their priority to ensure that the
right information is provided to the right person at the right time. This will improve
the quality of the decisions and make the organization more effective and efficient.

Software Upgrades, Enhancements, and Modifications

The real value of a good SCM system is realized during the O&M phase. The SCM
system has all the information about which files were changed, what the change
was, why was it changed, what other files were changed along with it, when was it
changed, what files went into a particular version of the system, what tools were used,
and a lot of other similar details. In other words, SCM systems contain a recording
of all the significant activities that happened during the development and evolution
of the product or system. Chapter 8, outlines the change and problem management
process and the creation of help desks. The SCM database together with the help
desks provides an environment where software could be upgraded, bugs could be
identified and fixed, and enhancements could be incorporated. All these tasks could
be performed quickly and without any wasted effort since we know exactly where
to look for them and which items need modification.

Most software companies support more than one version of their software. For
example, when the latest version of a product is 8.0, there may be many users still
using the older versions, even version 1.0. So if some user from Timbuktu, who is
using version 1.0, encounters a problem and calls technical support, the support team
might have to recreate the version 1.0 and then find out the source of the problem.
This is possible, thanks to SCM; one just has to run the build script that created
version 1.0. (with the appropriate software and compiler versions). Since the build
scripts are under configuration control, they will be readily available in the SCM
library. Thus the bug can be fixed, the bug-fixed version can be delivered to the
customer, and the organization will have one very satisfied customer in Timbuktu.
This scenario comes with a caveat. An earlier version of the software might also
have been running on different hardware. SCM by itself cannot handle this—unless
perhaps there is some virtual machine simulation. In general, however, this is a
fundamental and natural limitation of SCM. Ultimately, the hardware can restrict
what might be runnable on it. A company might, for this reason, make an explicit
policy about what earlier versions of its software that it will continue to support.

6518 Book.indb 352 12/30/14 1:25 PM

Operation of the SCM System 353

The capability to deliver bug-fixed versions faster to the customers is very impor-
tant in this age where awareness of bugs in the software spreads very fast (through
the Internet). So if a flaw is identified, the time it takes the company to release a bug-
fixed version to the customer is very crucial. If the flaw is a security problem that
leaves the software vulnerable to attacks from hackers or viruses, then the gravity
of the situation increases exponentially. If SCM practices were not around to help
organizations in these areas, then many companies that release patches almost on
a daily basis would have filed for Chapter 11 bankruptcy protection by now!

Help desks

Help desks are repositories of organizational knowledge that can be used by the
maintenance and support team. The help desk contains information on many top-
ics including correct operating practices, problems with the software, how to solve
these problems, details of CRs or PRs, and resolution. When encountered with PRs
from customers, the maintenance team and support personnel can query the help
desk to see if a problem that is similar to or the same as the current problem has
occurred in the past. If there are past occurrences of similar or same problems, then
problem resolution will be quick. To get the maximum benefit out of the help desks,
help desks should be designed properly. They should contain all the details arranged
and stored so that it can be retrieved easily and intuitively. Many companies post
FAQs and their answers on their support Web sites and encourage users to first
check the FAQ before calling technical support. A well-organized and -categorized
FAQ can substantially reduce the workload of technical support personnel. As new
problems and their solutions get added to the help desk, they will simultaneously
be updated on the Web site.

Change and problem requests from Customers and in-Field Emergency
Fixes

Change and problem requests can come not only from the QA and testing team but
also from the users once the system is released for general use. These requests (both
internal and external) are handled as described in Chapter 8, by following formal
change management and control procedures. Emergency fixes are required when
a problem occurs, and there is not enough time to resolve it using formal change
management and control procedures. Here the priority is to find and fix the bug
and resolve the issue as soon as possible so that the customer can continue using
the product. Emergency fixes are not left unattended after the emergency. Once the
emergency is over, when the organization has enough resources, procedures such as
change evaluation, impact analysis, and CCB meetings are conducted. The proper
documentation is created, and the SCM database is updated with these details.
This is to ensure that the integrity of the data is maintained. If the emergency fix
is left once the fix is delivered to the customer, then there will not be any record of
it in the SCM database; this can result in various serious problems that the SCM
is trying to prevent.

6518 Book.indb 353 12/30/14 1:25 PM

354 SCM Operation and Maintenance

reusability improvement

Every project will have reusable items. Reusable items are CIs that can be used in
more than one place. When the number of reused CIs increases, the number of items
to be developed decreases. If the same item can be used by different subsystems of
the system, then there is no point in the two groups developing two different versions
of a program or function that performs the same thing. With increased reuse, the
“reinventing the wheel” phenomenon can be avoided. Thus, increased reusability
will have a direct impact on productivity as it saves design, development, and test-
ing time. Also, it will reduce the number of CIs that need to be managed, thereby
reducing the SCM workload. To promote reusability, the designers and developers
of the project should know that, there exists a CI that performs the same function
as the one they are designing or developing. So the SCM team should identify CIs
that have the potential to be reused and place them in a separate controlled library
usually known as the reusability library. The items in the reusability library are
also under SCM control, but they are placed in separate library to promote reus-
ability. An index of the CIs and a small description of the function(s) performed
by each CI can help programmers and developers in searching for and identifying
the components that they can use, before starting to develop the components once
again. Taking this one step further, there can be a reusability library for the entire
organization that can be under the control of the central SCM team, where the reus-
able items from the different projects are placed and managed. This will improve the
reusability at the organizational level. In many cases, many items developed, tested,
reviewed, and approved for one project could very well be used in another project.
Date manipulation functions, string manipulation functions, and programs for dis-
playing error messages are some of the items that have uses in almost all projects.

Metrics

You have implemented and are operating the SCM system, but how will you know
that the SCM system is delivering the promised improvements? More importantly,
how will you know that the SCM system is helping in improving your software
development process? You should measure the various parameters of the system.
If you do not measure your current performance and use the data to improve your
future work estimates, those estimates will just be guesses. Because today’s cur-
rent data becomes tomorrow’s historical data, it is never too late to start recording
key information about your project. You cannot track project status meaningfully
unless you know the actual effort and time spent on each task compared to your
plans. You cannot sensibly decide whether your product is stable enough to ship
unless you are tracking the rates at which your team is finding and fixing defects.
You cannot quantify how well your new development processes are working with-
out some measure of your current performance and a baseline to compare against.
Metrics help you better control your software projects and learn more about the
way your SCM system and organization works. As time goes on and people become
more comfortable with the system, performance should improve. You will able to
measure improvement only if you have measured the various parameters from the

6518 Book.indb 354 12/30/14 1:25 PM

SCM Maintenance Phase 355

beginning. If the metrics reveal that the performance is not improving, then man-
agement should investigate the reasons and take the necessary corrective actions.
The following are some of the SCM-related parameters that you can measure.

•	 Average time taken for the resolution of a CR;
•	 Average time taken to resolve a technical support query;
•	 Number of CRs and PRs;
•	 Percentage of approved CRs and PRs;
•	 Percentage of time spent on development;
•	 Percentage of time spent on tasks such as testing, QA, and debugging;
•	 Number of defects found after each release;
•	 Number and type of changes (e.g., bugs, enhancements, and emergency fixes);
•	 Number and severity of defects found during development;
•	 Number and severity of defects found during testing;
•	 Average time taken to identify the source of a defect (defect identification);
•	 Average time taken to resolve a defect;
•	 Amount of reused code;
•	 Number of unfixed bugs in each release;
•	 Number of enhancements in each release;
•	 Average number of CIs impacted by a CR or PR;
•	 Product development cycle time;
•	 Difference between the estimated and actual values for each activity.

The above list is by no means an exhaustive one. It is just a representative list of
what can measured. You should decide what more should be measured depending
on the nature of your organization and projects.

SCM Maintenance phase

To function properly, the SCM system needs regular maintenance. The SCM plan
needs revision and updating to adapt to the changing situations in the organization.
We have already determined that the SCM system should be reviewed regularly,
with the review comments and suggestions incorporated into the system. Also, the
SCM system needs fine-tuning as employees become familiar with it. Once the SCM
system has reached a stable state, necessary actions should be taken to improve
the performance. The SCM metrics discussed in the previous section can indicate
whether the SCM system is functioning properly or not.

The SCM tools that are implemented are another area that needs maintenance.
The CMO should be in regular contact with the vendors to see whether any upgrades
or updates are available. All patches and upgrades should be installed to ensure
that the tools are working at their maximum efficiency. Employees should be given
refresher courses on the new functionality that gets added with each new upgrade.
The training documentation should also be updated so that it is in sync with the
procedures and processes.

6518 Book.indb 355 12/30/14 1:25 PM

356 SCM Operation and Maintenance

Summary

Proper O&M of an SCM system after it has been successfully implemented requires
careful planning on the part of the SCM team and adherence to the best practices
by the users of the system. Moreover, the support and sponsorship of top manage-
ment is absolutely essential to the successful O&M of the SCM system.

Selected Bibliography

Buckley, F. J., “Implementing a Software Configuration Management Environment,” IEEE
Computer, July 1994, pp. 56–61.

CM Crossroads: The Configuration Management Community (http://www.cmcrossroads.com/).
Dart, S., “Achieving the Best Possible Configuration Management Solution,” Crosstalk: The

Journal of Defense Software Engineering, September 1996.
Dart, S., “To Change or Not to Change,” Application Development Trends, Vo1.4, No. 6,

1997, pp. 55–57.
Dart, S., Configuration Management: The Missing Link in Web Engineering, Norwood, MA:

Artech House, 2000.
Estublier, J., “Software Configuration Management: A Roadmap,” Proceedings of the Confer-

ence on the Future of Software Engineering, Limerick, Ireland, 2000, pp.279–289.
Feiler, P. H., “Software Configuration Management: Advances in Software Development Envi-

ronments,” Technical Report, Software Engineering Institute, Carnegie-Mellon Univer-
sity, 1990.

Irish, D. E., “Putting the Horse Before the Cart: Preparing Your Staff for Project Management
Software,” Proc. ACM SIGUCCS 2001, Association of Computing Machinery, 2001,
pp. 59–62.

Kolvik, S., “Introducing Configuration Management in an Organization,” Proc. ICSE ‘96 SCM-6
Workshops (Selected Papers), Berlin, Springer-Verlag, 1996, pp. 220–230.

Moor, S. R., J. Gunne-Braden, and K. J. Gleen, “Enterprise Configuration Management—Con-
trolling Integration Complexity,” BT Technology Journal, Vol. 15, No. 3, July 1997, pp.
61–72.

Tellioğlu, H., and I. Wagner, “Negotiating Boundaries: Configuration Management in Software
Development Teams,” Computer Supported Cooperative Work (CSCW): The Journal of
Collaborative Computing, Vol. 6, No. 4, 1997, pp. 251–274.

Thompson, S. M., “Configuration Management—Keeping it all Together,” BT Technology
Journal, Vol. 15, No. 3, July 1997, pp. 48–60.

6518 Book.indb 356 12/30/14 1:25 PM

357

C h a p t e r 2 3

SCM in Special Circumstances

introduction

SCM can be practiced in a variety of situations. Projects where SCM is practiced
can vary from small, single-person projects to very large and complex projects
involving hundreds of people. Even though SCM concepts are the same irrespec-
tive of the size of the project, factors such as the way in which SCM is practiced,
the procedures followed, the degree of control and presence of formal procedures,
the use of SCM tools, and the level of automation are not the same. They will vary
from project to project.

Also, development environments are changing. Now we have integrated devel-
opment environments (IDEs) and CASE environments. These are quite different
from earlier project environments. Today a software system can be cross-platform
(the software system can span more than one hardware or software platform) and
can involve more than one development environment. The use of CASE tools for
application development is now commonplace. Moreover, today, there are distrib-
uted development environments with development happening in different parts of
the world. This chapter briefly discusses how CM is practiced in these situations.

SCM and project Size

The size and number of people involved in a project can definitely have an impact
on how SCM is practiced in a project. There can be, for example, single-person
projects, a single person managing more than one project, projects involving more
than one person, and projects involving thousands of people. In the case of a single
person doing a project, SCM is not an absolute must, because issues such as com-
munications breakdowns, shared data problems, and simultaneous update prob-
lems are not encountered. Even in this kind of a project, however, practicing SCM
is useful because due to human characteristics such as carelessness, oversight, and
forgetfulness, work that has already been done can get overwritten or the same
problem might be solved more than once, among other possible mishaps.

In addition, the person who is doing the project will not be around forever. So
when a new person takes charge of the project, he or she has to be able to access
the necessary information. So if there is no documentation and no records—and
the only record of what happened to the project is in the other person’s head—then
it will be difficult for the new person to manage the project. Questions such as why
a change was made, what items were changed, and if a certain module is changed

6518 Book.indb 357 12/30/14 1:25 PM

358 SCM in Special Circumstances

which items will be affected will not have answers. To get these answers, the new
person will have to go through all of the programs and hope to get lucky.

So even in the case of small projects where only one person is involved, prac-
ticing SCM is a good idea. Here, there is no need to use an SCM tool and formal
change management procedures with CCB meetings and the like. An informal SCM
system contains information on topics such as changes that have occurred, the rea-
sons for changes, the item dependencies, and versions and releases are documented.
That would be more than enough. If the organization has an SCM tool and if all
the developers have been trained on the tool, then even small projects can benefit
from using an SCM tool.

In the case of larger projects involving many people, SCM must be practiced.
Earlier chapters discuss why practicing SCM is important. It is always advantageous
to automate the various SCM functions using SCM tools, because it will improve
development productivity and reduce errors. In today’s brutally competitive world,
where everyone is fighting for survival and market share, SCM can be used as a
strategic weapon that will give the organization an edge over others that are not
using SCM or that are using it less effectively.

SCM in Very Large projects

The SCM system and management of the SCM system is different in the case of very
large projects. By very large software projects, I mean a project that has more than
100 team members at a time, a project that requires the effort of more than 1,000
human years, a project where a lot of work is subcontracted and there are a large
number of subcontractors, a project that involves the development of an application
for many platforms, a project that is cross-platform, a project that is developed by
more than one geographically distributed team, or a project that is a combination
of any of the above criteria. These are some indicative figures and criteria, and to
qualify as a very large project, the project has to involve a lot of people and must
have millions of lines of code.

Here, the emphasis is not on the complexity or the criticality of the project, but
on the size of the project and project team, the number of groups involved, and other
similar factors. The SCM principles used in these projects are the same as those
used in small projects or in mission-critical projects, but what makes these projects
different is the sheer size and the management and organizational challenges that
such a size poses. Some examples of such systems include database management
systems (a system like Oracle or DB2), ERP systems (something like SAP R/3 or the
PeopleSoft ERP system), and operating systems (Windows, UNIX, MVS). Typically,
these projects will have many modules or subsystems, each of which can function
in a semiautonomous fashion. These independent subsystems may be developed by
different teams from different companies in different geographical locations.

Management of such complex systems is impossible without a good SCM sys-
tem. This is because in projects of such large scale, the chances of all of the classical
problems—communications breakdown, the shared data problem, the simultane-
ous update problem, and the multiple maintenance problem—occurring are very

6518 Book.indb 358 12/30/14 1:25 PM

SCM in Very Large Projects 359

high. CM in these projects is very formal in nature with numerous controls and
procedures. It is practically impossible to do the CM of these projects manually. So
these projects ideally should use a high-end SCM tool.

performance of SCM Tools

The SCM tool used in a very large project should be capable of supporting hun-
dreds of developers and testers with tens of millions of lines of code. The system
should do this without degradation of performance. Accordingly, the tool selection
process must take these performance factors into account. Questions such as how
many people will be using the system concurrently, how much data will have to be
handled, and does the system have to be up around the clock (to support people in
different time zones should be considered during selection, and the implication of
these factors on the performance of the tool must be analyzed. Only that tool that
can take the load without compromising performance should be selected.

implementation Strategy

Chapter 15 explains that large projects use SCM tools that fall into a category called
process-oriented tools. According to Dart [1], these tools include version control
capabilities and at least some of developer-oriented capabilities. These tools have
the ability to automate software flow life cycles, roles, and their responsibilities and
to customize the out-of-the-box process model. These tools provide an integrated
approach to change management where problem tracking is associated with the code.

So in a very large project where formal procedures are to be implemented and
automated, and tools have to carry out more than just version control, these types
of tools will be used. Here the key phrases are process dependency and information
automation and integration. A very large project by its nature requires formalized
and automated procedures, so a tool that is capable of taking care of these things
is an absolute necessity.

During the implementation of the tool, as discussed earlier, it is better to start
with a pilot project. In this case, the pilot project will be a module or subsystem of
the project. Because these kinds of projects will be using a lot of automated tools
like CASE tools, code generators, test data generators, automatic testing tools, and
code analyzers, how the SCM tool will integrate and interact with these tools must
be analyzed and studied. If possible, it is better to automate the information flow
from the other tools used in the project to the SCM tool repository, so that there
is no wasted effort. Suitable interfaces have to be built or bought. In some cases,
however, it might be wise to enter the information manually from the tools used in
the project into the SCM tool repository, because making or buying an interfacing
system could be very costly. So here project management will have to do a cost-
benefit analysis and decide which strategy to adopt.

During pilot project implementation, all of these issues should be addressed,
and solutions should be identified. It is better to choose a module or subsystem that
is representative and contains all potential elements (tools and other complexities)
for the pilot project and face the problems head-on, because doing so will provide

6518 Book.indb 359 12/30/14 1:25 PM

360 SCM in Special Circumstances

much data on how to implement the SCM system and SCM tool in other modules
or subsystems. Accordingly, in the case of very large projects, you should choose
the module that is most difficult and most complex as the pilot because of all of the
difficulties that could be encountered and solved during the pilot project phase itself.

In addition, during the pilot project phase, because the SCM implementation
team, the SCM experts, and the tool vendor’s representatives will be concentrating
on one project, problems may be solved more effectively and efficiently. In very large
projects, it is better to have the SCM system in place from the initial phases onward.
So if the pilot implementation can be done in a simulated environment where all
the tools and other elements representative of the project in question are present,
this will give developers the opportunity to understand the problems, solve them,
and then to implement the SCM system and the tools, in the project from the initial
phase itself. However, the simulated environment that is being created for the pilot
implementation should be a representative model of the actual project environment.

distributed, Concurrent, and parallel development

Very large projects are characterized by their distributed nature where concurrent
and parallel development is commonplace. At any given time, many people will be
working on the same programs or different variants of it. So the SCM tool that is
used in a very large project should be very good at managing variants (branches
that will not be merged) and temporary branches (branches that will be merged).

The merging capabilities of these tools also have to be very good. Any tool that
is used in a very large project should be capable of supporting distributed develop-
ment. Now, development teams work from different continents, creating different
subsystems or modules of a software product. To treat these physically distributed
systems as a single logical entity and to manage them in such a fashion that the
project managers are not bothered with the underlying complexities is a must for a
tool that is used in a very large project.

Change Management

In large projects, the change management activities cannot be handled by a single
change control authority. Accordingly, there will be multiple CCBs and in many
cases multilevel CCBs. Change initiation, change request routing, and change dis-
position can be automated using SCM tools. However, people are needed to make
decisions, so CCB members should be trained to use the technology.

Because there are many CCBs of equal status and priority, there should be a
super CCB (SCCB) that is authorized to resolve conflicts between the multiple CCBs.
The guidelines for the functioning of the CCBs and how to resolve conflicts should
be well-documented, and if required, they can be automated (a rule-based system)
so that the SCM tool can take appropriate actions without human intervention.
For example, you need to consider what to do if there is a tie among the members.
Should the problem be escalated to the higher level CCB, or should the members be
informed about the poll result and asked to vote again or to attend a physical CCB
meeting? These rules can be coded into the system and many procedures automated,

6518 Book.indb 360 12/30/14 1:25 PM

SCM in Very Large Projects 361

thus making the best and most effective use of the CCB member’s time—and reduc-
ing the time in the disposition of CRs.

Status accounting

Status accounting is the function that documents and reports the information related
to CIs to everyone involved in the project. The status accounting function should
also be able to answer ad hoc queries. In a large project, creating and distributing
reports, even the routine reports, as hardcopy is expensive—not to mention that
it is an administrative nightmare. So in this kind of a project it is better to publish
and post these reports on the corporate intranet and inform staff about the fact
that the reports are available via e-mail or any other messaging system that the
project is using.

For ad hoc querying, it is better to assign roles—such as developer, tester, and
manager—and give selective access to the people who fit these roles. For example, a
developer could be given access to query the table that contains information about
the CIs of his or her module, whereas a manager could be given the access to query
any table in the database. This kind of electronic distribution of the status account-
ing information is necessary for a large project, because the other option of having
hardcopies is a big burden on the SCM budget.

System Building

In the case of very large products, system building can take many hours or even
days. Accordingly, the frequency of the builds is important because much time and
money is involved with each build. This points to the need for a build strategy.

There are two types of builds: clean and nonclean. A clean build is the process
of starting with only the source items and then building the entire system step-by-
step from those source items. A nonclean build uses some derived items as inputs for
the build process. For example, in the case of a nonclean build, all subsystems that
were not changed could be used as is for system building, whereas in the case of a
clean build even the subsystems or modules that were not changed would be built
again from the source components. In the case of very large projects, having a clean
build each and every time is neither practical nor needed. The system could be built
using derived components or subsystems that were not changed. This will save a lot
of time, especially during the integration testing and alpha and beta testing phases.

For the final release, a clean build is best. As discussed earlier, we will use SCM
tools in such a large project. The build capabilities of these tools should be adequate
enough to produce accurate and reliable builds.

Skill inventory database

The skill inventory database, detailed in Chapter 15, is an absolute must in a large
project. The two main reasons are that (1) there will be a huge demand for people
to do tasks such as change evaluation, impact analysis, and auditing, and (2) in a
large project, the skills and availability of all the people involved with the project

6518 Book.indb 361 12/30/14 1:25 PM

362 SCM in Special Circumstances

are difficult to remember and should therefore be recorded somewhere. So, the best,
fastest, and easiest method for finding the right people to get the job done is to store
the details about the people in a database.

Training

In a very large project, the SCM training of the team members is a very important
issue. Because these projects span many years, many different people will be involved
with the project. So once the team member training done during the implementa-
tion phase is over, a system should be in place to train new members who join the
project at a later date.

All large projects have induction programs, which the new members have to
undertake. These programs usually give a general idea about the project, the major
components, and the different functions that is sufficient to give users a bird’s-eye
view of the project. This is important, because only if one knows the big picture
can one understand the consequences of his or her actions in a module or subsys-
tem. The SCM and SCM tool training should be a part of the induction program,
so that all the new members will be trained in that also.

Help desks and Other Knowledge-Sharing Systems

As discussed previously, the team in a very large project is transient in nature. Hence,
it is important for all events in a project to be recorded, including how a problem
was identified, how it was fixed, how a bug escaped the testing phase, and what
points developers should be aware of when using a tool. This information should be
captured in a knowledge base or help desk and made available to the team members.

This knowledge-capturing and -sharing function is very important in a very large
project, because the chances of problems recurring and people reinventing the wheel
are greater. If all experiences are documented (maybe using an expert system), much
time can be saved and development productivity improved. Also, these help desks
are invaluable to the technical support teams and system maintenance personnel.

SCM Costs

It is difficult to estimate the cost, effort, time, or size of very large systems with a
high degree of accuracy. Even in small- and medium-sized projects, the hidden costs
of SCM implementation, discussed in Chapter 18, apply. In large projects SCM
implementation costs will be even more difficult to predict because many factors
are difficult to estimate due to project duration. Estimating what the scenario will
be five years down the road is quite difficult.

Being able to foresee the future with unerring accuracy is not a task that is
easily accomplished by people or by machines. Also, the real world does not stand
still while large systems are developed; new products and processes are discovered,
underlying assumptions are invalidated, new laws are passed, and developers learn
new things. So any estimates about SCM implementation and postimplementation

6518 Book.indb 362 12/30/14 1:25 PM

Web Site Management 363

will have to be reevaluated frequently in the case of very large projects, so that the
estimates and budgets can be updated.

Concurrent and parallel development

The days of one-at-a-time modifications to CIs are a thing of the past. Today’s SCM
tools can support parallel branches for concurrent development and variant devel-
opment. In the case of parallel branches that are used for concurrent development,
the sophisticated tools allow more than one user to make modifications to the same
file(s), and then the tool merges those parallel versions. The merging capabilities of
the SCM tools are increasing, and that makes the life of the person doing the merg-
ing a lot easier. Now the tools can compare the different parallel versions against
a common ancestor and highlight the areas where they are different and where
the changes have been made. According to Burrows [2], the capability of modern
merge tools is now so strong that users are tempted to accept the tools’ automatic
resolutions and omit essential testing processes, which is not at all recommended.

Web Site Management

Web design and development is a totally different ballgame from the normal soft-
ware development process. Web sites, to attract visitors and encourage them to come
back, have to change their content and offerings very frequently. An advantage of
having a Web site is providing up-to-the-minute information to users. Accordingly,
managing the changes to a Web site is more difficult than that of a software prod-
uct, because of the rate at which the contents of the Web site changes. It is not only
the contents that change; to make the pages attractive and catchy, elements such as
the presentation styles, the design elements, and the layout are changed very often.

Another factor that makes Web development different from software develop-
ment is the number of CIs that must be managed. Even a medium-sized company’s
Web site will have more than 1,000 pages, each containing various objects and
elements such as downloads, pictures, and movie clips—so we are talking about
thousands of objects. Even though some of the modern full-fledged SCM tools can
handle a huge number of CIs, traditional SCM tools were never designed to manage
this huge number of CIs and, even if they do, it will be at the cost of performance.

Another capability that is required for the management of the Internet sites is
the ability to recreate a Web page as it was on a particular day or time. The rate
at which the contents change is extremely rapid (in many cases almost on a daily
basis)—in fact, in some cases (sites pertaining to, e.g., weather, stocks, and airlines),
the content changes more often than once a minute. As a result, the information
required for the build management tools is phenomenal, and ensuring repeatable
and reliable rebuilds of the thousands of versions of the Web site is quite a chal-
lenge. Consequently, the CM of Web sites and Internet sites requires different skills
than those used for software management. According to Burrows [2], CM support
for Web and particularly intranet pages and their embedded objects is creating an

6518 Book.indb 363 12/30/14 1:25 PM

364 SCM in Special Circumstances

important new market for the vendors of CM tools that, in time, could exceed the
size of the market for managing software development.

SCM in integrated development Environments

An integrated development environment (IDE) is a programming environment inte-
grated into an application. So an IDE is a set of programs that runs from a single
user interface. Some of the most popular IDEs include Visual C++, PowerBuilder,
and Visual Basic.

The advantage of using an IDE is that you can design, develop, test, debug, and
run applications without leaving the development environment. So when using an
IDE, it is quite natural to assume that even for SCM functions one does not have
to leave the development environment. Today’s SCM tools do integrate with IDEs
such as Visual C++, Visual Basic, and PowerBuilder so that developers need not
go outside the IDE for SCM functions. The same is true with CASE tools in which
the SCM tools share information from the CASE repository. Many of today’s SCM
tools integrate seamlessly with the integrated environments, so that they become
part of the environment. Therefore, when carrying out SCM functions, develop-
ers do not have to leave the development environment. Some examples of tools are
Continuus CM integrating with Visual C++, PVCS integrating with PowerBuilder,
and Visual SourceSafe integrating with Microsoft’s IDEs. Thus, these tools make
the CM process in an IDE more intuitive and painless.

In the future, we will see seamless integration (integration without interfaces
and interface packages) of the SCM tools, and IDEs and CASE tools will incor-
porate SCM functionality. Thus the development environment will become truly
integrated. In fact, the day is not far off when SCM tools will supply information
or merge with project management tools, thus enabling seamless information inte-
gration and easier and more efficient project management.

SCM in distributed Environments

Today, the development of a software system is done by many teams distributed
across different parts of the globe. Different teams working from different locations
develop a software product or system. This is an ideal situation for SCM because
lack of control can lead to chaos and result in project failures. With advancements in
telecommunications and networking technologies, distributed computing is becom-
ing easier and easier. The capability to manage distributed development is now being
offered by many tools. As communications and information technology make rapid
strides forward, distributed development is going to be commonplace, and the dis-
tributed development capabilities of SCM tools are going to get better and better.

Today, project teams that are thousands of miles apart can work as if they share
the same office. SCM tools have evolved to incorporate these technologies. Today’s
SCM tools are capable of supporting distributed development, parallel development,
and concurrent development. The capabilities and features of modern SCM tools
are so advanced that users do not have to bother about the complexities involved.

6518 Book.indb 364 12/30/14 1:25 PM

Summary 365

Such systems will manage issues such as networking, communication, security, and
concurrency management.

SCM and Case Tools

CASE tools provide automated methods for designing and documenting traditional
structured programming techniques. The ultimate goal of CASE is to provide a
language for describing the overall system that is sufficient to generate all the neces-
sary programs. Thus, a CASE tool is a software package that is used for developing
an information system. It is used in all phases of software development: analysis,
design, programming, and testing. For example, data dictionaries and program-
ming tools aid in the analysis and design phase, while application generators help
speed the programming phase. Automated testing tools and test data generators
help in the testing phase.

Most CASE tools store project information in their repositories, and they use
this information for processes such as code generation, test plan creation, and test
data generation. Because a CASE tool uses the information from its repository to
generate application codes, the information stored in a CASE tool’s repository is
very detailed. For example, many CASE tools use the entity-relation (ER) models
as a starting point for analysis. So their repositories will contain details including
the various entities and their attributes. These repositories also contain information
about the interdependencies of the various objects and programs, because this type
of information is required for application generation and testing.

We have seen that SCM systems also use the same information as CASE tools
(although maybe not to the same level of detail) to function. So a CASE tool’s reposi-
tory contains the information that is needed for an SCM system. Many CASE tools
have rudimentary SCM functions built into them. For example, CASE tools can
manage changes and keep an audit trail of modifications to the changes to an item.

CASE tools do not have the full functionality of SCM tools, but they do pro-
vide the inputs that are required by the SCM system. Thus, if CASE tools and SCM
systems can be integrated, so that the SCM systems draw the information from the
CASE tools and then perform the SCM functions, much time and effort that would
otherwise be spent on information gathering can be saved. The ideal solution to
this scenario is that of a CASE tool that is so tightly integrated with an SCM tool
that they share the same repository. Hence, users could perform all SCM functions
without leaving the CASE environment.

Summary

This chapter examines some of the special situations where SCM is practiced. The
basic SCM concepts are the same irrespective of the situation in which it is used.
Only the application of these concepts varies. Factors such as the degree of formal-
ism, the presence or absence of certain procedures, and the structure of the SCM
organization will vary depending on the situation. As technology takes rapid strides
and new and more efficient methods of developing software emerge and become

6518 Book.indb 365 12/30/14 1:25 PM

366 SCM in Special Circumstances

popular, the way in which SCM is practiced is also changing. SCM tools are also
evolving to support these new development paradigms and methodologies.

References

[1] Dart, S., “Not All Tools Are Created Equal,” Application Development Trends, Vol. 3,
No. 9, 1996, pp. 45–48.

[2] Burrows, C., “Configuration Management: Coming of Age in the Year 2000,” Crosstalk:
The Journal of Defense Software Engineering, Mar. 1999, pp. 12–16.

Selected Bibliography

Babich, W. A., Software Configuration Management: Coordination for Team Productivity,
Boston, MA: Addison Wesley, 1986.

Ben-Menachem, M., Software Configuration Guidebook, London: McGraw-Hill International,
1994.

Berlack, H. R., Software Configuration Management, New York: John Wiley & Sons, 1992.
Bersoff, E. H., V. D. Henderson, and S. G. Siegel, Software Configuration Management: An

Investment in Product Integrity, Englewood Cliffs, NJ: Prentice-Hall, 1980.
Burrows, C., and I. Wesley, Ovum Evaluates: Configuration Management, London: Ovum

Limited, 1998.
Conradi, R. (ed.), Software Configuration Management: ICSE’97 SCM-7 Workshop Proc.,

Berlin: Springer-Verlag, 1997.
Denning, D. E., Information Warfare and Security, Reading, MA: Addison-Wesley Longman,

1999.
Heiman, R. V., S. Garone, and S. D. Hendrick, “Development Life-Cycle Management: 1999

Worldwide Markets and Trends,” Technical Report, Framingham, MA: International
Data Corporation, June 1999.

Magnusson, B. (ed.), System Configuration Management: ECOOP’98 SCM-8 Symp. Proc.,
Berlin: Springer-Verlag, 1998.

Pressman, R. S., Software Engineering: A Practitioner’s Approach (8th Edition), New York:
McGraw-Hill, 2014.

Sommerville, I., Software Engineering (9th Edition), Reading, MA: Addison-Wesley Publish-
ing Company, 2011.

Whitgift, D., Methods and Tools for Software Configuration Management, Chichester, England:
John Wiley & Sons, 1991.

6518 Book.indb 366 12/30/14 1:25 PM

367

a p p e n d i x a

SCM Resources on the Internet

Organizations and institutes

American National Standards Institute (ANSI) (http://www.ansi.org)

Association for Computing Machinery (http://www.acm.org)

Association for Configuration and Data Management (ACDM) (http://www
.acdm.org/)

Configuration Management Specialist Group of British Computer Society
(CMSG) Home Page (http://www.bcs-cmsg.org.uk/)

Configuration Management, Inc. (CMI) (http://www.cmi.com/)

Institute of Configuration Management—The home of CM II (http://www
.icmhq.com/index.html)

Institute of Electrical and Electronics Engineers, Inc. (IEEE) (http://www
.ieee.org)

International Organization for Standardization (ISO) (http://www.iso.ch/)

International Society for Configuration Management (ISCM) (http://www
.cmtf.com/society.html)

National Aeronautics & Space Administration (NASA) (http://www.nasa
.gov)

Software Engineering Institute (http://www.sei.cmu.edu/l)

Software Technology Support Center (STSC) Home Page (http://www.stsc
.hill.af.mil/home.asp)

resource pages

Bob Aiello’s CM Best Practices Website (http://cmbestpractices.com/)

CM Crossroads: The Configuration Management Community (http://www
.cmcrossroads.com/)

SCM Links by Mária Bieliková (http://www2.fiit.stuba.sk/~bielik/scm/links
.html)

Steve Easterbrook’s CM Resource Guide On-Line (https://www.cmpic.com/
cmresourceguide.htm)

6518 Book.indb 367 12/30/14 1:25 PM

368 SCM Resources on the Internet

The Configuration Management Process Improvement Center (https://www
.cmpic.com/index.html)

Commercial research Organizations

Forrester Research (http://www.forrester.com/)

International Data Corporation (IDC) (http://www.idc.com)

Ovum Ltd. (http://www.ovum.com)

digital/On-Line Libraries

ACM Digital Library (http://dl.acm.org/)

IEEE Computer Society Digital Library (http://www.computer.org/csdl)

IEEE Standards Association (http://standards.ieee.org/)

IEEE Xplore Digital Library (http://ieeexplore.ieee.org/Xplore/home.jsp)

Magazines and periodicals

ACM Transactions on Software Engineering and Methodology (http://tosem
.acm.org/)

Application Development Trends (http://www.adtmag.com/)

Communications of the ACM (http://cacm.acm.org/)

Computing in Science & Engineering (http://www.computer.org/portal/web/
computingnow/cise)

Computing Reviews (http://www.computingreviews.com/)

Cross Talk Home (http://www.crosstalkonline.org/)

Cross Talk Magazine (http://www.crosstalkonline.org/)

IEEE Annals of the History of Computing (http://www.computer.org/portal/
web/computingnow/annals)

IEEE Computer (http://www.computer.org/portal/web/computingnow/
computer)

IEEE IT Professional (http://www.computer.org/portal/web/computingnow/
itpro)

IEEE Software (http://www.computer.org/software/)

IEEE Spectrum (http://www.spectrum.ieee.org/)

IEEE Transactions on Computers (http://www.computer.org/portal/web/tc)

IEEE Transactions on Software Engineering (http://www.computer.org/
portal/web/tse)

Journal of the ACM (http://jacm.acm.org/)

6518 Book.indb 368 12/30/14 1:25 PM

SCM Resources on the Internet 369

General Sites

comp.software.config-mgmt FAQ: Configuration Management Tools Sum-
mary (http://www.faqs.org/faqs/sw-config-mgmt/cm-tools/)

comp.software.config-mgmt FAQ: General Questions (http://www.faqs.org/
faqs/sw-config-mgmt/faq/)

comp.software.config-mgmt FAQ: Problem Management Tools Summary
(http://www.faqs.org/faqs/sw-config-mgmt/prob-mgt-tools/)

Department of Defense Single Stock Point (DODSSP) for Military Specifica-
tions, Standards and Related Publications (http://dodssp.daps.dla.mil/)

Hal Render’s Bibliography on Software Configuration Management (http://
liinwww.ira.uka.de/bibliography/SE/scm.html)

Ken Rigby’s Configuration Management Glossary (http://www.personal.kent
.edu/~plucasst/NASAGRC/glennglossary.htm)

Ken Rigby’s Configuration Management Plan—Model Text (http://ncsx.pppl
.gov/SystemsEngineering/Plans_Procedures/NCSX_Mgmt_Plans/CMP/
Archives/CONFIGURATION%20MANAGEMENT%20PLAN%20
-%20Model%20text.htm)

List of the 20 most popular CM standards by Software Engineering Process
Technology (SEPT) (http://www.12207.com/test.htm)

Military Standards MIL-STD, Military Specification MIL-SPEC (http://
www.everyspec.com/)

NASA Software Configuration Management Guidebook (http://ntrs.nasa
.gov/archive/nasa/casi.ntrs.nasa.gov/19980228473.pdf)

NASA’s Software Assurance Technology Center (SATC) (http://satc.gsfc.nasa
.gov/)

Software Configuration Management Index (http://www.faqs.org/faqs/
sw-config-mgmt/)

Major SCM Tools

AccuRev/CM (http://www.accurev.com/)

AllChange (http://www.intasoft.net/default.asp)

assyst (http://www.axiossystems.com/en/solutions/itsm/assyst-itsm.html)

CA Harvest Software Change Manager (http://www.ca.com/us/devcenter/ca-
harvest-software-change-manager.aspx)

ChangeMan SSM(http://www.serena.com/index.php/en/products/mainframe/
changeman-ssm/)

ChangeMan ZMF (http://www.serena.com/index.php/en/products/
mainframe/changeman-zmf/)

ClearCase (http://www-03.ibm.com/software/products/en/clearcase)

6518 Book.indb 369 12/30/14 1:25 PM

370 SCM Resources on the Internet

Dimensions CM (http://www.serena.com/index.php/en/products/
featured-products/dimensions-cm/)

ISPW (http://www.ispw.com/)

PTC Integrity (http://www.mks.com/platform/our-product)

Rational Synergy (http://www-03.ibm.com/software/products/en/ratisyne)

Razor (http://www.visible.com/Products/Razor/)

Spectrum SCM (http://www.spectrumscm.com/)

StartTeam (http://www.borland.com/products/starteam/)

TRUEChange (http://www.mccabe.com/cm.htm)

Note: The preceding list contains only the popular high-end SCM tools. For a com-
prehensive list and comparison of the tools, users should check the following sites,
which are regularly updated:

•	 http://en.wikipedia.org/wiki/List_of_revision_control_software
•	 http://en.wikipedia.org/wiki/Comparison_of_revision_control_software
•	 http://en.wikipedia.org/wiki/Comparison_of_open_source_configuration_

management_software

6518 Book.indb 370 12/30/14 1:25 PM

371

a p p e n d i x B

SCM Bibliography

Abu-Shakra, M., and G. L. Fisher, “Multi-grain Version Control in the Historian System,” System
Configuration Management: ECOOP’98 SCM-8 Symposium Proceedings, Magnusson,
B. (ed.), Berlin: Springer-Verlag, 1998, pp. 46–56.

ACM Staff (ed.), Proceedings of the 3rd International Workshop on Software Configuration
Management, New York: Association for Computing Machinery, 1991.

ACM Staff (ed.), Second International Workshop: Software Configuration Management Pro-
ceedings, New York: Association for Computing Machinery, 1989.

Adams, C., “Why Can’t I Buy an SCM Tool?” Software Configuration Management: ICSE SCM
4 and SCM 5 Workshops, (Selected Papers), Estublier, J. (ed.), Berlin: Springer-Verlag,
1995, pp. 278–281.

Adams, P., and M. Solomon, “An Overview of the CAPITAL Software Development Environ-
ment,” Software Configuration Management: ICSE SCM 4 and SCM 5 Workshops,
(Selected Papers), Estublier, J. (ed.), Berlin: Springer-Verlag, 1995, pp. 1–34.

Adams, R. J., and S. Eslinger, “Lessons Learned From Using COTS Software on Space Systems,”
Crosstalk: The Journal of Defense Software Engineering, June 2001, pp. 25–30.

Aiello, B., and L. Sachs, Software Configuration Management Best Practices, Upper Saddle
River, NJ: Addison-Wesley, 2011.

Alain Abran, A., and J. W. Moore (eds.), SWEBOK: Guide to the Software Engineering Body
of Knowledge (Trial Version), Los Alamitos, California: IEEE Computer Society, 2001.

Alder, P. S., and A. Shenhar, “Adapting Your Technological Base: The Organizational Chal-
lenge,” Sloan Management Review, Fall 1990, pp. 25–37.

Alder, R. S., “Today’s Software Complexity Demands Good CM,” Crosstalk: The Journal of
Defense Software Engineering, February 1998, p. 2.

Allen, L., et al., “ClearClase MulitSite: Supporting Geographically Distributed Software Devel-
opment,” Software Configuration Management: ICSE SCM 4 and SCM 5 Workshops,
(Selected Papers), Estublier, J. (ed.), Berlin: Springer-Verlag, 1995, pp. 194–214.

Ambriola, V., and L. Bendix, “Object-Oriented Configuration Control,” Second International
Workshop: Software Configuration Management Proceedings, Princeton, NJ, October
1989, ACM Staff (ed.), New York: Association for Computing Machinery, 1989, pp.
135–136.

Andriole, S. J., Managing Systems Requirements: Methods, Tools, and Cases, New York:
McGraw-Hill Companies, Inc., 1996.

Angstadt, B.L., “SCM: More than Support and Control,” Crosstalk: The Journal of Defense
Software Engineering, March 2000, pp. 26–27.

ANSI/IEEE Std-1028-1988-Standard for Software Reviews and Audits, 1988.
ANSI/IEEE Std-1042-1987–IEEE Guide to Software Configuration Management, 1987.
ANSI/IEEE Std-730.1-1995–IEEE Guide for Software Quality Assurance Planning, 1995
ANSI/IEEE Std-730-1998–IEEE Standard for Software Quality Assurance Plans, 1998.
Aquilino, D., et al., “Supporting Reuse and Configuration: A Port Based SCM Model,” Pro-

ceedings of the 3rd International Workshop on Software Configuration Management,

6518 Book.indb 371 12/30/14 1:25 PM

372 SCM Bibliography

Trondheim, Norway, June 1991, ACM Staff (ed.), New York: Association for Computing
Machinery, 1991, pp. 62–67.

Asklund, U., and B. Magnusson, “A Case-study of Configuration Management with ClearCase
in an Industrial Environment,” Software Configuration Management: ICSE’97 SCM-7
Workshop Proceedings, Boston, MA, May 1997, Conradi, R., (ed.), Berlin: Springer-
Verlag, 1997, pp. 201–221.

Atkins, D. L., “Version Sensitive Editing Change History as a Programming Tool,” System
Configuration Management: ECOOP ‘98 SCM-8 Symposium Proceedings, Magnusson,
B. (ed.), Berlin: Springer-Verlag, 1998, pp. 146–157.

Auer, A., and J. Taramaa, “Experience Report on the Maturity of Configuration Management of
Embedded Software,” Software Configuration Management: ICSE’96 SCM-6 Workshop,
Berlin, Germany, March 1996, (Selected Papers), Sommerville, I., (Ed), Berlin: Springer-
Verlag, 1996, pp. 187–197.

Ayer, S., and F. S. Patrinostro, Documenting the Software Development Process: A Handbook
of Structured Techniques, New York: McGraw-Hill, 1992.

Ayer, S., and F. S. Patrinostro, Software Configuration Management: Identification, Account-
ing, Control, and Management, New York: McGraw-Hill,1992.

Baalbergen, E. H., K. Verstoep, and A. S. Tanenbaum, “On the Design of the Amoeba Configu-
ration Manager,” Second International Workshop: Software Configuration Management
Proceedings, Princeton, NJ, October 1989, ACM Staff (ed.), New York: Association for
Computing Machinery, 1989, pp. 15–22.

Babich, W. A., Software Configuration Management: Coordination For Team Productivity,
Boston, MA: Addison Wesley, 1986.

Bays, M. E., Software Release Methodology, NJ: Prentice Hall PTR, 1999.

Belanger, D., D. Korn, and H. Rao, “Infrastructure for Wide-area Software Development,” Soft-
ware Configuration Management: ICSE’96 SCM-6 Workshop, Berlin, Germany, March
1996, (Selected Papers), Sommerville, I., (ed), Berlin: Springer-Verlag, 1996, pp. 154–165.

Bendix, L., “Fully Supported Recursive Workspaces,” Software Configuration Management:
ICSE’96 SCM-6 Workshop, Berlin, Germany, March 1996, (Selected Papers), Sommer-
ville, I., (ed), Berlin: Springer-Verlag, 1996, pp. 256–261.

Bendix, L., et al., “CoEd—A Tool for Versioning of Hierarchical Documents,” System Configu-
ration Management: ECOOP’98 SCM-8 Symposium Proceedings, Magnusson, B. (ed.),
Berlin: Springer-Verlag, 1998, pp. 174–187.

Ben-Menachem, M., Software Configuration Guidebook, London: McGraw-Hill International
(UK) Limited, 1994.

Berczuk, S., and Appleton, B., Software Configuration Management Patterns: Effective Team-
work, Practical Integration, Boston, MA: Addison-Wesley, 2003.

Berlack, H. R., “Evaluation and Selection of Automated Configuration Management Tools,”
Crosstalk: The Journal of Defense Software Engineering, November 1995.

Berlack, H. R., Software Configuration Management, New York: John Wiley & Sons, Inc., 1992.

Berrada, K., F. Lopez, and R. Minot, “VMCM, A PCTE Based Version and Configuration
Management System,” Proceedings of the 3rd International Workshop on Software Con-
figuration Management, Trondheim, Norway, June 1991, ACM Staff (ed.), New York:
Association for Computing Machinery, 1991, pp. 43–52.

Bersoff, E. H., V. D. Henderson, and S. G. Siegel, Software Configuration Management, An
Investment in Product Integrity, Englewood Cliffs, NJ: Prentice-Hall, 1980.

Bielikova, M., and P. Navrat, “Modeling Versioned Hypertext Documents,” System Configu-
ration Management: ECOOP’98 SCM-8 Symposium Proceedings, Magnusson, B. (ed.),
Berlin: Springer-Verlag, 1998, pp. 188–197.

Black, R., Managing the Testing Process, Redmond, Washington: Microsoft Press, 1999.

Blanchard, B. S., System Engineering Management, New York: John Wiley & Sons, 1991.

6518 Book.indb 372 12/30/14 1:25 PM

SCM Bibliography 373

Bochenski, B., “Managing It All: Good Management Boosts C/S Success,” Software Magazine
Client/Server Computing Special Edition, Nov. 1993, p. 98.

Boehm, B. W., “A Spiral Model for Software Development and Enhancement,” IEEE Computer,
Vol.21, No.5, 1988, pp. 61–72.

Boehm, B. W., and P.N. Papaccio, “Understanding and Controlling Software Costs,” IEEE
Transactions on Software Engineering, Vol. 14, No.10, 1988, pp. 1462–477.

Bohem, B. W., Software Engineering Economics, Englewood Cliffs, NJ: Prentice-Hall, 1981.

Bouldin, B. M., Agents of Change: Managing the Introduction of Automated Tools, Englewood
Cliffs: N.J., Yourdon Press, 1989.

Bounds, N. M., and S. Dart, “CM Plans: The Beginning to your CM Solution,” Technical Report,
Software Engineering Institute, Carnegie Mellon University, 1998.

Brereton, P., and P. Singleton, “Deductive Software Building,” Software Configuration Manage-
ment: ICSE SCM 4 and SCM 5 Workshops, (Selected Papers), Estublier, J. (ed.), Berlin:
Springer-Verlag, 1995, pp. 81–87.

Brooks F. P., “No Silver Bullet: Essence and Accidents of Software Engineering,” IEEE Com-
puter, Vol.20, No.4, 1987, pp.10–19.

Brooks, F. P., The Mythical Man-Month, New York: Addison Wesley Longman, Inc., 1995.

Brown, A., et al., “The State of Automated Configuration Management,” Technical Report,
Software Engineering Institute, Carnegie Mellon University, 1991.

Brown, W. J., Antipatterns and Patterns in Software Configuration Management, New York:
John Wiley & Sons, Inc., 1999.

Buckle, J. K., Software Configuration Management, Basingstoke: Macmillan, 1982.

Buckley, F. J., Implementing Configuration Management: Hardware, Software, and Firmware,
Los Alamitos, Calif.: IEEE Computer Society Press, 1996.

Buffenbarger, J., “Syntactic Software Merging,” Software Configuration Management: ICSE
SCM 4 and SCM 5 Workshops, (Selected Papers), Estublier, J. (ed.), Berlin: Springer-
Verlag, 1995, pp. 153–172.

Buffenbarger, J., and K. Gruell, “What Have You Done for Me Lately? (Branches, Merges and
Change Logs),” Software Configuration Management: ICSE’97 SCM-7 Workshop Pro-
ceedings, Boston, MA, May 1997, Conradi, R., (ed.), Berlin: Springer-Verlag, 1997, pp.
18–24.

Burrows, C., “Configuration Management: Coming of Age in the Year 2000,” Crosstalk: The
Journal of Defense Software Engineering, March 1999, pp. 12–16.

Burrows, C., and I. Wesley, Ovum Evaluates: Configuration Management, London: Ovum
Limited, 1998.

Burrows, C., S. Dart, and G. W. George, Ovum Evaluates: Software Configuration Manage-
ment, London: Ovum Limited, 1996.

Burton, T., “Software Configuration Management Helps Solve Year 2000 Change Integration
Obstacles,” Crosstalk: The Journal of Defense Software Engineering, January 1998, pp.
7–8.

Butler, T., et al., “Software Configuration Management: A Discipline with Added Value,” Cross-
talk: The Journal of Defense Software Engineering, July 2001, pp. 4–8.

Cagan, M., and D. W. Weber, “Task-Based Software Configuration Management: Support for
‘Change Sets’ in Continuus/CM,” Technical Report, Continuus Software Corporation,
1996.

Cagan, M., “Untangling Configuration Management,” Software Configuration Management:
ICSE SCM 4 and SCM 5 Workshops, (Selected Papers), Estublier, J. (ed.), Berlin: Springer-
Verlag, 1995, pp. 35–52.

Caputo, K., CMM Implementation Guide, Reading, MA: Addison-Wesley Publishing Com-
pany, 1998.

6518 Book.indb 373 12/30/14 1:25 PM

374 SCM Bibliography

Casavecchia, D. E., “Reality Configuration Management,” Crosstalk: The Journal of Defense
Software Engineering, November 2002, pp. 17–21.

Cave W. C., and G. W. Maymon, Software Lifecycle Management: The Incremental Method,
Basingstoke: Macmillan, 1984.

Choi, S. C., and W. S. Scacchi, “Assuring the Correctness of Configured Software Descriptions,”
Second International Workshop: Software Configuration Management Proceedings,
Princeton, NJ, October 1989, ACM Staff (ed.), New York: Association for Computing
Machinery, 1989, pp. 66–75.

Chris, A. “Why Can’t I Buy an SCM Tool?” Software Configuration Management: ICSE SCM
4 and SCM 5 Workshops, (Selected Papers), Estublier, J. (ed.), Berlin: Springer-Verlag,
1995, pp. 278–281.

Christensen, A., and T. Egge, “Store—A System for Handling Third-Party Applications in a
Heterogeneous Computer Environment,” Software Configuration Management: ICSE
SCM 4 and SCM 5 Workshops, (Selected Papers), Estublier, J. (ed.), Berlin: Springer-
Verlag, 1995, pp. 263–276.

Christensen, H. B., “Experiences with Architectural Software Configuration Management in
Ragnarok,” System Configuration Management: ECOOP’98 SCM-8 Symposium Pro-
ceedings, Magnusson, B. (ed.), Berlin: Springer-Verlag, 1998, pp. 67–74.

Ci, J. X., et al., “ScmEngine: A Distributed Software Configuration Management Environment on
X.500,” Software Configuration Management: ICSE’97 SCM-7 Workshop Proceedings,
Boston, MA, May 1997, Conradi, R., (ed.), Berlin: Springer-Verlag, 1997, pp. 108–127.

Clemm, G. M., “Replacing Version-Control with Job-Control,” Second International Work-
shop: Software Configuration Management Proceedings, Princeton, NJ, October 1989,
ACM Staff (ed.), New York: Association for Computing Machinery, 1989, pp. 162–169.

Clemm, G. M., “The Odin System,” Software Configuration Management: ICSE SCM 4 and
SCM 5 Workshops, (Selected Papers), Estublier, J. (ed.), Berlin: Springer-Verlag, 1995,
pp. 241–262.

Coallier, F., “International Standardization in Software and Systems Engineering,” Crosstalk:
The Journal of Defense Software Engineering, February 2003, pp. 18–23.

Compton, S. B., and Conner, G. R., Configuration Management for Software, New York: Van
Nostrand Reinhold, 1994.

Compton, S. B., and G. R. Conner, Configuration Management for Software, New York: Van
Nostrand Reinhold, 1994.

Conradi, R., (ed.), Software Configuration Management: ICSE’97 SCM-7 Workshop Proceed-
ings, Berlin: Springer-Verlag, 1997.

Conradi, R., and B. Westfechtel, “Configuring Versioned Software Products,” Software Configu-
ration Management: ICSE’96 SCM-6 Workshop, Berlin, Germany, March 1996, (Selected
Papers), Sommerville, I., (ed), Berlin: Springer-Verlag, 1996, pp. 88–109.

Conradi, R., and B. Westfechtel, “Towards a Uniform Version Model for Software Configuration
Management,” Software Configuration Management: ICSE’97 SCM-7 Workshop Proceed-
ings, Boston, MA, May 1997, Conradi, R., (ed.), Berlin: Springer-Verlag, 1997, pp. 1–17.

Conradi, R., and C. R. Malm, “Cooperating Transactions against the EPOS Database,” Pro-
ceedings of the 3rd International Workshop on Software Configuration Management,
Trondheim, Norway, June 1991, ACM Staff (ed.), New York: Association for Computing
Machinery, 1991, pp. 98–101.

Continuus Software Corporation, “Change Management for Software Development,” Continuus
Software Corporation, 1998.

Continuus Software Corporation, “Distributed Code Management for Team Engineering,”
Continuus Software Corporation, 1998.

Continuus Software Corporation, “Problem Tracking and Task Management for Team Engi-
neering,” Continuus Software Corporation, 1998.

6518 Book.indb 374 12/30/14 1:25 PM

SCM Bibliography 375

Continuus Software Corporation, “Software Configuration Management for Team Engineer-
ing,” Continuus Software Corporation, 1998.

Continuus Software Corporation, “Task-Based Configuration Management: A New Genera-
tion Of Software Configuration Management,” Continuus Software Corporation, 1997.

Cook, D. A., “Laws of Software Motion,” Crosstalk: The Journal of Defense Software Engi-
neering, February 2004, pp. 31.

Cook, D.A., “Software Process Improvement–A Good Idea for Other People,” Crosstalk: The
Journal of Defense Software Engineering, April 2004, p. 31.

Crnkovic, I., “Experience of using a Simple SCM Tool in a Complex Development Environment,”
Software Configuration Management: ICSE’96 SCM-6 Workshop, Berlin, Germany, March
1996, (Selected Papers), Sommerville, I., (ed), Berlin: Springer-Verlag, 1996, pp. 262–263.

Crnkovic, I., “Experience with Change-Oriented SCM Tool,” Software Configuration Man-
agement: ICSE’97 SCM-7 Workshop Proceedings, Boston, MA, May 1997, Conradi, R.,
(ed.), Berlin: Springer-Verlag, 1997, pp. 222–234.

Crnkovic, I., and P. Willfor, “Change Measurements in an SCM Process,” System Configuration
Management: ECOOP’98 SCM-8 Symposium Proceedings, Magnusson, B. (ed.), Berlin:
Springer-Verlag, 1998, pp. 26–32.

Daniels, M. A., Principles of Configuration Management, Annandale, VA: Advanced Applica-
tion Consultants Inc., 1985.

Dart, S., “Content Change Management: Problems for Web Systems,” Crosstalk: The Journal
of Defense Software Engineering, January 2000, pp. 1–7.

Dart, S., “Achieving the Best Possible Configuration Management Solution,” Crosstalk: The
Journal of Defense Software Engineering, September 1996.

Dart, S., “Adopting an Automated Configuration Management Solution,” Technical Paper,
STC’94 (Software Technology Center), Utah, 12 April, 1994.

Dart, S., “Best Practice for a CM Solution,” Software Configuration Management: ICSE’96
SCM-6 Workshop, Berlin, Germany, March 1996, (Selected Papers), Sommerville, I., (Ed),
Berlin: Springer-Verlag, 1996, pp. 239–255.

Dart, S., “Concepts in Configuration Management Systems,” Proceedings of the 3rd Interna-
tional Workshop on Software Configuration Management, Trondheim, Norway, June
1991, ACM Staff (ed.), New York: Association for Computing Machinery, 1991, pp. 1–18.

Dart, S., “Concepts in Configuration Management Systems,” Technical Report, Software Engi-
neering Institute, Carnegie-Mellon University, 1994.

Dart, S., “Configuration Management Bibliography,” Technical Report, Software Engineering
Institute, Carnegie Mellon University, 1992.

Dart, S., “Containing the Web Crisis Using Configuration Management,” Web Engineering
Workshop at the Conference on Software Engineering (ICSE’99), May 16–17, 1999, Los
Angeles, USA.

Dart, S., “Content Change Management: Problems for Web Systems” International Symposium
on System Configuration Management SCM9, Toulouse France, September 5–7, 1999.

Dart, S., “Not All Tools are Created Equal,” Application Development Trends, Vol.3, No. 9,
1996, pp. 45–48.

Dart, S., “Parallels in Computer-Aided Design Framework and Software De-velopment Envi-
ronment Efforts,” Technical Report, Software Engineering Institute, Carnegie-Mellon
University, 1994.

Dart, S., “Past, Present and Future of CM Systems,” Technical Report, Software Engineering
Institute, Carnegie-Mellon University, 1992.

Dart, S., “Spectrum of Functionality in Configuration Management Systems,” Technical Report,
Software Engineering Institute, Carnegie-Mellon University, 1990.

6518 Book.indb 375 12/30/14 1:25 PM

376 SCM Bibliography

Dart, S., “The Agony and Ecstasy of Configuration Management (Abstract),” System Configu-
ration Management: ECOOP’98 SCM-8 Symposium Proceedings, Magnusson, B. (ed.),
Berlin: Springer-Verlag, 1998, pp. 204–205.

Dart, S., “Tool Configuration Assistant,” Second International Workshop: Software Configura-
tion Management Proceedings, Princeton, NJ, October 1989, ACM Staff (ed.), New York:
Association for Computing Machinery, 1989, pp. 110–113.

Dart, S., and J. Krasnov, “Experiences in Risk Mitigation with Configuration Management,”
4th SEI Risk Conference, November, 1995.

Dart, S., Configuration Management: The Missing Link in Web Engineering, Norwood, MA:
Artech House, 2000.

Dart, S., To Change or Not to Change, Application Development Trends, Vol. 4, No. 6, 1997,
pp. 55–57.

Dart, S., “WebCrisis.Com: Inability to Maintain,” Software Magazine, September 1999.

Davis, A., and P. Sitaram, “A Concurrent Process Model for Software Development,” Software
Engineering Notes, Vol.19, No.2, pp. 38–51.

Davis, A. M., 201 Principles of Software Development, New York: McGraw-Hill, Inc., 1995.

Dehforooz, A., and F. J. Hudson, Software Engineering Fundamentals, New York: Oxford
University Press, Inc., 1996.

DeMillo, R. A., et al., Software Testing and Evaluation, The Benjamin Cummings Publishing
Company, Inc., 1987.

Deustsch, M. S., Software Verification and Validation: Realistic Project Approaches, Englewood
Cliffs, NJ: Prentice Hall, 1982.

Dinsart, A., et al., “Object Derivation and Validation from a Data Base Definition,” Second
International Workshop: Software Configuration Management Proceedings, Princeton,
NJ, October 1989, ACM Staff (ed.), New York: Association for Computing Machinery,
1989, pp. 170–178.

Dix, A., T. Rodden, and I. Sommerville, “Modeling the Sharing of Versions,” Software Configu-
ration Management: ICSE’96 SCM-6 Workshop, Berlin, Germany, March 1996, (Selected
Papers), Sommerville, I., (Ed), Berlin: Springer-Verlag, 1996, pp. 282–290.

DOD-STD-2167A–Defense System Software Development, 1988.

DOD-STD-2168–Defense System Software Quality Program, 1988.

Donald, R., D. R. Michels, and D. Bollinger, “Transitioning From SA-CMM to CMMI in the
Special Operations Forces Systems Program Office,” Crosstalk: The Journal of Defense
Software Engineering, February 2002, pp. 12–14.

Donaldson, S. E., and S. G. Siegel, Cultivating Successful Software Development: A Practitio-
ner’s View, Upper Saddle River, NJ: Prentice Hall PTR, 1997.

Dyer, M., The Cleanroom Approach to Quality Software Development, New York: John Wiley
& Sons, 1992.

Eggerman, W. V., Configuration Management Handbook, Blue Ridge Summit, PA: TAB Books,
1990.

Eidnes, H., D. O. Hallsteinsen, and D. H. Wanvik, “Separate Compilation in CHIPSY,” Second
International Workshop: Software Configuration Management Proceedings, Princeton,
NJ, October 1989, ACM Staff (ed.), New York: Association for Computing Machinery,
1989, pp. 42–45.

Eilfield, P., “Configuration Mangement as “Gluware” for Development of Client/Server Appli-
cations on Heterogeneous and Distributed Environments,” Software Configuration Man-
agement: ICSE’96 SCM-6 Workshop, Berlin, Germany, March 1996, (Selected Papers),
Sommerville, I., (Ed), Berlin: Springer-Verlag, 1996, pp. 264–271.

Estublier, J. (ed.), “System Configuration Management,” 9th International Symposium, SCM-9
Toulouse, France, September 5–7, 1999 Proceedings, Berlin: Springer-Verlag, 1999.

6518 Book.indb 376 12/30/14 1:25 PM

SCM Bibliography 377

Estublier, J. (ed.), Software Configuration Management: ICSE SCM 4 and SCM 5 Workshops,
(Selected Papers), Berlin: Springer-Verlag, 1995.

Estublier, J., “Workspace Management in Software Engineering Environments,” Software
Configuration Management: ICSE’96 SCM-6 Workshop, Berlin, Germany, March 1996,
(Selected Papers), Sommerville, I., (Ed), Berlin: Springer-Verlag, 1996, pp. 127–138.

Estublier, J., and R. Casallas, “Three Dimensional Versioning,” Software Configuration Man-
agement: ICSE SCM 4 and SCM 5 Workshops, (Selected Papers), Estublier, J. (ed.), Berlin:
Springer-Verlag, 1995, pp. 118–135.

Estublier, J., J. Favre, and P. Morat, “Toward SCM/PDM Integration?” System Configuration
Management: ECOOP’98 SCM-8 Symposium Proceedings, Magnusson, B. (ed.), Berlin:
Springer-Verlag, 1998, pp. 75–94.

Estublier, J., S, Dami, and M. Amiour, “High Level Process Modeling for SCM Systems,” Soft-
ware Configuration Management: ICSE’97 SCM-7 Workshop Proceedings, Boston, MA,
May 1997, Conradi, R., (ed.), Berlin: Springer-Verlag, 1997, pp. 81–97.

Evans, M. W., A. M., Abela, and T. Beltz, “Seven Characteristics of Dysfunctional Software
Projects,” Crosstalk: The Journal of Defense Software Engineering, April 2002, pp. 16–20.

Evans, M. W., Productive Software Test Management, Chichester, England: John Wiley &
Sons, Inc., 1984.

Falkerngerg, B., “Configuration Management for a Large (SW) Development,” Second Inter-
national Workshop: Software Configuration Management Proceedings, Princeton, NJ,
October 1989, ACM Staff (ed.), New York: Association for Computing Machinery, 1989,
pp. 34–37.

Feiler P. H., “Software Configuration Management: Advances in Software Development Envi-
ronments” Technical Report, Software Engineering Institute, Carnegie Mellon University,
1990.

Feiler P. H., and G.F. Downey, “Tool Version Management Technology: A Case Study,” Techni-
cal Report, Software Engineering Institute, Carnegie-Mellon University, 1990.

Feiler P. H., and G.F. Downey, “Transaction-Oriented Configuration Management: A Case
Study,” Technical Report, Software Engineering Institute, Carnegie-Mellon University,
1990.

Feiler, P. H., “Managing Development of Very Large Systems: Implications for Integrated Envi-
ronment Architectures,” Technical Paper, Software Engineering Institute, Carnegie-Mellon
University, 1988.

Feiler, P. H., Configuration Management Models in Commercial Environments, Technical Report,
Software Engineering Institute, Carnegie Mellon University, 1991.

Feiler, P. H., Software Configuration Management: Advances in Software Development Environ-
ments, Technical Paper, Software Engineering Institute, Carnegie-Mellon University, 1990.

Florence, A., “Reducing Risks Through Proper Specification of Software Requirements,” Cross-
talk: The Journal of Defense Software Engineering, April 2002, pp. 13–15.

Frohlich, P., and W. Nejdl, “WebRC: Configuration Management for a Cooperation Tool,”
Software Configuration Management: ICSE’97 SCM-7 Workshop Proceedings, Boston,
MA, May 1997, Conradi, R., (ed.), Berlin: Springer-Verlag, 1997, pp. 175–185.

Gallagher, K., “Conditions to Assure Semantically Consistent Software Merges in Linear Time,”
Proceedings of the 3rd International Workshop on Software Configuration Management,
Trondheim, Norway, June 1991, ACM Staff (ed.), New York: Association for Computing
Machinery, 1991, pp. 80–83.

Gardy, R. B., Successful Software Process Improvements, NJ: Prentice Hall PTR, 1997.

Gentleman, W. M., S. A. MacKay, and D. A. Stewart, “Commercial Real-Time Software Needs
Different Configuration Management,” Second International Workshop: Software Con-
figuration Management Proceedings, Princeton, NJ, October 1989, ACM Staff (ed.), New
York: Association for Computing Machinery, 1989, pp. 152–161.

6518 Book.indb 377 12/30/14 1:25 PM

378 SCM Bibliography

Gilb, T., Principles of Software Engineering Management, New York: Addison-Wesley Publish-
ing Company, 1988.

Gill, T., “Stop–Gap Configuration Management,” Crosstalk: The Journal of Defense Software
Engineering, February 1998, pp. 3–5.

Glass, R. L., Software Runaways, NJ: Prentice Hall, 1998.

Godart, C., et al., “About some Relationships between Configuration Management, Software
Process and Cooperative Work: COO Environment,” Software Configuration Manage-
ment: ICSE SCM 4 and SCM 5 Workshops, (Selected Papers), Estublier, J. (ed.), Berlin:
Springer-Verlag, 1995, pp. 173–178.

Gowen, L. D., “Predicting Staff Sizes to Maintain Networks,” Crosstalk: The Journal of Defense
Software Engineering, November 2001, pp. 22–26.

Grosjean, S., “Building a CM Database: Nine Years at Boeing,” Crosstalk: The Journal of
Defense Software Engineering, January 2000, pp. 8–10.

Grossman, R., “Defect Management: A Study in Contradictions,” Crosstalk: The Journal of
Defense Software Engineering, September 2003, pp. 28–30.

Gulla, P., and J. Gorman, “Experiences with the use of a Configuration Language,” Software
Configuration Management: ICSE’96 SCM-6 Workshop, Berlin, Germany, March 1996,
(Selected Papers), Sommerville, I., (ed), Berlin: Springer-Verlag, 1996, pp. 198–219.

Gustavsson, A., “Maintaining the Evolution of Software Objects in an Integrated Environment,”
Second International Workshop: Software Configuration Management Proceedings,
Princeton, NJ, October 1989, ACM Staff (ed.), New York: Association for Computing
Machinery, 1989, pp. 114–117.

Hall, R. S., D. Heimbigner, and A. L. Wolf, “Requirements for Software Deployment Languages
and Schema,” System Configuration Management: ECOOP’98 SCM-8 Symposium Pro-
ceedings, Magnusson, B. (ed.), Berlin: Springer-Verlag, 1998, pp. 198–203.

Haque, S., “Introducing Process into Configuration Management,” Crosstalk: The Journal of
Defense Software Engineering, June 1996.

Haque, T., “Process-Based Configuration Management: The Way to Go to Avoid Costly Product
Recalls,” Crosstalk: The Journal of Defense Software Engineering, April 1997.

Haque, T., “The F-16 Software Test Station Program: A Success Story in Process Configuration
Management,” Crosstalk: The Journal of Defense Software Engineering, November 1997.

Hass, A. M. J., Configuration Management: Principles and Practice, Boston, MA: Addison-
Wesley, 2003.

Haug, M., et al., Managing the Change: Software Configuration and Change Management,
Berlin: Springer-Verlag, 2001.

Hedin, G., L. Ohlsson, and J. McKenna, “Product Configuration using Object-Oriented Gram-
mars.” System Configuration Management: ECOOP’98 SCM-8 Symposium Proceedings,
Magnusson, B. (ed.), Berlin: Springer-Verlag, 1998, pp. 107–126.

Heiman, R. V., and E. Quinn, Software Configuration Management Meets the Internet, Techni-
cal Report, Framingham, MA: International Data Corporation, November 1997.

Heiman, R. V., et al., Programmer Development Tools: 1997 Worldwide Markets and Trends,
Technical Report, Framingham, MA: International Data Corporation, July 1997.

Heiman, R. V., S. Garone, and S. D. Hendrick, Development Life-Cycle Management: 1999
Worldwide Markets and Trends, Technical Report, Framingham, MA: International Data
Corporation, June 1999.

Heiman, R. V., S. Garone, and S. D. Hendrick, Development Life-Cycle Management: 1998
Worldwide Markets and Trends, Technical Report, Framingham, MA: International Data
Corporation, May 1998.

Heiman, R. V., The Growing Market for Software Configuration Management Tools, Technical
Report, Framingham, MA: International Data Corporation, September 1997.

6518 Book.indb 378 12/30/14 1:25 PM

SCM Bibliography 379

Heimbigner, D., and A. L. Wolf, “Post-Deployment Configuration Mangement,” Software
Configuration Management: ICSE’96 SCM-6 Workshop, Berlin, Germany, March 1996,
(Selected Papers), Sommerville, I., (Ed), Berlin: Springer-Verlag, 1996, pp. 272–276.

Hoek, A., D. Heimbigner, D., and A. L. Wolf, “Does Configuration Management Research have
a Future?” Software Configuration Management: ICSE SCM 4 and SCM 5 Workshops,
(Selected Papers), Estublier, J. (ed.), Berlin: Springer-Verlag, 1995, pp. 305–309.

Hoek, A., D. Heimbigner, D., and A. L. Wolf, “System Modeling Resurrected,” System Con-
figuration Management: ECOOP’98 SCM-8 Symposium Proceedings, Magnusson, B.
(ed.), Berlin: Springer–Verlag, 1998, pp. 140–145.

Hoek, A., et al., “Software Deployment: Extending Configuration Mangement Support into the
Field,” Crosstalk: The Journal of Defense Software Engineering, February 1998, pp. 9–13.

Holdsworth, J., Software Process Design: Out of the Tar Pit, London: McGraw-Hill Interna-
tional (UK) Ltd., 1994.

Hunt, J. J., et al., “Distributed Configuration Management via Java and the World Wide Web,”
Software Configuration Management: ICSE’97 SCM-7 Workshop Proceedings, Boston,
MA, May 1997, Conradi, R., (ed.), Berlin: Springer-Verlag, 1997, pp. 161–174.

Hunt, J. J., K. Vo, and W. F. Tichy, “An Empirical Study of Delta Algorithms,” Software Configu-
ration Management: ICSE’96 SCM-6 Workshop, Berlin, Germany, March 1996, (Selected
Papers), Sommerville, I., (Ed), Berlin: Springer-Verlag, 1996, pp. 49–66.

IEEE Std-1028-

Humbly, J., and Farley, D., Continuous Delivery, Upper Saddle River, NJ: Addison-Wesley, 2011.

Humphrey, W. S., Managing the Software Process, New York: Addison-Wesley Publishing
Company, 1989.

2008–IEEE Standard for Software Reviews and Audits, 2008.

IEEE Std-610.12-1990–IEEE Standard Glossary of Software Engineering Terminology, 1990.

IEEE Std-828-1998–IEEE Standard for Software Configuration Management Plans, 1998.

IEEE Std-828-2012–IEEE Standard for Configuration Management in Systems and Software
Engineering, 2012.

IEEE, IEEE Software Engineering Standards Collection: 1999 Edition, New Jersey: IEEE, 1999.

Ince, D., An Introduction to Software Quality Assurance and its Implementation, London:
McGraw-Hill International (UK) Ltd., 1994.

Ince, D., ISO 9001 and Software Quality Assurance, London: McGraw-Hill International
(UK) Ltd., 1994.

Ingram, P., C. Burrows, and I. Wesley, Configuration Management Tools: a Detailed Evalua-
tion, London: Ovum Limited, 1993.

Intersolv, Cost Justifying Software Configuration Management, PVCS Series for Configuration
Management White Paper, Intersolv, Inc., 1998.

Intersolv, Software Configuration Management for Client/Server Development Environments:
An architecture guide, White Paper, Intersolv, Inc., 1998.

Intersolv, Software Configuration Management: A primer for development teams and managers,
White Paper, Intersolv, Inc., 1997.

ISO 10007: 1995–Quality Management—Guidelines for Configuration Management, 1995.

ISO 9000-3: 1997–Guidelines for the Application of ISO 9001:1994 to the Development, Sup-
ply, Installation And Maintenance of Computer Software, 1997.

ISO 9001: 1994–Quality systems—Model for Quality Assurance in Design, Development, Pro-
duction, Installation and Servicing, 1994

Jackelen, G., “Verification and Validation People Can Be More Than Technical Advisors,”
Crosstalk: The Journal of Defense Software Engineering, February 2004, pp. 26–29.

Jacobson, I., M. Griss, and P. Jonsson, Software Reuse: Architecture, Process, and Organization
for Business Success, New York: ACM Press, 1997.

6518 Book.indb 379 12/30/14 1:25 PM

380 SCM Bibliography

Jenner, M. G., Software Quality Measurement and ISO 9001: How To Make Them Work for
You, New York: John Wiley & Sons, Inc., 1995.

Jones, C., Software Quality: Analysis and Guidelines for Success, London: International Thomp-
son Press, 1997.

Jones, C. T., Estimating Software Costs, New York: McGraw-Hill. 1998.

Jones, G.W., Software Engineering, New York: John Wiley & Sons, 1990.

Jordan, M., “Experiences in Configuration Management for Modula-2,” Second International
Workshop: Software Configuration Management Proceedings, Princeton, NJ, October
1989, ACM Staff (ed.), New York: Association for Computing Machinery, 1989, pp.
126–128.

Kaiser, G. W., “Modeling Configuration as Transactions,” Second International Workshop:
Software Configuration Management Proceedings, Princeton, NJ, October 1989, ACM
Staff (ed.), New York: Association for Computing Machinery, 1989, pp. 133–134.

Kasse, T., “Software Configuration Management for Project Leaders,” Technical Paper, Institute
for Software Process Improvement, Inc., Belgium, 1998.

Kasse, T., and P. A. McQuaid, “Factors Affecting Process Improvement Initiatives,” Crosstalk:
The Journal of Defense Software Engineering, August 2000, pp. 4–7.

Kelly, M. V., Configuration Management: The Changing Image, New York: McGraw-Hill, 1995.

Kenefick, S., Real World Software Configuration Management, Apress, 2003.

Keyes, J., Software Configuration Management, Boca Raton: Auerbach Publications, 2004.

Keyes, J., Software Engineering Productivity Handbook, New York: McGraw-Hill, 1993.

Kilpi, T., “Product Management Requirements for SCM Discipline,” Software Configuration
Management: ICSE’97 SCM-7 Workshop Proceedings, Boston, MA, May 1997, Conradi,
R., (ed.), Berlin: Springer-Verlag, 1997, pp. 186–200.

Kinball, J., and A. Larson, “Epochs, Configuration Schema, and Version Cursors in the KBSA
Framework CCM Model,” Proceedings of the 3rd International Workshop on Software
Configuration Management, Trondheim, Norway, June 1991, ACM Staff (ed.), New York:
Association for Computing Machinery, 1991, pp. 33–42.

Kingsbury, J., “Adopting SCM Technology,” Crosstalk: The Journal of Defense Software Engi-
neering, March 1996.

Kirzner, R., Managing Content: The Key to Success in Web Business, Technical Report, Fram-
ingham, MA: International Data Corporation, June 1999.

Kolvik, S., “Introducing Configuration Management in an Organization,” Software Configura-
tion Management: ICSE’96 SCM-6 Workshop, Berlin, Germany, March 1996, (Selected
Papers), Sommerville, I., (Ed), Berlin: Springer-Verlag, 1996, pp. 220–230.

Korel, B., et al., “Version Management in Distributed Network Environment,” Proceedings of
the 3rd International Workshop on Software Configuration Management, Trondheim,
Norway, June 1991, ACM Staff (ed.), New York: Association for Computing Machinery,
1991, pp. 161–166.

Kramer, S. A., “History Management System,” Proceedings of the 3rd International Workshop
on Software Configuration Management, Trondheim, Norway, June 1991, ACM Staff
(ed.), New York: Association for Computing Machinery, 1991, pp. 140–143.

Lacroix, M., and P. Lavency, “The Change Request Process,” Second International Workshop:
Software Configuration Management Proceedings, Princeton, NJ, October 1989, ACM
Staff (ed.), New York: Association for Computing Machinery, 1989, pp. 122–125.

Lacroix, S. M. J., D. Roelants, and J. E. Waroquier, “Flexible Support for Cooperation in Soft-
ware Development,” Proceedings of the 3rd International Workshop on Software Con-
figuration Management, Trondheim, Norway, June 1991, ACM Staff (ed.), New York:
Association for Computing Machinery, 1991, pp. 102–108.

6518 Book.indb 380 12/30/14 1:25 PM

SCM Bibliography 381

Lago, P., and R. Conradi, “Transaction Planning to Support Coordination,” Software Configu-
ration Management: ICSE SCM 4 and SCM 5 Workshops, (Selected Papers), Estublier, J.
(ed.), Berlin: Springer-Verlag, 1995, pp. 145–151.

Lange, R., and R. W. Schwanke, “Software Architecture Analysis: A Case Study,” Proceedings
of the 3rd International Workshop on Software Configuration Management, Trondheim,
Norway, June 1991, ACM Staff (ed.), New York: Association for Computing Machinery,
1991, pp. 19–28.

Larson, J., and H. M. Roald, “Introducing ClearCase as a Process Improvement Experiment,”
System Configuration Management: ECOOP’98 SCM-8 Symposium Proceedings, Mag-
nusson, B. (ed.), Berlin: Springer–Verlag, 1998, pp. 1–12.

Leblang, D. B., “Managing the Software Development Process with ClearGuide,” Software
Configuration Management: ICSE’97 SCM-7 Workshop Proceedings, Boston, MA, May
1997, Conradi, R., (ed.), Berlin: Springer-Verlag, 1997, pp. 66–80.

Leblang, D. B., and P. H. Levine, “Software Configuration Management: Why is it needed and
What should it do?” Software Configuration Management: ICSE SCM 4 and SCM 5
Workshops, (Selected Papers), Estublier, J. (ed.), Berlin: Springer-Verlag, 1995, pp. 53–60.

Lee, T., P. Thomas, and V. Lowen, “An Odyssey towards best SCM Practices: The Big Picture,”
Software Configuration Management: ICSE’96 SCM-6 Workshop, Berlin, Germany, March
1996, (Selected Papers), Sommerville, I., (Ed), Berlin: Springer-Verlag, 1996, pp. 231–238.

Lehman, M.M., “Software Engineering, the Software Process and Their Support,” Software
Engineering Journal, Vol. 6, No. 5, 1991, pp. 243–258.

Lehman, M. M., and L. Belady, “A Model of Large Program Development,” IBM Systems Jour-
nal, Vol. 15. No.3, 1976, pp. 225–252.

Lehman, M.M., and L. Belady, Program Evolution: Processes of Software Change, London:
Academic Press, 1985.

Leishman, T. R., and D. A. Cook, “But I Only Changed One Line of Code!” Crosstalk: The
Journal of Defense Software Engineering, January 2003, pp. 20–23.

Leishman, T. R., and Cook, D. A., “Lessons Learned From Software Engineering Consulting,”
Crosstalk: The Journal of Defense Software Engineering, February 2004, pp. 4–6.

Leishman, T. R., and Cook, D. A., “Requirements Risks Can Drown Software Projects,” Cross-
talk: The Journal of Defense Software Engineering, April 2002, pp. 4–8.

Leishman, T. R., and D. A. Cook, “Risk Factor: Confronting the Risks That Impact Software
Project Success,” Crosstalk: The Journal of Defense Software Engineering, May 2004,
pp. 31–34.

Lie, A., et al., “Change Oriented Versioning in a Software Engineering Database,” Second
International Workshop: Software Configuration Management Proceedings, Princeton,
NJ, October 1989, ACM Staff (ed.), New York: Association for Computing Machinery,
1989, pp. 56–65.

Lientz, B. P., and E. B. Swanson, Software Maintenance Management, Reading, MA: Addison
Wesley, 1980.

Lin, Y., and S. P. Reiss, “Configuration Management in terms of Modules,” Software Configu-
ration Management: ICSE SCM 4 and SCM 5 Workshops, (Selected Papers), Estublier, J.
(ed.), Berlin: Springer-Verlag, 1995, pp. 101–117.

Lindsay, P., and O. Traynor, “Supporting Fine-grained Traceability in Software Development
Environments,” System Configuration Management: ECOOP’98 SCM-8 Symposium
Proceedings, Magnusson, B. (ed.), Berlin: Springer-Verlag, 1998, pp. 133–139.

Lubkin, D., “Heterogeneous Configuration Management with DSEE,” Proceedings of the 3rd
International Workshop on Software Configuration Management, Trondheim, Norway,
June 1991, ACM Staff (ed.), New York: Association for Computing Machinery, 1991,
pp. 153–160.

6518 Book.indb 381 12/30/14 1:25 PM

382 SCM Bibliography

Lundholm, P., “Design Management in Base/OPEN,” Second International Workshop: Software
Configuration Management Proceedings, Princeton, NJ, October 1989, ACM Staff (ed.),
New York: Association for Computing Machinery, 1989, pp. 38–41.

Lyn, F., Change Control During Computer Systems Development, Englewood Cliffs, NJ: Pren-
tice Hall, 1991.

Lyon, D. D., Practical CM, Pittsfield, MA: Raven Publishing, 1994.
MacKay, S. A., “Changesets Revisited and CM of Complex Documents,” Software Configura-

tion Management: ICSE’96 SCM-6 Workshop, Berlin, Germany, March 1996, (Selected
Papers), Sommerville, I., (Ed), Berlin: Springer-Verlag, 1996, pp. 277–281.

MacKay, S.A., “The State-of-the-art in Concurrent Distributed Configuration Management,”
Software Configuration Management: ICSE SCM 4 and SCM 5 Workshops, (Selected
Papers), Estublier, J. (ed.), Berlin: Springer-Verlag, 1995, pp. 180–193.

Mack–Crane, B., and A. Pal, “Conflict Management in a Source Version Management System,”
Second International Workshop: Software Configuration Management Proceedings,
Princeton, NJ, October 1989, ACM Staff (ed.), New York: Association for Computing
Machinery, 1989, pp. 149–151.

Magnusson, B. (ed.), System Configuration Management: ECOOP’98 SCM-8 Symposium Pro-
ceedings, Berlin: Springer-Verlag, 1998.

Magnusson, B., and U. Asklund, “Fine Grained Version Control of Configurations in COOP/
Orm,” Software Configuration Management: ICSE’96 SCM-6 Workshop, Berlin, Ger-
many, March 1996, (Selected Papers), Sommerville, I., (Ed), Berlin: Springer-Verlag, 1996,
pp. 31–48.

Maraia, V., The Build Master: Miscrosoft’s Software Configuration Management Best Practices,
Upper Saddle River, NJ: Addison-Wesley, 2006.

Marciniak, J. J. (ed.), Encyclopedia of Software Engineering (2nd Edition), New York: John
Wiley & Sons, 2002.

Marshall, A. J., “Demystifying Software Configuration Management,” Crosstalk: The Journal
of Defense Software Engineering, May 1995.

Marshall A.J., “Software Configuration Management: Function or Discipline?” Crosstalk: The
Journal of Defense Software Engineering, October 1995.

Martin, J., and C. McClure, Software Maintenance: The Problem and its Solutions, Englewood
Cliffs, NJ: Prentice Hall, 1983.

Martin, J., Rapid Application Development, Englewood Cliffs, NJ: Prentice-Hall, 1991.
McCann, R. T., “How Much Code Inspection Is Enough?” Crosstalk: The Journal of Defense

Software Engineering, July 2001, pp. 9–12.
McClure, C., Software Reuse Techniques: Adding Reuse to the System Development Process,

NJ: Prentice Hall, 1997.
McClure, S., Web Development Life-Cycle Management Software, Technical Report, Framing-

ham, MA: International Data Corporation, June 1999.
McConnel, S., Code Complete (2nd Edition), Redmond, Washington: Microsoft Press, 2004.
McConnel, S., Software Project Survival Guide, Redmond, Washington: Microsoft Press, 1998.
McDermid, J. A., (ed.), Software Engineer’s Reference Book, CRC Press, Inc., 1994
McDonald, J., P. N. Hilfinger, and L. Semenzato, “PRCS: The Project Revision Control Sys-

tem,” System Configuration Management: ECOOP’98 SCM-8 Symposium Proceedings,
Magnusson, B. (ed.), Berlin: Springer-Verlag, 1998, pp. 33–45.

McKnight, W. L., “What Is Information Assurance?” Crosstalk: The Journal of Defense Soft-
ware Engineering, July 2002, pp.4–6.

Meiser, K., “Software Configuration Management Terminology,” Crosstalk: The Journal of
Defense Software Engineering, January 1995.

Mell. P., and Grance, T., The NIST Definition of Cloud Computing, National Institute of Stan-
dards and Technology, US Department of Commerce, September, 2011.

6518 Book.indb 382 12/30/14 1:25 PM

SCM Bibliography 383

Micallef, J., and G. M. Clemm, “The Asgard System: Activity-based Configuration Management,”
Software Configuration Management: ICSE’96 SCM-6 Workshop, Berlin, Germany, March
1996, (Selected Papers), Sommerville, I., (Ed), Berlin: Springer-Verlag, 1996, pp.175–186.

Mikkelsen, T., and S. Pherigo, Practical Software Configuration Management: The Latenight
Developer’s Handbook, Upper Saddle River, NJ: Prentice-Hall PTR, 1997.

Milewski, B., “Distributed Source Control System,” Software Configuration Management:
ICSE’97 SCM-7 Workshop Proceedings, Boston, MA, May 1997, Conradi, R., (ed.),
Berlin: Springer-Verlag, 1997, pp. 98–107.

Miller, D. B., R. G. Stockton, and C. W. Krueger, “An Inverted Approach to Configuration
Management,” Second International Workshop: Software Configuration Management
Proceedings, Princeton, NJ, October 1989, ACM Staff (ed.), New York: Association for
Computing Machinery, 1989, pp. 1–4.

Miller, T. C., “A Schema for Configuration Management,” Second International Workshop:
Software Configuration Management Proceedings, Princeton, NJ, October 1989, ACM
Staff (ed.), New York: Association for Computing Machinery, 1989, pp. 26–29.

MIL-STD-1521B–Technical Reviews and Audits for Systems, Equipment and Computer Pro-
grams, 1985.

MIL-STD-480B–Configuration Control Engineering Changes, Deviations and Waivers, 1988.

MIL-STD-481B–Configuration Control Engineering Changes (Short Form), Deviations and
Waivers, 1988.

MIL-STD-482A–Configuration Status Accounting Data Elements & Related Features, 1974.

MIL-STD-483A–Configuration Management Practices for Systems, Equipment, Munitions and
Computer Programs, 1985.

MIL-STD-490A–Specification Practices, 1985.

MIL-STD-973–Configuration Management, 1995.

Molli, P., “COO-Transaction: Supporting Cooperative Work,” Software Configuration Man-
agement: ICSE’97 SCM-7 Workshop Proceedings, Boston, MA, May 1997, Conradi, R.,
(ed.), Berlin: Springer-Verlag, 1997, pp. 128–141.

Moore, J. W., Software Engineering Standards: A User’s Road Map, New Jersey: IEEE, 1997.

Mosley, V., et al., “Software Configuration Management Tools: Getting Bigger, Better, and
Bolder,” Crosstalk: The Journal of Defense Software Engineering, January 1996, pp. 6–10.

Munch, B. P., “HiCoV—Managing the Version Space,” Software Configuration Management:
ICSE’96 SCM-6 Workshop, Berlin, Germany, March 1996, (Selected Papers), Sommerville,
I., (Ed), Berlin: Springer-Verlag, 1996, pp. 110–126.

Musa, J.D., “Software Engineering: The Future of a Profession,” IEEE Software, Vol.22, No.1,
1985, pp. 55–62.

Narayanaswamy, K., “A Text-Based Representation for Program Variants,” Second International
Workshop: Software Configuration Management Proceedings, Princeton, NJ, October
1989, ACM Staff (ed.), New York: Association for Computing Machinery, 1989, pp. 30–33.

NASA, NASA Software Configuration Management Guidebook, Technical Report SMAP-GB-
A201, NASA, 1995.

Newbery, F. J., “Edge Concentration: A Method for Clustering Directed Graphs,” Second
International Workshop: Software Configuration Management Proceedings, Princeton,
NJ, October 1989, ACM Staff (ed.), New York: Association for Computing Machinery,
1989, pp. 76–85.

Nicklin, P. J., “Managing Multi-Variant Software Configuration,” Proceedings of the 3rd Inter-
national Workshop on Software Configuration Management, Trondheim, Norway, June
1991, ACM Staff (ed.), New York: Association for Computing Machinery, 1991, pp. 53–57.

Nierstrasz, “Component-Oriented Software Development,” Communications of the ACM,
Vol.35, No.9, 1992, pp.160–165.

6518 Book.indb 383 12/30/14 1:25 PM

384 SCM Bibliography

Noll, J., and W. Scacchi, “Supporting Distributed Configuration Management in Virtual Enter-
prises,” Software Configuration Management: ICSE’97 SCM-7 Workshop Proceedings,
Boston, MA, May 1997, Conradi, R., (ed.), Berlin: Springer-Verlag, 1997, pp. 142–160.

Ochuodho, S. J., and A. W. Brown, “A Process-Oriented Version and Configuration Management
Model for Communications Software,” Proceedings of the 3rd International Workshop
on Software Configuration Management, Trondheim, Norway, June 1991, ACM Staff
(ed.), New York: Association for Computing Machinery, 1991, pp. 109–120.

Opperthauser, D., “Defect Management in an Agile Development Environment,” Crosstalk: The
Journal of Defense Software Engineering, September 2003, pp. 21–24.

Pakstas, A., “Aladdin/Lamp: Configuration Management Tools for Distributed Computer Con-
trol Systems,” Second International Workshop: Software Configuration Management
Proceedings, Princeton, NJ, October 1989 ACM Staff (ed.), New York: Association for
Computing Machinery, 1989, pp. 141–144.

Parker, K., “Customization of a Commercial CM System to Provide Better Management Mech-
anisms,” Software Configuration Management: ICSE SCM 4 and SCM 5 Workshops,
(Selected Papers), Estublier, J. (ed.), Berlin: Springer-Verlag, 1995, pp. 289–292.

Peach, R. W. (ed.), The ISO 9000 Handbook, New York: The McGraw-Hill Companies, Inc.,
1997.

Perry, D. E., “Dimensions of Consistency in Source Versions and System Compositions,” Pro-
ceedings of the 3rd International Workshop on Software Configuration Management,
Trondheim, Norway, June 1991, ACM Staff (ed.), New York: Association for Computing
Machinery, 1991, pp. 29–32.

Perry, D. E., “System Compositions and Shared Dependencies,” Software Configuration Man-
agement: ICSE’96 SCM-6 Workshop, Berlin, Germany, March 1996, (Selected Papers),
Sommerville, I., (Ed), Berlin: Springer-Verlag, 1996, pp. 139–153.

Persson, A., “Experiences of Customization and Introduction of a CM Model,” Software Con-
figuration Management: ICSE SCM 4 and SCM 5 Workshops, (Selected Papers), Estublier,
J. (ed.), Berlin: Springer-Verlag, 1995, pp. 293–303.

Petersen, G., “The Weakest Geek,” Crosstalk: The Journal of Defense Software Engineering,
July 2001, pp. 31.

Pfleeger, S. L., Software Engineering: Theory and Practice, NJ: Prentice Hall, 1998.

Phillips, M., “CMMI Version1.1: What Has Changed?” Crosstalk: The Journal of Defense
Software Engineering, February 2002, pp. 4–6.

Platinum, “Configuration Management and Software Testing,” White Paper, Platinum Technol-
ogy, Inc., 1999.

Platinum, “Controlling Application Development Costs using Software Configuration Manage-
ment (CM),” White Paper, Platinum Technology, Inc., 1999.

Platinum, “How to Evaluate a CM Tool for Client/Server Environments?” White Paper, Plati-
num Technology, Inc., 1999.

Platinum, “Strategic Thinking About Software Change Management,” White Paper, Platinum
Technology, Inc., 1999.

Platinum, “The Expanding Role of Software Change and Configuration Management (CM),”
White Paper, Platinum Technology, Inc., 1999.

Platinum, “What is CM?” White Paper, Platinum Technology, Inc., 1999.

Ploedereder, E., and A. Fergany, “The Data Model of the Configuration Management Assistant
(CMA),” Second International Workshop: Software Configuration Management Proceed-
ings, Princeton, NJ, October 1989, ACM Staff (ed.), New York: Association for Computing
Machinery, 1989, pp. 5–14.

Potter, N., and Sakry, M., “The Documentation Diet,” Crosstalk: The Journal of Defense Soft-
ware Engineering, October 2003, pp. 21–24.

6518 Book.indb 384 12/30/14 1:25 PM

SCM Bibliography 385

Powers, J., Configuration Management Procedures, Santa Ana, CA: Global Engineering Docu-
ments, 1984.

Pressman, R. S., Software Engineering: A Practitioner’s Approach (8th Edition), New York:
McGraw-Hill, 2014.

Pressman, R. S., Software Engineering: A Practitioner’s Approach (5th Edition), New York:
The McGraw-Hill Companies, Inc., 2001.

Rahikkala, T., J. Taramma, and A. Valimaki, “Industrial Experiences from SCM Current State
Analysis,” System Configuration Management: ECOOP’98 SCM-8 Symposium Proceed-
ings, Magnusson, B. (ed.), Berlin: Springer-Verlag, 1998, pp. 13–25.

Rawlings, J. H., SCM for Network Development Environments, New York: McGraw-Hill, 1994.
Ray, R. J., “Experiences with a Script-Based Software Configuration Management System,”

Software Configuration Management: ICSE SCM 4 and SCM 5 Workshops, (Selected
Papers), Estublier, J. (ed.), Berlin: Springer-Verlag, 1995, pp. 282–287.

Reichberger, C., “Orthogonal Version Management,” Second International Workshop: Software
Configuration Management Proceedings, Princeton, NJ, October 1989, ACM Staff (ed.),
New York: Association for Computing Machinery, 1989, pp. 137–140.

Reichenberger, C., “Delta Storage for Arbitrary Non–Text Files,” Proceedings of the 3rd Inter-
national Workshop on Software Configuration Management, Trondheim, Norway, June
1991, ACM Staff (ed.), New York: Association for Computing Machinery, 1991, pp.
144–152.

Reichenberger, C., “VOODOO—A Tool for Orthogonal Version Management,” Software Con-
figuration Management: ICSE SCM 4 and SCM 5 Workshops, (Selected Papers), Estublier,
J. (ed.), Berlin: Springer-Verlag, 1995, pp. 61–79.

Render, H., and R. Campbell, “An Object-Oriented Model of Software Configuration Man-
agement,” Proceedings of the 3rd International Workshop on Software Configuration
Management, Trondheim, Norway, June 1991, ACM Staff (ed.), New York: Association
for Computing Machinery, 1991, pp. 127–139.

Reps, T., and T. Bricker, “Illustrating Interference in Interfering Versions of Programs,” Second
International Workshop: Software Configuration Management Proceedings, Princeton,
NJ, October 1989, ACM Staff (ed.), New York: Association for Computing Machinery,
1989, pp. 46–55.

Reuter, J., et al., “Distributed Version Control via the WWW,” Software Configuration Man-
agement: ICSE’96 SCM-6 Workshop, Berlin, Germany, March 1996, (Selected Papers),
Sommerville, I., (Ed), Berlin: Springer-Verlag, 1996, pp. 166–174.

Rice, R. W., “Surviving the Top 10 Challenges of Software Test Automation,” Crosstalk: The
Journal of Defense Software Engineering, May 2002, pp. 26–29.

Rich, A., and M. Solomon, “A Logic-Based Approach to System Modeling,” Proceedings of
the 3rd International Workshop on Software Configuration Management, Trondheim,
Norway, June 1991, ACM Staff (ed.), New York: Association for Computing Machinery,
1991, pp. 84–93.

Rigg, W., C. Burrows, and P. Ingram, Ovum Evaluates: Configuration Management Tools,
London: Ovum Limited, 1995

Rosenblum, D. S., and B. Krishnamurthy, “An Event-Based Model of Software Configuration
Management,” Proceedings of the 3rd International Workshop on Software Configuration
Management, Trondheim, Norway, June 1991, ACM Staff (ed.), New York: Association
for Computing Machinery, 1991, pp. 94–97.

Royce, W. “Managing the Development of Large Software Systems: Concepts and Techniques,”
IEEE, WESCON, 1970.

Royce, W., Software Project Management: A Unified Framework, Reading, MA: Addison Wes-
ley Longman, Inc., 1998.

Rustin, R. (ed.), Debugging Techniques in Large Systems, Englewood Cliffs, NJ: Prentice-Hall,
1971.

6518 Book.indb 385 12/30/14 1:25 PM

386 SCM Bibliography

Samaras, T. T., and F. Czerwinski, Fundamentals of Configuration Management, Chichester,
England: John Wiley & Sons, Inc., 1971.

Samaras, T. T., Configuration Management Deskbook: Vol. 1, Annandale, VA: Advanced
Application Consultants Inc., 1988.

Samaras, T. T., Configuration Management Deskbook: Vol. 2, Instruction Supplement, Annan-
dale, VA: Advanced Application Consultants Inc., 1988.

Schach, S. R., Software Engineering, Boston, MA: Richard D. Irwin, Inc., 1990.

Schmerl, B. R., and C. D. Maralin, “Designing Configuration Management Facilities for Dynami-
cally Bound Systems,” Software Configuration Management: ICSE SCM 4 and SCM 5
Workshops, (Selected Papers), Estublier, J. (ed.), Berlin: Springer-Verlag, 1995, pp. 88–100.

Schmerl, B. R., and C. D. Maralin, “Versioning and Consistency for Dynamically Composed Con-
figurations,” Software Configuration Management: ICSE’97 SCM-7 Workshop Proceed-
ings, Boston, MA, May 1997, Conradi, R., (ed.), Berlin: Springer-Verlag, 1997, pp. 49–65.

Schroeder, U., “Incremental Variant Control,” Second International Workshop: Software Con-
figuration Management Proceedings, Princeton, NJ, October 1989, ACM Staff (ed.), New
York: Association for Computing Machinery, 1989, pp. 144–148.

Schroeter, J., Marcel, M. P., and Lochau, M., “Dynamic Configuration Management of Cloud-
based Applications,” Proceedings of the 16th International Software Product Line Con-
ference-Volume 2, September 2012, pp. 171–178.

Schulmeyer, G. G. and J. I. McManus, Handbook of Software Quality Assurance, London:
International Thompson Press, 1996.

Schwanke, R. W., and M. A. Platoff, “Cross References are Features,” Second International
Workshop: Software Configuration Management Proceedings, Princeton, NJ, October
1989, ACM Staff (ed.), New York: Association for Computing Machinery, 1989, pp. 86–95.

SEI, “A Quick Guide to Information about Software Environments, Configuration Manage-
ment, and CASE,” Technical Report, Software Engineering Institute, Carnegie Mellon
University, 1995.

SEI, Carnegie Mellon University, The Capability Maturity Model: Guidelines for Improving the
Software Process, Reading, MA: Addison Wesley Longman Ltd., 1994.

Seiwald, C., “Inter-file Branching—A Practical Method for Representing Variants,” Software
Configuration Management: ICSE’96 SCM-6 Workshop, Berlin, Germany, March 1996,
(Selected Papers), Sommerville, I., (Ed), Berlin: Springer-Verlag, 1996, pp. 67–75.

Sheard, S. A., “How Do I Make My Organization Comply With Yet Another New Model?”
Crosstalk: The Journal of Defense Software Engineering, February 2002, pp. 15–20.

Sheedy, C., “Sorceress: A Database Approach to Software Configuration Management,” Pro-
ceedings of the 3rd International Workshop on Software Configuration Management,
Trondheim, Norway, June 1991, ACM Staff (ed.), New York: Association for Computing
Machinery, 1991, pp. 121–126.

Simmonds, I., “Configuration management in the PACT Software Engineering Environment,”
Second International Workshop: Software Configuration Management Proceedings,
Princeton, NJ, October 1989, ACM Staff (ed.), New York: Association for Computing
Machinery, 1989, pp. 118–121.

Simmonds, I., “Duplicates’: A Convention for Defining Configurations in PCTE-Based Envi-
ronments,” Proceedings of the 3rd International Workshop on Software Configuration
Management, Trondheim, Norway, June 1991, ACM Staff (ed.), New York: Association
for Computing Machinery, 1991, pp. 58–61.

Sodhi, J., and P. Sodhi, Software Reuse: Domain Analysis and Design Process, New York:
McGraw-Hill, 1999.

Sommerville, I. (ed.), Software Configuration Management: ICSE’96 SCM 6 Workshop, Berlin,
Germany, March 1996, (Selected Papers), Berlin: Springer-Verlag, 1996.

6518 Book.indb 386 12/30/14 1:25 PM

SCM Bibliography 387

Sommerville, I., Software Engineering (9th Edition), Reading, MA: Addison-Wesley Publish-
ing Company, 2011.

Sorensen, R., “The CM Database: To Buy or to Build?” Crosstalk: The Journal of Defense
Software Engineering, January 2000, pp.11–12.

Sorensen, R., “CCB-An Acronym for “Chocolate Chip Brownies?” Crosstalk: The Journal of
Defense Software Engineering, March 1999, pp. 3–6.

Starbuck, R. A., “A Beginner’s Look at Process Improvement Documentation,” Crosstalk: The
Journal of Defense Software Engineering, March 2004, pp.18–20.

Starbuck, R., “A Configuration Manager’s Perspective,” Crosstalk: The Journal of Defense
Software Engineering, July 2000, pp. 12–14.

Starbuck, R. A., “Software Configuration Management by MIL-STD-498,” Crosstalk: The
Journal of Defense Software Engineering, June 1996.

Starbuck, R. A., “Software Configuration Management: Don’t Buy a Tool First,” Crosstalk:
The Journal of Defense Software Engineering, November 1997.

Starbuck, R. A., “Using CM to Recapture Baselines for Y2K Compliance Efforts,” Crosstalk:
The Journal of Defense Software Engineering, March 1999, pp. 7–11.

Thayer, R. H., and M. Dorfman (eds.), Software Engineering Essentials (Volume I): The Devel-
opment Process (Fourth Edition), Carmichael, California: Software Management Train-
ing Press, 2013.

Thayer, R. H., and M. Dorfman (eds.), Software Engineering Essentials (Volume II): The
Supporting Processes (Fourth Edition), Carmichael, California: Software Management
Training Press, 2013.

Thayer, R. H., and M. Dorfman (eds.), Software Engineering Essentials (Volume III): The
Engineering Fundamentals (Fourth Edition), Carmichael, California: Software Manage-
ment Training Press, 2013.

Thomas, I., “Version and Configuration Management On A Software Engineering Database,”
Second International Workshop: Software Configuration Management Proceedings,
Princeton, NJ, October 1989, ACM Staff (ed.), New York: Association for Computing
Machinery, 1989, pp. 23–25.

Thompson, K., “People Projects: Psychometric Profiling,” Crosstalk: The Journal of Defense
Software Engineering, April 2003, pp. 18–23.

Thomson, R., and I. Sommerville, “Configuration Management Using SySL,” Second Inter-
national Workshop: Software Configuration Management Proceedings, Princeton, NJ,
October 1989, ACM Staff (ed.), New York: Association for Computing Machinery, 1989,
pp. 106–109.

Tibrook, D., “An Architecture for a Construction System,” Software Configuration Manage-
ment: ICSE’96 SCM-6 Workshop, Berlin, Germany, March 1996, (Selected Papers), Som-
merville, I., (Ed), Berlin: Springer-Verlag, 1996, pp. 76–87.

Tichy, W. F., Configuration Managment, New York: John Wiley & Sons, 1994.

Tryggeseth, E., B. Gulla, and R. Conardi, “Modeling Systems with Variability Using the PRO-
TEUS Configuration Language,” Software Configuration Management: ICSE SCM 4 and
SCM 5 Workshops, (Selected Papers), Estublier, J. (ed.), Berlin: Springer-Verlag, 1995,
pp. 216–240.

Vacca, J., Implementing a Successful Configuration Change Management Program, [AU: city of
publication?]Information Systems Management Group, 1993.

Van De Vanter, M. L., “Coordinated Editing of Versioned Packages in the JP Programming
Environment,” System Configuration Management: ECOOP’98 SCM-8 Symposium
Proceedings, Magnusson, B. (ed.), Berlin: Springer-Verlag, 1998, pp. 158–173.

Ventimiglia, B., “Effective Software Configuration Management,” Crosstalk: The Journal of
Defense Software Engineering, February 1998, pp. 6–8.

6518 Book.indb 387 12/30/14 1:25 PM

388 SCM Bibliography

Viskari, J., “A Rationale for Automated Configuration Status Accounting,” Software Configu-
ration Management: ICSE SCM 4 and SCM 5 Workshops, (Selected Papers), Estublier, J.
(ed.), Berlin: Springer-Verlag, 1995, pp. 138–144.

Vlokdijk, G., Configuration Management 100 Success Secrets, [AU:city of publication?]Emereo
Publishing, 2008.

Wallnau, K. C., “Issues and Techniques of CASE Integration with Configuration Management,”
Technical Report, Software Engineering Institute, Carnegie-Mellon University, 1992.

Watts, F. B., Engineering Documentation Control Handbook (2nd Edition), Park Ridge, NJ:
Noyes Publications, 2000.

Watts, F. B., Engineering Documentation Control Handbook: Configuration Management for
Industry, Park Ridge, NJ: Noyes Data Corporation/Noyes Publications, 1993.

Weatherall, B., “A Day in the Life of a PVCS Road Warrior: Want To Get PVCS Organized
Quickly in a Mixed-Platform Environment?” Technical Paper, Synergex International
Corporation, 1997.

Weber, D. W., “Change Sets Versus Change Packages: Comparing Implementations of Change-
Based SCM,” Software Configuration Management: ICSE’97 SCM-7 Workshop Pro-
ceedings, Boston, MA, May 1997, Conradi, R., (ed.), Berlin: Springer-Verlag, 1997, pp.,
pp.25–35.

Weber, D. W., “Change-Based SCM Is Where We’re Going,” Continuus Software Corporation,
1997.

Wein, M., et al., “Evolution is Essential for Software Tool Development,” Position Paper, Insti-
tution of Information Technology, National Research Council Canada, 1995.

Weinberg, G. M., “Destroying Communication and Control in Software Development,” Cross-
talk: The Journal of Defense Software Engineering, April 2003, pp. 4–8.

Westfechtek, B., “Revision Control in an Integrated Software Development Environment,”
Second International Workshop: Software Configuration Management Proceedings,
Princeton, NJ, October 1989, ACM Staff (ed.), New York: Association for Computing
Machinery, 1989, pp. 96–105.

Westfechtel, B., “Structure-Oriented Merging of Revisions of Software Documents,” Proceedings
of the 3rd International Workshop on Software Configuration Management, Trondheim,
Norway, June 1991, ACM Staff (ed.), New York: Association for Computing Machinery,
1991, pp. 68–79.

Westfechtel, B., and R. Conradi, “Software Configuration Management and Engineering
Data Management: Differences and Similarities,” System Configuration Management:
ECOOP’98 SCM-8 Symposium Proceedings, Magnusson, B. (ed.), Berlin: Springer-Verlag,
1998, pp. 95–106.

Whitgift, D., Methods and Tools for Software Configuration Management, Chichester, England:
John Wiley & Sons, Inc., 1991.

Wingerd, L., and C, Seiwald, “Constructing a Large Product with Jam,” Software Configuration
Management: ICSE’97 SCM-7 Workshop Proceedings, Boston, MA, May 1997, Conradi,
R., (ed.), Berlin: Springer-Verlag, 1997, pp. 36–48.

Wingerd, L., and C. Seiwald, “High-level Best Practices in Software Configuration Manage-
ment,” System Configuration Management: ECOOP’98 SCM-8 Symposium Proceedings,
Magnusson, B. (ed.), Berlin: Springer-Verlag, 1998, pp. 57–66.

Yourdon, E., Death March: The Complete Software Developer’s Guide to Surviving “Mission
Impossible” Projects, NJ: Prentice Hall PTR, 1997.

Zahran S., Software Process Improvement: Practical Guidelines for Business Success, Harlow,
England: Addison Wesley Longman Ltd., 1998.

Zave, P., “The Operational Versus Conventional Approach to Software Development,” Com-
munications of the ACM, Vol.27, No.2, 1992, pp.104–118.

6518 Book.indb 388 12/30/14 1:25 PM

SCM Bibliography 389

Zeller, A., “Smooth Operations with Square Operations-The Version Set Model in ICE,” Soft-
ware Configuration Management: ICSE’96 SCM-6 Workshop, Berlin, Germany, March
1996, (Selected Papers), Sommerville, I., (Ed), Berlin: Springer-Verlag, 1996, pp. 8–31.

Zeller, A., “Versioning System Models through Description Logic,” System Configuration
Management: ECOOP’98 SCM-8 Symposium Proceedings, Magnusson, B. (ed.), Berlin:
Springer-Verlag, 1998, pp. 127–132.

6518 Book.indb 389 12/30/14 1:25 PM

6518 Book.indb 390 12/30/14 1:25 PM

391

Glossary and List of Acronyms

Abend: Abnormal end (i.e., termination of a process before completion).

Acceptance testing: Testing conducted to determine whether or not a system or
product is acceptable to the customer, user, or client.

Adaptive maintenance: Software maintenance performed to make a computer
program work in an environment different from the one that it was origi-
nally designed for.

AEA: American Electronics Association.

AIA: Aerospace Industries Association.

Allocated baseline: The initial approved specifications governing the development
of configuration items that are part of a higher-level configuration item.

Allocated configuration identification: The current approved specifications gov-
erning the development of configuration items that are part of a higher-level
configuration item.

Allocation: The process of distributing requirements, resources, or other entities
among the components of a system or program.

ANSI: American National Standards Institute.

Application software: Software designed to fulfill specific needs of a user or
client.

Approval: The agreement that an item is complete and suitable for its intended
use.

Approved data: Data that has been approved by an appropriate authority and
is the official (identified) version of the data until replaced by another
approved version.

Archived data: Released or approved data that are to be retained for historical
purposes.

Attributes: Performance, functional, and physical characteristics of a product.

Audit: An independent examination or review conducted to assess whether a
product or process or set of products or processes are in compliance with
specifications, standards, contractual agreements, or some other criteria.

Baseline: A specification or product that has been formerly reviewed and agreed
upon and serves as a basis for further development; it can be changed only
through change management procedures. Baselines can be defined at vari-
ous parts of the development life cycle.

6518 Book.indb 391 12/30/14 1:25 PM

392 Glossary and List of Acronyms

Baseline management: The application of technical and administrative direction
to designate the documents and changes to those documents that formerly
identify and establish baselines at specific times during the life cycle of a
configuration item; in other words, the set of activities performed for estab-
lishing and maintaining the different baselines in a project.

Bug: An error, defect, fault or problem.

Build: The process (or the final result of the process) of generating an executable,
testable, system from source code.

CA: Configuration audit.

CASE: Computer-aided software engineering. CASE is the use of computers to
aid in the software engineering process. This can include the application of
software tools to software design, requirements analysis, code generation,
testing, documentation, and other software engineering activities.

CCA: Configuration control authority; another name for CCB.

CCB: Configuration control board (also known as change control board). A
group of people responsible for evaluating and approving or disapproving
changes to configuration items.

Certification: A written guarantee that a system or component complies with its
specified requirements and is acceptable for operational use.

Change control: See configuration control

Change request form: A change request form is a form (paper or electronic) that
is used to initiate a change and that contains the details of the change such
as the name of the change originator, item to be changed, and details of
changes.

CI: Configuration item. An aggregation of hardware or software or both that is
designated for configuration management and treated as a single entity in
the configuration management process.

CM: Configuration management.

CMM: Capability maturity model.

Configuration: The functional and/or physical characteristics of hardware or
software items as set forth in the technical documentation and achieved in a
product.

Configuration: (1) The performance, functional, and physical attributes of an
existing or planned product, or a combination of products. (2) One of a
series of sequentially created variations of a product.

Configuration audit: Product configuration verification accomplished by inspect-
ing documents, products and records; and reviewing procedures, processes,
and systems of operation to verify that the product has achieved its required
attributes (performance requirements and functional constraints) and the
product’s design is accurately documented.

Configuration control: Configuration control is the element of configura-
tion management consisting of the evaluation, coordination, approval or

6518 Book.indb 392 12/30/14 1:25 PM

Glossary and List of Acronyms 393

disapproval, and implementation of changes to configuration items after
formal establishment of their configuration identification.

Configuration documentation: Technical information, the purpose of which is to
identify and define a product’s performance, functional, and physical attri-
butes (e.g., specifications, drawings).

Configuration identification: The configuration management activity that encom-
passes selecting configuration documents; assigning and applying unique
identifiers to a product, its components, and associated documents; and
maintaining document revision relationships to product configurations.

Configuration management: A management process for establishing and main-
taining consistency of a product’s performance, functional, and physi-
cal attributes with its requirements, design and operational information
throughout its life.

Configuration status accounting: The configuration management activity con-
cerning capture and storage of, and access to, configuration information
needed to manage products and product information effectively.

Configuration verification: The action verifying that the product has achieved its
required attributes (performance requirements and functional constraints)
and the product’s design is accurately documented.

Contract: As used herein, denotes the document (for example, contract, memo-
randum of agreement or understanding, purchase order) used to implement
an agreement between a customer (buyer) and a seller (supplier).

Corrective maintenance: Maintenance that is performed to correct faults in
software.

COTS software: Commercial off-the-shelf software

CPC: Computer program component.

CPCI: Computer program configuration item.

CR: Change request. A request to make a change or modification.

Crash: The sudden and complete failure of a computer system or component.

Criticality: The degree of impact that a requirement, module, error, fault or fail-
ure has on the development or operation of a system; synonymous with
severity.

CSC: Computer software component. A functionally or logically distinct part of
a computer software configuration item.

CSCI: Computer software configuration item. A software item that is identified
for configuration management.

Data: Recorded information of any nature (including administrative, managerial,
financial, and technical), regardless of medium or characteristics.

Datagram: See packet.

Debug: To detect, locate, and correct faults in a computer program.

Delta: A technique to store versions by storing only the differences between ver-
sions as opposed to storing each version in its entirety. Forward deltas store

6518 Book.indb 393 12/30/14 1:25 PM

394 Glossary and List of Acronyms

the original version in its entirety and later versions as deltas. Reverse deltas
store the most recent version in its full form and previous versions as deltas.

Design information: Technical information resulting from translating require-
ments for a product into a complete description of the product.

Design phase: The period of time in the software development life cycle during
which the designs for architecture, software components, interfaces, and
data are created, documented, and verified to satisfy requirements.

Design standard: A standard that describes the characteristics of a design or
design description of data or program components.

Detailed design: The process of refining and expanding the preliminary design of
a system or component to the extent that the design is sufficiently complete
to be implemented.

Development testing: The testing conducted during the development of a system
or component. This kind of testing is usually done independently in the
development environment by the developer.

Developmental configuration: The software and associated technical documenta-
tion that define the evolving configuration of a computer software configu-
ration item during development.

Disapproval: Conclusion by the appropriate authority that an item submitted for
approval is either incomplete or not suitable for its intended use.

Document representation: A set of digital files that collectively represent a com-
plete digital document

ECMI: European Computer Manufacturers Institute.

ECP: Engineering change proposal. A proposed engineering change and the doc-
umentation by which the change is described and suggested.

EIA: Electronics Industries Alliance.

Engineering change: An alteration in the configuration of a configuration item
after formal establishment of its configuration identification.

EPRI: Electric Power Research Institute.

ERP: Enterprise resource planning.

ESA: European Space Agency.

Evaluation: The process of determining whether an item or activity meets speci-
fied criteria.

FAA: Federal Aviation Authority

Failure: The inability of a component or system to perform its required functions
within specified performance requirements.

FCA: Functional configuration audit. An audit conducted to verify that the devel-
opment of a configuration item has been completed satisfactorily, that the
item has achieved the performance and functional characteristics specified
in the functional and allocated configuration identification, and that its
operational and support documents are complete and satisfactory.

6518 Book.indb 394 12/30/14 1:25 PM

Glossary and List of Acronyms 395

Firmware: The combination of a hardware device and computer instructions or
computer data that reside as read-only software on the hardware device.
The software cannot be readily modified under program control.

Fit: The ability of a product to interface or interconnect with or become an inte-
gral part of another product.

Form: The shape, size, dimensions, and other physically measurable parameters
that uniquely characterize a product. For software, form denotes the lan-
guage and media.

Form, fit, and function: The configuration comprised of the physical and func-
tional characteristics of an item as an entity, but not including any charac-
teristics of the elements making up the item.

Formal specification: A specification written and approved in accordance with
established standards and guidelines.

Formal testing: Testing conducted in accordance with test plans and procedures
that have been reviewed and approved by a customer, user, or designated
approving authority.

FQR: Formal qualification review. The test or inspection by which a group of
configuration items comprising a system is verified to have met specific con-
tractual performance requirements.

FR: Fault report. Same as problem report.

Function: The action or actions that a product is designed to perform.

Functional attributes: Measurable performance parameters including reliability,
maintainability, and safety.

Functional baseline: Functional baseline is the initial approved technical docu-
mentation for a configuration item. Also known as requirements baseline.

Functional specification: A document that specifies the functions that a system or
component must perform.

Functional testing: The testing process that ignores the internal mechanism
of a system or component and focuses solely on the outputs generated in
response to selected inputs and execution conditions. Also known as black-
box testing.

Hardware: Devices or machines that are capable of accepting and storing com-
puter data, executing a systematic sequence of operations on computer data,
or producing control outputs. Such devices can perform substantial inter-
pretation, computation, communication, control, or other logical functions.

HWCI: Hardware configuration item.

IDE: Integrated development environment. An environment where the user can
design, develop, debug, test, and run the application is[AU:what is missing here?]
developed. Some popular IDEs are Visual C++, PowerBuilder, and Delphi.

IEEE: Institute of Electrical and Electronics Engineers.

Incremental development: A software development methodology in which
requirements definition, design, implementation, and testing occur in an

6518 Book.indb 395 12/30/14 1:25 PM

396 Glossary and List of Acronyms

overlapping and interactive manner, resulting in incremental completion of
the overall software product.

Informal testing: Testing conducted in accordance with test plans and procedures
that have not been reviewed and approved by a customer, user or designated
approving authority.

INPO: Institute of Nuclear Power Operations.

Inspection: A static analysis technique that relies on visual examination of devel-
opment products to detect errors and faults.

Integration testing: The testing process where the software components, hard-
ware components, or both are combined and tested to evaluate the interac-
tion between them and how they perform in combination.

Integrity: The degree to which a system or component prevents unauthorized
access to, or modifications of, computer programs or data.

Interchangeable: A product that possesses such functional and physical attributes
as to be equivalent in performance to another product of similar or identi-
cal purposes and capable of being exchanged for the other product with-
out selection for fit or performance, and without alteration of the products
themselves or of adjoining products, except for adjustment.

Interface: A shared boundary across which information is passed.

Interface control: The process of identifying all functional and physical charac-
teristics relevant to the interfacing of two or more configuration items pro-
vided by one or more organizations and ensuring that the proposed changes
to these characteristics are evaluated and approved prior to implementation.

Interface documentation: Interface control drawing or other documentation that
depicts physical, functional, and test interfaces of related or cofunctioning
products.

Interface: The performance, functional, and physical attributes required to exist
at a common boundary.

ISO: International Organization for Standardization.

IV&V: Independent verification and validation. Verification and validation that
is performed by an organization that is technically, managerially, and finan-
cially independent of the development organization.

JCL: Job control language. A language used to identify a sequence of jobs, to
describe their requirements to an operating system, and to control their
execution.

Life cycle: A generic term relating to the entire period of conception, definition,
build, distribution, operation, and disposal of a product.

Maintenance: The process of modifying a software system or component after
delivery to correct faults, improve performance or another attribute, or
adapt to a changed environment.

Metrics: Measures used to indicate progress or achievement.

MMI: Man-machine interface.

6518 Book.indb 396 12/30/14 1:25 PM

Glossary and List of Acronyms 397

NASA: National Aeronautics and Space Administration.

NATO: North Atlantic Treaty Organization.

NIRMA: Nuclear Information & Records Management Association.

Nonconformance: [AU:pls check this entry]Nonfulfillment of specified requirement
operational information, information that supports the use of a product
(e.g., operation maintenance and user’s manuals or instructions, procedures,
and diagrams.

NOR: Notice of revision. A form used in configuration management to propose
revisions to a drawing or list and, after approval, to notify users that the
drawing or list has been, or will be, revised accordingly.

NSIA: National Security Industrial Association.

Object-oriented design: A software development technique in which a system or
component is built using objects and connections between those objects.

Operational testing: The testing that is conducted to evaluate the performance of
a system or component in its operational environment.

Original: The current design activity’s document or digital document representa-
tion and associated source data file(s) of record (i.e., for legal purposes).

Patch: A modification made to a source program as a last-minute fix.

PCA: Physical configuration audit. An audit conducted to verify that a configura-
tion item, as built, conforms to the technical documentation that defines it.

Perfective maintenance: Software maintenance performed to improve the perfor-
mance, maintainability, or other attributes of a computer program.

Performance: A quantitative measure characterizing a physical or functional
attribute relating to the execution of an operation or function. Performance
attributes include quantity (how many or how much), quality (how well),
coverage (how much area, how far), timeliness (how responsive, how fre-
quent), and readiness (availability, mission or operational readiness). Per-
formance is an attribute for all systems, people, products, and processes
including those for development, production, verification, deployment,
operations, support, training, and disposal. Thus, supportability param-
eters, manufacturing process variability, and reliability are all performance
measures.

Performance specification: A document that specifies the performance character-
istics that a system or component must possess.

Performance testing: Testing conducted to evaluate the compliance of a system or
component with specified performance requirements.

Physical attributes: Quantitative and qualitative expressions of material features,
such as composition, dimensions, finishes, form, fit, and their respective
tolerances.

PR: Problem report. A report of a problem found in a software system or its doc-
umentation that needs to be corrected.

6518 Book.indb 397 12/30/14 1:25 PM

398 Glossary and List of Acronyms

Preliminary design: The process of analyzing design alternatives and defining the
architecture, components, interfaces, and timing and sizing estimates for a
system or component.

Preventive maintenance: Maintenance performed for the purpose of preventing
problems before they occur.

Product: Anything that is used or produced to satisfy a need (e.g., systems, hard-
ware, software, firmware, data, processes, materials, or services).

Product baseline: The initial approved technical documentation (including source
code, object code, and other deliverables) defining a configuration item dur-
ing the production, operation, maintenance, and logistic support of its life
cycle.

Product information: Information related to a product including configuration
documentation and other information that is derived from configuration
documentation (e.g., instruction manuals, manufacturing instructions, and
catalogs).

Product support: The act of providing information, assistance, and training to
install and make the software operational in its intended environment.

QA: Quality assurance. A planned and systematic pattern of all actions necessary
to provide adequate confidence that an item or product conforms to estab-
lished technical requirements.

QC: Quality control. A set of activities designed to evaluate the quality of a
developed product. In the case of QC, the focus is finding the defect,
whereas in QA the focus is preventing the defect from occurring.

Query language: A language used to access information stored in a database.

Rapid prototyping: A type of prototyping in which emphasis is placed on devel-
oping prototypes early in the development process to permit early feedback
and analysis in support of the development process.

Regression testing: The process of testing a software system again usually using
the original test plan and test data with the objective of ensuring that the
modifications that were carried out have not caused unintended effects and
that the system or component still complies with its specified requirements.

Release: A configuration management action whereby a particular version of
software is made available for a specific purpose.

Released data: (1) Data that has been released after review and internal approv-
als, and (2) data that has been provided to others outside the originating
group or team for use (as opposed to for comment).

Requirements analysis: The process of studying user needs to arrive at a defini-
tion of system, hardware, or software requirements.

Requirements phase: The period of time in the software development life cycle
during which the requirements of a software product are defined and
documented.

6518 Book.indb 398 12/30/14 1:25 PM

Glossary and List of Acronyms 399

Requirements specification: A document that specifies the requirements for a
system or component. Also known as the requirements definition document
(RDD).

Requirements: Specified essential attributes.

Response time: The elapsed time between the end of an inquiry or command to
an interactive computer system and the beginning of the system’s response.

Retirement: Permanent removal of a system or component from its operational
environment.

Retirement phase: The period of time in the software development life cycle dur-
ing which the support for a software product is terminated.

Retrofit: The incorporation of new design parts or software code, resulting from
an approved engineering change to a product’s current approved prod-
uct configuration documentation, into products already delivered to and
accepted by customers.

Reusability: The degree to which a software component can be used in more than
one computer program or system.

Rework: A procedure applied to a product to eliminate a nonconformance.

RFD: Requests for deviation.

RFW: Requests for waiver.

SAE: Society of Automotive Engineers.

SCM: Software configuration management. The set of methodologies, proce-
dures, and techniques to manage and control change in the software devel-
opment process and to ensure that products that are developed satisfy the
requirements. IEEE defines SCM as a discipline applying technical and
administrative direction and surveillance to: identify and document the
functional and physical characteristics of a configuration item, control
changes to those characteristics, record and report change processing and
implementation status, and verify compliance with specified requirements.

SCM tool: Software that is used to automate SCM functions like change manage-
ment, problem tracking, version management, build management, and sta-
tus accounting that would otherwise have to be performed manually.

SCMP: Software configuration management plan. The SCM plan documents
what SCM activities are to be done, how they are to be done, who is
responsible for doing specific activities, when they are to happen, and what
resources are required.

SCN: Specification change notice. A document used in configuration manage-
ment to propose, transmit, and record changes to a specification.

SDLC: Software development life cycle. The period of time that begins when
a software product is conceived and ends when the software is no longer
available for use. The SDLC typically includes different phases like analysis,
design, development, testing, release, and maintenance.

Software: Computer programs, procedures, and associated documentation and
data pertaining to the operation of a computer system.

6518 Book.indb 399 12/30/14 1:25 PM

400 Glossary and List of Acronyms

Software development process: The software development process is that set of
actions required for efficiently transforming the user’s need into an effective
software solution.

Software engineering: The application of a systematic, disciplined, and quantifi-
able approach to the development, operation, and maintenance of software.
The practice of software engineering is a discipline, with a well-defined pro-
cess (or system) that produces a product (e.g., the software and documenta-
tion) and has a set of (automated) tools for improving the productivity and
quality of work.

Software product: The set of computer programs, procedures, and possibly asso-
ciated documentation and data

Software program: A combination of computer instructions and data defini-
tions that enable computer hardware to perform computational or control
functions.

Software tool: A computer program used in the development, testing, analysis, or
maintenance of a program or its documentation.

Software unit: A separately compliable piece of code

Source code: Computer instructions and data definitions expressed in a form
suitable for input to an assembler, compiler, or other translator.

Specification: A document that explicitly states essential technical attributes or
requirements of a product and procedures to determine that the product’s
performance meets its requirements or attributes.

Spiral model: A model of the software development process in which the con-
stituent activities, typically requirements analysis, preliminary and detailed
design, coding, integration, and testing are performed interactively until the
software is complete.

SPR: Software problem report. Same as problem report.

SQA: Software quality assurance. The discipline of applying quality assurance
principles to the software development process.

SQAP: Software quality assurance plan. The document where the procedures and
guidelines for practicing software quality assurance are recorded.

Submitted data: Released data that have been made available to customers.

Support equipment: Equipment and computer software required to maintain,
test, or operate a product or facility in its intended environment.

System testing: Testing conducted on the complete system to evaluate whether it
meets the specified requirements.

Unit: One of a quantity of items (e.g., products or parts)

Unit testing: The testing of individual units in a software system.

U.S. DOD: United States Department of Defense.

Usability: The ease with which a user can learn to operate, prepare inputs, and
interpret outputs of a system or component.

6518 Book.indb 400 12/30/14 1:25 PM

Glossary and List of Acronyms 401

Variance; deviation; waiver; departure: A specific written authorization to depart
from a particular requirement(s) of a product’s current approved configu-
ration documentation for a specific number of units or a specified time
period. (A variance differs from an engineering change in that an approved
engineering change requires corresponding revision of the product’s current
approved configuration documentation, whereas a variance does not.)

Variant: Versions that are functionally equivalent but designed for different hard-
ware and software environments.

Verification: The act of validating that a requirement has been fulfilled.

Version: Version is an initial release or rerelease of a configuration item. It is an
instance of the system that differs in some way from the other instances.
New versions of the system may have additional functionality or different
functionality. Their performance characteristics may be different or they
may be result of fixing a bug that was found by the user or customer.

Version identifier: A supplementary identifier used to distinguish a changed body
or set of computer-based data (software) from the previous configuration
with the same primary identifier. Version identifiers are usually associated
with data (such as files, databases, and software) used by, or maintained in,
computers.

Waterfall model: A model of the software development model in which the differ-
ent phases, requirements, analysis, design, coding, testing, and implementa-
tion are performed in that order, without any overlap or interaction.

Working data: Data that have not been reviewed or released; any data that are
currently controlled solely by the originator including new versions of data
that were released, submitted, or approved.

WWW: World Wide Web.

6518 Book.indb 401 12/30/14 1:25 PM

6518 Book.indb 402 12/30/14 1:25 PM

403

About the Author

Alexis Leon is the cofounder and managing director of L & L Consultancy Ser-
vices Pvt. Ltd., a company specializing in software engineering, Web design and
development, groupware and workflow automation, software procedures, manage-
ment and Industrial engineering, Internet/intranet development, and client/server
application development.

He graduated from Kerala University with first rank and distinction in industrial
engineering in 1989. In 1991, he earned his master’s degree (M.Tech.) in industrial
engineering with distinction also from the same university. His areas of specializa-
tion include software engineering, database management systems, workflow auto-
mation, groupware, ergonomics, and industrial engineering.

He has written more than 50 books on various computing, IT, and management
topics. Two of these books have been translated into Mandarin by McGraw-Hill,
Taiwan. Many of his books are prescribed textbooks in various universities and
training institutes in India, Sri Lank, Nepal, Taiwan, China, Nigeria, and Ethiopia.

He is a senior member of Institute of Electrical and Electronics Engineers (IEEE)
and member of the Association of Computing Machinery (ACM).

Before starting his own company, he has worked with Pond’s India Ltd. as an
industrial engineer, with Tata Consultancy Services as a software consultant, and
with Cybernet Software systems as the technical director. He can be reached through
his Web site at www.alexisleon.com.

6518 Book.indb 403 12/30/14 1:25 PM

6518 Book.indb 404 12/30/14 1:25 PM

405

Index

Acceptance testing, 27
defined, 27
tasks, 27
see also Software development life

cycle (SDLC)
ACMP-1 Ed. 2, 139
ACMP-2 Ed. 2, 139
ACMP-3 Ed. 2, 139
ACMP-4 Ed. 2, 139
ACMP-5 Ed. 2, 139
ACMP-6 Ed. 2, 139
ACMP-7 Ed. 2, 139
Adaptive maintenance, 47
Adaptive software development, 17
Aerospace Industries Association (AIA),

137
AFSCM 375–1, 9, 137
Agile process models, 17
Allocated baseline, 25
Alpha testing, 26, 118, 119
American Electronics Association

(AEA), 137–8
American National Standards Institute

(ANSI), 9, 138
ANSI/IEEE Std-1028-2008, 139, 145,

147–8
ANSI/IEEE Std-1042-1987, 139, 145,

147, 170
ANSI/IEEE Std-730.1-1995, 139, 145,

147
ANSI/IEEE Std-730-2014, 139, 145,

147
Audits and reviews, 11, 67

Baseline change control, 85, 91
Baseline management, 73–74
Baselines, 55, 73–75

defined, 55–56, 73
design baseline, 25, 73, 74
functional baseline, 21

product baseline, 73, 74, 118
requirements baseline, 21, 73, 74

Bersoff’s first law of system engineering,
53

Beta testing, 26, 118, 119
BOOTSTRAP, 153, 156–7
Branching, 59–61
Brooke’s law, 33
BS 6488-84, 140

CASE, 48, 357, 365
Causal analysis, 98, 99
CCB organization, 191–2

multilevel CCBs, 192
multiple CCBs, 191
structure, 191

Change analysis document, 89
Change analysis, 85, 88
Change classification, 85, 88
Change control authority (CCA), 100,

132
Change control board (CCB), 88,

89–90, 99–103
composition, 100–101
defined, 100
function of, 101
functioning, 102–3
issues, 102

Change disposition, 85, 89–90
Change evaluation, 85, 88
Change implementation, 85, 90
Change initiation, 85–88
Change management and control,

81–103
Change management procedure, 82–83,

86
Change management, 43–44
Change request (CR), 6, 11, 25, 27, 39,

56, 57, 66, 81, 94
Change verification, 85, 90–91

6518 Book.indb 405 12/30/14 1:25 PM

406 Index

Change-based change management,
91–93

Check-in, 57–58
Check-out, 57–58
CI selection, 72–73, 75–78

acquisition of, 77–78
checklist, 75–76
description, 77
impact of, 72–73
naming of, 76–77
too few CIs, 73
too many CIs, 72–73

Cleanroom software engineering model,
17

Cloud computing, 1, 314–7
characteristics, 315
defined, 314
IaaS model, 315–6
PaaS model, 316
SaaS model, 316
SCM, 316–7

CM Officer (CMO), 87–90, 101
CM tasks, 11–12
CMM, 153–4
CMMI, 153, 154–5
COBIT, 153, 161–2
Code hosting websites, 329
Coding, 25–26

activities, 25
output, 25
see also Software development life

cycle (SDLC)
Collaborative PDM (cPDM), 228
Commercial off-the-shelf (COTS)

products, 16, 22, 132
Communications breakdown problem,

33–36
Component assembly model, 17
Computer software CI (CSCI), 69
Computer software component (CSC),

70
lower-level CSC (LLCSC) 70
top-level CSC (TLCSC), 70

Concurrent development model, 17
Concurrent development, 363
Configuration audit (CA), 117, 121–2
Configuration control, 11, 67, 81–83

automation, 81–82
change, 82, 83–84
defined, 81
deviation, 83

emergency fixes, 93–94
escalation, 93
notification, 93
proposing changes, 82–83
uncontrolled change, 84
waiver, 83

Configuration control board (CCB),
26

Configuration control steps, 85–91
baseline change control, 85, 91
change analysis, 85, 88
change classification, 85, 88
change disposition, 85, 89–90
change evaluation, 85, 88
change implementation, 85, 90
change initiation, 85–88
change verification. 85, 90–91

Configuration identification, 11, 66–67,
69–78

benefits of, 71–72
CI selection, 72–73
defined, 69
EIA-649, 71
steps, 70–71

Configuration item, 21, 54, 69
defined, 10, 54

Configuration Status accounting (CSA),
35, 107

Configuration verification and audits,
117–24

defined, 117
EIA-649, 117
process, 117–8
role of SCM team, 123–4
SCM tools, 124

Configuration verification, 120
Consultants, 265–9

application consultants, 267
contract with, 269
management consultants, 267
myths about, 265–6
role of, 268–9
selection, 266
technical consultants, 267

Contractor CMP (CCMP), 171
Corrective maintenance, 47
Crystal family of methodologies, 17
CSCI structure, 70

Defect classification, 96–98
Defect prevention, 98

6518 Book.indb 406 12/30/14 1:25 PM

Index 407

Defect severity, 98
Delta, 63–5

forward delta, 64–65
need for, 63–64
reverse delta, 64–65
uses of, 64

Deployment models, 313–4, 317–24
Choosing of, 324
hosted system, 317–8
hosted system advantages, 317
hosted system disadvantages, 317
on-demand, 318–24
on-premises, 313–4
on-premises advantages, 313–4
on-premises disadvantages, 314
SaaS, 318–24
SaaS advantages, 319–20
SaaS choices, 322–3
SaaS disadvantages, 320–1
SaaS security, 321–2
traditional license, 313–4

Derived items, 61
Design baseline, 25, 73, 74
Detailed design, 24–25
Development TRR, 118
Document management and control

(DMC), 219–28
approval, 222–3
archiving, 223
defined, 225
document creation, 221
document creation, 222
document disposal, 223
document information, 226
document life cycle, 220–1
document life cycle, 221
environment, 226–7
goals of, 225–6
modification, 222–3
objectives of, 225
PDM, 227–8
publishing, 222
records retention, 223
review, 222–3
SDLC phases, 223–4
viewing, 222

DOD D 5010.19, 137
DOD-STD-2167A, 138, 141
DOD-STD-2168, 138, 141–2
Dynamic systems development method,

17

EIA CMB4-1A-84, 140
EIA CMB4-2-81, 140
EIA CMB4-3-81, 140
EIA CMB4-4-82, 140
EIA CMB5-A-86, 140
EIA CMB6-1C-94, 140
EIA CMB6-2-88, 140
EIA CMB6-3-91, 140
EIA CMB6-4-91, 140
EIA CMB6-5-88, 140
EIA CMB6-6-96, 140
EIA CMB6-8-88, 140
EIA CMB6-9-90, 140
EIA CMB7-1-91, 140
EIA CMB7-2-91, 140
EIA-649-B, 140, 145, 172
EIA-836-B, 140
Electric Power Research Institute

(EPRI), 145
Electronic PDM (ePDM), 228
Electronics Industries Association (EIA),

137
Emergency fixes, 93–94
Employee resistance, 287–92

dealing with, 289–92
employee involvement, 291
expectations management, 291–2
failure fear, 288–9
future fear, 289
issues, 291
organizational change, 290
pilot projects, 290–1
reasons for, 288–9
redundancy fear, 288
SCM champions, 290
training and education, 289–90

Employees, 287–92
contract with, 292

Enterprise TRR, 119
ESA PPS-05-09 Rev. 1, 140
European Computer Manufacturers

Institute (ECMI), 145
European Space Agency (ESA), 145
Evolutionary development model, 17
Extreme programming (XP), 17

FAA-STD-021, 140
Feature driven development, 17
Federal Aviation Authority (FAA), 145
FEI-4, 140
File-based change management, 91–93

6518 Book.indb 407 12/30/14 1:25 PM

408 Index

Functional baseline, 21
Functional configuration audit (FCA),

118, 122–3

Government CMP (GCMP), 171

Help desk, 99
Hidden implementation costs, 293–5

consultants, 294
data analysis, 294
data conversion, 294
data migration, 294
employee turnover, 295
integration, 294
maintenance, 295
testing, 294
training, 293–4
brain drain, 295

High-level design, 23–24
output, 24
prototyping, 23
steps, 23
system architecture, 23–24
see also Software development life

cycle (SDLC)
High-level design (HLD) document,

19–25

Iceberg effect, 47
IEEE Std-828-1998, 169
IEEE Std-828-2012, 139, 145, 146–7,

169–70
IEEE-Std-24765-2010, 139
Implementation challenges, 337–42

customization issues, 337, 341
data quality costs, 337, 342
hidden implementation costs, 337, 342
improper operation or use, 337, 342
inaccurate expectations, 337, 340
inadequate requirements definition,

337, 338
inadequate resources, 337, 339
inadequate training and education,

337, 340
lack of organizational readiness, 337,

339–40
lack of top management support, 337,

339
poor communication and cooperation,

337, 341–2

poor package selection, 337, 340
poor project management, 337, 341
resistance to change, 337, 338

Implementation characteristics,
300–302

benefits, 301–2
complexity, 301
resources, 301
risk, 301
scope, 301

Implementation team organization,
257–61

administrative support team, 261
chief executive officer (CEO), 257–8
consultants, 259
executive committee, 258–9
project management team, 260
project manager, 259
technical support team, 261
work team, 260–1

Implementation team organization
Infrastructure as a service (IaaS),

315–16
Institute of Electrical and Electronics

Engineers (IEEE), 9, 138
Institute of Nuclear Power Operations

(INPO), 145
Integrated development environment

(IDE), 357, 364
Interface control plan (ICP), 130
Interface control working group

(ICWG), 131
Interface control, 130–1
International Electrotechnical

Commission (IEC), 155
International Organization for

Standardization (ISO), 9, 138
International/Commercial SCM

Standards, 145–51
ANSI/IEEE Std-1028-2008, 145,

147–8
ANSI/IEEE Std-1042-1987, 145, 147
ANSI/IEEE Std-730.1-1995, 145, 147
ANSI/IEEE Std-730-2014, 145, 147
EIA-649-B, 145
IEEE Std-828-2012, 145, 146–7
ISO 10007: 2003, 146, 151
ISO 9001: 2008, 146, 149–50
ISO/IEC 90003:2004, 146, 150–1
ISO/IEC/IEEE 12207-2008, 146, 148

6518 Book.indb 408 12/30/14 1:25 PM

Index 409

ISO/IEC/IEEE 15288-2008, 146,
148–9

Interpretative cognition, 33–34
ISO 10007, 140, 146, 172–4
ISO 9000-3, 139
ISO 9001: 2008, 139, 146, 149–50
ISO/IEC 15504, 153, 155–6
ISO/IEC 90003:2004, 140, 146, 150–1
ISO/IEC TR 15846:1998, 140
ISO/IEC/IEEE 12207-2008, 139, 146,

148
ISO/IEC/IEEE 15288-2008, 139, 146,

148–9
ITIL, 153, 158–61

Joint application development model, 17
JPL D-4011, 140

Knowledge base, 49, 98, 99

Lehman’s law of continuing change, 43
Low-level design, 24–25

output 24–25
tasks, 24
see also Software development life

cycle (SDLC)
Low-level design (LLD) document,

19–25

Maintenance, 355
Market readiness review (MRR), 118
Merging, 60–61
MIL-HDBK-61A (SE), 138, 141, 142–3,

170–2
Military SCM standards, 141–5

DOD-STD-2167A, 141
DOD-STD-2168, 141, 141–2
MIL-HDBK-61A (SE), 141, 142–3
MIL-STD-1521B, 141, 144–5
MIL-STD-2549, 141, 143
MIL-STD-480B, 141, 143
MIL-STD-481B, 141, 144
MIL-STD-482, 141. 144
MIL-STD-498, 141, 142
MIL-STD-961E, 141, 145
MIL-STD-973, 141, 144

MIL-STD-1521B, 139, 141, 144–5
MIL-STD-2549, 138, 141, 143
MIL-STD-480, 137
MIL-STD-480B, 138, 141, 143

MIL-STD-481B, 138, 141, 144
MIL-STD-482, 137
MIL-STD-482, 138, 141, 144
MIL-STD-483, 137
MIL-STD-483A, 138
MIL-STD-483B, 130
MIL-STD-490, 137
MIL-STD-490A, 138
MIL-STD-498, 138, 141, 142
MIL-STD-961E, 139, 141, 145
MIL-STD-973, 138
MIL-STD-973, 138, 141, 144
Multiple maintenance problem, 37–38

NASA D-GL-11, 139
NASA-DID-M200, 130
NASA-Sfw-DID-04, 139
National Aeronautics and Space

Administration (NASA), 137
National Security Industrial Association

(NSIA), 137
NATO NAT-PRC-2, 139
NATO STANAG 4159, 139
NAVMATINST 4130.1, 137
NIST S.P. 500-161, 140
Non-developmental item (NDI), 132
North Atlantic Treaty Organization

(NATO), 145
NPC 500-1, 137
Nuclear Information & Records

Management Association
(NIRMA), 145

Operation and maintenance of SCM,
345–9

employee relocation, 346
employee retraining, 346
knowledge management, 347–8
organizational structure, 346–7
review, 348–9
roles and skills, 347
SCM tools, 348
technology, 348

Operation of SCM, 349–55
audits and reviews, 351
CCB formation, 351–2
change requests, 353
documentation, 350–1
emergency fixes, 353
help desk, 353

6518 Book.indb 409 12/30/14 1:25 PM

410 Index

Operation of SCM (Cont.)
interdepartmental coordination, 350
metrics, 354–5
problem reports, 353
reusability, 354
SCM database management, 352
software enhancements, 352–3
software modifications, 352–3
software upgrades, 352–3
SWOT analysis, 350
training, 351

Operational model, 17

Package vendors, 269–75
contract with, 273–5
role of, 272–3
vendor management, 270–2

Parallel development, 59–61, 363
Perfective maintenance, 47
Physical configuration audit (PCA), 118,

123
Platform as a service (PaaS), 315, 316
PLC management (PLCM), 228
Problem analysis report, 97
Problem identification, 95–96
Problem report (PR), 86
Problem reporting, 94–95
Problem tracking, 94–95
Product baseline, 73, 74, 118
Product data management (PDM),

227–34
benefits of, 231–3

control of projects, 232
creative team skills, 232
data integrity, 232
design accuracy, 232
design productivity, 231–2
manufacturing accuracy, 232
quality management, 232–3
time to market, 231

data management, 230
overview of, 228–9
process management, 230–1
SCM, 233–4

Product information management
(PIM), 228

Project start-up, 18–20
defined 18
standards, 19
tasks, 18–20

output, 20
see also Software development life

cycle (SDLC)
Project TRR, 118
Prototyping, 22, 23

Quality assurance (QA), 48
Quality control (QC), 48

Release management, 129–30
Release note, 63
Releases, 62–63
Requirements analysis/specification,

20–21
RDD, 21
tasks, 20–21
user requirements, 21
see also Software development life

cycle (SDLC)
Requirements baseline, 21, 73, 74
Requirements definition document

(RDD), 18–25, 74
Revision, 58, 61, 62
RTCA DO/178B-92, 139

SCM benefits, 44–50
bug fixes, 44, 49
correct system, 44, 50
customer goodwill, 44–45
customer service, 44–45
defects and bugs, 44, 48
management control over software

development, 44–45
organizational competitiveness,

44–45
person-dependent development, 44,

49–50
problem identification, 44, 49
process-dependent development, 44,

49–50
quality assurance (QA), 44, 48
return on investment (ROI), 44–45
security, 44, 46–47
software complexity, 44, 46
software development productivity,

44, 46
software maintenance costs, 44,

47–48
software reuse, 44, 47

SCM functional areas, 11

6518 Book.indb 410 12/30/14 1:25 PM

Index 411

build engineering, 11
change control, 11
deployment, 11
environment configuration, 11
release engineering, 11
source code management, 11

SCM functions, 11
audits and reviews, 11
configuration control, 11
configuration identification, 11
status accounting, 11

SCM implementation, 237–311
budget, 250–1
characteristics, 300–302
company-wide implementation, 293
consultants, 265–9
cost, 251–3

cost-benefit analysis, 252–3
employee resistance, 287–92
employees, 287–92
hidden costs, 293–5
implementation plan, 247–8
implementation strategy, 249–50
in-house implementation, 246–7
managing, 237
objectives, 300–302
package vendors, 269–75
performance measurement, 253–4
pre-implementation tasks, 238,

239–45
preparation, 238–9
problem resolution, 264
project characteristics, 239
risk assessment, 249
success factors, 285–6
system issues, 264–5
training and education, 275–85

SCM implementation failure, 310–1
budgeting, 310
planning, 310
SCM tool, 310–1
top management, 310
training, 311
work culture, 311

SCM implementation phases, 302–10
infrastructure setup, 304, 306–7
Operation and maintenance, 304,

309–10
project team training, 304, 307–8
Records retention, 304, 310

SCM system design, 304, 305–6
SCMP preparation, 304, 306
system implementation, 304, 308
system retirement, 304, 310
team organization, 304, 306
team training, 304, 307

SCM implementation team, 254–63
composition of, 256–7
organization, 257–61
working of, 262–3

SCM myths, 3–9
certifications, 6
change management, 8
current practices, 3
defect tracking, 8
developers only, 4
expensive, 7
impress customers, 8–9
jobless employees, 5
maintenance, 5
management responsibility, 4
monotonous, 3–4
more work and procedures, 3
no additional expenses after

implementation, 7
one tool for all, 6–7
only for SCM team, 4–5
product failures, 3
redundant employees, 5
software development slowdown, 6
software development, 8
source code, 7–8
technical support team, 5
time-consuming, 3–4
tools, 6

SCM organization, 186–92
administrator, 188
assigners, 187
automation, 188
build manager, 187
CCB organization, 190–2
CMO, 186
developers, 187
QA representatives, 187
skill inventory database, 188–90
team size, 188
testers, 187

SCM plan (SCMP), 20, 167–81
audit, 174
contents of, 176–81

6518 Book.indb 411 12/30/14 1:25 PM

412 Index

SCM plan (SCMP (Cont.))
creation, 168
defined, 167
how to write, 174–6
incremental approach, 168
initial draft, 167
objective of, 167
samples, 181
SCM tools, 168–9
standards, 169–74

SCM pre-implementation tasks, 238,
239–45

constraints, 245
consultants, 244–5
core team, 242
data conversion, 243
data migration, 243
feasibility study, 241
implementation time, 245
interfaces, 244
mission statement, 241–2
modules, 242
organizational structure, 242
participants, 241
policies and guidelines, 245
vision statement, 241–2
work estimates, 244
training needs, 242–3

SCM standards, 137–51
SCM system audit, 123
SCM tool functions, 202–5

access/security, 204–5
CAs, 204
change management, 201–2
customization, 205
problem tracking, 202–3
promotion management, 203
status accounting, 204
system building, 203
version management, 200
Web enabling, 205

SCM tool retirement, 310
SCM tools, 195–216

advantages, 197–8
flexibility, 197–8
information integration, 197
latest technology, 198

evolution of, 195–6
failure reasons, 198–9
implementation, 212–4

make or buy, 214–6
reasons for popularity, 196–7
SCM tool functions, 199–205

SCM tool selection, 206–12
criteria, 209–12
process, 207
selection committee, 207
technology, 208–9
vendors, 208

Shared data problem, 36–37
Shrink-wrapped products, 16
Simultaneous update problem, 38–39
Skill inventory database, 186, 188–90,

361–2
Society of Automotive Engineers (SAE),

138
Software as a service (SaaS), 313, 315,

316, 318–24
Software changes, 43
Software complexity, 42–43
Software configuration, 53
Software Configuration Management

(SCM)
activities, 66–67
benefits of, 13, 44–50
CASE tools, 365
concepts and definitions, 10–12
concurrent development, 363
database, 65–66
defined, 2, 10
history of, 9
importance of, 12–13
in distributed environments, 364–5
in IDEs, 364
need for, 41–44
organization, 183–4
organizational structure, 184–6
overview of, 54–55
parallel development, 363
project size, 357–8
Very large projects, 358–9

Software demand, 42–43
Software development life cycle (SDLC),

16–29
acceptance testing, 27
coding, 25–26
defined, 16
detailed design, 24–25
high-level design, 23–24
implementation, 27–28

6518 Book.indb 412 12/30/14 1:25 PM

Index 413

low-level design, 24–25
phases, 16–17, 18–29
project maintenance, 28
project start-up, 18–20
project windup, 28
relationship with SCM, 29
requirements analysis/specification,

20–21
retirement, 28–29
system testing, 26–27
systems analysis, 21–22
unit testing, 25–26

Software development models, 17
Software development process, 15,

33–39
pitfalls, 33–39

Software development teams, 42
Software development, 2
Software Engineering Institute (SEI),

156
Software engineering, 15
Software library, 132–3

working of, 133
Software problem reports (SPR), 94
Software process improvement models,

153–64
BOOTSTRAP, 153, 156–7
CMM, 153–4
CMMI, 153, 154–5
COBIT, 153, 161–2
ISO/IEC 15504, 153, 155–6
ITIL, 153, 158–61
SPICE, 153
SWEBOK, 153, 162–3
Trillium, 153, 157–8

Software products, 41
Software projects, 41–42
Software quality assurance (SQA), 2
Software requirements specification

(SRS), 117
Software reviews, 119
Source code control system (SCCS), 8
Source code repositories, 329–34

advantages, 334
choosing, 333
disadvantages, 334
features, 332–3
software companies, 331–2
software development, 329–31

Source items, 61

Specification change notice (SCN), 86
SPICE, 153
Spiral model, 17
STANAG 4427 Ed. 2, 139
Status accounting, 11, 67, 107–114

aims of, 107
answers, 108
automation tools, 113
automation, 112–114
database, 109–10
defined, 107
information gathering, 108–9
tasks, 107–8

Status accounting reports, 109–14
ad hoc queries, 114
ad hoc reports, 111–2
change log, 112
change tracking, 114
CI status report, 112
difference reporting, 114
importance of, 110
journals, 114
problem tracking, 114
progress report, 112
report information, 109
routine reports, 111
transaction log, 112

Subcontractor control, 131–2
Super CCB (SCCB), 191, 351, 360
SWEBOK, 153, 162–3
System building, 62, 128–9
System design document (SDD), 48, 54
System implementation, 27–28

tasks, 27–28
System test plan (STP), 24, 25, 26
System test specification (STS), 24, 25,

26
System testing, 26–27

alpha testing, 26
beta testing, 26
tasks, 26–27
see also Software development life

cycle (SDLC)
Systems analysis, 21–22

output, 22
prototype, 22
prototyping, 22
tasks, 21–22
see also Software development life

cycle (SDLC)

6518 Book.indb 413 12/30/14 1:25 PM

414 Index

Systems analysis document (SAD),
18–25

Test readiness review (TRR), 118
Training, 275–85

assessment and review, 283–4
key elements, 286–7
need and importance, 278–80
overview, 276–7
pre-implementation phase, 280–2
stages, 276
strategy, 284–5
training costs, 277–8
training process, 275–6
user training phase, 282–3

Transformational model, 17
Transition strategies, 324–8

big-bang, 325–6
big-bang advantages, 326
big-bang disadvantages, 326
choosing, 327–8
phased implementation, 326–7
phased implementation advantages,

327
phased implementation disadvantages,

327
Trillium, 153, 157–8

U.S. Air Force, 9
U.S. Department of defence (DoD), 9
UK MOD DEF-STAN 05-57/2, 139
Unit test plan (UTP), 24

Unit test specification (UTS), 24, 25
Unit testing, 25–26

activities, 26
output, 26
see also Software development life

cycle (SDLC)

Variant, 59
Version control, 127–8

benefits of, 127–8
Version description document (VDD),

127, 129
Versions, 58–59

naming of, 61
Very large projects, 358–9

change management, 360–1
concurrent development, 360
distributed development, 360
implementation, 359–60
knowledge sharing system, 362
parallel development, 360
SCM costs, 362–3
SCM tool performance, 359
skill inventory database, 361–2
status accounting, 361
system building, 361
training, 362
help desk, 362

Waterfall model. 17
Web site management, 363–4
Win-win spiral model, 17

6518 Book.indb 414 12/30/14 1:25 PM

	Software Configuration Management Handbook Third Edition
	Contents
	Preface
	Changes in the Third Edition
	How to Use This Book
	Who Should Read This Book?

	Chapter 1 Overview of SCM
	Introduction
	Common SCM Myths
	SCM Means More Work and Procedures
	SCM Will Change Current Practices and It Will Create Product Failures
	SCM Is a Difficult, Monotonous, and Time-Consuming Activity
	SCM Is the Responsibility of Management
	SCM Is Just for Developers
	SCM Is Just for the SCM Team
	SCM Is Just for the Maintenance and Technical Support Team
	SCM Will Make Many Employees Redundant and Jobless
	SCM Slows Down the Software Development Process
	SCM Is Just To Get Certifications Like International Organization for Standardization (ISO) and Capability Maturity Model (CMM)[AU:pls check]
	SCM Tools Will Take Care of Everything
	One SCM Tool Will Suit Everybody
	SCM Is Very Expensive
	Once the SCM Implementation Is Complete, There Will Be No Additional Expenses
	SCM Is Just for the Source Code
	SCM Is Change Management and Defect Tracking
	Software Development Can Succeed Without SCM
	SCM Is Just To Impress Customers

	A Brief History of SCM
	SCM: Concepts and Definitions
	Importance of SCM
	Benefits of SCM
	Summary
	References

	Chapter 2 The Software Development Process

	Introduction
	SDLC
	SDLC Phases
	Project Start-up
	Requirements Analysis and Requirements Specification
	Systems Analysis
	High-Level Design
	Low-Level (LLD) or Detailed Design (DD)

	Coding and Unit Testing
	System Testing
	Acceptance Testing
	Implementation
	Project Windup
	Project Maintenance
	Retirement

	Summary
	References
	Selected Bibliography

	Chapter 3 Pitfalls in the Software Development Process

	Introduction
	Communications Breakdown Problem
	Shared Data Problem
	Multiple Maintenance Problem
	Simultaneous Update Problem
	Summary
	References

	Chapter 4 Need and Importance of SCM

	Introduction
	Need for SCM
	The Nature of Software Products, Projects, and Development Teams
	Increased Complexity and Demand
	The Changing Nature of Software and The Need for Change Management

	Benefits of SCM
	Improved Organizational Competitiveness
	Better Customer Service and Improved Customer Goodwill
	Better Return on Investment
	Improved Management Control Over Software Development Activities
	Improved Software Development Productivity
	Easier Handling of Software Complexity
	Improved Security
	Higher Software Reuse
	Lower Maintenance Costs
	Better QA
	Reduction of Defects and Bugs
	Faster Problem Identification and Bug Fixes
	Process-Dependent Development Rather Than Person-Dependent Development
	Assurance That the Correct System Has Been Built

	Summary
	References

	Chapter 5 SCM: Basic Concepts

	Introduction
	Overview of SCM
	Baselines
	Check-In and Check-Out
	Versions and Variants
	Parallel Development and Branching
	Naming of Versions
	Source and Derived Items
	System Building
	Releases
	Deltas
	SCM Database
	SCM Activities
	Summary
	References
	Selected Bibliography

	Chapter 6 Configuration Identification

	Introduction
	Impact of CI Selection
	Effects of Selecting Too Many CIs
	Effects of Selecting Too Few CIs

	Baselines
	CI Selection
	Checklist for Selection of CIs

	Designation: Naming of CIS
	CI Description
	Acquisition of CIs
	Summary
	References
	Selected Bibliography

	Chapter 7 Configuration Control

	Introduction
	Change
	Proposing Changes to the Customer
	Deviations and Waivers
	Change and Configuration Control
	Problems of Uncontrolled Change
	Configuration Control
	Change Initiation
	Change Classification
	Change Evaluation/Analysis
	Change Disposition
	Change Implementation
	Change Verification
	Baseline Change Control

	File-Based versus Change-Based Change Management
	Escalation and Notification
	Emergency Fixes
	Problem Reporting and Tracking
	Problem Reports and CRs
	Problem Identification
	Defect Classification
	Requirements Analysis
	Design Phase
	Coding and Testing Phase

	Defect Severity
	Defect Prevention
	Causal Analysis
	Defect Knowledge Base and Help Desks

	CCB
	CCB Composition
	Functions of the CCB
	Functioning of the CCB

	Summary
	References
	Selected Bibliography

	Chapter 8 Status
Accounting
	Introduction
	Status Accounting Information Gathering
	Status Accounting Database
	Importance of Status Accounting
	Status Accounting Reports
	Change Log
	Progress Report
	CI Status Report
	Transaction Log

	Status Accounting and Automation
	Change and Problem Tracking Reports
	Difference Reporting
	Ad Hoc Queries
	Journals

	Summary
	References
	Selected Bibliography

	Chapter 9 Configuration Verification and Audits

	Introduction
	Software Reviews
	Configuration Verification
	The When, What, and Who of Auditing
	FCA
	PCA
	Auditing the SCM System
	Role of the SCM Team in CAs
	CAs and SCM Tools
	Summary
	References
	Selected Bibliography

	Chapter 10 SCM: Advanced Concepts

	Introduction
	Version Control
	System Building
	Release Management
	Interface Control
	Subcontractor Control
	Software Library
	Summary
	References
	Selected Bibliography

	Chapter 11 SCM Standards

	Introduction
	Military Standards
	DOD-STD-2167A
	DOD-STD-2168
	MIL-STD-498
	MIL-HDBK-61A (SE)
	MIL-STD-2549
	MIL-STD-480B
	MIL-STD-481B
	MIL-STD-482
	MIL-STD-973
	MIL-STD-1521B
	MIL-STD-961E

	International/Commercial Standards
	EIA-649-B
	IEEE Std-828-2012
	ANSI/IEEE Std-1042-1987
	ANSI/IEEE Std-730-2014
	ANSI/IEEE Std-730.1-1995
	ANSI/IEEE Std-1028-2008
	ISO/IEC/IEEE 12207-2008
	ISO/IEC/IEEE 15288:2008
	ISO 9001:2008
	ISO/IEC 90003: 2004
	ISO 10007: 2003

	Summary
	Selected Bibliography

	Chapter 12 Software Process Improvement Models and SCM

	Introduction
	CMM
	CMM Interactive (CMMI)
	ISO/IEC 15504
	BOOTSTRAP
	Trillium Model
	Information Technology Infrastructure Library (ITIL)
	Change Evaluation
	Change Management
	Release and Deployment Management
	Service Asset and CM

	Control Objectives for Information and Related Technology (COBIT)
	Software Engineering Body of Knowledge (SWEBOK)
	Summary
	Selected Bibliography

	Chapter 13 SCM Plans (SCMPs)

	Introduction
	SCMP and the Incremental Approach
	SCMPs and SCM Tools
	SCMPs and Standards
	ANSI/IEEE Std-828–1998 and ANSI/IEEE Std-1042–1987
	MIL-HDBK-61A (SE)-2001
	EIA-649-B: 2011
	ISO 10007: 2003

	Audit of the SCMP
	How to Write a Good SCMP
	Contents of a Typical SCMP
	Sample SCMPS
	Summary
	Reference
	Selected Bibliography

	Chapter 14 SCM Organization

	Introduction
	SCM and the Organization
	SCM Organization
	Automation and SCM Team Size
	Skill Inventory Database
	CCB Organization
	Summary
	Reference
	Selected Bibliography

	Chapter 15 SCM Tools

	Introduction
	Evolution of SCM Tools
	Reasons for the Increasing Popularity of SCM Tools
	Advantages of SCM Tools
	Information Integration
	Flexibility
	Better Analysis and Planning Capabilities
	Use of the Latest Technology

	Why Many SCM Tool Implementations Fail?
	SCM Tools and SCM Functions
	Version Management
	Change Management
	Problem Tracking
	Promotion Management
	System Building
	Status Accounting (Querying and Reporting)
	CAs
	Access and Security
	Customization
	Web Enabling

	SCM Tool Selection
	Selection Process
	Selection Committee

	Working with Vendors
	Role of Technology
	Selection Criteria
	Tool Implementation
	SCM Tools: Make or Buy?
	Summary
	References
	Selected Bibliography

	Chapter 16 DMC and PDM

	Introduction
	Document Life Cycle
	Document Creation
	Document Storage
	Publishing
	Viewing
	Modification or Change, Review and Approval
	Records Retention
	Document Disposal
	Archiving

	Documentation and SDLC Phases
	DMC
	PDM and DMC
	Overview of PDM
	Data Management
	Process Management
	Benefits of PDM
	Reduced Time to Market
	Improved Design Productivity
	Improved Design and Manufacturing Accuracy
	Better Use of Creative Team Skills
	Data Integrity Safeguarded
	Better Control of Projects
	A Major Step Toward Total Quality Management

	PDM and SCM
	PDM Resources
	Summary
	References
	Selected Bibliography

	Chapter 17 SCM Implementation

	Introduction
	Managing the Implementation
	Preimplementation Tasks—Getting Ready
	Importance of Preparation
	Before You Leap
	Assembling the Participants
	Feasibility Study Review
	Project Mission and Vision Statements Creation
	Determination of Organizational Structure
	Determination of the Modules To Be Implemented
	Creating the Core Team
	Establishing the Training Needs
	Establishing the Data Conversion or Migration Strategy
	Establishing Interfaces
	Determining Work Estimates
	Cost of Consultants
	Calculation of Implementation Time
	Identifying Constraints
	Establishing Policies and Guidelines

	In-House Implementation—Pros and Cons
	SCM Implementation Plan
	Risk Assessment
	Implementation Strategy
	Budget
	Cost
	Cost-Benefit Analysis

	Performance Measurement
	SCM Implementation Team
	Composition of the Implementation Team
	Organization of the Implementation Team
	How the Implementation Team Works

	Problem Resolution
	System Issues
	Consultants
	Role of the Consultants
	Contract with the Consultants

	Package Vendors
	Vendors and Vendor Management
	Role of the Vendor
	Contract with the Vendor

	Training and Education
	Overview of Training
	Training Costs
	Need and Importance of Training
	Training Phases
	Preimplementation Training
	User Training (During and After Implementation)
	Training, Assessment, and Review

	Training Strategy
	Success Factors
	Employees and Employee Resistance
	Reasons for Employee Resistance
	Fear of Being Redundant
	Fear of Failure
	Fear of the Future

	Dealing with Employee Resistance
	Training and Education
	Implement an Organizational Change Management Program
	Creating SCM Champions
	Pilot Projects
	Involve Employees in SCM Process
	Address Issues of Fear, Uncertainty, and Self-Esteem
	Manage Expectations

	Contract with the Employees
	Company-Wide Implementation
	SCM Implementation: The Hidden Costs
	Training
	Integration and Testing
	Data Conversion or Migration
	Data Analysis
	External Consultants
	Brain Drain (Employee Turnover)
	Continuing Maintenance

	Summary
	Reference
	Selected Bibliography

	Chapter 18 The Different Phases of SCM Implementation

	Introduction
	Objectives of SCM Implementation
	Scope
	Resources
	Risk
	Complexity
	Benefits

	Different phases of SCM Implementation
	SCM System Design
	SCMP Preparation
	SCM Team Organization
	SCM Infrastructure Setup
	SCM Team Training
	Project Team Training
	SCM System Implementation

	Operation and Maintenance of the SCM System
	Records Retention
	SCM System Retirement

	SCM Tool Retirement
	Why Many SCM Implementations Fail?
	Lack of Top Management Buy-in, Commitment, and Support
	Improper Planning and Budgeting
	Use of the Wrong SCM Tool
	Lack of Training
	Work Culture of the Organization

	Summary
	Reference
	Selected Bibliography

	Chapter 19 SCM Deployment Models and Transition Strategies

	Introduction
	Traditional License or On-Premises Deployment
	Advantages of On-Premises SCM System
	Disadvantages of On-premises SCM System

	Cloud Computing
	Cloud Computing Models
	IaaS
	PaaS
	SaaS

	SCM and Cloud Computing
	Hosted System Deployment
	Advantages of a Hosted SCM System
	Disadvantages of a Hosted SCM System

	SaaS or On-Demand Deployment
	Advantages of SaaS SCM Systems
	Disadvantages of SaaS SCM Systems

	SCM Transition Strategies
	Big-Bang Strategy
	Phased Implementation
	Choosing a Strategy

	Summary
	References

	Chapter 20 Source Code Repositories

	Overview
	Software Development in a Code Repository
	How Repositories Will Help Software Companies?
	Features Available at Source Code Repositories
	Factors to Consider When Choosing a Repository
	Advantages and Disadvantages
	Advantages
	Disadvantages

	Summary
	Selected Bibliography

	Chapter 21 Implementation Challenges

	Introduction
	Implementation Challenges
	Inadequate Requirements Definition
	Resistance to Change
	Inadequate Resources
	Lack of Top Management Support
	Lack of Organizational Readiness
	Inadequate Training and Education
	Inaccurate Expectations
	Poor Package Selection
	Poor Project Management
	Customization Issues
	Poor Communication and Cooperation
	Data Quality Costs
	Hidden Implementation Costs
	Improper Operation or Use

	Summary
	Reference

	Chapter 22 SCM Operation and Maintenance

	Introduction
	Employee Relocation and Retraining
	Organizational Structure
	Roles and Skills
	Knowledge Management
	SCM Tools and Technology
	Review
	Operation of the SCM System
	Interdepartmental Coordination
	SWOT Analysis
	Documentation
	Training
	Audits and Reviews
	CCB Formation
	SCM Database Management
	Software Upgrades, Enhancements, and Modifications
	Help Desks
	Change and Problem Requests from Customers and In-field Emergency Fixes
	Reusability Improvement
	Metrics

	SCM Maintenance Phase
	Summary
	Selected Bibliography
	Chapter 23 SCM in Special Circumstances

	Introduction
	SCM and Project Size
	SCM in Very Large Projects
	Performance of SCM Tools
	Implementation Strategy
	Distributed, Concurrent, and Parallel Development
	Change Management
	Status Accounting
	System Building
	Skill Inventory Database
	Training
	Help Desks and Other Knowledge-Sharing Systems
	SCM Costs

	Concurrent and Parallel Development
	Web Site Management
	SCM in Integrated Development Environments
	SCM in Distributed Environments
	SCM and Case Tools
	Summary
	References
	Selected Bibliography

	Appendix A SCM Resources on the Internet

	Organizations and Institutes
	Resource Pages
	Commercial Research Organizations
	Digital/On-Line Libraries
	Magazines and Periodicals
	General Sites
	Major SCM Tools

	Appendix B SCM Bibliography
	Glossary and List of Acronyms
	About the Author

	About the Author
	Index

