
Example Software Development Process.

The example software development process is shown in Figure A. The boxes represent the
software development process kernels. The Software Unit Testing, Software Component testing,
Software Configuration Item Testing, Validation Test and Verification and Validation Test
Design are the kernels that will be studied in detail in this course. The following paragraphs and
frames will discuss each kernel and the test-related activities that go on during each kernel. The
discussions on these kernels are to be considered general guidelines and are determined on the
project size basis. The kernel concept and process was demonstrated by Humphrey in Chapter 13
of the referenced book. The Entry, Task, Verification, and Exit (ETVX) paradigm is a concept
initially developed by a group at IBM, Radice et al.

The Example Software Development Process shown in Figure A is based on a predefined
repository of process "kernels" from which the testing, verification & validation life cycle for a
given project can be defined. A "kernel" is defined for each function such as Requirements
Analysis, Document Review, Code Analysis, Unit Testing, etc. Each "kernel" contains entry
criteria, inputs, activities, exit criteria, outputs, process controls, and metrics are defined for each
kernel.

Entry Criteria describe the circumstances under which a kernel becomes activated. All entry
criteria should be fulfilled before commencing with the activities defined for the kernel. If some
entry criteria cannot be fulfilled, a work-around may be necessary. All such deviations from what
is prescribed in the kernel must be performed to maximize risk reduction and minimize adverse
impacts to quality. All deviations must also be documented appropriately.

Inputs identify the data items that are required to support the activities of the kernel. For the
most part, these are outputs of other kernels or products of the software development process
such as test plans or design documents.

Activities describe a minimum set of actions that will produce the output items and meet the exit
criteria objectives. For each related set of actions, step by step procedures are available to
support consistency among analysts, adherence to proven practices, and training. If all activities
cannot be performed, management steps to reduce risk should be taken, they should be noted in
the outputs products (such as the Requirements Analysis Report), and the kernel closed.

Exit Criteria identify the circumstances under which the kernel is completed or de-activated. It
includes delivery or presentation of results, and passing of information to other kernels (such as
the passing of comments to the Configuration Management kernel for tracking).

Outputs identify products of the kernel activities and are either deliverable items or are required
to support other kernels.

Process Controls define quality assurance activities that are performed for the kernel. These are
detailed in the Project Management and Quality Assurance kernels and are documented in the
IV&V Project Management Plan.

Metrics are the categories of measures collected and maintained for each kernel. The details of
each metric are specific to each kernel and are defined in a Metrics Program Plan. The metrics
allow the monitoring of trends and identification of problem areas.

This kernel concept was used by Lillian K. Zelinski at Science Applications International
Corporation (SAIC) in Arlington, VA and presented in her paper "Constructing Independent
Verification and Validation Life Cycles Using Process Kernels", at the 10th Annual IEEE
COMPASS Conference, June 26-30 1995, Gaithersburg, MD USA.

Figure A. Example Software Life Cycle Kernel Model

Figure B is a graphic of five different software life cycle models. The four other software life
cycle models are Waterfall; Rapid Prototype; Incremental; Evolutionary and Spiral. The kernels
in Figure A were presented in a straight waterfall model, however each process in Figure B has
basically the same set of kernels. These kernels can be mapped to the development model
(Waterfall, Cyclic, etc.) determined by the needs of the project.

Step 1 - Software Requirements Analysis Phase Kernel.
This kernel involves the further derivation of the system requirements that have been
allocated to software. This kernel is included for all software development projects.
Requirements provide a clearly stated, verifiable, and testable foundation for Software
Engineering. Guidelines must be provided by management and followed when specifying
and identifying requirements. The requirements clearly define the capabilities and

System
 Requirements

Completed
Software

Software
 Requirements

 Analysis

Software
 Architecture

Design

Domain
Analysis

Data
Structure
Design

Software
Unit

Testing

Engineeering
Change
Control

Software
Component

Testing

Validation
Test

Formal
SCCB

Software
Configuration

Item
Testing

Software
Configuration
Management

Load Build

Coding

Algorithum
Design

Support
Software

Development

Interface
Design

Verification
and

Validation
Test

Design

Software Allocated
Baseline

Software Product
Baseline

ENGINEERING BUILD

C
RR

A
HDR

A
IDR B

TPR

SCM
Release

A

A
DDR
TR
DR

A
TDR
DOR

A

A

D

D D B

B

C

C

C C
DB

C

C

G

performance of the end software product.

For data-driven or data-intensive systems, the requirement specification activities also
address data sources, types, and rates. The requirements are managed throughout the
development process. The requirement analysis represents an agreement at the beginning of
the software development process between the developers and the customer on what the
delivered software product will be at completion.

This is just the beginning of this activity. Requirement review & analysis are conducted
throughout the life cycle as requirements change or as new requirements are added. The
primary responsibility of the testers in this phase is to ensure that requirements are testable.

Step 2 - Domain Analysis Kernel
An analysis is performed to identify existing non-developmental software (NDS)
components. NDS may take the form of existing, reusable software or COTS software. A
make versus reuse (including modifications) cost decision is made by the software
engineering team. Software reuse also may occur at the design level. As part of the analysis,
existing designs that may be adapted or modified should be identified. No activities are
conducted here which are directly related to testing.

Step 3 - Verification & Validation Test Design Kernel
This kernel includes the definition of unit, software component, and software configuration
item test cases, and data used by Software and Test Engineering to verify that the product is
working as expected. These tests include functional tests, out-of-bounds tests, static and
dynamic stress tests, and limit tests. Validation testing is acceptance testing of the software
by or for the customer. The task involved in this kernel shall include the creation of software
test plans, methods, descriptions, and procedures. The amount, type, and formality of testing
are determined by requirements for security, size of development effort, and complexity of
algorithms and data structures. The Software & Test Engineering will establish traceability
between the requirement analysis products and the validation tests. This kernel starts refining
some of the test planning activities started during the system planning. The software is better
understood by this time and the Software & Test Engineering needs to fine tune the: test
tools, drivers, stubs, simulators, stimulators, emulators and the types of data that are needed.
The term Verification test will be used for phases of test planned and conducted by Software
Engineering. Validation test will be used for phases of test planned and conducted by Test
Engineering.

The phases listed here are the ones that will be discussed in the rest of the course units.

Software & Test Engineering
• Test phase planning: tools & data
• Software Engineering: verification test planning
• Unit test
• Software component test (integration)
• Software configuration item test

• Regression test

Test Engineering: validation test planning
• Function & system tests
• Installation & acceptance tests
• Regression test
• Outputs: phase-level test plans

Step 4 - Software Architecture Design Kernel.
This kernel is the high-level design of the software. It includes the definition of the software
components and their structure and interaction. The software components, which are to be
developed, are identified in this kernel. The System, Software, and Test Engineering have
the responsibilities to analyze requirements in response to change and produce testable
requirements and a disclaimer list if needed.

Step 5 - Interface Design Kernel
This kernel involves the early definition of the interfaces between each of the software units.
It also includes the definition of interface external to the software (e.g., hardware and user
dependencies) and software parameters such as data type and structure definitions. The
System, Software, and Test Engineering team are responsible to identify the software units in
this kernel and phase of the development phase. The System, Software, and Test Engineering
have the responsibilities to analyze requirements in response to change and produce testable
requirements and a disclaimer list if needed.

Step 6 - Data Structure Design Kernel
This kernel represents the detailed data structure design. The internal file structures,
relationships, and data formats are defined either graphically or through a design language.
The data design should conform to third normal form optimized for performance. If the
chosen data design language uses the same syntax as the implementation language, the
Software Manager must ensure that premature coding is not used to describe the design. No
directly related test activities are conducted in this kernel. Another contractor or the customer
at the kernel may conduct an independent verification and validation function of the data
structure design.

Step 7 - Algorithm Design Kernel
This kernel represents the detailed design of the software logic and is included for all
software development projects that implement control structures and/or algorithms. It
includes the generation of the program design language (PDL) or other representation of the
design, such as graphical representation methods. If the chosen PDL uses the same syntax as
the implementation language, the Software Manager must ensure that premature coding is
not used to describe the design. No activities are conducted here which are directly related to
test.

Step 8 - Support Software Development Kernel
This kernel represents the detailed design and coding of all support software, including
prototyping, modeling, and test-tool development. Test-tool development consists of all
models, simulation, stimulation, and/or emulation software required to fully test and qualify
the deliverable software. Depending on the required formality for test-tool development, this
kernel may use any or all of other defined kernels.

Step 9 - Coding Kernel
This kernel is the creation of source code for the software units that implement the software
design. Coding is done uniformly across the software products using a defined standard or
guideline. A software guidelines and standards manual should be used for products
implemented in Ada, C/C++, Java etc. The responsibilities of Software Engineering are to
establish and design unit test cases, develop unit test drivers and stubs. The responsibilities
of Test Engineering are to design test, develop test cases and identify the test data to use in
the cases.

Step 10 - Software Unit Testing Kernel
This kernel involves execution of the unit test cases defined as part of the verification /
validation test design. Unit testing is conducted for all developed software units. The number
of tests required is driven by the complexity of the code. Methods such as McCabe's
complexity metric should be used to uniformly determine the complexity and corresponding
number of paths through the software. This testing may be accomplished in the host or target
environment. Higher level testing, such as software component or software configuration
item testing, is not used to fulfill unit testing. An entire set of units is dedicated to unit
testing. Unit Testing is not normally a verification and validation activity, but is an important
testing activity.

The responsibilities of Software Engineering is to:
• Execute test cases & log results
• Resolve defects
• Design & generate integration test plan(s) & test cases
• Outputs: test logs/reports, known defect log, & integration test documentation

The responsibilities of Test Engineering is to:
• Develop test cases
• Develop test tools
• Outputs: test cases

Step 11 - Software Component (Integration) Testing Kernel
The Software Component (Integration) Testing Kernel involves the execution of the software
component test cases defined as part of the verification test design. The goal of this test is to
verify the performance of the component and its internal (unit to unit) interfaces. This testing
may be accomplished in the host or target environment. This kernel may be excluded for
projects where the software size or complexity does not warrant additional verification

testing, and where the software configuration item test kernel is used in lieu of this kernel.
An entire set of units is dedicated to software integration testing, so only briefly review is
presented here.

The responsibilities of Software Engineering is to:
• Execute test cases & log results
• Resolve defects
• Document test logs and reports
• Document known defect in a report.

The responsibilities of Test Engineering is to:
• Finalize test cases
• Document test cases

Step 12 - Software Configuration Item Testing Kernel
The Software Configuration Item Testing Kernel involves the execution of the software
configuration item prior to full integration testing with other software and hardware
configuration items. The Software Engineer performs testing to verify that the software
configuration item works as intended in the target environment.

For projects requiring stand-alone validation of the software, this test may be the dry run of
the validation procedure. Hardware/software integration may occur at any level required
supporting testing and is specified in the Test Plan. This time period should also be used by
Test Engineering to conduct dry run activities, which are discussed in detail in later lessons.

The responsibilities of Test Engineering is to:
• Execute dry run of function & system tests Log defects
• Document corrected test cases
• Document defect report

The responsibilities of System & Software Engineering is to:
• Assist in resolving defects from dry run
• Conduct integration test of configuration items

Step 13 - Software Configuration Management Load Build
The Engineering Load Build Kernel involves the creation of the executable load builds from
the configuration management engineering library to support software component integration
and software configuration item validation testing. The environment used to create these
loads and the procedures to be followed is under configuration control. These procedures and
scripts are used to start the system. Software Configuration Management Load Build is
refereed to as Cold Start procedures. This kernel may be excluded for software development
projects where executable loads are built from software configuration management controlled
libraries.

The responsibilities of Software Engineering is to:

• Integration of the executable load builds
• Implementation of the executable load builds
• Script for the executable load builds

The responsibilities of the Software Configuration Management
• Identification of the executable load builds from the engineering Library
• Control of the executable load builds from the engineering Library

Step 14 - Validation Test Kernel.
For software intensive systems or for projects where the validation of software as a stand-
alone configuration item is required, the software validation kernel is used. In this case, the
cold start of the software source code will be done as part of the software development
activity. These phases of testing are dedicated to later lessons, so only a brief review is
presented here.

The responsibility of Test Engineering is to:
• Execute function & regression test
• Execute system & regression test
• Execute installation & regression test
• Execute acceptance test
• Log defects
• Document corrected test cases
• Document defect reports
• Document test reports

The responsibility of System & Software Engineering is to Assist in resolving defects

Step 15 - Engineering Change Control Kernel
Change control can occur anywhere within the system development activity. During software
development, the level of change control authority depends on the level of maturity of the
product. During early development stages, the user, working through the user library, has
control of the software products. As products mature to the verification test and higher
integration levels, control transitions to the engineering library and engineering management
control. The Software Configuration Management (SCM) release point is where software
products become baselined (the point at which products transition to the SCM library and
formal change control). This point can be changed to meet the needs of individual projects.
Products are baselined at some point prior to validation testing. This kernel is depicted in a
single phase, but in reality the activities associated with this kernel are conducted throughout
the life cycle of the project.

The responsibility of Configuration Management is to
• Baseline test documents
• Provide controlled builds to Test Engineering
• Outputs: software CM load builds

The responsibility of System, Software, & Test Engineering is to:
• Requirements analysis in response to change
• Outputs: testable requirements, disclaimer list, & updated documentation & code

Step 16 - Formal Software Configuration Control Board.
The Formal Software Configuration Control Board Kernel involves change control. Change
control can occur anywhere within the software development process. During software
development, the level change control authority depends on the level of maturity of the
product. During early development stages, the user, working through the user library, has
control of he software products. As products mature to the verification test and higher
integration levels, control transitions to the engineering library and engineering management
control. The software configuration management release point is where software products
become baselined. The baseline is the at which products transition to the software
configuration management library and formal change control. The baseline can be changed to
meet the needs of individual projects. The products must be baselined at some point prior to
validation testing. The software configuration management process is another course in itself.

This completes the lecture on the Example Software Development Process and the contents
of the kernels. The student should have an understanding of the kernel concept, the criteria of
each kernel and how they can be applied to various software life cycle development
processes.

	Step 1 - Software Requirements Analysis Phase Kernel.
	Step 2 - Domain Analysis Kernel
	Step 3 - Verification & Validation Test Design Kernel
	Step 4 - Software Architecture Design Kernel.
	Step 5 - Interface Design Kernel
	Step 6 - Data Structure Design Kernel
	Step 7 - Algorithm Design Kernel
	Step 8 - Support Software Development Kernel
	Step 9 - Coding Kernel
	Step 10 - Software Unit Testing Kernel
	Step 11 - Software Component (Integration) Testing Kernel
	Step 12 - Software Configuration Item Testing Kernel
	Step 13 - Software Configuration Management Load Build
	Step 14 - Validation Test Kernel.
	Step 15 - Engineering Change Control Kernel
	Step 16 - Formal Software Configuration Control Board.

