
© IEEE – Trial Version 1.00 – May 2001 10–1

CHAPTER 10

SOFTWARE ENGINEERING TOOLS AND METHODS

David Carrington
Department of Computer Science and Electrical Engineering

The University of Queensland
Brisbane, Qld 4072 Australia

+61 7 3365 3310
davec@csee.uq.edu.au

Table of Contents

1 Introduction... 1
2 Definition of the Software Engineering Tools and

Methods Knowledge Area .. 1
3 Breakdown of Topics for Software Engineering Tools

and Methods.. 2
4 Breakdown Rationale.. 6
5 Matrix of Topics vs. Reference Material 7
6 Recommended References for Software Engineering

tools and Methods... 8
Appendix A – References Used to Write and Justify the

Knowledge Area Description.................................... 10

1 INTRODUCTION

This chapter provides an initial breakdown of topics within
the Software Engineering Infrastructure Knowledge Area
as defined by the document “Approved Baseline for a List
of Knowledge Areas for the Stone Man Version of the
Guide to the Software Engineering Body of Knowledge”.
Earlier versions of this Knowledge Area included material
on integration and reuse, but this has been removed.
Consequently the Knowledge Area has been renamed from
“Software Engineering Infrastructure” to “Software
Engineering Tools and Methods”.
The five general software engineering texts [DT97, Moo98,
Pfl98, Pre97, and Som96] have been supplemented as
primary sources by “The Computer Science and
Engineering Handbook” [Tuc96], which provides nine
chapters on software engineering topics. Chapter 112,
“Software Tools and Environments” by Steven Reiss
[Rei96] is particularly helpful for this Knowledge Area.
Additional specialized references are identified for
particular topics.
One observation from assembling the guide to this
knowledge area is that there is a scarcity of recent technical
writing on practical software engineering tools. Obviously,

there are detailed manuals on specific tools and numerous
research papers on innovative software tools, but there is a
gap between the two. One difficulty is the high rate of
change in software tools. Specific details alter regularly,
making it difficult to provide up-to-date concrete examples.
There also seems to be an attitude that software engineering
tools are prosaic and not worthy of study beyond the level
required for use.

2 DEFINITION OF THE SOFTWARE ENGINEERING
TOOLS AND METHODS KNOWLEDGE AREA

The Software Engineering Tools and Methods Knowledge
Area includes both the software development environments
and the development methods knowledge areas identified in
the Straw Man version of the guide.
Software development environments are the computer-
based tools that are intended to assist the software
development process. Tools allow repetitive, well-defined
actions to be automated, thus reducing the cognitive load
on the software engineer. The engineer is then free to
concentrate on the creative aspects of the process. Tools are
often designed to support particular methods, reducing any
administrative load associated with applying the method
manually. Like methods, they are intended to make
development more systematic, and they vary in scope from
supporting individual tasks to encompassing the complete
life cycle.
Development methods impose structure on the software
development activity with the goal of making the activity
systematic and ultimately more likely to be successful.
Methods usually provide a notation and vocabulary,
procedures for performing identifiable tasks and guidelines
for checking both the process and the product.
Development methods vary widely in scope, from a single
life cycle phase to the complete life cycle. The emphasis in
this Knowledge Area is on methods that encompass
multiple lifecycle phases since phase-specific methods are
likely to be covered in other Knowledge Areas.

10–2 © IEEE – Trial Version 1.00 – May 2001

3 BREAKDOWN OF TOPICS FOR SOFTWARE
ENGINEERING TOOLS AND METHODS

This section contains a breakdown of topics in the Software
Engineering Tools and Methods Knowledge Area, with
brief descriptions and references. The Knowledge Area is
partitioned at the top level into Software Tools and
Software Methods. Two levels of references are provided
with topics: the recommended references within brackets
and additional references within parentheses. References to
a particular chapter are denoted as Ref:cN where N is the
chapter number. A similar denotation is used for references
to a particular section Ref:sN. Figure 1 provides a
diagrammatic representation of the breakdown of topics.

I. Software Tools

The partitioning of the Software Tools section uses the
same structure as the Stone Man Version of the Guide to
the Software Engineering Body of Knowledge. The first
five subsections correspond to the five Knowledge Areas
(Requirements, Design, Construction, Testing, and
Maintenance) that correspond to a phase of a software
lifecycle, so these sections provide a location for phase-
specific tools. The next four subsections correspond to the
remaining Knowledge Areas (Process, Quality,
Configuration Management and Management), and provide
locations for phase-independent tools that are associated
with activities described in these Knowledge Areas. Two
additional subsections are provided: one for infrastructure
support tools that do not fit in any of the earlier sections,
and a Miscellaneous subsection for topics, such as tool
integration techniques, that are potentially applicable to all
classes of tools. Because software engineering tools evolve
rapidly and continuously, the hierarchy and description
avoids discussing particular tools as far as possible.

A. Software Requirements Tools

Tools for dealing with software requirements have been
partitioned into two topics: modeling and traceability. More
fine-grained partitioned would certainly be possible but this
partition was considered adequate based on the coverage of
tools in the literature.
Requirements modeling tools
Tools used for eliciting, recording, analyzing and validating
software requirements belong in this section.
Traceability tools
[Pre97:s29.3, DT97:s4.1, DT97:s12.3]
Requirements traceability tools are becoming increasingly
important as the complexity of software systems grow, and
since traceability tools are relevant also in other lifecycle
phases, they have been separated from the other tools for
requirements.

B. Software Design Tools

[]

This section covers tools for creating and checking
software designs. There is a variety of such tools, with
much of this variety being a consequence of the diversity of
design notations and methods. While this variety of tools
exists, no compelling partitions for this topic were found.

C. Software Construction Tools

Software construction tools are concerned with the
production and translation of the program representation
(commonly known as source code) that is sufficiently
detailed and explicit to enable machine execution.
Program editors
Program editors are tools used for creation and
modification of programs (and possibly associated
documents). These tools can be general-purpose text or
document editors, or they can be specialized for a target
language. Editing refers to human-controlled development
tools.
Compilers and code generators
Traditionally, compilers have been non-interactive
translators of source code but there has been a trend to
integrate compilers and program editors to provide
integrated programming environments. This topic also
covers pre-processors, linker/loaders, and code generators.
Interpreters
Interpreters provide software execution through emulation.
They can support software construction activities by
providing a more controllable and observable environment
for program execution.
Debuggers
Debugging tools have been made a separate topic since
they support the construction process but are different from
program editors or compilers.

D. Software Testing Tools

Testing tools are categorized according to where in the
testing process they are used.
Test generators
Test generators assist the development of test cases.
Test execution frameworks
Test execution frameworks enable the execution of test
cases in a controlled environment where the behavior of the
object under test is observed.
Test evaluation tools
Test evaluation tools support the assessment of the results
of test execution, helping to determine whether the
observed behavior conforms to the expected behavior.
Test management tools
Test management tools provide support for managing all
aspects of the testing process.
Performance analysis tools []

© IEEE – Trial Version 1.00 – May 2001 10–3

This topic covers tools for measuring and analyzing
software performance. It is a specialized form of testing
where the goal is to assess the performance behavior rather
than the functional behavior (correctness).

10–4 © IEEE – Trial Version 1.00 – May 2001

Software Engineering Tools and Methods

I. Software Tools II. Software Methods

Software Requirements
Tools

Heuristic Methods

Software Design Tools

Software Construction
Tools

Requirements modeling
Traceability

Program editors
Compilers
Interpreters
Debuggers

Software Testing Tools
Test generators

Test execution frameworks
Test evaluation

Test management
Performance analysis

Software Maintenance
Tools

Comprehension
Re-engineering

Software Engineering
Process Tools
Process modeling

Process management
Integrated CASE environments

Process-centered software
engineering environments

Inspection
Software Quality Tools

Static analysis
Software Configuration

Management Tools
Defect, enhancement, issue and

problem tracking
Version managment
Release and build

Software Engineering
Management Tools

Project planning and tracking
Risk management

Measurement
Infrastructure Support

Tools

Miscellaneous Tools
Issues

Formal Methods

Interpersonal communication
Information retrieval

System administrative and
support

Tool integration techniques
Meta tools

Tool evaluation

Structured methods

Data-oriented methods

Object-oriented methods

Domain specific methods

Specification languages

Refinement

Verification

Prototyping Methods

Miscellaneous Method
Issues

Styles
Prototyping target

Evaluation techniques

Method evaluation

Figure 1 – Breakdown of topics in the software tools and methods knowledge area

© IEEE – Trial Version 1.00 – May 2001 10–5

E. Software Maintenance Tools

Software maintenance is often presented as additional
iterations of the development lifecycle and consequently
makes use of tools for all other phases. This category
encompasses tools that have particular importance in
software maintenance where an existing system is being
modified. Two categories are identified: comprehension
tools and re-engineering tools.
Comprehension tools
This topic concerns tools to assist human comprehension of
programs. Examples include visualization tools such as
animators and program slicers.
Re-engineering tools
Re-engineering tools allow translation of a program to a
new programming language, or a database to a new format.
Reverse engineering tools assist the process by working
backwards from an existing product to create abstract
artifacts such as design and specification descriptions,
which then can be transformed to generate a new product
from an old one.

F. Software Engineering Process Tools

Process modeling tools
This topic covers tools to model and investigate software
processes.
Process management tools
Integrated CASE environments
(ECMA93, ECMA94, IEEE-1209, IEEE-1348, MNS96)
Computer-aided software engineering tools or
environments that cover multiple phases of the software
development lifecycle belong in this section. Such tools
perform multiple functions and hence potentially interact
with the software process that is being enacted.
Process-centered software engineering environments
(GJ96)
This topic covers those environments that explicitly
incorporate software process information and that guide
and monitor the user according to a defined process.

G. Software Quality Tools

Inspection tools
This topic covers tools to support reviews and inspections.
Static analysis tools
This topic deals with tools that analyze software artifacts,
such as syntactic and semantic analyzers, and data, control
flow and dependency analyzers. Such tools are intended for
checking software artifacts for conformance or for
verifying desired properties.

H. Software Configuration Management Tools

Tools for configuration management have been categorized
as related to tracking issues associated with a particular
software product, management of multiple versions of a
product or to managing the task of software release and
build.
Defect, enhancement, issue and problem tracking tools
Version management tools
Release and build tools
This category includes installation tools that have become
widely used for configuring the installation of software
products.

I. Software Engineering Management Tools

Management tools are subdivided into three categories:
project planning and tracking, risk management, and
measurement.
Project planning and tracking tools
Risk management tools
Measurement tools

J. Infrastructure support tools

This section covers tools that provide interpersonal
communication, information retrieval, and system
administration and support. These tools, such as e-mail,
databases, web browsers and file backup tools, are
generally not specific to a particular lifecycle stage, nor to a
particular development method.
Interpersonal communication tools
Information retrieval tools
System administration and support tools

K. Miscellaneous tool issues

This section covers issues that are applicable to all classes
of tools. Three categories are identified: tool integration
techniques, meta-tools and tool evaluation.
Tool integration techniques
[Som96:s25.2]
(Bro94)
Tool integration is important for making individual tools
cooperate. This category potentially overlaps with
integrated software engineering environments where
integration techniques are applied, but it was felt that this
topic is sufficiently distinct to merit its own category. The
typical kinds of tool integration are platform, presentation,
process, data, and control.
Meta tools
Meta-tools generate other tools; compiler-compilers are the
classic example.
Tool evaluation
(IEEE-1209, IEEE-1348, Mos92, VB97)

10–6 © IEEE – Trial Version 1.00 – May 2001

Because of the continuous evolution of software
engineering tools, tool evaluation is an essential topic.

II. Software Development Methods

The software development section is divided into four
subsections: heuristic methods dealing with informal
approaches, formal methods dealing with mathematically
based approaches, prototyping methods dealing with
software development approaches based on various forms
of prototyping, and miscellaneous method issues. The first
three subsections are not disjoint; rather they represent
distinct concerns. For example, an object-oriented method
may incorporate formal techniques and rely on prototyping
for verification and validation. Like software engineering
tools, methodologies evolve continuously. Consequently,
the Knowledge Area description avoids naming particular
methodologies as far as possible.

A. Heuristic methods

This subsection contains four categories: structured, data-
oriented, object-oriented and domain-specific. The domain-
specific category includes specialized methods for
developing systems that involve real-time, safety or
security aspects.
Structured methods
Data-oriented methods
Object-oriented methods
Domain-specific methods

B. Formal methods

This subsection deals with mathematically based
development methods and is subdivided by different
aspects of formal methods. The first topic is the
specification notation or language used. Specification
languages are commonly classified as model-oriented,
property-oriented or behavior-oriented. The second topic
deals with how the method refines (or transforms) the
specification into a form that is closer to the desired final
form of an executable program. The third topic covers the
verification properties that are specific to the formal
approach and covers both theorem proving and model
checking.
Specification languages & notations
Refinement
Verification/proving properties

C. Prototyping methods
This subsection covers methods involving software
prototyping and is subdivided into prototyping styles,
targets and evaluation techniques.
Styles
(PB92:c1)

The topic of prototyping styles identifies the different
approaches: throwaway, evolutionary and the executable
specification.
Prototyping target
(PB92:c2)
Example targets of a prototyping method may be
requirements, architectural design or the user interface.
Evaluation techniques
This topic covers how the results of a prototype exercise
are used.

D. Miscellaneous method issues

The final subsection is intended to cover topics not covered
elsewhere in the software method area. The only topic
identified so far is method evaluation.
1. Method evaluation

4 BREAKDOWN RATIONALE

The Stone Man Version of the Guide to the Software
Engineering Body of Knowledge conforms at least partially
with the partitioning of the software life cycle in the
ISO/IEC 12207 Standard [ISO95]. Some Knowledge
Areas, such as this one, are intended to cover knowledge
that applies to multiple phases of the life cycle. One
approach to partitioning topics in this Knowledge Area
would be to use the software life cycle phases. For
example, software methods and tools could be classified
according to the phase with which they are associated. This
approach was not seen as effective. If software engineering
tools and methods could be cleanly partitioned by lifecycle
phase, it would suggest that this Knowledge Area could be
eliminated by allocating each part to the corresponding life
cycle Knowledge Area, e.g., tools and methods for software
design to the Software Design Knowledge Area. Such an
approach would fail to identify the commonality of, and
interrelationships between, both methods and tools in
different life cycle phases. However since tools are a
common theme to most Knowledge Areas, several
reviewers of Version 0.5 of this Knowledge Area suggested
that a breakdown based on Knowledge Area for tools
would be helpful. The Industry Advisory Board endorsed
this suggestion.
There are many links between methods and tools, and one
possible structure would seek to exploit these links.
However because the relationship is not a simple “one-to-
one” mapping, this structure has not been used to organize
topics in this Knowledge Area. This means that these links
are not always explicitly identified.
Some topics in this Knowledge Area do not have
corresponding reference materials identified in the matrices
in Appendix 2. There are two possible conclusions: either
the topic area is not relevant to this Knowledge Area, or
additional reference material needs to be identified.
Feedback from the experimentation phase will be helpful to
resolve this issue.

© IEEE – Trial Version 1.00 – May 2001 10–7

5 MATRIX OF TOPICS VS. REFERENCE MATERIAL

I. Software Tools CW96 DT97 Pfl98 Pre97 Rei96 Som96 Was96
 A. Software Requirements Tools 4.1

12.3
 11.4.2,

29.3
 26.2

 Requirements modeling tools
 Traceability tools 7.4
 B. Software Design Tools 12.3 29.3 26.2
 C. Software Construction Tools 12.3 29.3 112.2 26.1
 Program editors
 Compilers and code generators
 Interpreters
 Debuggers
 D. Software Testing Tools 12.3 7.7, 8.7 29.3 112.3 26.3
 Test generators
 Test execution frameworks
 Test evaluation tools
 Test management tools
 Performance analysis tools 112.5
 E. Software Maintenance Tools 12.3 10.5 29.3
 Comprehension tools 112.5
 Re-engineering tools
 F. Software Engineering Process Tools 12.3 25, 26,

27

 Process modeling tools 2.3, 2.4
 Process management tools
 Integrated CASE environments 29 112.3,

112.4

 Process-centered software engineering
environments

 29.6 112.5

 G. Software Quality Tools 12.3
 Inspection tools
 Static analysis tools X 7.7 29.3 112.5 24.3
 H. Software Configuration Management

Tools
 12.3 10.5 112.3

 Defect, enhancement, issue and problem
tracking tools

 29.3

 Version management tools 29
 I. Software Engineering Management

Tools
 12.3

 Project planning and tracking tools 29.3
 Risk management tools
 J. Infrastructure Support Tools 12.3
 Interpersonal communication tools 29.3
 Information retrieval tools 29.3
 System administration and support tools 29.3
 K. Miscellaneous Tool Issues 12.3
 Tool integration techniques 1.8 112.4 X
 Meta tools
 Tool evaluation 8.10

10–8 © IEEE – Trial Version 1.00 – May 2001

II. Development Methods CW96 DT97 Pfl98 Pre98 Som96 Was96 CW96

 A. Heuristic Methods X

 1. Structured methods 4.2, 5.2 4.5 10-18 15
 2 Data-oriented methods 4.2, 5.2 12.8
 3 Object-oriented methods 5.1, 5.2 4.4, 7.5 19-23 6.3, 14
 4 Domain-specific methods 15 16

 B. Formal Methods 5.4 24, 25 9-11,
24.4

 1. Specification languages X 4.5 24.4
 2. Refinement 25.3
 3. Verification/proving properties X 5.7, 7.3 24.2

 C. Prototyping Methods 2.5 8 X

 1. Styles 12.2 4.6, 5.6 11.4
 2. Prototyping targets 12.2
 3. Evaluation techniques

 D. Miscellaneous Method Issues

 1. Method evaluation

6 RECOMMENDED REFERENCES FOR SOFTWARE
ENGINEERING TOOLS AND METHODS

This section briefly describes each of the recommended
references.
[CW96] Edmund M. Clarke et al. Formal Methods: State of
the Art and Future Directions. ACM Computing Surveys,
vol. 28, no. 4, dec. 1996, p. 626-643.
This tutorial on formal methods explains techniques for
formal specification, model checking and theorem proving,
and describes some successful case studies and tools.
[DT97] Merlin Dorfman and Richard H. Thayer (eds.).
Software Engineering, IEEE Computer Society Press.
This tutorial volume contains a collection of papers
organized into chapters. The following papers are
referenced (section numbers have been added to reference
individual papers more conveniently in the matrices in the
Appendix):
Chapter 4: Software Requirements Engineering and
Software Design
4.1 Software Requirements: A Tutorial, Stuart Faulk
4.2 Software Design: An Introduction, David Budgen
Chapter 5: Software Development Methodologies
5.1 Object-oriented Development, Linda M. Northrup
5.2 Object-oriented Systems Development: Survey of
Structured Methods, A.G. Sutcliffe
5.4 A Review of Formal Methods, Robert Vienneau

Chapter 7: Software Validation, Verification and Testing
7.4 Traceability, James D. Palmer
Chapter 12 Software Technology
12.2 Prototyping: Alternate Systems Development
Methodology, J.M. Carey
12.3 A Classification of CASE Technology, Alfonso
Fuggetta
 [Pfl98] S.L. Pfleeger. Software Engineering  Theory and
Practice, Prentice-Hall.
This text is structured according to the phases of a life cycle
so that discussion of methods and tools is distributed
throughout the book.
[Pre97] R.S. Pressman. Software Engineering  A
Practitioner’s Approach (4th Ed.), McGraw-Hill
Chapter 29 covers “Computer-Aided Software
Engineering” including a taxonomy of case tools (29.3).
There is not much detail about any particular class of tool
but it does illustrate the wide range of software engineering
tools. The strength of this book is its description of
methods with chapters 10-23 covering heuristic methods,
chapters 24 and 25 covering formal methods. Section 11.4
describes prototyping methods and tools.
[Rei96] Steven P. Reiss. Software Tools and Environments
in The Computer Science and Engineering Handbook. CRC
Press, 1996 .
This chapter from [Tuc96] provides an overview of
software tools. The emphasis is on programming tools

© IEEE – Trial Version 1.00 – May 2001 10–9

rather than tools for analysis and design although CASE
tools are mentioned briefly.
[Som96] Ian Sommerville. Software Engineering (5th Ed.),
Addison-Wesley.
Chapters 25, 26 and 27 introduce computer-aided software
engineering with the emphasis being on tool integration and
large-scale environments. Static analysis tools are covered
in Section 24.3. Chapter 9, 10 and 11 introduce formal
methods with formal verification being described in Section
24.2 and the Cleanroom method in Section 24.4.
Prototyping is discussed in Chapter 8.
[Was96] Anthony I. Wasserman. Toward a Discipline of
Software Engineering, IEEE Software, vol. 13, no. 6 Nov.
1996, pp. 23-31.
This general article discusses the role of both methods and
tools in software engineering. Although brief, the paper
integrates the major themes of the discipline.

10–10 © IEEE – Trial Version 1.00 – May 2001

 APPENDIX A – REFERENCES USED TO WRITE AND
JUSTIFY THE KNOWLEDGE AREA DESCRIPTION

[Ber92] Edward V. Berard. Essays on Object-Oriented
Software Engineering. Prentice-Hall, 1993.
[BP92] W. Bischofberger and G Pomberger. Prototyping-
oriented Software Development: Concepts and Tools.
Springer-Verlag, 1992.
[Bro94] Alan W. Brown et al. Principles of CASE Tool
Integration. Oxford University Press, 1994.
[CB95] D.J. Carney and A.W. Brown. On the Necessary
Conditions for the Composition of Integrated Software
Engineering Environments. In Advances in Computers,
Volume 41, pages 157-189. Academic Press, 1995.
[CW96] Edmund M. Clarke, Jeanette M. Wing et al.
Formal Methods: State of the Art and Future Directions.
ACM Computer Surveys, 28(4):626-643, 1996.
[Col94] Derek Coleman et al. Object-Oriented
Development: The Fusion Method. Prentice Hall, 1994.
[CGR95] Dan Craigen, Susan Gerhart and Ted Ralston.
Formal Methods Reality Check: Industrial Usage, IEEE
Transactions on Software Engineering, 21(2):90-98,
February 1995.
[DT97] Merlin Dorfman and Richard H. Thayer, Editors.
Software Engineering. IEEE Computer Society, 1997.
[ECMA93] ECMA. TR/55 Reference Model for
Frameworks of Software Engineering Environments, 3rd
edition, June 1993.
[ECMA94] ECMA TR/69 Reference Model for Project
Support Environments, December 1994.
[Fin00] Anthony Finkelstein, Editor. The Future of
Software Engineering. ACM, 2000.
[GJ96] Pankaj K. Garg and Mehdi Jazayeri. Process-
Centered Software Engineering Environments, IEEE
Computer Society, 1996.
[HOT00] William Harrison, Harold Ossher and Peri Tarr.
Software Engineering Tools and Environments: A
Roadmap. In [Fin00], pp. 263-277, 2000.
[IEEE-1175] IEEE. Trial-Use Standard Reference Model
for Computing System Tool Interconnections, IEEE Std
1175-1992.
[IEEE-1209] IEEE. Recommended Practice for the
Evaluation and Selection of CASE Tools, IEEE Std 1209-
1992 (ISO/IEC 14102, 1995).
[IEEE-1348] IEEE Recommended Practice for the
Adoption of CASE Tools, IEEE Std 1348-1995 (ISO/IEC
14471).
[ISO-12207] ISO/IEC Standard for Information
Technology Software Life Cycle Processes, ISO/IEC
12207 (IEEE/EIA 12207.0-1996), 1995.
[JH98] Stan Jarzabek and Riri Huang. The Case for User-
Centered CASE Tools, Communications of the ACM,
41(8):93-99, August 1998.

[KPP95] B. Kitchenham, L. Pickard, and S.L. Pfleeger.
Case Studies for Method and Tool Evaluation, IEEE
Software, 12(4):52-62, July 1995.
[Lam00] Axel van Lamsweerde. Formal Specification: A
Roadmap. In [fin00], pp. 149-159, 2000.
[Mey97] Bertrand Meyer. Object-oriented Software
Construction (2nd Ed.). Prentice Hall, 1997.
[Mul00] Hausi Müller et al. Reverse Engineering: A
Roadmap. In [Fin00], pp. 49-60, 2000.
[Moo98] James W. Moore. Software Engineering
Standards: A User’s Road Map. IEEE Computer Society,
1998.
[Mos92] Vicky Mosley. How to Assess Tools Efficiently
and Quantitatively, IEEE Software, 9(3):29-32, May 1992.
(MNS96] H.A. Muller, R.J. Norman and J. Slonim (eds.).
Computer Aided Software Engineering, Kluwer, 1996. (A
special issue of Automated Software Engineering, 3(3/4),
1996).
[PB96] Gustav Pomberger and Günther Blaschek. Object-
orientation and Prototyping in Software Engineering.
Prentice Hall, 1996.
[Pfl98] Shari Lawrence Pfleeger. Software Engineering:
Theory and Practice. Prentice Hall, 1998.
[Pos96] R.M. Poston. Automating specification-based
Software Testing. IEEE, 1996.
[Pre97] Roger S. Pressman. Software Engineering: A
Practitioner’s Approach. 4th edition, McGraw-Hill, 1997.
[Rei96] Steven P. Reiss. Software Tools and Environments,
Ch. 112, pages 2419-2439. In Tucker [Tuc96], 1996.
[RW92] C. Rich and R.C. Waters. Knowledge Intensive
Software Engineering Tools, IEEE Transactions on
Knowledge and Data Engineering, 4(5):424-430, October
1992.
[Som96] Ian Sommerville. Software Engineering. 5th
edition, Addison-Wesley, 1996.
[SO92] Xiping Song and Leon J. Osterweil. Towards
Objective, Systematic Design-Method Comparisons, IEEE
Software, 9(3):43-53, May 1992.
[Tuc96] Allen B. Tucker, Jr., Editor-in-chief. The
Computer Science and Engineering Handbook. CRC Press,
1996.
[VB97] Laura A. Valaer and Robert C. Babb II. Choosing a
User Interface Development Tool. IEEE Software,
14(4):29-39, 1997
[Vin90] Walter G. Vincenti. What Engineers Know and
How They Know It: Analytical Studies from Aeronautical
History. John Hopkins University Press, 1990.
[Was96] Anthony I. Wasserman. Toward a Discipline of
Software Engineering, IEEE Software, 13(6): 23-31,
November 1996.
[Wie98] Roel Wieringa. A Survey of Structured and
Object-Oriented Software Specification Methods and
Techniques. ACM Computing Surveys, 30(4):459-527,
1998.

