

D–1

D

A n O v e r v i e w o f t h e
H i e r a r c h i c a l D a t a M o d e l

T

his appendix provides an overview of the hierarchical data model.

1

 There are no origi-
nal documents that describe the hierarchical model, as there are for the relational and
network models. The principles behind the hierarchical model are derived from Informa-
tion Management System (

IMS

), which is the dominant hierarchical system in use today
by a large number of banks, insurance companies, and hospitals as well as several govern-
ment agencies. Another popular hierarchical

DBMS

 is

MRI

’s System-2000 (which was later
sold by

SAS

 Institute).
In this appendix we present the concepts for modeling hierarchical schemas and

instances, the concept of a virtual parent-child relationship, which is used to overcome
the limitations of pure hierarchies, and the constraints on the hierarchical model. A few
examples of data manipulation are included.

1. The complete chapter on the hierarchical data model and the IMS system from the second edi-
tion of this book is available at the Web site for the book. This appendix is an edited excerpt of that
chapter.

A P P E N D I X

Elmasri_APPD Page 1 Monday, April 3, 2006 3:39 PM

D–2

A p p e n d i x D / A n O v e r v i e w o f t h e H i e r a r c h i c a l D a t a M o d e l

D . 1

Hierarchical Database Structures

D. 1 . 1

Parent-Child Relationships and Hierarchical Schemas

The hierarchical model employs two main data structuring concepts: records and parent-
child relationships. A

record

 is a collection of

field values

 that provide information on an
entity or a relationship instance. Records of the same type are grouped into

record types.

A record type is given a name, and its structure is defined by a collection of named

fields

or

data items.

 Each field has a certain data type, such as integer, real, or string.
A

parent-child relationship type (

PCR

 type)

 is a 1:N relationship between two
record types. The record type on the 1-side is called the

parent record type,

 and the one
on the N-side is called the

child record type

 of the

PCR

 type. An

occurrence

 (or

instance

) of the

PCR

 type consists of

one record

 of the parent record type and a number of
records (zero or more) of the child record type.

A

hierarchical database schema

 consists of a number of hierarchical schemas. Each

hierarchical schema

 (or

hierarchy

) consists of a number of record types and

PCR

 types.
A hierarchical schema is displayed as a

hierarchical diagram,

 in which record type
names are displayed in rectangular boxes and

PCR

 types are displayed as lines connecting
the parent record type to the child record type. Figure D.1 shows a simple hierarchical
diagram for a hierarchical schema with three record types and two

PCR

 types. The record
types are

DEPARTMENT

,

EMPLOYEE

, and

PROJECT

. Field names can be displayed under
each record type name, as shown in Figure D.1. In some diagrams, for brevity, we display
only the record type names.

We refer to a

PCR

 type in a hierarchical schema by listing the pair (parent record
type, child record type) between parentheses. The two

PCR

 types in Figure D.1 are
(

DEPARTMENT

,

EMPLOYEE

) and (

DEPARTMENT

,

PROJECT

). Notice that

PCR

 types

do not

have a name in the hierarchical model. In Figure D.1 each

occurrence

 of the (

DEPART-

MENT

,

EMPLOYEE

)

PCR

 type relates one department record to the records of the

many

(zero or more) employees who work in that department. An

occurrence

 of the (

DEPART-

MENT

,

PROJECT

)

PCR

 type relates a department record to the records of projects con-
trolled by that department. Figure D.2 shows two

PCR

 occurrences (or instances) for each
of these two

PCR

 types.

EMPLOYEE
NAME SSN BDATE ADDRESS

PROJECT
PNAME PNUMBER PLOCATION

DEPARTMENT
DNAME DNUMBER MGRNAME MGRSTARTDATE

F i g u r e D . 1 A hierarchical schema.

Elmasri_APPD Page 2 Monday, April 3, 2006 3:39 PM

D . 1 H i e r a r c h i c a l D a t a b a s e S t r u c t u r e s

D–3

D. 1 . 2

Properties of a Hierarchical Schema

A hierarchical schema of record types and

PCR

 types must have the following properties:

1. One record type, called the

root

 of the hierarchical schema, does not participate
as a child record type in any

PCR

 type.

2. Every record type except the root participates as a child record type in

exactly one

PCR

 type.

3. A record type can participate as parent record type in any number (zero or more)
of

PCR

 types.

4. A record type that does not participate as parent record type in any

PCR

 type is
called a

leaf

 of the hierarchical schema.

5. If a record type participates as parent in more than one

PCR

 type, then

its child
record types are ordered.

 The order is displayed, by convention, from left to right in
a hierarchical diagram.

The definition of a hierarchical schema defines a

tree data structure.

 In the termi-
nology of tree data structures, a record type corresponds to a

node

 of the tree, and a

PCR

type corresponds to an

edge

 (or

arc

) of the tree. We use the terms

node

 and

record type,

and

edge

 and

PCR type,

 interchangeably. The usual convention of displaying a tree is
slightly different from that used in hierarchical diagrams, in that each tree edge is shown
separately from other edges (Figure D.3). In hierarchical diagrams the convention is that
all edges emanating from the same parent node are joined together (as in Figure D.1). We
use this latter hierarchical diagram convention.

The preceding properties of a hierarchical schema mean that every node except the
root has exactly one parent node. However, a node can have several child nodes, and in

DEPARTMENT:

EMPLOYEE:

DEPARTMENT:

PROJECT:

(a)

(b)

Administration

Zelaya Wallace Jabbar

Research

Smith Wong Narayan English

AdministrationResearch

ProductX ProductY ProductZ Computerization Newbenefits

F i g u r e D . 2 Occurrences of Parent-Child Relationships. (a) Two occurrences
of the PCR type (DEPARTMENT, EMPLOYEE). (b) Two occurrences
of the PCR type (DEPARTMENT, PROJECT).

Elmasri_APPD Page 3 Monday, April 3, 2006 3:39 PM

D–4

A p p e n d i x D / A n O v e r v i e w o f t h e H i e r a r c h i c a l D a t a M o d e l

this case they are ordered from left to right. In Figure D.1

EMPLOYEE

 is the first child of

DEPARTMENT

, and

PROJECT

 is the second child. The previously identified properties also
limit the types of relationships that can be represented in a hierarchical schema. In par-
ticular, M:N relationships between record types

cannot

 be directly represented, because
parent-child relationships are 1:N relationships, and a record type

cannot participate as
child

 in two or more distinct parent-child relationships.
An M:N relationship may be handled in the hierarchical model by allowing duplica-

tion of child record instances. For example, consider an M:N relationship between

EMPLOYEE

 and

PROJECT

, where a project can have several employees working on it, and
an employee can work on several projects. We can represent the relationship as a
(

PROJECT

,

EMPLOYEE

)

PCR

 type. In this case a record describing the same employee can be
duplicated by appearing once under

each

 project that the employee works for. Alterna-
tively, we can represent the relationship as an (

EMPLOYEE

,

PROJECT

)

PCR

 type, in which
case project records may be duplicated.

EXAMPLE 1:

Consider the following instances of the

EMPLOYEE

:

PROJECT

 relationship:

If these instances are stored using the hierarchical schema (

PROJECT

,

EMPLOYEE

) (with

PROJECT

 as the parent), there will be four occurrences of the (

PROJECT

,

EMPLOYEE

)

PCR

type—one for each project. The employee records for E1, E2, E3, and E5 will appear

twice
each

 as child records, however, because each of these employees works on two projects.
The employee record for E4 will appear three times—once under each of projects B, C,

Project

Employees Working on the Project

A

E1, E3, E5
B E2, E4, E6
C E1, E4
D E2, E3, E4, E5

DEPARTMENT

EMPLOYEE PROJECT

F i g u r e D . 3 A tree representation of the hierarchical schema in Figure D.1.

Elmasri_APPD Page 4 Monday, April 3, 2006 3:39 PM

D . 1 H i e r a r c h i c a l D a t a b a s e S t r u c t u r e s

D–5

and D and may have number of hours that E4 works on each project in the corresponding
instance.

To avoid such duplication, a technique is used whereby several hierarchical schemas
can be specified in the same hierarchical database schema. Relationships like the preced-
ing

PCR

 type can now be defined across different hierarchical schemas. This technique,
called

virtual relationships,

 causes a departure from the “strict” hierarchical model. We
discuss this technique in Section D.2.

D. 1 . 3

Hierarchical Occurrence Trees

Corresponding to a hierarchical schema, many hierarchical occurrences, also called
occurrence trees, exist in the database. Each one is a tree structure whose root is a single
record from the root record type. The occurrence tree also contains all the children
record occurrences of the root record and continues all the way to records of the leaf
record types.

For example, consider the hierarchical diagram shown in Figure D.4, which repre-
sents part of the COMPANY database introduced in Chapter 3 and also used in Chapters 7,
8, and 9. Figure D.5 shows one hierarchical occurrence tree of this hierarchical schema.
In the occurrence tree, each node is a record occurrence, and each arc represents a par-
ent-child relationship between two records. In both Figures D.4 and D.5, we use the char-
acters D, E, P, T, S, and W to represent type indicators for the record types
DEPARTMENT, EMPLOYEE, PROJECT, DEPENDENT, SUPERVISEE, and WORKER, respectively.
A node N and all its descendent nodes form a subtree of node N. An occurrence tree can
be defined as the subtree of a record whose type is of the root record type.

EMPLOYEE PROJECT

DEPENDENT SUPERVISEE WORKER

NAME SSN BDATE ADDRESS PNAME PNUMBER PLOCATION

DEPNAME SEX BIRTHDATE NAME SSN NAME SSN HOURS

DEPARTMENT
DNAME DNUMBER MGRNAME MGRSTARTDATE

Level 0:

Level 1:

Level 2:

D

P

WST

E

F i g u r e D . 4 A hierarchical schema for part of the COMPANY database.

Elmasri_APPD Page 5 Monday, April 3, 2006 3:39 PM

D–6 A p p e n d i x D / A n O v e r v i e w o f t h e H i e r a r c h i c a l D a t a M o d e l

D. 1 . 4 Linearized Form of a Hierarchical Occurrence Tree
A hierarchical occurrence tree can be represented in storage by using any of a variety of
data structures. However, a particularly simple storage structure that can be used is the
hierarchical record, which is a linear ordering of the records in an occurrence tree in the
preorder traversal of the tree. This order produces a sequence of record occurrences
known as the hierarchical sequence (or hierarchical record sequence) of the occurrence
tree; it can be obtained by applying a recursive procedure called the pre-order traversal,
which visits nodes depth first and in a left-to-right fashion.

The occurrence tree in Figure D.5 gives the hierarchical sequence shown in Figure
D.6. The system stores the type indicator with each record so that the record can be dis-
tinguished within the hierarchical sequence. The hierarchical sequence is also important
because hierarchical data-manipulation languages, such as that used in IMS, use it as a
basis for defining hierarchical database operations. The HDML language we discuss in

D Administration

E Zelaya E Wallace P ComputerizationE Jabbar P Newbenefits

T Abner S Zelaya S Jabbar W Wong W Zelaya W Jabbar W Zelaya W Wallace W Jabbar

Level 0:

Level 1:

Level 2:

F i g u r e D . 5 An occurrence tree of the schema in Figure D.4.

D Administration
E Zelaya
E Wallace
T Abner
S Zelaya
S Jabbar
E Jabbar
P Computerization
W Wong
W Zelaya
W Jabbar
P Newbenefits
W Zelaya
W Wallace
W Jabbar

F i g u r e D . 6 Hierarchical sequence for the occurrence tree in Figure D.5.

Elmasri_APPD Page 6 Monday, April 3, 2006 3:39 PM

D . 1 H i e r a r c h i c a l D a t a b a s e S t r u c t u r e s D–7

Section D.3 (which is a simplified version of DL/1 of IMS) is based on the hierarchical
sequence. A hierarchical path is a sequence of nodes N1, N2, ..., Ni, where N1 is the root
of a tree and Nj is a child of Nj�1 for j = 2, 3, ..., i. A hierarchical path can be defined
either on a hierarchical schema or on an occurrence tree. We can now define a hierarchi-
cal database occurrence as a sequence of all the occurrence trees that are occurrences of a
hierarchical schema. For example, a hierarchical database occurrence of the hierarchical
schema shown in Figure D.4 would consist of a number of occurrence trees similar to the
one shown in Figure D.5, one for each distinct department.

D. 1 . 5 Virtual Parent-Child Relationships
The hierarchical model has problems when modeling certain types of relationships.
These include the following relationships and situations:

1. M:N relationships.

2. The case where a record type participates as child in more than one PCR type.

3. N-ary relationships with more than two participating record types.

Notice that the relationship between EMPLOYEE and EPOINTER in Figure D.7(a) is a
1:N relationship and hence qualifies as a PCR type. Such a relationship is called a virtual
parent-child relationship (VPCR) type.2 EMPLOYEE is called the virtual parent of
EPOINTER; and conversely, EPOINTER is called a virtual child of EMPLOYEE. Conceptually,
PCR types and VPCR types are similar. The main difference between the two lies in the
way they are implemented. A PCR type is usually implemented by using the hierarchical

2. The term “virtual” is not used in the IMS system, but it is used here to simplify the distinction
between hierarchical relationships within one hierarchy (called Physical in IMS) and across hierar-
chies (called Logical in IMS).

PROJECT

EPOINTER

EMPLOYEE

Hierarchy1 Hierachy2(a) (b)

P

Y

E P
EMPLOYEE

PPOINTER

PROJECT
E

R

F i g u r e D . 7 Representing M:N relationships using Virtual Parent Child Relationships. (a) EMPLOYEE as
virtual parent. (b) PROJECT as virtual parent.

Elmasri_APPD Page 7 Monday, April 3, 2006 3:39 PM

D–8 A p p e n d i x D / A n O v e r v i e w o f t h e H i e r a r c h i c a l D a t a M o d e l

sequence, whereas a VPCR type is usually implemented by establishing a pointer (a physi-
cal one containing an address, or a logical one containing a key) from a virtual child
record to its virtual parent record. This mainly affects the efficiency of certain queries.

Figure D.8 shows a hierarchical database schema of the COMPANY database that uses
some VPCRs and has no redundancy in its record occurrences. The hierarchical database
schema is made up of two hierarchical schemas—one with root DEPARTMENT, and the
other with root EMPLOYEE. Four VPCRs, all with virtual parent EMPLOYEE, are included to
represent the relationships without redundancy. Notice that IMS may not allow this
because an implementation constraint in IMS limits a record to being virtual parent of at
most one VPCR; to get around this constraint, one can create dummy children record
types of EMPLOYEE in Hierarchy 2 so that each VPCR points to a distinct virtual parent
record type.

In general, there are many feasible methods of designing a database using the hier-
archical model. In many cases, performance considerations are the most important fac-
tor in choosing one hierarchical database schema over another. Performance depends

Hierarchy1

(d_hierarchy)

Hierarchy2

(e_hierarchy)

DEPARTMENT

DNAME DNUMBER

DLOCATIONS

LOCATION

PROJECT

PNAME PNUMBER PLOCATION

DEMPLOYEES

EPTR

DMANAGER

MGRSTARTDATE MPTR

EMPLOYEE

FNAME MINIT LNAME SSN BDATE ADDRESS SEX SALARY

ESUPERVISEES

SPTR

DEPENDENT

DEPNAME SEX BIRTHDATE RELATIONSHIP

PWORKER

HOURS WPTR

L

E

P

Y

M

T

W

D

S

F i g u r e D . 8 Using VPCR types to eliminate redundancy in the COMPANY database.

Elmasri_APPD Page 8 Monday, April 3, 2006 3:39 PM

D . 2 I n t e g r i t y C o n s t r a i n t s a n d D a t a D e f i n i t i o n i n t h e H i e r a r c h i c a l M o d e l D–9

on the implementation options available—for example, whether certain types of point-
ers are provided by the system and whether certain limits on number of levels are
imposed by the DBA.

D . 2 Integrity Constraints and Data Definit ion in
the Hierarchical Model

D. 2 . 1 Integrity Constraints in the Hierarchical Model
A number of built-in inherent constraints exist in the hierarchical model whenever we
specify a hierarchical schema. These include the following constraints:

1. No record occurrences except root records can exist without being related to a
parent record occurrence. This has the following implications:

a. A child record cannot be inserted unless it is linked to a parent record.
b. A child record may be deleted independently of its parent; however, deletion

of a parent record automatically results in deletion of all its child and descen-
dent records.

c. The above rules do not apply to virtual child records and virtual parent
records.

2. If a child record has two or more parent records from the same record type, the
child record must be duplicated once under each parent record.

3. A child record having two or more parent records of different record types can do
so only by having at most one real parent, with all the others represented as vir-
tual parents. IMS limits the number of virtual parents to one.

4. In IMS, a record type can be the virtual parent in only one VPCR type. That is, the
number of virtual children can be only one per record type in IMS.

D. 2 . 2 Data Definition in the Hierarchical Model
In this section we give an example of a hierarchical data definition language (HDDL),
which is not the language of any specific hierarchical DBMS but is used to illustrate the
language concepts for a hierarchical database. The HDDL demonstrates how a hierarchical
database schema can be defined. To define a hierarchical database schema, we must define
the fields of each record type, the data type of each field, and any key constraints on fields.
In addition, we must specify a root record type as such; and for every nonroot record type,
we must specify its (real) parent in a PCR type. Any VPCR types must also be specified.

In Figure D.9, either each record type is declared to be of type root or a single (real)
parent record type is declared for the record type. The data items of the record are then
listed along with their data types. We must specify a virtual parent for data items that are
of type pointer. Data items declared under the KEY clause are constrained to have unique
values for each record. Each KEY clause specifies a separate key; in addition, if a single KEY

clause lists more than one field, the combination of these field values must be unique in

Elmasri_APPD Page 9 Monday, April 3, 2006 3:39 PM

D–10 A p p e n d i x D / A n O v e r v i e w o f t h e H i e r a r c h i c a l D a t a M o d e l

F i g u r e D . 9 HDDL declarations for the hierarchical schema in Figure D.8.

SCHEMA NAME = COMPANY

HIERARCHIES = HIERARCHY1, HIERARCHY2

RECORD
 NAME = EMPLOYEE
 TYPE = ROOT OF HIERARCHY2
 DATA ITEMS =
 FNAME CHARACTER 15
 MINIT CHARACTER 1
 LNAME CHARACTER 15
 SSN CHARACTER 9
 BDATE CHARACTER 9
 ADDRESS CHARACTER 30
 SEX CHARACTER 1
 SALARY CHARACTER 10
 KEY = SSN
 ORDER BY LNAME, FNAME

RECORD
 NAME = DEPARTMENT
 TYPE = ROOT OF HIERARCHY1
 DATA ITEMS =
 DNAME CHARACTER 15
 DNUMBER INTEGER
 KEY = DNAME
 KEY = DNUMBER
 ORDER BY DNAME

RECORD
 NAME = DLOCATIONS
 PARENT = DEPARTMENT
 CHILD NUMBER = 1
 DATA ITEMS =
 LOCATION CHARACTER 15

RECORD
 NAME = DMANAGER
 PARENT = DEPARTMENT
 CHILD NUMBER = 3
 DATA ITEMS =
 MGRSTARTDATE CHARACTER 9
 MPTR POINTER WITH VIRTUAL PARENT = EMPLOYEE

RECORD
 NAME = PROJECT
 PARENT = DEPARTMENT
 CHILD NUMBER = 4
 DATA ITEMS =
 PNAME CHARACTER 15
 PNUMBER INTEGER
 PLOCATION CHARACTER 15
 KEY = PNAME
 KEY = PNUMBER
 ORDER BY PNAME

RECORD
 NAME = PWORKER
 PARENT = PROJECT
 CHILD NUMBER = 1
 DATA ITEMS =
 HOURS CHARACTER 4
 WPTR POINTER WITH VIRTUAL PARENT = EMPLOYEE

Elmasri_APPD Page 10 Monday, April 3, 2006 3:39 PM

D . 3 D a t a M a n i p u l a t i o n L a n g u a g e f o r t h e H i e r a r c h i c a l M o d e l D–11

each record. The CHILD NUMBER clause specifies the left-to-right order of a child record
type under its (real) parent record type. The ORDER BY clause specifies the order of indi-
vidual records of the same record type in the hierarchical sequence. For nonroot record
types, the ORDER BY clause specifies how the records should be ordered within each parent
record, by specifying a field called a sequence key. For example, PROJECT records con-
trolled by a particular DEPARTMENT have their subtrees ordered alphabetically within the
same parent DEPARTMENT record by PNAME, according to Figure D.9.

D . 3 Data Manipulat ion Language for the
Hierarchical Model

We now discuss Hierarchical Data Manipulation Language (HDML), which is a record-
at-a-time language for manipulating hierarchical databases. We have based its structure
on IMS’s DL/1 language. It is introduced to illustrate the concepts of a hierarchical data-
base manipulation language. The commands of the language must be embedded in a gen-
eral-purpose programming language called the host language.

The HDML is based on the concept of hierarchical sequence defined in Section D.1.
Following each database command, the last record accessed by the command is called the
current database record. The DBMS maintains a pointer to the current record. Subse-
quent database commands proceed from the current record and may define a new current
record, depending on the type of command.

RECORD
 NAME = DEMPLOYEES
 PARENT = DEPARTMENT
 CHILD NUMBER = 2
 DATA ITEMS =
 EPTR POINTER WITH VIRTUAL PARENT = EMPLOYEE

RECORD
 NAME IS ESUPERVISEES
 PARENT = EMPLOYEE
 CHILD NUMBER = 2
 DATA ITEMS =
 SPTR POINTER WITH VIRTUAL PARENT = EMPLOYEE

RECORD
 NAME = DEPENDENT
 PARENT = EMPLOYEE
 CHILD NUMBER = 1
 DATA ITEMS =
 DEPNAME CHARACTER 15
 SEX CHARACTER 1
 BIRTHDATE CHARACTER 9
 RELATIONSHIP CHARACTER 10
 ORDER BY DESC BIRTHDATE

F i g u r e D . 9 (Continued)

Elmasri_APPD Page 11 Monday, April 3, 2006 3:39 PM

D–12 A p p e n d i x D / A n O v e r v i e w o f t h e H i e r a r c h i c a l D a t a M o d e l

D. 3 . 1 The GET Command
The HDML command for retrieving a record is the GET command. There are many varia-
tions of GET; the structure of two of these variations is as follows, with optional parts
enclosed in brackets [...]:

• GET FIRST3 <record type name> [WHERE <condition>]

• GET NEXT <record type name> [WHERE <condition>]

The simplest variation is the GET FIRST command, which always starts searching the
database from the beginning of the hierarchical sequence until it finds the first record occur-
rence of <record type name> that satisfies <condition>. This record also becomes the
current of database, current of hierarchy, and current of record type and is retrieved into
the corresponding program variable. For example, to retrieve the “first” EMPLOYEE record
in the hierarchical sequence whose name is John Smith, we write EX1:

EX1: $GET FIRST EMPLOYEE WHERE FNAME =’John’ AND LNAME=’Smith’;

The DBMS uses the condition following WHERE to search for the first record in order
of the hierarchical sequence that satisfies the condition and is of the specified record type.
If more than one record in the database satisfies the WHERE condition and we want to
retrieve all of them, we must write a looping construct in the host program and use the
GET NEXT command. We assume that the GET NEXT starts its search from the current
record of the record type specified in GET NEXT,4 and it searches forward in the hierarchical
sequence to find another record of the specified type satisfying the WHERE condition. For
example, to retrieve records of all EMPLOYEEs whose salary is less than $20,000 and obtain
a printout of their names, we can write the program segment shown in EX2:

EX2: $GET FIRST EMPLOYEE WHERE SALARY < ‘20000.00’;

while DB_STATUS = 0 do

 begin

 writeln (P_EMPLOYEE.FNAME, P_EMPLOYEE.LNAME);

 $GET NEXT EMPLOYEE WHERE SALARY < ‘20000.00’

 end;

In EX2, the while loop continues until no more EMPLOYEE records in the database sat-
isfy the WHERE condition; hence, the search goes through to the last record in the data-
base (hierarchical sequence). When no more records are found, DB_STATUS becomes
nonzero, with a code indicating “end of database reached,” and the while loop terminates.

D. 3 . 2 The GET PATH and GET NEXT WITHIN PARENT
Retrieval Commands

So far we have considered retrieving single records by using the GET command. But when
we have to locate a record deep in the hierarchy, the retrieval may be based on a series of

3. This is similar to the GET UNIQUE (GU) command of IMS.
4. IMS commands generally proceed forward from the current of database, rather than from the cur-
rent of specified record type as HDML commands do.

Elmasri_APPD Page 12 Monday, April 3, 2006 3:39 PM

D . 3 D a t a M a n i p u l a t i o n L a n g u a g e f o r t h e H i e r a r c h i c a l M o d e l D–13

conditions on records along the entire hierarchical path. To accommodate this, we intro-
duce the GET PATH command:

GET (FIRST | NEXT) PATH <hierarchical path> [WHERE <condition>]

Here, <hierarchical path> is a list of record types that starts from the root along a
path in the hierarchical schema, and <condition> is a Boolean expression specifying con-
ditions on the individual record types along the path. Because several record types may be
specified, the field names are prefixed by the record type names in <condition>. For
example, consider the following query: “List the lastname and birthdates of all employee-
dependent pairs, where both have the first name John.” This is shown in EX3:

EX3: $GET FIRST PATH EMPLOYEE, DEPENDENT

WHERE EMPLOYEE.FNAME=’John’ AND DEPENDENT.DEPNAME=’John’;

while DB_STATUS = 0 do

 begin

 writeln (P_EMPLOYEE.FNAME, P_EMPLOYEE.BDATE,

 P_DEPENDENT.BIRTHDATE);

 $GET NEXT PATH EMPLOYEE, DEPENDENT

 WHERE EMPLOYEE.FNAME=’John’ AND

 DEPENDENT.DEPNAME=’John’

 end;

We assume that a GET PATH command retrieves all records along the specified path into
the user work area variables,5 and the last record along the path becomes the current
database record. In addition, all records along the path become the current records of
their respective record types.

Another common type of query is to find all records of a given type that have the same
parent record. In this case we need the GET NEXT WITHIN PARENT command, which can be
used to loop through the child records of a parent record and has the following format:

GET NEXT <child record type name>

 WITHIN [VIRTUAL] PARENT [<parent record type name>] 6

 [WHERE <condition>]

This command retrieves the next record of the child record type by searching forward
from the current of the child record type for the next child record owned by the current
parent record. If no more child records are found, DB_STATUS is set to a nonzero value to
indicate that “there are no more records of the specified child record type that have the
same parent as the current parent record.” The <parent record type name> is optional,
and the default is the immediate (real) parent record type of <child record type name>.
For example, to retrieve the names of all projects controlled by the ‘Research’ depart-
ment, we can write the program segment shown in EX4:

EX4: $GET FIRST PATH DEPARTMENT, PROJECT

 WHERE DNAME =’Research’;

5. IMS provides the capability of specifying that only some of the records along the path are to be
retrieved.
6. There is no provision for retrieving all children of a virtual parent in IMS in this way without
defining a view of the database.

Elmasri_APPD Page 13 Monday, April 3, 2006 3:39 PM

D–14 A p p e n d i x D / A n O v e r v i e w o f t h e H i e r a r c h i c a l D a t a M o d e l

 (* the above establishes the ‘Research’ DEPARTMENT record as

 current parent of type DEPARTMENT, and retrieves the first

 child PROJECT record under that DEPARTMENT record *)

while DB_STATUS = 0 do

 begin

 writeln (P_PROJECT.PNAME);

 $GET NEXT PROJECT WITHIN PARENT

 end;

D. 3 . 3 HDML Commands for Update
The HDML commands for updating a hierarchical database are shown in Table D.1, along
with the retrieval command. The INSERT command is used to insert a new record. Before
inserting a record of a particular record type, we must first place the field values of the new
record in the appropriate user work area program variable.

The INSERT command inserts a record into the database. The newly inserted record
also becomes the current record for the database, its hierarchical schema, and its record
type. If it is a root record, as in EX8, it creates a new hierarchical occurrence tree with the
new record as root. The record is inserted in the hierarchical sequence in the order speci-
fied by any ORDER BY fields in the schema definition.

To insert a child record, we should make its parent, or one of its sibling records, the
current record of the hierarchical schema before issuing the INSERT command. We should
also set any virtual parent pointers before inserting the record.

To delete a record from the database, we first make it the current record and then
issue the DELETE command. The GET HOLD is used to make the record the current
record, where the HOLD key word indicates to the DBMS that the program will delete or

Ta b l e D . 1 Summary of HDML Commands

RETRIEVAL
GET Retrieve a record into the corresponding program

variable and make it the current record. Variations
include GET FIRST, GET NEXT, GET NEXT WITHIN
PARENT, and GET PATH.

RECORD UPDATE
INSERT Store a new record in the database and make it the

current record.
DELETE Delete the current record (and its subtree) from the

database.
REPLACE Modify some fields of the current record.

CURRENCY RETENTION
GET HOLD Retrieve a record and hold it as the current record so

it can subsequently be deleted or replaced.

Elmasri_APPD Page 14 Monday, April 3, 2006 3:39 PM

S e l e c t e d B i b l i o g r a p h y D–15

update the record just retrieved. For example, to delete all male EMPLOYEEs, we can use
EX5, which also lists the deleted employee names <before> deleting their records:

EX5: $GET HOLD FIRST EMPLOYEE WHERE SEX=’M’;

while DB_STATUS=0 then

 begin

 writeln (P_EMPLOYEE.LNAME, P_EMPLOYEE.FNAME);

 $DELETE EMPLOYEE;

 $GET HOLD NEXT EMPLOYEE WHERE SEX=’M’;

 end;

D. 3 . 4 IMS—A Hierarchical DBMS
IMS is one of the earliest DBMSs, and it ranks as the dominant system in the commercial
market for support of large-scale accounting and inventory systems. IBM manuals refer to
the full product as IMS/VS (Virtual Storage), and typically the full product is installed
under the MVS operating system. IMS DB/DC is the term used for installations that utilize
the product’s own subsystems to support the physical database (DB) and to provide data
communications (C).

However, other important versions exist that support only the IMS data language—
Data Language One (DL/1). Such DL/1-only configurations can be implemented under
MVS, but they may also use the DOS/VSE operating system. These systems issue their calls
to VSAM files and use IBM’s Customer Information Control System (CICS) for data com-
munications. The trade-off is a sacrifice of support features for the sake of simplicity and
improved throughput.

A number of versions of IMS have been marketed to work with various IBM operating
systems, including (among the recent systems) OS/VS1, OS/VS2, MVS, MVS/XA, and ESA.
The system comes with various options. IMS runs under different versions on the IBM 370
and 30XX family of computers. The data definition and manipulation language of IMS is
DL/1. Application programs written in COBOL, PL/1, FORTRAN, and BAL (Basic Assembly
Language) interface with DL/1.

Selected Bibl iography
The first hierarchical DBMS—IMS and its DL/1 language—was developed by IBM and
North American Aviation (Rockwell International) in the late 1960s. Few early docu-
ments exist that describe IMS. McGee (1977) gives an overview of IMS in an issue of IBM

Systems Journal devoted to ims. Bjoerner and Lovengren (1982) formalize some aspects of
the IMS data model. Kapp and Leben (1986) is a popular book on IMS programming. IMS

is described in a very large collection of IBM manuals.
Recent work has attempted to incorporate hierarchical structures in the relational

model (Gyssens et al., 1989; Jagadish, 1989). This includes nested relational models (see
Section 13.6).

Elmasri_APPD Page 15 Monday, April 3, 2006 3:39 PM

