
C Online Programming Course 

LESSON 6 
 
 
 
FLOW OF CONTROL 
 
This lesson discusses a variety of flow of control constructs.  The break and 
continue statements are used to interrupt ordinary iterative flow of control in 
loops.  In addition, the break statement is used within a switch statement.  A 
switch statement can select among several different cases.  It can be considered 
a generalization of the if-else statement.  Similar in function to an if-else 
statement, the conditional operator provides for the selection of alternative 
values.  The lesson also discusses the nested flow of control structures and a 
brief discussion of the goto statement.  After that, there is a discussion of nested 
blocks and their effect on the "scope" of variables, in conjunction with the 
different types of storage class attributes. 
 
 
THE break AND continue STATEMENTS 
 
 
To interrupt normal flow of control within a loop, you (the programmer) can use 
the two special statements break; and continue.  The break statement, in addition 
to its use in loops, can also be used in a switch statement.  It causes an exit from 
the innermost enclosing loop or switch statement. 
 
The following example illustrates the use of a break statement.  A test for a 
negative value is made, and if the test is true, the break statement causes the 
while loop to be exited.  Program control jumps to the statement immediately 
following the loop. 
 

 
while(scanf("%Lf", &x)  ==  1){ 
       if (x   <  0.0)  { 
printf ("Break out of loop x is negative.\n"); 
       break;      /* exit loop if value is negative */ 
       }  /* end of if. */ 
printf ("%Lf\n", sqrt(x)); 
}  /* end of while loop */ 
/* break jumps to here */ 

 
This is a typical use of a break statement.  When a special condition is met, an 
appropriate action is taken and the loop is exited.  In this example if x is less than 
0.0 the value is printed and the break is executed and the program jumps out of 
the while loop.  
 

© James C. Helm, PhD, P.E. October 1, 2006 
University of Houston Clear Lake 

1



C Online Programming Course 

The continue statement causes the current iteration of a loop to stop and causes 
the next iteration of the loop to begin immediately.  The following code processes 
all characters except digits. 
 

while ((c = getchar(   ))   !=   EOF) { 
      if(isdigit(c)) 
          continue; 
 
 
        /*Some       program statements to           */ 
        /*       process other characters                 */ 
 
 
 
 
/* The continue jumps to just before the closing brace */ 
}/* end of while loop  */ 

 
 
In this example all characters except digits are processed.  When the continue 
statement is executed, control jumps to just before the closing brace, causing the 
loop to begin execution at the top again.  Notice that the continue statement ends 
the current iteration, whereas a break statement would end the entire loop. 
 
A break statement can occur only inside the body of a for, while, do, or switch 
statement.  The continue statement can occur only inside the body of a for, while, 
or do statement. 
 
 
THE switch STATEMENT 
 
The switch statement is a multi-way conditional statement.  The switch statement 
general form is given by: 
 

switch (expression) { 
 
    statement 
 
}/* end of switch */ 

 
Statement is typically a compound statement containing case labels, the break 
and optionally the default label. 
 
Typically, a switch is composed of many cases, and the expression in 
parentheses following the keyword switch determines which, if any, of the cases 

© James C. Helm, PhD, P.E. October 1, 2006 
University of Houston Clear Lake 

2



C Online Programming Course 

get executed.  The precise details of how a switch works are explained by 
looking at a specific example.  The following program counts the occurrences of 
the letters a, b, c, and C, with the letters c and C counted together.  A switch 
statement is used to accomplish this task. 
 
 

/*Program to count a, b, c and C */ 
# include <stdio.h> 
main ( ) 
{ 
    int chr, a_cnt = 0, b_cnt = 0, cC_cnt =0, other_cnt =0; 
    while ((chr = getchar(   )) != EOF) 
    switch( chr ) 
     case 'a' :               /* case argument must be a constant */ 
          ++a_cnt; 
      break;                  /* break out of the switch statement   */ 
 
      case 'b' : 
         ++b_cnt; 
       break; 
 
      case 'c':      /* notice how these two case are together */ 
      case 'C' 
         ++cC_cnt; 
      break 
 
      default:    /*This is optional but you should include in all switch */ 
          ++other_cnt; 
      break; 
    }/* end of switch */ 
 
 
printf("\n%9s%5d\n%9s%5d\n%9s%5d\n%9s%5d\n%9s%5d\n\n", 
         "The a count:", a_cnt, "The b count:", b_cnt, 
         "The c count: " , cC_cnt, "All othesr: " , other_cnt, 
         "The total count: ", a_cnt + b_cnt + cC_cnt + other_cnt); 
} /* end of main */ 

 
 
PROGRAM ANALYSIS 
 
 
The value of the next character in the input stream is assigned to chr. 
 

while ((chr = getchar(   )) ! = EOF) 
 

© James C. Helm, PhD, P.E. October 1, 2006 
University of Houston Clear Lake 

3



C Online Programming Course 

The loop is exited when the end-of-file sentinel EOF is detected.  
 
This construct is a switch statement. 
 

switch (chr) { 
 
The integral expression in the parentheses following the keyword switch is 
evaluated with the usual arithmetic conversions taking place.  In this program the 
expression is just the variable chr.  The value of chr is used to transfer control to 
one of the case labels or to the default label. 
 

case 'a' :               /* case argument must be a constant */ 
          ++a_cnt; 
      break;                  /* break out of the switch statement   */ 

 
 
When the value of chr is 'a' .this case is executed, causing the value of a_cnt to 
be incremented by one.  The break statement causes control to exit the switch 
statement.  The while statement is then continued. 
 

      case 'c':      /* notice how these two case are together */ 
      case 'C' 
         ++cC_cnt; 
      break 

 
Multiple case labels allow the same actions to be taken for different values of the 
switch expression.  Here the same action is to be taken when c has the value c 
or C. 
 
If the value of the switch expression does not match one of the case labels, then 
control is passed to the default label, if there is one. 
 

default:    /*This is optional but you should include in all switch */ 
          ++other_cnt; 
      break; 

 
If there is no default label, then the switch statement is exited.  In this example 
the default label is used to cause the variable other_cnt to be incremented. 
 
The case label is of the form: 
 

case constant integral expression :  
 
In a switch statement the case labels must all be unique.  Typically, the action 
taken after each case label ends with a break statement.  If there is no break 
statement, then execution passes through to the next statement in the 

© James C. Helm, PhD, P.E. October 1, 2006 
University of Houston Clear Lake 

4



C Online Programming Course 

succeeding case.  If no case label is selected, then control passes to the default 
label, if there is one.  A default label is not required.  If no case label is selected, 
and there is no default label, then the switch statement is exited.  To detect 
errors, you should always include a default even when all the expected cases 
have been accounted for.  The keywords case and default cannot occur outside 
of a switch statement. 
 
 
The effect of a switch 
 
 

1. Evaluate the integral expression in the parentheses following switch. 
2. Execute the case label having a constant value that matches the value of 

the expression found in Step 1, or, if a match is not found, execute the 
default label, or, if there is no default label, terminate the switch.   

3. Terminate the switch when a break statement is encountered, or terminate 
the switch at the end. 

 
THE CONDITIONAL OPERATOR 
 
The conditional operator ? : is unusual in that it is a ternary operator.  It takes 
three expressions as operands.  In a construct such as  
 

expl ? exp2 : exp3 
 
Here expl is evaluated first.  If it is nonzero (true), then exp2 is evaluated and that 
is the value of the conditional expression as a whole.  If expl is zero (false),then 
exp3 is evaluated and that is the value of the expression.  The conditional 
expression can be used to do the work of an if-else statement.  An example is 
next shown. 
 

if(y < z) 
     x = y; 
else 
     x = z; 

 
These statements assign to x the minimum of y or z.  This also can be 
accomplished in one statement by writing: 
 

x = ( y < z ) ? y : z; 
 
The parentheses are not necessary because the precedence of the conditional 
operator is just above = operator.  It is good programming practice to use 
parentheses.   Parentheses are used to make clear the expression is being 
tested.  The type of the conditional expression expl ? exp2 : exp3 is determined 
by exp2 and exp3.  The usual conversion rules are applied.  Note carefully that 

© James C. Helm, PhD, P.E. October 1, 2006 
University of Houston Clear Lake 

5



C Online Programming Course 

the type of the conditional expression does not depend on which of the two 
expressions exp2 or exp3 is evaluated.  The conditional operator ? : has 
precedence just above the assignment operators, and it associates "right to left". 
 
 
THE goto STATEMENT 
 
The goto statement is the most primitive method of interrupting ordinary control 
flow.  It is an unconditional branch to an arbitrary labeled statement in the 
function.  The goto statement is considered a harmful construct in programming.  
It can undermine all the useful structure provided by other flow of control 
mechanisms (for, while, do, if, switch).  Here is a program that uses a goto 
statement to create an infinite loop that prints integers.  Keep in mind that such a 
program must be terminated by a control-c or a delete key on most systems. 
 

main(   ) 
{ 
   int i = 0; 
    loop:   printf("%d\n", i++); 
 
    /*   some processing   */ 
 
     goto loop; 
}/* end main*/ 

 
In this example loop is a label called loop. 
 

loop: printf("%d\n", i++); 
 
This is called a labeled statement.  Whenever the goto statement is reached, it 
passes control to the labeled statement.  The program has no means of exiting 
this loop. 
 
A label is a unique identifier.  Some examples of labeled statements: 
 

spot_1:    a = b + c; 
error_one:    printf ("Error one reached.\n"); 
bug_1: bug_2: bug_3:    printf("Bug 1, 2, 3 \n");   /* multiple labels */ 

 
These examples are not labeled statements. 
 

333: a =b + c;   /* 333 is not an identifier */ 
a:  a +=  b * c;    /* a is not a unique identifier */ 

 
 

© James C. Helm, PhD, P.E. October 1, 2006 
University of Houston Clear Lake 

6



C Online Programming Course 

By executing a goto statement of the form goto label; control is unconditionally 
transferred to a labeled statement.  An example would be: 
 

if (d  ==  0.0) 
     goto error; 
else 
      ratio = n / d; 
error: printf("ERROR: division by zero!  \n"); 

 
Both the goto statement and its corresponding labeled statement must be in the 
body of the same function. 
 
In general, the goto should be avoided.  The goto is a primitive method of altering 
flow of control and, in a richly structured language, is unnecessary.  Labeled 
statements and goto's are the hallmark of incremental patchwork program 
design.  A programmer who modifies a program by adding goto's to additional 
code fragments soon makes the program incomprehensible. 
 
One conceptual use of the goto is to give a technical explanation of the effect of 
a continue statement in a for loop. 
 
SCOPE RULES 
 
A block statement is a series of declarations followed by a series of statements 
all surrounded by the braces { and }.  Its basic use is to group statements into an 
executable unit.  When declarations are not present, a block statement is also 
called a compound statement. 
 
The following is an example of a block statements. 
 

{ 
    int a = 2; 
     printf("%d\n", a);   /*The int 2 is printed */ 
     { 
       int b = 3: 
       printf("%d\n", b);   /*The int 3 is printed */ 
     } 
} 

 
 
The basic reason for blocks is to allow memory for variables to be created in the 
function when needed.  This is actually not good programming practice because 
all variables are not declared at the beginning of the function.  However, if 
memory is a scarce resource, then block exit will release the storage allocated 
locally to the block, allowing the memory to be used for some other purpose.  

© James C. Helm, PhD, P.E. October 1, 2006 
University of Houston Clear Lake 

7



C Online Programming Course 

Also, blocks associate names in their neighborhood of use, making the code 
more readable.  Functions can be viewed as named blocks with parameters and 
return statements allowed. 
 
The basic rule of scoping is that identifiers are accessible only within the block in 
which they are declared.  They are unknown outside the boundaries of that block.  
This would be an easy rule to follow, except that programmers for a variety of 
reasons choose to use the same identifier in different declarations.  They then 
have the question of which object the identifier refers to. 
 
Let us give a simple example of this state of affairs. 
 

{                          /*outer block a */ 
  int a = 2; 
  printf("%d\n", a);   /*The int 2 is printed */ 
   {                       /*inner block a */ 
     int a == 3; 
     printf("%d\n", a):   /*The int 3 is printed */ 
   }   /*   back to the outer block */ 
  printf("%d\n", a);   /*The int 2 is printed */ 
} 

 
Each block introduces its own nomenclature.  An outer block name is valid 
unless an inner block redefines it.  If redefined, the outer block name is hidden, 
or masked, from the inner block.  Inner blocks may be nested to arbitrary depths 
which are determined by system limitations. 
 
STORAGE CLASS 
 
Every variable and function in C has two attributes:  Type and storage class.  The 
four storage classes are automatic, external, static, and register, with the 
corresponding keywords 
 

auto   extern   static   register 
 
THE STORAGE CLASS auto 
 
Variables declared inside of function bodies are automatic by default.  Thus 
automatic is the most common of the four storage classes.  Although it is usually 
not done, the storage class of automatic variables can be made explicit by use of 
the keyword auto. 
 
The code 

{ 
  char c; 
   int i, j, k; 

© James C. Helm, PhD, P.E. October 1, 2006 
University of Houston Clear Lake 

8



C Online Programming Course 

} 
 
is equivalent to 
 

{ 
  auto char c; 
  auto int i, j, k; 
} 

 
When a block is entered, the system sets aside adequate memory for the 
automatically declared variables.  Within that block those variables are defined, 
and they are considered to be "local" to the block.  When the block is exited, the 
system no longer reserves the memory set aside for the automatic variables.  
Thus, the values of these variables are no longer of usable.  If the block is 
reentered, the storage once again is appropriately allocated, but previous values 
are not kept or known for use.  Each invocation of a function, (i.e. call to a 
function) sets up a new environment (reinitializes the local variables). 
 
 
The STORAGE CLASS extern 
 
All functions and all variables declared outside of function bodies have external 
storage class.  One method of transmitting information across blocks and 
functions is to use external variables.  When a variable is declared outside a 
function, storage is permanently assigned to it,  and its storage class is external.  
A declaration for an external variable looks just the same as a variable 
declaration inside a function or block.  Such a variable is considered to be global 
to all function declared after it.   When the function exits, the external variable 
remains in existence. 
 

int a = 7; 
main (   ) 
{ 
  printf("%d\n", a);   /*The int 7 is printed */ 
  f(   ); 
}/* end main */ 
 
f(   )   /* function f */ 
{ 
 printf("%d\n", a);   /*The int 7 is printed from f(   )*/ 
}  /* end function f  */ 

 
 
In the above program it would be wrong to code 
 

© James C. Helm, PhD, P.E. October 1, 2006 
University of Houston Clear Lake 

9



C Online Programming Course 

extern int a = 7; 
 
The keyword extern is used to tell the system to look for a variable externally, 
perhaps even in another file that is used to make up the program.  Here is an 
example of this in a file called file1.c. 
 

file1.c  /* this is a separate file called file1 */ 
 
int v =33; /*v an external variable is globally defined in the file1*/ 
 
main(   ) 
{ 
   double x = 1.11; 
   printf("%d\n", v); 
   f(x);    /* call function f 
 
file2.c      /*This is a separate file called file2.c */ 
f(double x) 
{ 
  extern int v; 
  /*********************************************************************/ 
/*The system will look for v externally,  either in this file or       */ 
/* in another file that will be linked into the final executable     */ 
/*program.                                                                                 */ 
 
    printf("v from main = %d\n x passed from main = %d\n", v, x); 
}/* end f */ 

 
The use of extern to avoid undefined variable names makes possible the 
separate compilation of functions in different files.  The functions main(   ) and f(   
) written in file1.c and fiie2.c, respectively, can be compiled separately.  The 
extern declaration of the variable v in fiie2.c tells the system that it will be 
declared externally, either in this file or some other file and resolved at link time.  
The executable program obtained by compiling these two functions separately 
will act no differently than a program obtained by compiling a single file 
containing both functions and the external variable defined at the beginning of 
the file. 
 
External variables never disappear i.e. they stay resident in memory.  Since they 
exist throughout the execution life of the program, they can be used to transmit 
values across functions.  Of course, a variable may be hidden if it is redefined in 
an inner block.  Thus information can be passed into a function in two ways: by 
use of external variables and by use of the parameter passing mechanism.  
Although there are exceptions, the use of the parameter mechanism is the 
preferred method to pass information into a function.  This tends to improve the 

© James C. Helm, PhD, P.E. October 1, 2006 
University of Houston Clear Lake 

10



C Online Programming Course 

modularity of the code, and the possibility of undesirable side effects is reduced. 
 
One form of "side effect" occurs when a function changes a global variable within 
its body rather than through its parameter list.   Such a construction is error 
prone.  Correct practice is to effect changes to global variables through the 
parameter and return mechanisms.  However, to do this requires the use of 
pointers and the address operator, material which will be covered later. Adhering 
to this practice improves the modularity and readability of programs. 
 
THE STORAGE CLASS register 
 
The storage class register, used in a declaration, indicates that, if physically and 
semantically possible, the associated variables will be stored in high-speed 
memory registers.  Since resources limitations and semantic constraints 
sometimes makes this impossible, this storage class defaults to automatic 
whenever the compiler cannot allocate an appropriate physical register. 
 
Basically, the use of storage class register is an attempt to improve execution 
speed.  When speed is of concern, the programmer may choose a few variables 
that are most frequently accessed and declare them to be of storage class 
register.  Common candidates for such treatment include loop variables and 
functio parameters.  An example is: 
 

{ 
  register int i; 
    for (i = 0; i <= LIMIT; ++i)  { 
 
 
 
    }/* end for loop  */ 
} /* end block exit will free register */ 

 
Note that the register variable i was declared as close to its place of use as 
possible.  This is to allow maximum availability of the physical registers, using 
them only when needed.  Always remember that a register declaration is taken 
only as advice to a compiler. 
 
THE STORAGE CLASS static 
 
Static declarations have an important and distinct use.  This is to allow a local 
variable to retain its previous value upon reentry into a block.  This is in contrast 
to ordinary automatic variables which lose their value upon block exit.  As an 
example of this use, you can use a static variable to find out how many times a 
function is called during execution of a program. 

f(   ) 
{ 

© James C. Helm, PhD, P.E. October 1, 2006 
University of Houston Clear Lake 

11



C Online Programming Course 

© James C. Helm, PhD, P.E. October 1, 2006 
University of Houston Clear Lake 

12

   char a, b, c; 
    static int cnt = 0; 
    printf("cnt = %d\n"  ++cnt): 
} 

The variable cnt in f(   ) is initialized to 0 only once since the key word static is 
used.  Whenever the function is called, the old value is retained, then it is 
indexed and printed out.  


