

Boyle's Law:

$\mathrm{pV}=\mathrm{C} ; \quad \mathrm{C}$ is constant when the temperature and mass are constant.
p represents the absolute pressure

V the volume

The relation between the pressure and volume of an ideal gas at constant temperature is shown in the isothermal curves of the graph, where p is plotted vertically and V horizontally. The curves are equilaterally hyperbolic and asymptotic to the p - and V - axis. (Examples of t curves not to scale)

Each example isothermal curve corresponds to a different temperature ($\mathrm{t} 1>\mathrm{t} 2>\mathrm{t} 3$). For each constant temperature (t), $\mathrm{pV}=\mathrm{C}$, along the isothermal curve. The constant is larger the higher the temperature. The constant is not important in this example.

Example: If a football with volume V is inflated at temperature $t 1$, using isothermal curve $t 1$, at the point ($\mathrm{V}, \mathrm{p} 1$) the pressure p 1 can be taken along the p-axis. Next by moving to the t2 isothermal curve and finding the point where V intersects with isothermal curve t2 the pressure p 2 can be observed along the p -axis, and p 2 will be less than p 1 .

This is the simplest pictorial explanation why there will be less pressure in the football ball after being exposed for a period of time to a lower temperature. (wiki Thermal Behavior of Gases)

A Ball or Mason jar lid will seal when the high temperature of jelly cools down to room temperature. Car tire pressure is lower when exposed to colder temperature.

James C Helm, PhD.

