
C Online Programming Course

Lesson 10

FILE BASICS

This lesson introduces the basics to sequential file handling. A file is accessed via a

pointer to FILE. The symbolic constant FILE is defined in stdio.h as a particular

structure. This structure contains members that describe the current state of the file.

To make use of files, the user need not know the details concerning this structure.

Abstractly, a file is to be thought of as a stream of characters that is processed

sequentially. The system provides three standard files. They are defined in stdio.h.

Written in C Name Remark

stdin standard input file connected to the keyboard

stdout standard output file connected to the screen

stderr standard error file connected to the screen

Files have certain important properties. They have a name. They must be opened

and closed. They can be written to, or read from, or appended to. Conceptually, until

a file is opened, nothing can be done to it. It is like a closed book. When it is opened,

you may have access to it at its beginning or end. To prevent accidental misuse, you

must tell the system which of the three activities, reading, writing, or appending, you

will be performing on the file. When you are finished using it, you close it.

The standard library function fopen() can be used to open a file. It returns a pointer

C Online Programming Course

to FILE. You could write, for example,

#include <stdio.h>

main()

{

FILE *ifp;

ifp = fopen("myfile","r"); /* ifp is open for reading */

To open the file named myfile in order to read from it. The identifier ifp is mnemonic

for "in file pointer." After a file has been opened, the file pointer is used exclusively in

all references to the file. The function fopen () is described in some detail in the

following list, which contains descriptions of some useful library functions. It is not a

complete list; you should consult manuals to find other available functions in the

standard library. There may be slight variations from system to system. In the

remainder of this lecture, you will use the functions in the list. You should consult the

list as necessary to understand how these functions are used. A description of some

of the functions in the standard library fopen (file name, file mode) performs the

necessary housekeeping to open a buffered file and returns a pointer to FILE. The

pointer value NULL is returned if file name cannot be accessed. Both file name and

file mode are strings. The file modes are "r", "w", and "a" corresponding to read,

write, and append, respectively. The file pointer is positioned at the beginning of the

file if the file mode is "r", or "w", and it is positioned at the end of the file if the file

mode is "a". If the file mode is "w" or "a" and the file does not exist, it is created.

You must be careful if: the file mode is "w" and the file exists, its contents will be

overwritten.

C Online Programming Course

fclose (file pointer)

Performs the necessary housekeeping to empty buffers and break all connections to

the file pointed to by file pointer. File pointer is a pointer to FILE. The value EOF

(end-of-file) is returned if file pointer is not associated with a file. Open files are a

limited resource (20 files can be open simultaneously on the VAX, Unix, or DOS or

smaller systems): system efficiency is improved by keeping only needed files open.

getc (file pointer)

Retrieves the next character from the file pointed to by file pointer. The value of the

character is returned as an int. The value EOF is returned if an end-of-file mark is

encountered or if there is an error. This function may be implemented as a macro if

the header file stdio.h is included. getchar () is equivalent to getc (stdin).

fgetc (file pointer)

Acts similarly to getc (), but it is a function, not a macro.

ungetc (c, file pointer)

Pushes the character value of c back onto the file pointed to by file pointer and

returns the int value of c. If the file is buffered and one or more characters have been

C Online Programming Course

read, then at least one character can be pushed back. The value EOF is returned if it

is not possible to push back a character.

putc (c, file pointer)

Places the character value of c in the output file pointed to by file pointer. It returns

the int value of the character written. It may be implemented as a macro if stdio.h is

included.

fputc (c, file pointer)

Acts similarly to putc (c, file pointer), but it is a function, not a macro.

gets (s)

Reads a string into s from stdin. Get from the stdin, which is the screen. The

argument s is a pointer to char (a string). Characters are read into s until a newline

character is read, at which point the newline character is changed to a null character

that is used to terminate s. The value of s (pointer to char) is returned.

fgets (s, n, file pointer)

Reads a string into s from the file pointed to by file pointer. Characters are read from

the file and placed in s until (n - 1) characters have been read, or a newline character

is read, whichever comes first. Unlike gets (), if a newline character is found, it is

placed in s. In both cases s is terminated with a null character. The int value n is the

C Online Programming Course

maximum number of characters, including the null character that can be read into s.

The value of s (pointer to char) is returned. If there are no characters in the file,

NULL is returned.

system (command)

Provides a connection to the operating system. The string (pointer to char) command

is passed to the operating system and executed as a command. For example, on our

system the statement

system ("date");

causes the current date to be printed on the screen

"exit (status)

Terminates a program when it is called. All buffers are flushed and all files are

closed. The value of status is returned to the calling process. The function exit()

takes as an argument an expression of type int. By convention, the calling process

assumes that the program ran properly if status has value 0; a nonzero value

indicates that it did not run property.

EXAMPLE

This example will use the file handling functions in the standard library to write a

program to double-space a file. In main() you open files for reading and writing that

are passed as command line arguments. After the files have been opened, you

invoke double_space() to accomplish the task of double spacing.

C Online Programming Course

#include <stdio.h>

main(int argc, char argv[])

{

 FILE *infileptr, *outfileptr;

 void double_space();

 if (argc != 3) {

 printf("\nUsage:%s infile outfile\n",

 argv[0]) ;

 exit () ;

 }

 infileptr = fopen(argv[1], "r");/*open for reading */

 outfileptr = fopen(argv[2], "w");/*open for writing */

 double space (infileptr, outfileptr) ;

 fclose (infileptr);

 fclose (outfileptr);

}

void double_space(ifp, ofp)

 FILE *ifp, *ofp;

{

int c;

 while ((c = getc(ifp)) != EOF) {

 putc(c, ofp);

 if (c == '\n')

 putc('\n', ofp); /* dup newl*/

 }

C Online Programming Course

}

Suppose that you have compiled this program and put the executable code in the file

dblspace (dblspace.exe in DOS). When you give the command

dblspace file1 file2

the program will read from file1 and write to file2. The contents of file2 will be the

same as file1, except that every newline character will have been duplicated.

PROGRAM ANALYSIS

#include <stdio.h>

main(int argc, char *argv[])

{

FILE *infileptr, *outfileptr;

The symbolic constant FILE is defined in stdio.h as a structure that contains

information about a file. You do not need to know system implementation details of

how the file mechanism works to make use of files. The type of the identifiers infileptr

and outfileptr is pointer to FILE.

 if (argc ! = 3) {

 printf("\nUsage: %s infile outfile\n\n", argv[0]);

C Online Programming Course

 exit(1);

 }

The program is designed to read two file names entered as command line arguments.

If there are too few or too many command line arguments, a message to the user is

printed, indicating how the program should be used. Instead of writing the error

message to stdout, you could have written

fprintf(stderr, "\nUsage: %s infile outfile\n", argv[0]);

Now the error message will be written to stderr. In this program both ways are

acceptable. The function exit () from the standard library is called to exit the

program. By convention exit(1) is used if something has gone wrong.

infileptr = fopen(argv[1], "r"); /* open for reading */

outfileptr = fopen(argv[2], "w"); /* open for writing */

You can think of argv[] as an array of strings. The function fopen() is used to open

the file named in argv[1] for reading. The pointer value returned by the function is

assigned to infileptr. In a similar fashion the file named in argv[2] is opened for

writing.

C Online Programming Course

void double_space(infileptr, outfileptr);

The two file pointers are passed as arguments to double_space(), which then does

the work of double spacing. You can see that other functions of this form could be

written to perform whatever useful work on files you might need to perform.

fclose (infileptr);

fclose (outfileptr);

The function fclose() from the standard library is used to close the files pointed to by

infileptr and outfileptr. It is good programming style to close files explicitly in the same

function in which they were opened. Any files not explicitly closed by the programmer

will be closed automatically by the system on program exit.

double_space(ifp, ofp)

FILE *lfp, *ofp;

{

 int c;

The identifiers ifp and ofp stand for "infile pointer" and "out file pointer," respectively.

The identifier c is an int. Although it will be used to store characters obtained from a

file, eventually it will be assigned the value EOF, which is not a character value.

C Online Programming Course

 while ((c = getc(ifp)) ! = EOF) {

 putc(c, ofp);

 if (c = '\n')

 putc('\n', ofp); /* found a newllne - duplicate it */

 }

The function getc() Is used to read a character from the file pointed to by ifp and to

assign the value to c. If the value of c is not EOF, then putc() is used to write c into

the file pointed to by ofp. If c is a newline character, another newline character is

written into the file as well. This has the effect of double spacing the output file. This

process continues repeatedly until an EOF is encountered.

A good programming style is to check that fopen() does its work as expected. In any

serious program such checks are essential. Suppose that you want to open myfile for

reading. A common programming style used to do this is:

 if ((ifp = fopen("myfiIe", "r")) = = NULL) {

 printf("\n Cannot open my file\n\n");

 exit(1);

 }

C Online Programming Course

If for some reason fopen() is unable to open the named file, the pointer value NULL

is returned. A test for this value is made, and if it is found, a message is printed and

the program is exited.

Another style issue concerns the indiscriminate opening of files for writing is. When

fopen() is used to open a file for writing and that file already exists, then the contents

of that file will be destroyed. Since files are potentially valuable, the user should be

warned if a file already exists. One way to do this is to first check to see if the file can

be opened for reading. If it can be, then the file exists.

