
© IEEE –Trial Version 1.00 – May 2001 5–1

CHAPTER 5
SOFTWARE TESTING

Antonia Bertolino
Istituto di Elaborazione della Informazione

Consiglio Nazionale delle Ricerche
Research Area of S. Cataldo

56100 PISA (Italy)
bertolino@iei.pi.cnr.it

Table of Contents

1 Introduction... 1
2 Definition of the Software Testing Knowledge Area.. 1
3 Breakdown of Topics for the Software Testing

Knowledge Area... 3
4 Breakdown Rationale.. 14
5 Matrix of Topics vs. Reference Material 14
6 Recommended References for Software Testing 16
Appendix A – List of Further Readings............................ 17

1 INTRODUCTION

Testing is an important, mandatory part of software
development; it is a technique for evaluating product
quality and also for indirectly improving it, by identifying
defects and problems.
As more extensively discussed in the Software Quality
chapter of the Guide to the SWEBOK, the right attitude
towards quality is one of prevention: it is obviously much
better to avoid problems, rather than repairing them.
Testing must be seen as a means primarily for checking
whether the prevention has been effective, but also for
identifying anomalies in those cases in which, for some
reason, it has been not. It is perhaps obvious, but worth
recognizing, that even after successfully completing an
extensive testing campaign, the software could still contain
faults; nor is defect free code a synonymous for quality
product. The remedy to system failures that are experienced
after delivery is provided by (corrective) maintenance
actions. Maintenance topics are covered into the Software
Maintenance chapter of the Guide to the SWEBOK.
In the years, the view of Software Testing has evolved
towards a more constructive attitude. Testing is no longer
seen as an activity that starts only after the coding phase is
complete, with the limited purpose of detecting failures.
Software testing is nowadays seen as an activity that should
encompass the whole development process, and is an
important part itself of the actual product construction.
Indeed, planning for testing should start since the early
stages of requirement analysis, and test plans and

procedures must be systematically and continuously refined
as the development proceeds. These activities of planning
and designing tests constitute themselves a useful input to
designers for highlighting potential weaknesses (like, e.g.,
design oversights or contradictions, and omissions or
ambiguities in the documentation).
In the already referred Software Quality (SQ) chapter of the
Guide to the SWEBOK, activities and techniques for
quality analysis are categorized into: static techniques (no
code execution), and dynamic techniques (code execution).
Both categories are useful. Although this chapter focuses
on testing, that is dynamic (see Sect. 2), static techniques
are as important for the purposes of evaluating product
quality and finding defects. Static techniques are covered
into the SQ Knowledge Area description.

2 DEFINITION OF THE SOFTWARE TESTING
KNOWLEDGE AREA

Software testing consists of the dynamic verification of the
behavior of a program on a finite set of test cases, suitably
selected from the usually infinite executions domain,
against the specified expected behavior.
In the above definition, and in the following as well,
underlined words correspond to key issues in identifying
the Knowledge Area of Software Testing. In particular:
� dynamic: this term means testing always implies

executing the program on (valued) inputs. To be
precise, the input value alone is not always sufficient
to determine a test, as a complex, non deterministic
system might react with different behaviors to a same
input, depending on the system state. In the following,
though, the term “input” will be maintained, with the
implied convention that it also includes a specified
input state, in those cases in which it is needed.
Different from testing, and complementary with it, are
static analysis techniques, such as peer review and
inspection (that sometimes are improperly referred to
as “static testing”); these are not considered as part of
this Knowledge Area (nor is program execution on
symbolic inputs, or symbolic evaluation);

� finite: for even simple programs, so many test cases
are theoretically possible that exhaustive testing could

5–2 © IEEE – Trial Version 1.00 – May 2001

require even years to execute. This is why in practice
the whole test set can generally be considered infinite.
But, the number of executions which can realistically
be observed in testing must obviously be finite.
Clearly, “enough” testing should be performed to
provide reasonable assurance. Indeed, testing always
implies a trade-off between limited resources and
schedules, and inherently unlimited test requirements:
this conflict points to well known problems of testing,
both technical in nature (criteria for deciding test
adequacy) and managerial in nature (estimating the
effort to put in testing);

� selected: the many proposed test techniques
essentially differ in how they select the (finite) test
set, and testers must be aware that different selection
criteria may yield largely different effectiveness. How
to identify the most suitable selection criterion under
given conditions is a very complex problem; in
practice risk analysis techniques and test engineering
expertise are applied;

� expected: it must be possible (although not always
easy) to decide whether the observed outcomes of
program execution are acceptable or not, otherwise
the testing effort would be useless. The observed
behavior may be checked against user’s expectations
(commonly referred to as testing for validation) or
against a specification (testing for verification). The
test pass/fail decision is commonly referred in the
testing literature to as the oracle problem, which can
be addressed with different approaches, for instance
by human inspection of results or by comparison with
an existing reference system. In some situations, the
expected behavior may only be partially specified,
i.e., only some parts of the actual behavior need to be
checked against some stated assertion.

2.1 Conceptual Structure of the Breakdown
Software testing is usually performed at different levels
along the development process. That is to say, the target of
the test can vary: a whole system, parts of it (related by
purpose, use, behavior, or structure), a single module.
The testing is conducted in view of a specific purpose (test
objective), which is stated more or less explicitly, and with
varying degrees of precision. Stating the objective in
precise, quantitative terms allows for establishing control
over the test process.
One of testing aims is to expose failures (as many as
possible), and many popular test techniques have been
developed for this objective. These techniques variously
attempt to “break” the program, by running one [or more]
test[s] drawn from identified classes of (deemed equivalent)
executions. The leading principle underlying such
techniques is being as much systematic as possible in
identifying a representative set of program behaviors
(generally in the form of subclasses of the input domain).
However, a comprehensive view of the Knowledge Area of
Software Testing as a means for quality must include other

as important objectives for testing, e.g., reliability
measurement, usability evaluation, contractor’s acceptance,
for which different approaches would be taken. Note that
the test objective varies with the test target, i.e., in general
different purposes are addressed at the different levels of
testing.
The test target and test objective together determine how
the test set is identified; both with regard to its consistency
-how much testing is enough for achieving the stated
objective?- and its composition -which test cases should be
selected for achieving the stated objective?- (although
usually the “for achieving the stated objective” part is left
implicit and only the first part of the two italicized
questions above is posed). Criteria for addressing the first
question are referred to as test adequacy criteria, while for
the second as test selection criteria.
Sometimes, it can happen that confusion is made between
test objectives and techniques. Test techniques are to be
viewed as aids that help to ensure the achievement of test
objectives. For instance, branch coverage is a popular test
technique. Achieving a specified branch coverage measure
should not be considered per se as the objective of testing:
it is a means to improve the chances of finding failures (by
systematically exercising every program branch out of a
decision point). To avoid such misunderstandings, a clear
distinction should be made between test measures which
evaluate the thoroughness of the test set, like measures of
coverage, and those which instead provide an evaluation of
the program under test, based on the observed test outputs,
like reliability.
Testing concepts, strategies, techniques and measures need
to be integrated into a defined and controlled process,
which is run by people. The test process supports testing
activities and provide guidance to testing teams, from test
planning to test outputs evaluation, in such a way as to
provide justified assurance that the test objectives are met
cost-effectively.
Software testing is a very expensive and labor-intensive
part of development. For this reason, tools are instrumental
for automated test execution, test results logging and
evaluation, and in general to support test activities.
Moreover, in order to enhance cost-effectiveness ratio, a
key issue has always been pushing test automation as much
as possible.
2.2 Overview
Following the above-presented conceptual scheme, the
Software Testing Knowledge Area description is organized
as follows.
Part A deals with Testing Basic Concepts and Definitions.
It covers the basic definitions within the Software Testing
field, as well as an introduction to the terminology. In the
same part, the scope of the Knowledge Area is laid down,
also in relation with other activities.
Part B deals with Test Levels. It consists of two
(orthogonal) subsections: B.1 lists the levels in which the

© IEEE –Trial Version 1.00 – May 2001 5–3

testing of large software systems is traditionally
subdivided. In B.2 testing for specific conditions or
properties is instead considered, and is referred to as
“Objectives of testing”. Clearly not all types of testing
apply to every system, nor has every possible type been
listed, but those most generally applied.
As said, several Test Techniques have been developed in
the last two decades according to various criteria, and new
ones are still proposed. “Generally accepted” techniques
are covered in Part C.
Test-related Measures are dealt in Part D.
Finally, issues relative to Managing the Test Process are
covered in Part E.
Existing tools and concepts related to supporting and
automating the activities into the test process are not
addressed here. They are covered within the Knowledge
Area description of Software Engineering Tools and
Methods in this Guide.

3 BREAKDOWN OF TOPICS FOR THE SOFTWARE
TESTING KNOWLEDGE AREA

This section gives the list of topics identified for the
Software Testing Knowledge Area, with succinct
descriptions and references. Two levels of references are
provided with topics: the recommended references within
brackets, and additional references within parentheses. In
particular, the recommended references for Software
Testing have been identified into selected book chapters
(for instance, Chapter 1 of reference Be is denoted as
Be:c1), or, in some cases, sections (for instance, Section 1.4
of Chapter 1 of Be is denoted as Be:c1s1.4). The Further
Readings list includes several refereed journal and
conference papers and some relevant standards, for a
deeper study of the pointed arguments.
A chart in Figure 1 gives a graphical presentation of the
top-level decomposition of the breakdown for the Software
Testing Knowledge Area. The finer decomposition of the
five level 1 topics into the lowest level entries is then
summarised by the following five tables (note that two
alternative decompositions are proposed for the level 1
topic of Testing Techniques)

Software Testing

A. Testing Basic
Concepts and

Definitions
B. Test Levels C. Test

Techniques
D. Test Related

Measures
E. Managing the

Test Process

A1. Testing-
Related

Terminology

A2. Theoretical
Foundations

A3. Relationships
of Testing to

Other Activities

B1. The Target of
the Test

B2. Objectives of
Testing

C1.1 Based on
Tester's intuition
and experience

C1.2
Specification-

based

C1.3 Code-Based

C1.4 Fault-Based

C1.5 Usage-
Based

C1.6 Based on
Nature of

Application

C2.1 Black-Box
Techniques

C2.1 White-Box
Techniques

C3. Selecting and
Combining
Techniques

D1. Evaluation of
the Program
Under Test

D2. Evaluation of
the Tests

Performed

E1. Management
Concerns

E2. Test
Activities

5–4 © IEEE – Trial Version 1.00 – May 2001

Table 1-A: Decomposition for Testing Basic Concepts and Definitions
Definitions of testing and related terminology A1. Testing-related terminology
Faults vs. Failures
Test selection criteria/Test adequacy criteria (or
stopping rules)
Testing effectiveness/Objectives for testing
Testing for defect removal
The oracle problem
Theoretical and practical limitations of testing
The problem of infeasible paths

A2. Theoretical foundations

Testability
Testing vs. Static Analysis Techniques
Testing vs. Correctness Proofs and Formal
Verification
Testing vs. Debugging
Testing vs. Programming
Testing within SQA

Testing within Cleanroom

A. Testing Basic Concepts
and Definitions

A3. Relationships of testing to other
activities

Testing and Certification

Table 1-B: Decomposition for Test Levels

Unit testing
Integration testing B1. The target of the test
System testing
Acceptance/qualification testing
Installation testing
Alpha and Beta testing
Conformance testing/ Functional testing/
Correctness testing
Reliability achievement and evaluation by
testing
Regression testing
Performance testing
Stress testing
Back-to-back testing
Recovery testing
Configuration testing

B. Test Levels

B2. Objectives of testing

Usability testing

© IEEE –Trial Version 1.00 – May 2001 5–5

Table 1-C: Decomposition for Test Techniques

C1.1 Based on tester’s
intuition and experience

Ad hoc

Equivalence partitioning
Boundary-value analysis
Decision table
Finite-state machine-based
Testing from formal specifications

C1.2 Specification-based

Random testing
Reference models for code-based testing (flow
graph, call graph)
Control flow-based criteria C1.3 Code-based

Data flow-based criteria
Error guessing C1.4 Fault-based Mutation testing
Operational profile C1.5 Usage-based SRET
Object-oriented testing
Component-based testing
Web-based testing
GUI testing
Testing of concurrent programs
Protocol conformance testing
Testing of distributed systems
Testing of real-time systems

C1: (criterion “base
on which tests are

generated”)

C1.6 Based on nature of
application

Testing of scientific software
Equivalence partitioning
Boundary-value analysis
Decision table
Finite-state machine-based
Testing from formal specifications
Error guessing
Random testing
Operational profile

C2.1 Black-box techniques

SRET
Reference models for code-based testing (flow
graph, call graph)
Control flow-based criteria
Data flow-based criteria

C2: (criterion
“ignorance or
knowledge of

implementation”)

C2.2 White-box techniques

Mutation testing
Functional and structural

C. Test
Techniques

C3 Selecting and combining techniques
Coverage and operational/Saturation effect

5–6 © IEEE – Trial Version 1.00 – May 2001

Table 1-D: Decomposition for Test Related Measures

Program measurements to aid in planning and
designing testing
Types, classification and statistics of faults
Remaining number of defects/Fault density
Life test, reliability evaluation

D.1 Evaluation of the program under test

Reliability growth models
Coverage/thoroughness measures
Fault seeding
Mutation score

D. Test Related Measures

D.2 Evaluation of the tests performed
Comparison and relative effectiveness of
different techniques

Table 1-E: Decomposition for Managing the Test Process
Attitudes/Egoless programming
Test process
Test documentation and workproducts
Internal vs. independent test team
Cost/effort estimation and other process
measures
Termination

E.1 Management concerns

Test reuse and test patterns
Planning
Test case generation
Test environment development
Execution
Test results evaluation
Problem reporting/Test log

E. Managing the Test
Process

E.2 Test activities

Defect tracking

A. Testing Basic Concepts and Definitions
A1. Testing-related terminology

� Definitions of testing and related terminology [Be:c1;
Jo:c1,2,3,4; Ly:c2s2.2] (610)

A comprehensive introduction to the Knowledge Area of
Software Testing is provided by the core references.
Moreover, the IEEE Standard Glossary of Software
Engineering Terminology (610) defines terms for the whole
field of software engineering, including testing-related
terms.
� Faults vs. Failures [Ly:c2s2.2; Jo:c1; Pe:c1; Pf:c7]

(FH+; Mo; ZH+:s3.5; 610; 982.2:fig3.1.1-1;
982.2:fig6.1-1)

Many terms are used in the software literature to speak of
malfunctioning, notably fault, failure, error, and several
others. Often these terms are used interchangeably.
However, in some cases they are given a more precise
meaning (unfortunately, not in consistent ways between
different sources), in order to identify the subsequent steps

of the cause-effect chain that originates somewhere, e.g., in
the head of a designer, and eventually leads to the system’s
user observing an undesired effect. This terminology is
precisely defined in the IEEE Standard 610.12-1990,
Standard Glossary of Software Engineering Terminology
(610) and is also discussed in more depth in the Software
Quality Knowledge Area (Chapter 11, Sect. 7). What is
essential to discuss Software Testing, as a minimum, is to
clearly distinguish between the cause for a malfunctioning,
for which either of the terms fault or defect will be used
here, and an undesired effect observed in the system
delivered service, that will be called a failure. It is
important to clarify that testing can reveal failures, but then
it is the faults that can and must be removed.
However, it should also be recognized that not always the
cause of a failure can be unequivocally identified, i.e., no
theoretical criteria exists to uniquely say what the fault was
that caused a failure. One may choose to say the fault was
what had to be modified to remove the problem, but other
modifications could have worked just as well. To avoid
ambiguities, some authors instead of faults prefer to speak

© IEEE –Trial Version 1.00 – May 2001 5–7

in terms of failure-causing inputs (FH+), i.e., those sets of
inputs that when executed cause a failure.

A2. Theoretical foundations

� Test selection criteria/Test adequacy criteria (or
stopping rules) [Pf:c7s7.3; ZH+:s1.1] (We-b; WW+;
ZH+)

A test criterion is a means of deciding which a suitable set
of test cases should be. A criterion can be used for selecting
the test cases, or for checking if a selected test suite is
adequate, i.e., to decide if the testing can be stopped. In
mathematical terminology it would be a decision predicate
defined on triples (P, S, T), where P is a program, S is the
specification (intended here to mean in general sense any
relevant source of information for testing) and T is a test
set. Some generally used criteria are mentioned in Part C.
� Testing effectiveness/Objectives for testing

[Be:c1s1.4; Pe:c21] (FH+)
Testing amounts at observing a sample of program
executions. The selection of the sample can be guided by
different objectives: it is only in light of the objective
pursued that the effectiveness of the test set can be
evaluated. This important issue is discussed at some length
in the references provided.
� Testing for defect identification [Be:c1; KF+:c1]
In testing for defect identification a successful test is one
that causes the system to fail. This is quite different from
testing to demonstrate that the software meets its
specification, or other desired properties, whereby testing is
successful if no (important) failures are observed.
� The oracle problem [Be:c1] (We-a; BS)
An oracle is any (human or mechanical) agent that decides
whether a program behaved correctly on a given test, and
produces accordingly a verdict of “pass” or “fail”. There
exist many different kinds of oracles; oracle automation can
be very difficult and expensive.
� Theoretical and practical limitations of testing

[KF+:c2] (Ho)
Testing theory warns against putting a not justified level of
confidence on series of passed tests. Unfortunately, most
established results of testing theory are negative ones, i.e.,
they state what testing can never achieve (as opposed to
what it actually achieved). The most famous quotation in
this regard is Dijkstra aphorism that “program testing can
be used to show the presence of bugs, but never to show
their absence”. The obvious reason is that complete testing
is not feasible in real systems. Because of this, testing must
be driven based on risk, i.e., testing can also be seen as a
risk management strategy.
� The problem of infeasible paths [Be:c3]
Infeasible paths, i.e., control flow paths which cannot be
exercised by any input data, are a significant problem in
path-oriented testing, and particularly in the automated
derivation of test inputs for code-based testing techniques.

� Testability [Be:c3,c13] (BM; BS; VM)
The term of software testability has been recently
introduced in the literature with two related, but different
meanings: on the one hand as the degree to which it is easy
for a system to fulfill a given test coverage criterion, as in
(BM); on the other hand, as the likelihood (possibly
measured statistically) that the system exposes a failure
under testing, if it is faulty, as in (VM, BS). Both meanings
are important.

A3. Relationships of testing to other activities

Here the relation between the Software Testing and other
related activities of software engineering is considered.
Software Testing is related to, but different from, static
analysis techniques, proofs of correctness, debugging and
programming. On the other side, it is informative to
consider testing from the point of view of software quality
analysts, users of CMM and Cleanroom processes, and of
certifiers.
� Testing vs. Static Analysis Techniques [Be:c1;

Pe:c17p359-360] (1008:p19)
� Testing vs. Correctness Proofs and Formal

Verification [Be:c1s5; Pf:c7]
� Testing vs. Debugging [Be:c1s2.1] (1008:p19)
� Testing vs. Programming [Be:c1s2.3]
� Testing within SQA (see the SQ Chapter in this

Guide)
� Testing within CMM (Po:p117-123)
� Testing within Cleanroom [Pf:c8s8.9]
� Testing and Certification (WK+)
B. Test Levels
B1. The target of the test

Testing of large software systems usually involves more
steps [Be:c1; Jo:c12; Pf:c7].
Three big test stages can be conceptually distinguished,
namely Unit, Integration and System. No process model is
implied in this Guide, nor any of those three stages is
assumed to have a higher importance than the other two.
Depending on the development model followed, these three
stages will be adopted and combined in different
paradigms, and quite often more than one iteration between
them is necessary.
� Unit testing [Be:c1; Pe:c17; Pf:c7s7.3] (1008)
Unit testing verifies the functioning in isolation of software
pieces that are separately testable. Depending on the
context, these could be the individual subprograms or a
larger component made of tightly related units. A test unit
is defined more precisely in the IEEE Standard for
Software Unit Testing [1008], that also describes an
integrated approach to systematic and documented unit
testing. Typically, unit testing occurs with access to the
code being tested and with the support of debugging tools,

5–8 © IEEE – Trial Version 1.00 – May 2001

and might involve the same programmers. Clearly, unit
testing starts after coding is quite mature, for instance after
a clean compile.
� Integration testing [Jo:c12,13; Pf:c7s7.4]
Integration testing is the process of verifying the interaction
between system components (possibly, and hopefully,
already tested in isolation). Classical integration testing
strategies, such as top-down or bottom-up, are used with
traditional, hierarchically structured systems. Modern
systematic integration strategies are rather architecture
driven, which implies integrating the software components
or subsystems based on identified functional threads:
integration testing is a continuous activity, at each stage of
which testers must abstract away lower level perspectives
and concentrate on the perspectives of the level they are
integrating. Except for small, simple systems, systematic,
incremental integration testing strategies are to be preferred
to putting all components together at once, that is
pictorially said “big-bang” testing.
� System testing [Jo:c14; Pf:c8]
System testing is concerned with the behavior of a whole
system. The majority of functional failures should have
been already identified during unit and integration testing.
System testing should compare the system to the non-
functional system requirements, such as security, speed,
accuracy, and reliability. External interfaces to other
applications, utilities, hardware devices, or the operating
environment are also evaluated at this level.

B2. Objectives of Testing [Pe:c8; Pf:c8s8.3]

Testing of a software system (or subsystem) can be aimed
at verifying different properties. Test cases can be designed
to check that the functional specifications are correctly
implemented, which is variously referred to in the literature
as conformance testing, “correctness” testing, functional
testing. However several other non-functional properties
need to be tested as well, including conformance, reliability
and usability among many others.
References cited above give essentially a collection of the
potential different purposes. The topics separately listed
below (with the same or additional references) are those
most often cited in the literature. Note that some kinds of
testing are more appropriate for custom made packages
(e.g., installation testing), while others for generic products
(e.g., beta testing).
� Acceptance/qualification testing [Pe:c10; Pf:c8s8.5]

(12207:s5.3.9)
Acceptance testing checks the system behavior against the
customer’s requirements (the “contract”); the customers
undertake (or specify) typical tasks to check their
requirements. This testing activity may or may not involve
the developers of the system.
� Installation testing [Pe:c9; Pf:c8s8.6]

After completion of system and acceptance testing, the
system is verified upon installation in the target
environment, i.e., system testing is conducted according to
the hardware configuration requirements. Installation
procedures are also verified.
� Alpha and Beta testing [KF+:c13]
Before releasing the system, sometimes it is given in use to
a small representative set of potential users, in-house (alpha
testing) or external (beta testing), who report potential
experienced problems with use of the product. Alpha and
beta use is often uncontrolled, i.e., the testing does not refer
to a test plan.
� Conformance testing/Functional testing/Correctness

testing [KF+:c7; Pe:c8] (WK+)
Conformance testing is aimed at verifying whether the
observed behavior of the tested system conforms to its
specification.
� Reliability achievement and evaluation by testing

[Pf:c8s.8.4; Ly:c7] (Ha; Musa and Ackermann in
Po:p146-154)

By testing failures can be detected, and afterwards, if the
faults that are the cause of the identified failures are
efficaciously removed, the software will be more reliable.
In this sense, testing is a means to improve reliability. On
the other hand, by randomly generating test cases
accordingly to the operational profile, statistical measures
of reliability can be derived. Using reliability growth
models, both objectives can be pursued together (see also
part D.1).
� Regression testing [KF+:c7; Pe:c11,c12; Pf:c8s8.1]

(RH)
According to (610), regression testing is the “selective
retesting of a system or component to verify that
modifications have not caused unintended effects [...]”. In
practice, the idea is to show that previously passed tests,
still do. [Be] defines it as any repetition of tests intended to
show that the software’s behavior is unchanged except
insofar as required. Obviously a tradeoff must be found
between the assurance given by regression testing every
time a change is made and the resources required to do that.
Regression testing can be conducted at each of the test
levels in B.1, and may apply to functional and non-
functional testing.
� Performance testing [Pe:c17; Pf:c8s8.3] (WK+)
This is specifically aimed at verifying that the system meets
the specified performance requirements, e.g., capacity and
response time. A specific kind of performance testing is
volume testing (Pe:p185, p487; Pf:p349), in which internal
program or system limitations are tried.
� Stress testing [Pe:c17; Pf:c8s8.3]
Stress testing exercises a system at the maximum design
load as well as beyond it.
� Back-to-back testing

© IEEE –Trial Version 1.00 – May 2001 5–9

A same test set is presented to two implemented versions of
a system, and the results are compared with each other.
� Recovery testing [Pe:c17; Pf:c8s8.3]
It is aimed at verifying system restart capabilities after a
“disaster”.
� Configuration testing [KF+:c8; Pf:c8s8.3]
In those cases in which a system is built to serve different
users, configuration testing analyzes the system under the
various specified configurations.
� Usability testing [Pe:c8; Pf:c8s8.3]
It evaluates the ease of using and learning the system (and
system user documentation) by the end users, as well as the
effectiveness of system functioning in supporting user
tasks, and finally the ability of recovering from user’s
errors.
C. Test Techniques
In this section, two alternative classifications of test
techniques are proposed. It is arduous to find a
homogeneous criterion for classifying all techniques, as
there exist many and very disparate.
The first classification, from C1.1 to C1.6, is based on how
tests are generated, i.e., respectively from: tester’s intuition
and expertise, the specifications, the code structure, the
(real or artificial) faults to be discovered, the field usage or
finally the nature of application, which in some case can
require knowledge of specific test problems and of specific
test techniques.
The second classification is the classical distinction of test
techniques between black-box and white-box (pictorial
terms derived from the world of integrated circuit testing).
Test techniques are here classified according to whether the
tests rely on information about how the software has been
designed and coded (white-box, somewhere also said glass-
box), or instead only rely on the input/output behavior,
without no assumption about what happens in between the
“pins” (precisely, the entry/exit points) of the system (black
box). Clearly this second classification is more coarse than
the first one, and it does not allow us to categorize the
techniques specialized on the nature of application (section
C1.6) nor ad hoc approaches, because these can be either
black-box or white-box. Also note that as new technologies
such as Object Oriented or Component-based become more
and more widespread, this split becomes more of a
theoretical than a practical scope, as information about code
and design is hidden or simply not available.
A final section, C3, deals with combined use of more
techniques.

C1: CLASSIFICATION “based on how tests are
generated”

C1.1 Based on tester’s intuition and experience [KF+:c1]

Perhaps the most widely practiced technique remains ad
hoc testing: tests are derived relying on the tester skill and

intuition (“exploratory” testing), and on his/her experience
with similar programs. While a more systematic approach
is advised, ad hoc testing might be useful (but only if the
tester is really expert!) to identify special tests, not easily
“captured” by formalized techniques. Moreover it must be
reminded that this technique may yield largely varying
degrees of effectiveness.

C1.2 Specification-based

� Equivalence partitioning [Jo:c6; KF+:c7]
The input domain is subdivided into a collection of subsets,
or “equivalent classes”, which are deemed equivalent
according to a specified relation, and a representative set of
tests (sometimes even one) is taken from within each class.
� Boundary-value analysis [Jo:c5; KF+:c7]
Test cases are chosen on and near the boundaries of the
input domain of variables, with the underlying rationale
that many defects tend to concentrate near the extreme
values of inputs. A simple, and often worth, extension of
this technique is Robustness Testing, whereby test cases are
also chosen outside the domain, in fact to test program
robustness to unexpected, erroneous inputs.
� Decision table [Be:c10s3] (Jo:c7)
Decision tables represent logical relationships between
conditions (roughly, inputs) and actions (roughly, outputs).
Test cases are systematically derived by considering every
possible combination of conditions and actions. A related
techniques is Cause-effect graphing [Pf:c8].
� Finite-state machine-based [Be:c11; Jo:c4s4.3.2]
By modeling a program as a finite state machine, tests can
be selected in order to cover states and transitions on it,
applying different techniques. This technique is suitable for
transaction-processing, reactive, embedded and real-time
systems.
� Testing from formal specifications [ZH+:s2.2] (BG+;

DF; HP)
Giving the specifications in a formal language (i.e., one
with precisely defined syntax and semantics) allows for
automatic derivation of functional test cases from the
specifications, and at the same time provides a reference
output, an oracle, for checking test results. Methods for
deriving test cases from model-based (DF, HP) or algebraic
specifications (BG+) are distinguished.
� Random testing [Be:c13; KF+:c7]
Tests are generated purely random (not to be confused with
statistical testing from the operational profile, where the
random generation is biased towards reproducing field
usage, see C1.5). Actually, therefore, it is difficult to
categorize this technique under the scheme of “base on
which tests are generated”. It is put under the Specification-
based entry, as at least the domain must be known, to be
able to pick random points within it.

5–10 © IEEE – Trial Version 1.00 – May 2001

C1.3 Code-based

� Reference models for code-based testing (flowgraph,
call graph) [Be:c3; Jo:c4].

In code-based testing techniques, the control structure of a
program is graphically represented using a flowgraph, i.e.,
a directed graph whose nodes and arcs correspond to
program elements. For instance, nodes may represent
statements or uninterrupted sequences of statements, and
arcs the transfer of control between nodes.
� Control flow-based criteria [Be:c3; Jo:c9]

(ZH+:s2.1.1)
Control flow-based coverage criteria aim at covering all the
statements or the blocks in a program, or specified
combinations of them. Several coverage criteria have been
proposed (like Decision/Condition Coverage), in the
attempt to get good approximations for the exhaustive
coverage of all control flow paths, that is unfeasible for all
but trivial programs.
� Data flow-based criteria [Be:c5] (Jo:c10; ZH+:s2.1.2)
In data flow-based testing, the control flowgraph is
annotated with information about how the program
variables are defined and used. Different criteria exercise
with varying degrees of precision how a value assigned to a
variable is used along different control flow paths. A
reference notion is a definition-use pair, which is a triple
(d,u,V) such that: V is a variable, d is a node in which V is
defined, and u is a node in which V is used; and such that
there exists a path between d and u in which the definition
of V in d is used in u.
C1.4 Fault-based (Mo)

With different degrees of formalization, fault based testing
techniques devise test cases specifically aimed at revealing
categories of likely or pre-defined faults.
� Error guessing [KF+:c7]
In error guessing, test cases are specifically designed by
testers trying to figure out those, which could be the most
plausible faults in the given program. A good source of
information is the history of faults discovered in earlier
projects, as well as tester’s expertise.
� Mutation testing [Pe:c17; ZH+:s3.2-s3.3]
A mutant is a slightly modified version of the program
under test, differing from it by a small, syntactic change.
Every test case exercises both the original and all generated
mutants: If a test case is successful in identifying the
difference between the program and a mutant, the latter is
said to be killed. Originally conceived as a technique to
evaluate a test set (see D.2.2), mutation testing is also a
testing criterion in itself: either tests are randomly
generated until enough mutants are killed or tests are
specifically designed to kill (survived) mutants. In the latter
case, mutation testing can also be categorized as a code-
based technique. The underlying assumption of mutation
testing, the coupling effect, is that by looking for simple

syntactic faults, also more complex, (i.e., real) faults will be
found. For the technique to be effective, a high number of
mutants must be automatically derived in systematic way.

C1.5 Usage-based

� Operational profile [Jo:c14s14.7.2; Ly:c5; Pf:c8]
In testing for reliability evaluation, the test environment
must reproduce as closely as possible the product use in
operation. In fact, from the observed test results one wants
to infer the future reliability in operation. To do this, inputs
are assigned a probability distribution, or profile, according
to their occurrence in actual operation.
� (Musa’s) SRET [Ly:c6]
Software Reliability Engineered Testing (SRET) is a testing
methodology encompassing the whole development
process, whereby testing is “designed and guided by
reliability objectives and expected relative usage and
criticality of different functions in the field”.

C1.6 Based on nature of application

The above techniques apply to all types of software, and
their classification is based on how test cases are derived.
However, for some kinds of applications some additional
know-how is required for test derivation. Here below a list
of few “specialized” testing fields is provided, based on the
nature of the application under test.
� Object-oriented testing [Jo:c15; Pf:c7s7.5] (Bi)
� Component-based testing
� Web-based testing
� GUI testing (OA+)
� Testing of concurrent programs (CT)
� Protocol conformance testing (Sidhu and Leung in

Po:p102-115; BP)
� Testing of distributed systems
� Testing of real-time systems (Sc)
� Testing of scientific software

C2: CLASSIFICATION “ignorance or knowledge of
implementation”

As explained at the beginning of Section C, here below an
alternative classification of the same test techniques cited
so far is proposed (just the headings are mentioned), based
on whether knowledge of implementation is exploited to
derive the test cases (white-box), or not (black-box).

C2.1 Black-box techniques

� Equivalence partitioning [Jo:c6; KF+:c7]
� Boundary-value analysis [Jo:c5; KF+:c7]
� Decision table [Be:c10s3] (Jo:c7)
� Finite-state machine-based [Be:c11; Jo:c4s4.3.2]
� Testing from formal specifications [ZH+:s2.2] (BG+;

DF; HP)

© IEEE –Trial Version 1.00 – May 2001 5–11

� Error guessing [KF+:c7]
� Random testing [Be:c13; KF+:c7]
� Operational profile [Jo:c14s14.7.2; Ly:c5; Pf:c8]
� (Musa’s) SRET [Ly:c6]

C2.2 White-box techniques

� Reference models for code-based testing (flowgraph,
call graph) [Be:c3; Jo:c4].

� Control flow-based criteria [Be:c3; Jo:c9]
(ZH+:s2.1.1)

� Data flow-based criteria [Be:c5] (Jo:c10; ZH+:s2.1.2)
� Mutation testing [Pe:c17; ZH+:s3.2-s3.3]

C3 Selecting and combining techniques

� Functional and structural [Be:c1s.2.2; Jo:c1, c11s11.3;
Pe:c17] (Po:p3-4; Po:Appendix 2)

Specification-based and code-based test techniques are
often contrasted as functional vs. structural testing. These
two approaches to test selection are not to be seen as
alternative, but rather as complementary: in fact, they use
different sources of information, and have proved to
highlight different kinds of problems. They should be used
in combination, compatibly with budget availability.
� Coverage and operational/Saturation effect (Ha;

Ly:p541-547; Ze)
Test cases can be selected in deterministic way, according
to one of the various listed techniques, or randomly drawn
from some distribution of inputs, such as it is usually done
in reliability testing. There are interesting considerations
one should be aware of, about the different implications of
each approach.
D. Test related measures
Measurement is instrumental to quality analysis. Indeed,
product evaluation is effective only when based on
quantitative measures. Measurement is instrumental also to
the optimal planning and execution of tests, and several
process measures can be used by the test manager to
monitor progress. Measures relative to the test process for
management purposes are considered in part E.
A wider coverage of the topic of quality measurement,
including fundamentals, measures and techniques for
measurement, is provided in the Software Quality chapter
of the Guide to the SWEBOK. A comprehensive reference
is provided by the IEEE Standard. 982.2 “Guide for the Use
of IEEE Standard Dictionary of Measures to Produce
Reliable Software”, which was originally conceived as a
guide to using the companion standard 982.1, that is the
Dictionary. However, the guide is also a valid and very
useful reference by itself, for selection and application of
measures in a project.
Test related measures can be divided into two classes: those
relative to evaluating the program under test, and those
relative to evaluating the test set. The first class, for

instance, includes measures that count and predict either
faults (e.g., fault density) or failures (e.g., reliability). The
second class instead evaluates the test suites against
selected test criteria; notably, this is what is usually done by
measuring the code coverage achieved by the executed
tests.

D1. Evaluation of the program under test (982.2)

� Program measurements to aid in planning and
designing testing. [Be:c7s4.2; Jo:c9] (982.2:sA16,
BMa)

Measures based on program size (e.g., Source Lines of
Code, function points) or on program structure (e.g.,
complexity) is useful information to guide the testing.
Structural measures can also include measurements among
program modules, in terms of the frequency with which
modules call each other.
� Types, classification and statistics of faults [Be:c2;

Jo:c1; Pf:c7] (1044, 1044.1; Be:Appendix; Ly:c9;
KF+:c4, Appendix A)

The testing literature is rich of classifications and
taxonomies of faults. Testing allows for discovering
defects. To make testing more effective it is important to
know which types of faults could be found in the
application under test, and the relative frequency with
which these faults have occurred in the past. This
information can be very useful to make quality predictions
as well as for process improvement. The topic “Defect
Characterization” is also covered more deeply in the SQA
Knowledge Area. An IEEE standard on how to classify
software “anomalies” (1044) exists, with a relative guide
(1044.1) to implement it. An important property for fault
classification is orthogonality, i.e., ensuring that each fault
can be unequivocally identified as belonging to one class.
� Fault density [Pe:c20] (982.2:sA1; Ly:c9)
In common industrial practice a product under test is
assessed by counting and classifying the discovered faults
by their types (see also A1). For each fault class, fault
density is measured by the ratio between the number of
faults found and the size of the program.
� Life test, reliability evaluation [Pf:c8] (Musa and

Ackermann in Po:p146-154)
A statistical estimate of software reliability, that can be
obtained by operational testing (see in B.2), can be used to
evaluate a product and decide if testing can be stopped.
� Reliability growth models [Ly:c7; Pf:c8] (Ly:c3, c4)
Reliability growth models provide a prediction of reliability
based on the failures observed under operational testing.
They assume in general that the faults that caused the
observed failures are fixed (although some models also
accept imperfect fixes) and thus, on average, the product
reliability exhibits an increasing trend. There exist now tens
of published models, laid down on some common
assumptions as well as on differing ones. Notably, the

5–12 © IEEE – Trial Version 1.00 – May 2001

models are divided into failures-count and time-between-
failures models.

D2. Evaluation of the tests performed

� Coverage/thoroughness measures [Jo:c9; Pf:c7]
(982.2:sA5-sA6)

Several test adequacy criteria require the test cases to
systematically exercise a set of elements identified in the
program or in the specification (see Part C). To evaluate the
thoroughness of the executed tests, testers can monitor the
elements covered, so that they can dynamically measure the
ratio (often expressed as a fraction of 100%) between
covered elements and the total number. For example, one
can measure the percentage of covered branches in the
program flowgraph, or of exercised functional requirements
among those listed in the specification document. Code-
based adequacy criteria require appropriate instrumentation
of the program under test.
� Fault seeding [Pf:c7] (ZH+:s3.1)
Some faults are artificially introduced into the program
before test. When the tests are executed, part of these
seeded faults will be revealed, as well as possibly genuine
faults. Depending on which and how many of the artificial
faults are hit, testing effectiveness can be evaluated; also,
one could estimate how many of the genuine faults should
remain.
� Mutation score [ZH+:s3.2-s3.3]
Mutation testing has been described before (within C1.4).
The proportion between killed mutants and the total
number of generated mutants can be a measure of the
effectiveness of the executed test set.
� Comparison and relative effectiveness of different

techniques [Jo:c8,c11; Pe:c17; ZH+:s5] (FW;
Weyuker in Po p64-72; FH+)

Several studies have been recently conducted to compare
the relative effectiveness of different test techniques. It is
important to be precise relative to the property against
which the techniques are being assessed, i.e., what
“effectiveness” is exactly meant for. Possible
interpretations are how many tests are needed to find the
first failure, or the ratio of the number of faults found by
the testing to all the faults found during and after the
testing, or of how much reliability is improved. Analytical
and empirical comparisons between different techniques
have been conducted according to each of the above
specified notions of “effectiveness”.
E. Managing the Test Process
E1. Management concerns

� Attitudes/Egoless programming [Be:c13s3.2; Pf:c7]
A very important component of successful testing is a
positive and collaborative attitude towards testing activities.
Managers should revert a negative vision of testers as the
destroyers of developers’ work and as heavy budget

consumers. On the contrary, they should foster a common
culture towards software quality, by which early failure
discover is an objective for all involved people, and not
only of testers.
� Test process [Be:c13; Pe:c1,c2,c3,c4; Pf:c8] (Po:p10-

11; Po:Appendix 1; 12207:s5.3.9;s5.4.2;s6.4;s6.5)
A process is defined as “a set of interrelated activities,
which transform inputs into outputs”[12207]. Test activities
conducted at different levels (see B.1) must be organized,
together with people, tools, policies, measurements, into a
well defined process, which is integral part to the life cycle.
This test process needs control and continuous
improvement. In the IEEE/EIA Standard 12207.0 testing is
not described as a stand alone process, but principles for
testing activities are included along with the five primary
life cycle processes, as well as along with the supporting
process.
� Test documentation and workproducts [Be:c13s5;

KF+:c12; Pe:c19; Pf:c8s8.8] (829)
Documentation is an integral part of the formalization of
the test process. The IEEE standard for Software Test
Documentation [829] provides a good description of test
documents and of their relationship with one another and
with the testing process. Test documents includes, among
others, Test Plan, Test Design Specification, Test
Procedure Specification, Test Case Specification, Test Log
and Test Incident or Problem Report. The program under
test, with specified version and identified hw/sw
requirements before testing can begin, is documented as the
Test Item. Test documentation should be produced and
continually updated, at the same standards as other types of
documentation in development.
� Internal vs. independent test team [Be:c13s2.2-2.3;

KF+:c15; Pe:c4; Pf:c8]
Formalization of the test process requires formalizing the
test team organization as well. The test team can be
composed of members internal to the project team (but not
directly involved in code development), or of external
members, in the latter case bringing in an unbiased,
independent perspective, or finally of both internal and
external members. The decision will be determined by
considerations of costs, schedule, maturity levels of the
involved organizations, and criticality of the application.
� Cost/effort estimation and other process measures

[Pe:c4, c21] (Pe: Appendix B; Po:p139-145;
982.2:sA8-sA9)

In addition to those discussed in Part D, several measures
relative to the resources spent on testing, as well as to the
relative effectiveness in fault finding of the different test
phases, are used by managers to control and improve the
test process. These test measures may cover such aspects
as: number of test cases specified, number of test cases
executed, number of test cases passed, number of test cases
failed, and similar.

© IEEE –Trial Version 1.00 – May 2001 5–13

Evaluation of test phase reports is often combined with root
cause analysis to evaluate test process effectiveness in
finding faults as early as possible. Moreover, the resources
that are worth spending in testing should be commensurate
to the use/criticality of the application: the techniques listed
in part C have different costs, and yield different levels of
confidence in product reliability.
� Termination [Be:c2s2.4; Pe:c2]
A critical task of the test manager is to decide how much
testing is enough and when a test stage can be terminated.
Thoroughness measures such as achieved code coverage or
functional completeness, as well as estimates of fault
density or of operational reliability, provide useful support,
but are not sufficient by themselves. The decision involves
also considerations about the costs and risks incurred by
potentially remaining failures, as opposed to the costs
implied by further continuing to test.
� Test reuse and test patterns [Be:c13s5]
To carry out testing or maintenance in an organized and
cost/effective way, the means used to test each part of the
system should be reused systematically. At all levels of
testing, test scripts, test cases, and expected results should
be carefully defined and documented so that they may be
reused. This repository of test materials must be
configuration controlled, so that changes to system
requirements or design can be reflected in changes to the
scope of the tests conducted.
The test solutions adopted for testing some application type
under certain circumstances, with the motivations behind
the decisions taken, form a test pattern, that can itself be
documented for later reuse in similar projects.

E2. Test Activities

Here below a brief overview of test activities is given; as
often implied by the following description, successful
management of test activities strongly depends from the
Software Configuration Management process (see Chapter
7 in this Guide).
� Planning [KF+:c12; Pe:c19; Pf:c7s7.6] (829:s4;

1008:s1, s2, s3)
Like any other part of project management, testing
activities must be planned. Key aspects of test planning
include co-ordination of personnel needed, management of
available test facilities and equipment (which may include
magnetic media, test plans and procedures), and planning
for possible undesirable outcomes. If more than one
baseline of the system is being maintained, then a major
planning consideration is the time and effort needed to
ensure the test environment is set to the proper
configuration.
� Test case generation [KF+:c7] (Po:c2; 1008:s4, s5)
Generation of test cases is based on the level of testing to
be performed, and the particular testing techniques. Test

cases should be configuration controlled and include the
expected results for each test.
� Test environment development [KF+:c11]
The environment used for testing should be compatible
with the software development environment. It should
facilitate development and control of test cases, as well as
logging and recovery of expected results, scripts, and other
testing materials.
� Execution [Be:c13; KF+:c11] (1008:s6, s7;)
Execution of tests is generally performed by testing
engineers with oversight by quality assurance personnel
and, in some cases, customer representatives. Execution of
tests should embody the basic principles of scientific
experimentation: everything done during testing should be
performed and documented clearly enough that another
person could replicate the same results. Hence testing
should be performed in accordance with documented
procedures using a clearly defined version of the system
under test.
� Test results evaluation [Pe:c20,c21] (Po:p18-20;

Po:p131-138)
The results of testing must be evaluated to determine if the
test was successful, and to derive specific test measures. In
most cases, ‘successful’ means that the system performed
as expected, and did not have any major unexpected
outcomes. On the other side, not all unexpected outcomes
are necessarily faults, but could be judged as just noise.
Before a failure can be removed, analysis and debugging
effort is needed to isolate, identify and describe it. When
test results are particularly important, a formal review
board may be convened to evaluate test results.
� Problem reporting/Test log [KF+:c5; Pe:c20] (829:s9-

s10)
All testing activities should be entered into a test log to
identify when a test was conducted, who performed the test,
what system configuration was the basis for testing, and
other relevant identification information. Unexpected or
incorrect test results should be recorded in a problem
reporting system. The problem reporting system’s data
forms the basis for later debugging and fixing the problems
which were observed as failures during testing. Also
anomalies not classified as faults could be documented, in
case they later turn out to be more serious than judged. Test
Reports are also an input to the Change Management
system (which is a part of the Configuration Management
system).
� Defect tracking [KF+:c6]
Failures observed during testing are often due to faults or
defects in the system. Such defects should be analyzed to
determine when they were introduced into the system, what
kind of error caused them to be created (e.g. poorly defined
requirements, incorrect variable declaration, memory leak,
programming syntax error, etc.), and when they could have
been first observed in the system. Defect tracking

5–14 © IEEE – Trial Version 1.00 – May 2001

information is used to determine what aspects of system
development need improvement and how effective have
been previous analyses and testing.

4 BREAKDOWN RATIONALE

The conceptual scheme followed in decomposing the
Software Testing Knowledge Area is described in Section
2.1. Level 1 topics include five entries, labeled from A to E,
that correspond to the fundamental and complementary
concerns forming the Software Testing knowledge: Basic
Concepts and Definitions, Levels, Techniques, Measures,
and Process. There is not a standard way to decompose the
Software Testing Knowledge Area, each book on Software
Testing would structure its table of contents in different
ways. However any thorough book on Software Testing
would cover these five topics. A sixth level 1 topic would
be Test Tools. These are not covered here, but in the
Software Engineering Tools and Methods chapter of the
Guide to the SWEBOK.
The breakdown is three levels deep. The second level is for
making the decomposition more understandable. The
selection of level 3 topics, that are the subjects of study, has
been quite difficult. Finding a breakdown of topics that is
“generally accepted” by all different communities of

potential users of the Guide to the SWEBOK is challenging
for Software Testing, because there still exists a wide gap
between the literature on Software Testing and current
industrial test practice. There are topics that have been
taking a relevant position in the academic literature for
many years now, but are not generally used in industry, for
example data-flow based or mutation testing. The position
taken in writing this document has been to include any
relevant topics in the literature, even those that are likely not
considered so relevant by practitioners at the current time.
The proposed breakdown of topics for Software Testing is
thus considered as an inclusive list, from which each
stakeholder can pick according to his/her needs.
However, under the precise definition for “generally
accepted” adopted in the Guide to the SWEBOK (i.e.,
knowledge to be included in the study material of a software
engineering with four years of work experience), some of
the included topics (like the examples above) would be only
lightly (if at all) covered in a curriculum of a software
engineer with four years of experience. The recommended
references have been therefore selected accordingly, i.e.,
they provide reading material according to this meaning of
“generally accepted”, while the more advanced topics are
covered in the Further Reading list.

5 MATRIX OF TOPICS VS. REFERENCE MATERIAL

A. Testing Basic Concepts and
Definitions [Be] [Jo] [Ly] [KF+] [Pe] [Pf] [ZH+]

Definitions of testing and related terminology C1 C1,2,3,4 C2S2.2
Faults vs. Failures C1 C2S2.2 C1 C7
Test selection criteria/Test adequacy criteria (or
stopping rules) C7S7.3 S1.1

Testing effectiveness/Objectives for testing C1S1.4 C21
Testing for defect identification C1 C1
The oracle problem C1
Theoretical and practical limitations of testing C2
The problem of infeasible paths C3
Testability C3,13
Testing vs. Static Analysis Techniques C1 C17
Testing vs. Correctness Proofs and Formal
Verification C1S5 C7

Testing vs. Debugging C1S2.1
Testing vs. Programming C1S2.3
Testing within SQA
Testing within CMM
Testing within Cleanroom C8S8.9
Testing and Certification

© IEEE –Trial Version 1.00 – May 2001 5–15

B. Test Levels [Be] [Jo] [Ly] [KF+] [Pe] [Pf]
Unit testing C1 C17 C7S7.3
Integration testing C12,13 C7S7.4
System testing C14 C8
Acceptance/qualification testing C10 C8S8.5
Installation testing C9 C8S8.6
Alpha and Beta testing C13
Conformance testing/ Functional testing/ Correctness
testing C7 C8

Reliability achievement and evaluation by testing C7 C8S8.4
Regression testing C7 C11,12 C8S8.1
Performance testing C17 C8S8.3
Stress testing C17 C8S8.3
Back-to-back testing
Recovery testing C17 C8S8.3
Configuration testing C8 C8S8.3
Usability testing C8 C8S8.3

C. Test Techniques [Be] [Jo] [Ly] [KF+] [Pe] [Pf] [ZH+]
Ad hoc C1
Equivalence partitioning C6 C7
Boundary-value analysis C5 C7
Decision table C10S3
Finite-state machine-based C11 C4S4.3.2
Testing from formal specifications S2.2
Random testing C13 C7
Reference models for code-based testing (flow
graph, call graph) C3 C4

Control flow-based criteria C3 C9 C7
Data flow-based criteria C5
Error guessing C7
Mutation testing C17 S3.2, 3.3
Operational profile C14S14.7.2 C5 C8
SRET C6
Object-oriented testing C15 C7S7.5
Component-based testing
Web-based testing
GUI testing
Testing of concurrent programs
Protocol conformance testing
Testing of distributed systems
Testing of real-time systems
Testing of scientific software
Functional and structural C1S2.2 C1,11S11.3 C17
Coverage and operational/Saturation effect

5–16 © IEEE – Trial Version 1.00 – May 2001

D. Test Related Measures [Be] [Jo] [Ly] [KF+] [Pe] [Pf] [ZH+]
Program measurements to aid in planning and
designing testing. C7S4.2 C9

Types, classification and statistics of faults C2 C1 C7
Remaining number of defects/Fault density C20
Life test, reliability evaluation C8
Reliability growth models C7 C8
Coverage/thoroughness measures C9 C7
Fault seeding C7
Mutation score S3.2, 3.3
Comparison and relative effectiveness of
different techniques C8,11 C17 S5

E. Managing the Test Process [Be] [Jo] [Ly] [KF+] [Pe] [Pf]
Attitudes/Egoless programming C13S3.2 C7
Test process C13 C1,2,3,4 C8
Test documentation and workproducts C13S5 C12 C19 C8S8.8
Internal vs. independent test team C13S2.2,2.3 C15 C4 C8
Cost/effort estimation and other process measures C4,21
Termination C2S2.4 C2
Test reuse and test patterns C13
Planning C12 C19 C7S7.6
Test case generation C7
Test environment development C11
Execution C13 C11
Test results evaluation C20,21
Problem reporting/Test log C5 C20
Defect tracking C6

6 RECOMMENDED REFERENCES FOR SOFTWARE
TESTING

Be Beizer, B. Software Testing Techniques 2nd Edition.
Van Nostrand Reinhold, 1990. [Chapters 1, 2, 3, 5,
7s4, 10s3, 11, 13]

Jo Jorgensen, P.C., Software Testing A Craftsman’s
Approach, CRC Press, 1995. [Chapters 1, 2, 3, 4, 5, 6,
7, 8, 11, 12, 13, 14, 15]

KF+ Kaner, C., Falk, J., and Nguyen, H. Q., Testing
Computer Software, 2nd Edition, Wiley, 1999.
[Chapters 1, 2, 5, 6, 7, 8, 11, 12, 13, 15]

Ly Lyu, M.R. (Ed.), Handbook of Software Reliability
Engineering, Mc-Graw-Hill/IEEE, 1996. [Chapters
2s2.2, 5, 6, 7]

Pe Perry, W. Effective Methods for Software Testing,
Wiley, 1995. [Chapters 1, 2, 3, 4, 9, 10, 11, 12, 17, 19,
20, 21]

Pf Pfleeger, S.L. Software Engineering Theory and
Practice, Prentice Hall, 1998. [Chapters 7, 8]

ZH+ Zhu, H., Hall, P.A.V., and May, J.H.R. Software Unit
Test Coverage and Adequacy. ACM Computing
Surveys, 29, 4 (Dec. 1997) 366-427. [Sections 1, 2.2,
3.2, 3.3,

© IEEE –Trial Version 1.00 – May 2001 5–17

APPENDIX A – LIST OF FURTHER READINGS

Books

Be Beizer, B. Software Testing Techniques 2nd Edition.
Van Nostrand Reinhold, 1990.

Bi Binder, R. V., Testing Object-Oriented Systems
Models, Patterns, and Tools, Addison-Wesley, 2000.

Jo Jorgensen, P.C., Software Testing A Craftsman’s
Approach, CRC Press, 1995.

KF+ Kaner, C., Falk, J., and Nguyen, H. Q., Testing
Computer Software, 2nd Edition, Wiley, 1999.

Ly Lyu, M.R. (Ed.), Handbook of Software Reliability
Engineering, Mc-Graw-Hill/IEEE, 1996.

Pe Perry, W. Effective Methods for Software Testing,
Wiley, 1995.

Po Poston, R.M. Automating Specification-based
Software Testing, IEEE, 1996.

Survey Papers

ZH+ Zhu, H., Hall, P.A.V., and May, J.H.R. Software Unit
Test Coverage and Adequacy. ACM Computing
Surveys, 29, 4 (Dec. 1997) 366-427.

Specific Papers

BG+ Bernot, G., Gaudel, M.C., and Marre, B. Software
Testing Based On Formal Specifications: a Theory
and a Tool. Software Engineering Journal (Nov.
1991) 387-405.

BM Bache, R., and Müllerburg, M. Measures of
Testability as a Basis for Quality Assurance. Software
Engineering Journal, 5 (March 1990) 86-92.

BMa Bertolino, A., Marrè, M. “How many paths are needed
for branch testing?”, The Journal of Systems and
Software, Vol. 35, No. 2, 1996, pp.95-106.

BP Bochmann, G.V., and Petrenko, A. Protocol Testing:
Review of Methods and Relevance for Software
Testing. ACM Proc. Int. Symposium on Sw Testing
and Analysis (ISSTA’ 94), (Seattle, Washington, USA,
August 1994) 109-124.

BS Bertolino, A., and Strigini, L. On the Use of
Testability Measures for Dependability Assessment.
IEEE Transactions on Software Engineering, 22, 2
(Feb. 1996) 97-108.

CT Carver, R.H., and Tai, K.C., Replay and testing for
concurrent programs. IEEE Software (March 1991)
66-74

DF Dick, J., and Faivre, A. Automating The Generation
and Sequencing of Test Cases From Model-Based
Specifications. FME’93: Industrial-Strenght Formal
Method, LNCS 670, Springer Verlag, 1993, 268-284.

FH+ Frankl, P., Hamlet, D., Littlewood B., and Strigini, L.
Evaluating testing methods by delivered reliability.
IEEE Transactions on Software Engineering, 24, 8,
(August 1998), 586-601.

FW Frankl, P., and Weyuker, E. A formal analysis of the
fault detecting ability of testing methods. IEEE
Transactions on Software Engineering, 19, 3, (March
1993), 202-

Ha Hamlet, D. Are we testing for true reliability? IEEE
Software (July 1992) 21-27.

Ho Howden, W.E., Reliability of the Path Analysis
Testing Strategy. IEEE Transactions on Software
Engineering, 2, 3, (Sept. 1976) 208-215

HP Horcher, H., and Peleska, J. Using Formal
Specifications to Support Software Testing. Software
Quality Journal, 4 (1995) 309-327.

Mo Morell, L.J. A Theory of Fault-Based Testing. IEEE
Transactions on Software Engineering 16, 8 (August
1990), 844-857.

MZ Mitchell, B., and Zeil, S.J. A Reliability Model
Combining Representative and Directed Testing.
ACM/IEEE Proc. Int. Conf. Sw Engineering ICSE 18
(Berlin, Germany, March 1996) 506-514.

OA+ Ostrand, T., Anodide, A., Foster, H., and Goradia, T.
A Visual Test Development Environment for GUI
Systems. ACM Proc. Int. Symposium on Sw Testing
and Analysis (ISSTA’ 98), (Clearwater Beach, Florida,
USA, March 1998) 82-92.

OB Ostrand, T.J., and Balcer, M. J. The Category-
Partition Method for Specifying and Generating
Functional Tests. Communications of ACM, 31, 3
(June 1988), 676-686.

RH Rothermel, G., and Harrold, M.J., Analyzing
Regression Test Selection Techniques. IEEE
Transactions on Software Engineering, 22, 8 (Aug.
1996) 529-

Sc Schütz, W. Fundamental Issues in Testing Distributed
Real-Time Systems. Real-Time Systems Journal. 7, 2,
(Sept. 1994) 129-157.

VM Voas, J.M., and Miller, K.W. Software Testability:
The New Verification. IEEE Software, (May 1995)
17-28.

We-a Weyuker, E.J. On Testing Non-testable Programs.
The Computer Journal, 25, 4, (1982) 465-470

We-b Weyuker, E.J. Assessing Test Data Adequacy
through Program Inference. ACM Trans. on
Programming Languages and Systems, 5, 4, (October
1983) 641-655

WK+ Wakid, S.A., Kuhn D.R., and Wallace, D.R.
Toward Credible IT Testing and Certification, IEEE
Software, (August 1999) 39-47.

5–18 © IEEE – Trial Version 1.00 – May 2001

WW+ Weyuker, E.J., Weiss, S.N, and Hamlet, D.
Comparison of Program Test Strategies in Proc.
Symposium on Testing, Analysis and Verification TAV
4 (Victoria, British Columbia, October 1991), ACM
Press, 1-10.

Standards

610 IEEE Std 610.12-1990, Standard Glossary of Software
Engineering Terminology.

829 IEEE Std 829-1998, Standard for Software Test
Documentation.

982.2 IEEE Std 982.2-1998, Guide for the Use of IEEE
Standard Dictionary of Measures to Produce Reliable
Software.

1008 IEEE Std 1008-1987 (R 1993), Standard for Software
Unit Testing.

1044 IEEE Std 1044-1993, Standard Classification for
Software Anomalies.

1044.1 IEEE Std 1044.1-1995, Guide to Classification for
Software Anomalies.

12207 IEEE/EIA 12207.0-1996, Industry Implementation
of Int. Std. ISO/IEC 12207:1995, Standard for
Information Technology-Software Life cycle
processes.

