
 45

CHAPTER 3 

Relational Database Management System: Oracle™ 

This chapter introduces the student to the basic utilities used to interact with Oracle DBMS. The
chapter also introduces the student to programming applications in Java and JDBC that interact
with Oracle databases. The discussion in this chapter is not specific to any version of Oracle and
all examples would work with any version of Oracle higher than Oracle 8.

The company database of the Elmasri/Navathe text is used throughout this chapter. In Section 3.1 a
larger data set is introduced for the company database. In Section 3.2 and 3.3, the SQL*Plus and
the SQL*Loader utilities are introduced using which the student can create database tables and
load the tables with data. Finally, in Section 3.4, programming in Java using the JDBC API and
connecting to Oracle databases is introduced through three complete application programs.

3.1 COMPANY Database 

Consider the COMPANY database state shown in Figure 5.6 of the Elmasri/Navathe text. Let us
assume that the company is expanding with 3 new departments: Software, Hardware, and Sales.
The Software department has 2 locations: Atlanta and Sacramento, the Hardware department is
located in Milwaukee, and the Sales department has 5 locations: Chicago, Dallas, Philadelphia,
Seattle, and Miami.

The Software department has 3 new projects: OperatingSystems, DatabaseSystems, and
Middleware and the Hardware department has 2 new projects: InkjetPrinters and LaserPrinters.
The company has added 32 new employees in this expansion process.

The updated COMPANY database is shown in the following tables.

 46

 47

 48

 49

3.2 SQL*Plus Utility 

Oracle provides a command line utility, called SQL*Plus, that allows the user to execute SQL
statements interactively. The user may enter the statements directly on the SQL*Plus prompt or
may save the statements in a file and have them executed by entering the “start” command. We
shall now look at how one can use this utility to create the database tables for the COMPANY
database.

Creating Database Tables

Let us assume that all the SQL statements to create the COMPANY database tables are present in a
file called company_schema.sql. The part that defines the DEPARTMENT table is shown
below:

CREATE TABLE department (
 dname varchar(25),
 dnumber number(4),
 mgrssn char(9),
 mgrstartdate date,
 primary key (dnumber),
 foreign key (mgrssn) references employee
);

The following SQL*Plus session illustrates how these statements would be executed resulting in
the creation of the COMPANY database tables:

$ sqlplus
SQL>start company_schema

Table created

SQL>exit
$

The $ symbol used above is the command line prompt on a Unix system or a Windows command
line interface.

In general, when several tables are defined in a single file, these definitions should be arranged in a
particular order of foreign key references. For example, the definition of the WORKS_ON table
should follow the definition of the EMPLOYEE table and the PROJECT table since it has foreign
keys referencing the EMPLOYEE and the PROJECT tables.

Sometimes, it is possible for two tables to have a circular reference between them. For example,
the foreign key constraints defined for the EMPLOYEE and the DEPARTMENT tables indicate a
mutual dependency between the two tables. The EMPLOYEE table contains an attribute DNO which

 50

refers to the DNUMBER attribute of the DEPARTMENT table and the MGRSSN attribute of the
DEPARTMENT table refers to the SSN attribute of the EMPLOYEE table. This mutual dependency
causes some trouble while creating the tables as well as loading the data. To avoid these problems,
it may be simplest to omit the forward references, i.e. omit the DNO foreign key in the EMPLOYEE
table.

A more appropriate way to handle the circular reference problem is as follows: Create the tables by
omitting the forward references. After the tables are created, use the ALTER TABLE statement to
add the omitted reference. In the case of the EMPLOYEE table, use the following ALTER command
to add the forward reference after the DEPARTMENT table is created:

ALTER TABLE employee ADD (
 foreign key (dno) references department(dnumber)

);

The SQL*Plus utility is very versatile program and allows the user to submit any SQL statement
for execution. In addition, it allows users to format query results in different ways. Please consult
the SQL*Plus documentation that comes with any Oracle installation for further details on its
use.

3.3 SQL*Loader Utility 

Oracle provides a data loading utility called SQL*Loader2 (sqlldr) that allows the user to
populate the tables with data. To use sqlldr, we need a control file that indicates how that data
is to be loaded and a data file that contains the data to be loaded. A typical control file is shown
below:

LOAD DATA
INFILE <dataFile>
APPEND INTO TABLE <tableName>
FIELDS TERMINATED BY ‘<separator>’
(<attribute-list>)

Here, <datafile> is the name of the file containing the data, <tableName> is the database
table into which the data is to be loaded, <separator> is a string that does not appear as part of
the data, and <attribute-list> is the list of attributes or columns under which data is to be
loaded. The attribute list need not be the entire list of columns and the attributes need not appear in
the order in which they were defined in the create table statement,

As a concrete example, the following control file (department.ctl) will load data into the
department table:

2 For more details on this utility, please refer to Oracle’s online documentation.

 51

LOAD DATA
INFILE department.csv
APPEND INTO TABLE department
FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY ‘”’
TRAILING NULLCOLS
(dname,dnumber,mgrssn,mgrstartdate DATE 'yyyy-mm-dd')

The OPTIONALLY ENCLOSED phrase is useful in situations when one of the data fields
contained the separator symbol. In this case, the entire data value would be enclosed with a pair of
double quotes. The TRAILING NULLCOLS phrase is useful in case there is a null value for the
last data field. Null values are indicated by an empty string followed by the separator symbol.
The corresponding data file, department.csv is:

Research,5,333445555,1978-05-22
Administration,4,987654321,1985-01-01
Headquarters,1,888665555,1971-06-19
Software,6,111111100,1999-05-15
Hardware,7,444444400,1998-05-15
Sales,8,555555500,1997-01-01

The following command will load the data into the department table:

$ sqlldr OracleId/OraclePassword control=department.ctl

Here, OracleId/OraclePassword is the Oracle user id/password. Upon execution of this
command, a log file under the name department.log is created by sqlldr. This log file
contains information such as the number of rows successfully loaded into the table, and any errors
encountered while loading the data.

The loading of the data can be verified by the following sqlplus session:

$ sqlplus OracleId

SQL*Plus: Release 9.2.0.1.0 - Production on Wed Apr 6 20:35:45
2005

Copyright (c) 1982, 2002, Oracle Corporation. All rights
reserved.

Enter password:

Connected to:
Oracle9i Enterprise Edition Release 9.2.0.1.0 - 64bit Production
With the Partitioning, OLAP and Oracle Data Mining options
JServer Release 9.2.0.1.0 - Production

 52

SQL> select * from department;

DNAME DNUMBER MGRSSN MGRSTARTD
------------------------- ---------- --------- ---------
Research 5 333445555 22-MAY-78
Administration 4 987654321 01-JAN-85
Headquarters 1 888665555 19-JUN-71
Software 6 111111100 15-MAY-99
Hardware 7 444444400 15-MAY-98
Sales 8 555555500 01-JAN-97

6 rows selected.

SQL> exit
Disconnected from Oracle9i Enterprise Edition Release 9.2.0.1.0 -
64bit Production
With the Partitioning, OLAP and Oracle Data Mining options
JServer Release 9.2.0.1.0 – Production
$

It is possible to load the data without a separate data file by using the following control file:

LOAD DATA
INFILE *
APPEND INTO TABLE department
FIELDS TERMINATED BY ','
(dname,dnumber,mgrssn,mgrstartdate DATE 'yyyy-mm-dd')
BEGINDATA
Research,5,333445555,1978-05-22
Administration,4,987654321,1985-01-01
Headquarters,1,888665555,1971-06-19
Software,6,111111100,1999-05-15
Hardware,7,444444400,1998-05-15
Sales,8,555555500,1997-01-01

Note that the filename has been replaced by a “*” in the INFILE clause of the control file and the
data is separated from the control information by the line containing the string BEGINDATA.

In the case of foreign key dependencies between tables, data for the tables that are being
referenced should be loaded/created first before the data for the tables that refer to values in other
tables. For example, the EMPLOYEE and PROJECT table data should be loaded before the data for
the WORKS_ON table is loaded.

 53

The circular references are trickier to handle as far as bulk loading is concerned. To successfully
load such data, we may use NULL values for forward references and once the referenced data is
loaded, we may use the UPDATE statement to add values for the forward references.

3.4 Programming with Oracle using the JDBC API 

This section presents Oracle JDBC programming through three complete applications. The first
example illustrates basic query processing via PreparedStatement object in Java. The query
result has at most one answer. The second example illustrates basic query processing using
Statement object. In this example, the query may have more than one answer. The final
example is a more involved one in which recursive query as well as aggregate query processing is
discussed.

To be able to program with Oracle databases using Java/JDBC, one must have access to an Oracle
database installation with a listener program for JDBC connections. One must also have access to
the JDBC drivers (classes12.zip or classes12.jar) that comes with any standard Oracle
distribution. The driver archive file must be included in the Java CLASSPATH variable. Any
standard Java environment is sufficient to compile and run these programs.

The COMPANY database of the Elmasri/Navathe text is used in each of the three examples that
follow.

Example 1: A simple Java/JDBC program that prints the last name and salary of an employee
given his or her social security number is shown below:

import java.sql.*;
import java.io.*;

class getEmpInfo {
 public static void main (String args [])
 throws SQLException, IOException {

 // Load Oracle’s JDBC Driver
 try {
 Class.forName ("oracle.jdbc.driver.OracleDriver");
 } catch (ClassNotFoundException e) {
 System.out.println ("Could not load the driver");
 }

 //Connect to the database
 String user, pass;
 user = readEntry("userid : ");
 pass = readEntry("password: ");
 Connection conn =

 54

 DriverManager.getConnection
 ("jdbc:oracle:thin:@tinman.cs.gsu.edu:1521:sid9ir2",
 user,pass);

 //Perform query using PreparedStatement object
 //by providing SSN at run time
 String query =
 "select LNAME,SALARY from EMPLOYEE where SSN = ?";
 PreparedStatement p = conn.prepareStatement (query);
 String ssn = readEntry("Enter a Social Security Number: ");
 p.clearParameters();
 p.setString(1,ssn);
 ResultSet r = p.executeQuery();

 //Process the ResultSet
 if (r.next ()) {
 String lname = r.getString(1);
 double salary = r.getDouble(2);
 System.out.println(lname + " " + salary);
 }

 //Close objects
 p.close();
 conn.close();
 }

 //readEntry function -- to read input string
 static String readEntry(String prompt) {
 try {
 StringBuffer buffer = new StringBuffer();
 System.out.print(prompt);
 System.out.flush();
 int c = System.in.read();
 while(c != '\n' && c != -1) {
 buffer.append((char)c);
 c = System.in.read();
 }
 return buffer.toString().trim();
 } catch (IOException e) {
 return "";
 }
 }

}

 55

In the above program, the user is prompted for a database user id and password. The program uses
this information to connect3 to the database. The user is then prompted for the social security
number of an employee. The program supplies this social security number as a parameter to an
SQL query used by a PreparedStatement object. The query is executed and the resulting
ResultSet is then processed and the last name and salary of the employee is printed to the
console.

The JDBC API is a very simple API to learn as there are an few important classes and methods
that are required to manipulate relational data. After the driver is loaded and a connection is made
(quite standard code to do this), queries and updates are submitted to the database via one of three
objects: Statement, PreparedStatement, and CallableStatement.

The PreparedStatement method is illustrated in Example 1 where the SQL statement is sent
to the database server with possible place-holders for pluggable values for compilation using the
prepareStatement method of the Connection object. After this is done, the same SQL
statement may be executed a number of times with values provided for the place holder variables
using the setString or similar methods. In Example 1, the prepared statement is executed only
once.

The Statement method is more commonly used and is illustrated in the following example.

Example 2: Given a department number, the following Java/JDBC program prints the last name
and salary of all employees working for the department.

import java.sql.*;
import java.io.*;

class printDepartmentEmps {
 public static void main (String args [])
 throws SQLException, IOException {

 //Load Oracle’s JDBC Driver
 try {
 Class.forName ("oracle.jdbc.driver.OracleDriver");
 } catch (ClassNotFoundException e) {
 System.out.println ("Could not load the driver");
 }

 //Connect to the database
 String user, pass;
 user = readEntry("userid : ");
 pass = readEntry("password: ");
 Connection conn =
 DriverManager.getConnection

3 The connect string will be different in different installations of Oracle. Please consult your instructor/administrator
for the exact connect string used in getConnection method.

 56

 ("jdbc:oracle:thin:@tinman.cs.gsu.edu:1521:sid9ir2",
 user,pass);

 //Perform query using Statement object
 String dno = readEntry("Enter a Department Number: ");
 String query =
 "select LNAME,SALARY from EMPLOYEE where DNO = " + dno;
 Statement s = conn.createStatement();
 ResultSet r = s.executeQuery(query);

 //Process ResultSet
 while (r.next ()) {
 String lname = r.getString(1);
 double salary = r.getDouble(2);
 System.out.println(lname + " " + salary);
 }

 //Close objects
 s.close();
 conn.close();
 }

The query is executed via a Statement object by including the department number as part of the
query string at run time (using string concatenation). This is in contrast to the
PreparedStatement method used in Example 1. The main difference between the two
methods is that in the PreparedStatement method, the query string is first sent to the
database server for syntax checking and then for execution subsequently. This method may be
useful when the same query string is executed a number of times in a program with only a different
parameter each time. On the other hand, in the Statement method, syntax checking and
execution of the query happens at the same time.

The third method for executing SQL statements is to use the CallableStatement object. This is
useful only in situations where the Java program needs to call a stored procedure or function. To
learn about this method, the reader is referred to any standard JDBC textbook or the Oracle 9i
Programming: A Primer (2004) published by Addison Wesley.

Example 3: In this next program, the user is presented with a menu of 3 choices:

(a) Find supervisees at all levels: In this option, the user is prompted for the last name of
an employee. If there are several employees with the same last name, the user is
presented with a list of social security numbers of employees with the same last name
and asked to choose one. The program then proceeds to list all the supervisees of the
employee and all levels below him or her in the employee hierarchy.

(b) Find the top 5 highest paid employees: In this option, the program finds five
employees who rank in the top 5 in salary and lists them.

(c) Find the top 5 highest worked employees: In this option, the program finds five
employees who rank in the top 5 in number of hours worked and lists them.

 57

A sample interaction with the user is shown below:

$ java example3
Enter userid: book
Enter password: book

 QUERY OPTIONS
(a) Find Supervisees at all levels.
(b) Find Highest paid workers.
(c) Find the most worked workers.
(q) Quit.

Type in your option: a

Enter last name of employee : King
King,Kate 666666602
King,Billie 666666604
King,Ray 666666606
Select ssn from list : 666666602
 SUPERVISEES
FNAME LNAME SSN
--

Gerald Small 666666607
Arnold Head 666666608
Helga Pataki 666666609
Naveen Drew 666666610
Carl Reedy 666666611
Sammy Hall 666666612
Red Bacher 666666613

 QUERY OPTIONS
(a) Find Supervisees at all levels.
(b) Find Highest paid workers.
(c) Find the most worked workers.
(q) Quit.

Type in your option: b

 HIGHEST PAID WORKERS
--

666666600 Bob Bender 96000.0
222222200 Evan Wallis 92000.0
444444400 Alex Freed 89000.0
111111100 Jared James 85000.0

 58

555555500 John James 81000.0

 QUERY OPTIONS
(a) Find Supervisees at all levels.
(b) Find Highest paid workers.
(c) Find the most worked workers.
(q) Quit.

Type in your option: c

 MOST WORKED WORKERS
--

666666613 Red Bacher 50.0
222222201 Josh Zell 48.0
333333301 Jeff Chase 46.0
555555501 Nandita Ball 44.0
111111100 Jared James 40.0

 QUERY OPTIONS
(a) Find Supervisees at all levels.
(b) Find Highest paid workers.
(c) Find the most worked workers.
(q) Quit.

Type in your option: q

$

The program for option (a) is discussed now. Finding supervisees at all levels below an employee
is a recursive query in which the data tree needs to be traversed from the employee node all the
way down to the leaves in the sub-tree. One common strategy to solve this problem is to use a
temporary table of social security numbers. Initially, this temporary table will store the next level
supervisees. Subsequently, in an iterative manner, the supervisees at the “next” lower level will be
computed with a query that involves the temporary table. These next supervisees are then added to
the temporary table. This iteration is continued as long as there are new social security numbers
added to the temporary table in any particular iteration. Finally, when no new social security
numbers are found, the iteration is stopped and the names and social security numbers of all
supervisees in the temporary table are listed.

The section of the main program that (a) creates the temporary table, (b) calls the
findSupervisees method, and (c) drops the temporary table is shown below:

 /* create new temporary table called tempSSN */
 String sqlString = "create table tempSSN (" +
 "ssn char(9) not null, " +
 "primary key(ssn))";

 59

 Statement stmt1 = conn.createStatement();
 try {
 stmt1.executeUpdate(sqlString);
 } catch (SQLException e) {
 System.out.println("Could not create tempSSN table");
 stmt1.close();
 return;
 }

 …
 …
 case 'a': findSupervisees(conn);
 …
 …
 /* drop table called tmpSSN */
 sqlString = "drop table tempSSN";
 try {
 stmt1.executeUpdate(sqlString);
 } catch (SQLException e) {
 }

The findSupervisees method is divided into four stages.

Stage 1: The program prompts the user for input data (last name of employee) and queries the
database for the social security number of employee. If there are several employees with same last
name, the program lists all their social security numbers and prompts the user to choose one. At the
end of this stage, the program would have the social security number of the employee whose
supervisees the program needs to list. The code for this stage is shown below.

 private static void findSupervisees(Connection conn)
 throws SQLException, IOException {

 String sqlString = null;

 Statement stmt = conn.createStatement();

 // Delete tuples from tempSSN from previous request.
 sqlString = "delete from tempSSN";
 try {
 stmt.executeUpdate(sqlString);
 } catch (SQLException e) {
 System.out.println("Could not execute Delete");
 stmt.close();
 return;
 }

 /* Get the ssn for the employee */

 60

 sqlString = "select lname, fname, ssn " +
 "from employee " +
 "where lname = '";
 String lname =
 readEntry("Enter last name of employee : ").trim();
 sqlString += lname;
 sqlString += "'";
 ResultSet rset1;
 try {
 rset1 = stmt.executeQuery(sqlString);
 } catch (SQLException e) {
 System.out.println("Could not execute Query");
 stmt.close();
 return;
 }
 String samelName[] = new String[40];
 String fName[] = new String[40];
 String empssn[] = new String[40];
 String ssn;
 int nNames = 0;
 while (rset1.next()) {
 samelName[nNames] = rset1.getString(1);
 fName[nNames] = rset1.getString(2);
 empssn[nNames] = rset1.getString(3);
 nNames++;
 }
 if (nNames == 0) {
 System.out.println("Name does not exist in database.");
 stmt.close();
 return;
 }
 else if (nNames > 1) {
 for(int i = 0; i < nNames; i++) {
 System.out.println(samelName[i] + "," +
 fName[i] + " " + empssn[i]);
 }
 ssn = readEntry("Select ssn from list : ");
 ResultSet r = stmt.executeQuery(
 "select ssn from employee where ssn = '" + ssn + "'");
 if(!r.next()) {
 System.out.println("SSN does not exist in database.");
 stmt.close();
 return;
 }
 }
 else {
 ssn = empssn[0];

 61

 }

Stage 2: In the second stage, the findSupervisees method finds the immediate supervisees,
i.e. supervisees who directly report to the employee. The social security numbers of immediate
supervisees are then inserted into the temporary table.

 /* Find immediate supervisees for that employee */
 sqlString =
 "select distinct ssn from employee where superssn = '";
 sqlString += ssn;
 sqlString += "'";
 try {
 rset1 = stmt.executeQuery(sqlString);
 } catch (SQLException e) {
 System.out.println("Could not execute query");
 stmt.close();
 return;
 }

 /* Insert result into tempSSN table*/
 Statement stmt1 = conn.createStatement();
 while (rset1.next()) {
 String sqlString2 = "insert into tempSSN values ('";
 sqlString2 += rset1.getString(1);
 sqlString2 += "')";
 try {
 stmt1.executeUpdate(sqlString2);
 } catch (SQLException e) {
 }
 }

Stage 3: In the third stage, the findSupervisees method iteratively calculates supervisees at
the next lower level using the query:

 select employee.ssn
 from employee, tempSSN
 where superssn = tempSSN.ssm;

The results of this query are inserted back into the tempSSN table to prepare for the next iteration.
A boolean variable, called newrowsadded, is used to note if any new tuples were added to the
tempSSN table in any particular iteration. Since the tempSSN table’s only column (ssn) is also
defined as a primary key, duplicate social security numbers would cause an SQLException which
is simply ignored in this program. The code for this stage is shown below:

 /* Recursive Querying */
 ResultSet rset2;

 62

 boolean newrowsadded;
 sqlString = "select employee.ssn from employee, tempSSN " +
 "where superssn = tempSSN.ssn";
 do {
 newrowsadded = false;
 try {
 rset2 = stmt.executeQuery(sqlString);
 } catch (SQLException e) {
 System.out.println("Could not execute Query");
 stmt.close();
 stmt1.close();
 return;
 }
 while (rset2.next()) {
 try {
 String sqlString2 = "insert into tempSSN values ('";
 sqlString2 += rset2.getString(1);
 sqlString2 += "')";
 stmt1.executeUpdate(sqlString2);
 newrowsadded = true;
 } catch (SQLException e) {
 }
 }
 } while (newrowsadded);
 stmt1.close();

Stage 4: In the final stage, the findSupervisees method prints names and social security
numbers of all employees whose social security number is present in the tempSSN table. The
code is shown below:

 /* Print Results */
 sqlString = "select fname, lname, e.ssn from " +
 "employee e, tempSSN t where e.ssn = t.ssn";
 ResultSet rset3;
 try {
 rset3 = stmt.executeQuery(sqlString);
 } catch (SQLException e) {
 System.out.println("Could not execute Query");
 stmt.close();
 return;
 }
 System.out.println(" SUPERVISEES ");
 System.out.print("FNAME");
 for (int i = 0; i < 10; i++)
 System.out.print(" ");
 System.out.print("LNAME");

 63

 for (int i = 0; i < 10; i++)
 System.out.print(" ");
 System.out.print("SSN");
 for (int i = 0; i < 6; i++)
 System.out.print(" ");
 System.out.println("\n----------------------------------\n");

 while(rset3.next()) {
 System.out.print(rset3.getString(1));
 for (int i = 0;
 i < (15 - rset3.getString(1).length()); i++)
 System.out.print(" ");
 System.out.print(rset3.getString(2));
 for (int i = 0;
 i < (15 - rset3.getString(2).length()); i++)
 System.out.print(" ");
 System.out.println(rset3.getString(3));
 }
 stmt.close();
 }

This concludes the discussion of the findSupervisees method. The code to implement
options (b) and (c) is quite straightforward and is omitted. The entire code for all the examples is
available along with this lab manual.

Exercises 

1. Consider the ER-schema generated for the UNIVERSITY database in Laboratory Exercise
7.31 of the Elmasri/Navathe text. Convert the schema to a relational database and solve the
following:

a. Create the database tables in Oracle using the SQL*Plus interface.
b. Create comma separated data files containing data for at least 3 departments (CS,

Math, and Biology), 20 students, and 20 courses. You may evenly distribute the
students and the courses among the three departments. You may also choose to
assign minors to some of the students. For a subset of the courses, create sections
for the Fall 2006 and Spring 2007 terms. Make sure that you assign multiple
sections for some courses. Assuming that the grades are available for Fall 2006
term, add enrollments of students in sections and assign numeric grades for these
enrollments. Do not add any enrollments for the Spring 2007 sections.

c. Using the SQL*Loader utility of Oracle, load the data created in (b) into the
database.

d. Write SQL queries for the following and execute them within an SQL*Plus
session.

i. Retrieve student number, first and last names, and major department names
of students who have a minor in the Biology department.

 64

ii. Retrieve the student number and the first and last names of students who
have never taken a class with instructor named "King".

iii. Retrieve the student number and the first and last names of students who
have taken classes only with instructor named "King".

iv. Retrieve department names of departments along with the numbers of
students with that department as their major (sorted in decreasing order of
the number of students).

v. Retrieve department names of departments along with the numbers of
students with that department as their major (sorted in decreasing order of
the number of students).

vi. Retrieve the instructor names of all instructors teaching CS courses along
with the sections (course number, section, semester, and year) they are
teaching and the total number of students in these sections.

vii. Retrieve the student number, first and last names, and major departments of
students who do not have a grade of “A” in any of the courses they have
enrolled in.

viii. Retrieve the student number, first and last names, and major departments of
all straight-A students (students who have a grade of “A” in all of the
courses they have enrolled in).

ix. For each student in the CS department, retrieve their student number, first
and last names, and their GPA.

2. Consider the ER-schema generated for the MAIL_ORDER database in Laboratory Exercise

7.32 of the Elmasri/Navathe text. Convert the schema to a relational database and solve the
following:

a. Create the database tables in Oracle using the SQL*Plus interface.
b. Create comma separated data files containing data for at least 6 customers, 6

employees, and 20 parts. Also create data for 20 orders with an average of 3 to 4
parts in each order.

c. Using the SQL*Loader utility of Oracle, load the data created in (b) into the
database.

d. Write SQL queries for the following and execute them within an SQL*Plus
session.

i. Retrieve the names of customers who have ordered at least one part costing
more than $30.00.

ii. Retrieve the names of customers who have ordered all parts that cost less
than $20.00.

iii. Retrieve the names of customers who order parts only from employees who
live in the same city as they live in.

iv. Retrieve a list of part number, part name, and total quantity ordered for that
part. Produce a listing sorted in decreasing order of the total quantity
ordered.

v. Retrieve the average waiting time (number of days) for all orders. The
waiting time is defined as the difference between shipping date and order
received date rounded up to the nearest day.

 65

vi. For each employee, retrieve his number, name, and total sales (in terms of
dollars) in a given year, say 2005.

3. Consider the relational schema for the GRADE_BOOK database in Laboratory Exercise 7.3

of the Elmasri/Navathe text augmented with the following two tables:

components(Term,Sec_no,Comp_name,Max_points,Weight)
scores(Sid,Term,Sec_no,Comp_name,Points)

where the components table records the grading components for a course and the
scores table records the points earned by a student in a grading component of the course.

a. Create the database tables in Oracle using the SQL*Plus interface.
b. Create comma separated data files containing data for at least 20 students and 3

courses with an average of 8 students in each course. Create data for 3 to 4 grading
components for each course. Then, create data to assign points to each student in
every course they are enrolled in for each of the grading components.

c. Using the SQL*Loader utility of Oracle, load the data created in (b) into the
database.

d. Write SQL queries for the following and execute them within an SQL*Plus
session.

i. Retrieve the names of students who have enrolled in ‘CSc 226’ or ‘CSc
227’.

ii. Retrieve the names of students who enrolled in some class during fall 2005
but no class in spring 2006.

iii. Retrieve the titles of courses that have had enrollments of five or fewer
students.

iv. Retrieve the student ids, their names, and their course average (weighted
average of points from all components) for the CSc 226 course offering with
section number 2 during Fall 2005.

NOTE: All references to Exercises and Laboratory Exercises in the following problems refer to
the numbering in the Elmasri/Navathe text.

4. Consider the UNIVERSITY database of Exercise 1. Write and test a Java program that

performs the functions illustrated in the following terminal session:

$ java p1
Student Number: 1234
Semester: Fall
Year: 2005

Main Menu

(1) Add a class
(2) Drop a class
(3) See my schedule
(4) Exit

 66

Enter your choice: 1

Course Number: CSC 1010
Section: 2
Class Added

Main Menu

(1) Add a class
(2) Drop a class
(3) See my schedule
(4) Exit

Enter your choice: 1

Course Number: MATH 2010
Section: 1
Class Added

Main Menu

(1) Add a class
(2) Drop a class
(3) See my schedule
(4) Exit

Enter your choice: 3

Your current schedule is:

CSC 1010 Section 2, Introduction to Computers, Instructor: Smith
MATH 2010 Section 1, Calculus I, Instructor: Jones

Main Menu
(1) Add a class
(2) Drop a class
(3) See my schedule
(4) Exit

Enter your choice: 2

Course Number: CSC 1010
Section: 2
Class dropped

Main Menu

(1) Add a class
(2) Drop a class
(3) See my schedule
(4) Exit

 67

Enter your choice: 3

Your current schedule is:

MATH 2010 Section 1, Calculus I, Instructor: Jones

Main Menu

1. Add a class
2. Drop a class
3. See my schedule
4. Exit

Enter your choice: 4
$

As the terminal session shows, the student signs into this program with an id number and
the term and year of registration. The Add a class option allows the student to add a
class to his/her current schedule and the Drop a class option allows the student to
drop a class in his/her current schedule. The See my schedule option lists the classes
in which the student is registered.

5. Consider the MAIL_ORDER database of Exercise 2. Write and test a Java program that

prints an invoice for a given order number as illustrated in the following terminal session:

$java p2
Order Number: 1020

Customer: Charles Smith
Customer No: 1111
Zip: 67226

Order No: 1020
Taken By: John Jones (emp. No. 1122)
Received on: 10-DEC-1994
Shipped on: 13-DEC-1994

Part No. Part Name Quantity Price Sum
--
10506 Nut 200 1.99 398.00
10509 Bolt 100 1.55 155.00
--
 Total: 553.00

 68

6. Consider the GRADE_BOOK database of Exercise 3. Write and test a Java program that

interacts with the Oracle database and prints a grade count report for each course. The
report should list the number of A’s, B’s, C’s, D’s, and F’s given in each of the courses
sorted on course number. The format for the report is:

Grade Count Report

 CNO Course Title #A’s #B’s #C’s #D’s #F’s

 CSc2010 Intro to CS 12 8 15 5 2
 CSc2310 Java 15 2 12 8 1
