
Model of the systems development
life cycle, highlighting the
maintenance phase

Systems development life cycle

In systems engineering, information systems and software engineering, the
systems development life cycle (SDLC), also referred to as the application
development life-cycle, is a process for planning, creating, testing, and
deploying an information system.[1] The systems development life cycle
concept applies to a range of hardware and software configurations, as a
system can be composed of hardware only, software only, or a combination of
both.[2] There are usually six stages in this cycle: requirement analysis,
design, development and testing, implementation, documentation, and
evaluation.

Overview
History and details
Phases

System investigation
Analysis
Design
Environments
Testing
Training and transition
Operations and maintenance
Evaluation

Systems analysis and design
Object-oriented analysis
Life cycle

Management and control
Work breakdown structured organization
Baselines
Complementary methodologies

Strengths and weaknesses
System lifecycle

Conceptual design
Preliminary system design
Detail design and development
Production and construction
Utilization and support
Phase-out and disposal

See also
References
Further reading
External links

Contents

https://en.wikipedia.org/wiki/File:SDLC-Maintenance-Highlighted.png
https://en.wikipedia.org/wiki/Systems_engineering
https://en.wikipedia.org/wiki/Information_system
https://en.wikipedia.org/wiki/Software_engineering
https://en.wikipedia.org/wiki/Information_system


A systems development life cycle is composed of a number of clearly defined and distinct work phases which are
used by systems engineers and systems developers to plan for, design, build, test, and deliver information systems.
Like anything that is manufactured on an assembly line, an SDLC aims to produce high-quality systems that meet or
exceed customer expectations, based on customer requirements, by delivering systems which move through each
clearly defined phase, within scheduled time frames and cost estimates.[3] Computer systems are complex and often
(especially with the recent rise of service-oriented architecture) link multiple traditional systems potentially supplied
by different software vendors. To manage this level of complexity, a number of SDLC models or methodologies have
been created, such as waterfall, spiral, Agile software development, rapid prototyping, incremental, and synchronize
and stabilize.[4]

SDLC can be described along a spectrum of agile to iterative to sequential methodologies. Agile methodologies, such
as XP and Scrum, focus on lightweight processes which allow for rapid changes (without necessarily following the
pattern of SDLC approach) along the development cycle. Iterative methodologies, such as Rational Unified Process
and dynamic systems development method, focus on limited project scope and expanding or improving products by
multiple iterations. Sequential or big-design-up-front (BDUF) models, such as waterfall, focus on complete and
correct planning to guide large projects and risks to successful and predictable results. Other models, such as
anamorphic development, tend to focus on a form of development that is guided by project scope and adaptive
iterations of feature development.

In project management a project can be defined both with a project life cycle (PLC) and an SDLC, during which
slightly different activities occur. According to Taylor (2004), "the project life cycle encompasses all the activities of
the project, while the systems development life cycle focuses on realizing the product requirements".[5]

Systems Development Life Cycle (SDLC) is used during the development of an IT project, it describes the different
stages involved in the project from the drawing board, through the completion of the project.

The SDLC is not a methodology per se, but rather a description of the phases in the life cycle of a software
application. These phases (broadly speaking) are, investigation, analysis, design, build, test, implement, and
maintenance and support. All software development methodologies (such as the more commonly known waterfall
and scrum methodologies) follow the SDLC phases but the method of doing that varies vastly between
methodologies. In the Scrum framework,[6] for example, one could say a single user story goes through all the phases
of the SDLC within a single two-week sprint. Contrast this to the waterfall methodology, as another example, where
every business requirement (recorded in the analysis phase of the SDLC in a document called the Business
Requirements Specification) is translated into feature/functional descriptions (recorded in the design phase in a
document called the Functional Specification) which are then all built in one go as a collection of solution features
typically over a period of three to nine months, or more. These methodologies are obviously quite different
approaches, yet they both contain the SDLC phases in which a requirement is born, then travels through the life cycle
phases ending in the final phase of maintenance and support, after-which (typically) the whole life cycle starts again
for a subsequent version of the software application.

The product life cycle describes the process for building information systems in a very deliberate, structured and
methodical way, reiterating each stage of the product's life. The systems development life cycle, according to Elliott
& Strachan & Radford (2004), "originated in the 1960s, to develop large scale functional business systems in an age
of large scale business conglomerates. Information systems activities revolved around heavy data processing and
number crunching routines".[7]

Several systems development frameworks have been partly based on SDLC, such as the structured systems analysis
and design method (SSADM) produced for the UK government Office of Government Commerce in the 1980s. Ever
since, according to Elliott (2004), "the traditional life cycle approaches to systems development have been
increasingly replaced with alternative approaches and frameworks, which attempted to overcome some of the
inherent deficiencies of the traditional SDLC".[7]

Overview

History and details

https://en.wikipedia.org/wiki/Information_system
https://en.wikipedia.org/wiki/Service-oriented_architecture
https://en.wikipedia.org/wiki/Waterfall_model
https://en.wikipedia.org/wiki/Spiral_model
https://en.wikipedia.org/wiki/Agile_software_development
https://en.wikipedia.org/wiki/Software_prototyping#Throwaway_prototyping
https://en.wikipedia.org/wiki/Incremental_development
https://en.wikipedia.org/wiki/Extreme_Programming
https://en.wikipedia.org/wiki/Scrum_(development)
https://en.wikipedia.org/wiki/Iterative_and_incremental_development
https://en.wikipedia.org/wiki/Rational_Unified_Process
https://en.wikipedia.org/wiki/Dynamic_systems_development_method
https://en.wikipedia.org/wiki/Anamorphic_development
https://en.wikipedia.org/wiki/Project_management
https://en.wikipedia.org/wiki/Project_life_cycle
https://en.wikipedia.org/wiki/Project
https://en.wikipedia.org/wiki/Requirement
https://en.wikipedia.org/wiki/Product_life_cycle_(engineering)
https://en.wikipedia.org/wiki/Business_systems
https://en.wikipedia.org/wiki/Business_conglomerate
https://en.wikipedia.org/wiki/Data_processing
https://en.wikipedia.org/wiki/Number_crunching
https://en.wikipedia.org/wiki/Structured_systems_analysis_and_design_method
https://en.wikipedia.org/wiki/Office_of_Government_Commerce


hase version of the systems development life cycle[8]

The system development life cycle framework provides a sequence of activities for system designers and developers
to follow. It consists of a set of steps or phases in which each phase of the SDLC uses the results of the previous
one.[8][9]

The SDLC adheres to important phases that are essential for developers—such as planning, analysis, design, and
implementation—and are explained in the section below. This includes evaluation of the currently used system,
information gathering, feasibility studies, and request approval. A number of SDLC models have been created,
including waterfall, fountain, spiral, build and fix, rapid prototyping, incremental, synchronize, and stabilize.[10][11]

The oldest of these, and the best known, is the waterfall model, a sequence of stages in which the output of each stage
becomes the input for the next.[9] These stages can be characterized and divided up in different ways, including the
following:[8][9][12][13]

Preliminary analysis: Begin with a preliminary analysis, propose alternative solutions, describe costs
and benefits, and submit a preliminary plan with recommendations.

1. Conduct the preliminary analysis: Discover the organization's objectives and the nature and
scope of the problem under study. Even if a problem refers only to a small segment of the
organization itself, find out what the objectives of the organization itself are. Then see how the
problem being studied fits in with them.

2. Propose alternative solutions: After digging into the organization's objectives and specific
problems, several solutions may have been discovered. However, alternate proposals may still
come from interviewing employees, clients, suppliers, and/or consultants. Insight may also be
gained by researching what competitors are doing.

3. Cost benefit analysis: Analyze and describe the costs and benefits of implementing the proposed
changes. In the end, the ultimate decision on whether to leave the system as is, improve it, or

Phases

https://en.wikipedia.org/wiki/File:Systems_Development_Life_Cycle.gif
https://en.wikipedia.org/wiki/Planning
https://en.wikipedia.org/wiki/Analysis
https://en.wikipedia.org/wiki/Design
https://en.wikipedia.org/wiki/Implementation
https://en.wikipedia.org/wiki/Waterfall_model


develop a new system will be guided by this and the rest of the preliminary analysis data.

Systems analysis, requirements definition: Define project goals into defined functions and
operations of the intended application. This involves the process of gathering and interpreting facts,
diagnosing problems, and recommending improvements to the system. Project goals will be further
aided by analysis of end-user information needs and the removal of any inconsistencies and
incompleteness in these requirements.

A series of steps followed by the developer include:[14]

1. Collection of facts: Obtain end user requirements through documentation, client interviews,
observation, and questionnaires.

2. Scrutiny of the existing system: Identify pros and cons of the current system in-place, so as to
carry forward the pros and avoid the cons in the new system.

3. Analysis of the proposed system: Find solutions to the shortcomings described in step two and
prepare the specifications using any specific user proposals.

Systems design: At this step, desired features and operations are described in detail, including screen
layouts, business rules, process diagrams, pseudocode, and other documentation.
Development: The real code is written here.
Integration and testing: All the modules are brought together into a special testing environment, then
checked for errors, bugs, and interoperability.
Acceptance, installation, deployment: This is the final stage of initial development, where the
software is put into production and runs actual business.
Maintenance: During the maintenance stage of the SDLC, the system is assessed/evaluated to ensure
it does not become obsolete. This is also where changes are made to initial software.
Evaluation: Some companies do not view this as an official stage of the SDLC, while others consider it
to be an extension of the maintenance stage, and may be referred to in some circles as post-
implementation review. This is where the system that was developed, as well as the entire process, is
evaluated. Some of the questions that need to be answered include if the newly implemented system
meets the initial business requirements and objectives, if the system is reliable and fault-tolerant, and if
it functions according to the approved functional requirements. In addition to evaluating the software
that was released, it is important to assess the effectiveness of the development process. If there are
any aspects of the entire process (or certain stages) that management is not satisfied with, this is the
time to improve.
Disposal: In this phase, plans are developed for discontinuing the use of system information,
hardware, and software and making the transition to a new system. The purpose here is to properly
move, archive, discard, or destroy information, hardware, and software that is being replaced, in a
manner that prevents any possibility of unauthorized disclosure of sensitive data. The disposal
activities ensure proper migration to a new system. Particular emphasis is given to proper preservation
and archiving of data processed by the previous system. All of this should be done in accordance with
the organization's security requirements.[15]

In the following diagram, these stages of the systems development life cycle are divided in ten steps, from definition
to creation and modification of IT work products:

Not every project will require that the phases be sequentially executed. However, the phases are interdependent.
Depending upon the size and complexity of the project, phases may be combined or may overlap.[8]

First the IT system proposal is investigated. During this step, consider all current priorities that would be affected and
how they should be handled. Before any system planning is done, a feasibility study should be conducted to
determine if creating a new or improved system is a viable solution. This will help to determine the costs, benefits,
resource requirements, and specific user needs required for completion. The development process can only continue
once management approves of the recommendations from the feasibility study.[16]

System investigation

https://en.wikipedia.org/wiki/Business_rule
https://en.wikipedia.org/wiki/Process_flow_diagram
https://en.wikipedia.org/wiki/Pseudocode
https://en.wikipedia.org/wiki/Feasibility_study


The following represent different components of the feasibility study:

Operational feasibility
Financial feasibility
Technical feasibility
Human factors feasibility
Legal/Political feasibility

The goal of analysis is to determine where the problem is, in an attempt to fix the system. This step involves breaking
down the system in different pieces to analyze the situation, analyzing project goals, breaking down what needs to be
created, and attempting to engage users so that definite requirements can be defined.

In systems design, the design functions and operations are described in detail, including screen layouts, business
rules, process diagrams, and other documentation. The output of this stage will describe the new system as a
collection of modules or subsystems.

The design stage takes as its initial input the requirements identified in the approved requirements document. For
each requirement, a set of one or more design elements will be produced as a result of interviews, workshops, and/or
prototype efforts.

Design elements describe the desired system features in detail, and they generally include functional hierarchy
diagrams, screen layout diagrams, tables of business rules, business process diagrams, pseudo-code, and a complete
entity-relationship diagram with a full data dictionary. These design elements are intended to describe the system in
sufficient detail, such that skilled developers and engineers may develop and deliver the system with minimal
additional input design.

Environments are controlled areas where systems developers can build, distribute, install, configure, test, and execute
systems that move through the SDLC. Each environment is aligned with different areas of the SDLC and is intended
to have specific purposes. Examples of such environments include the:

development environment, where developers can work independently of each other before trying to
merge their work with the work of others;
common build environment, where merged work can be built, together, as a combined system;
systems integration testing environment, where basic testing of a system's integration points to other
upstream or downstream systems can be tested;
user acceptance testing environment, where business stakeholders can test against their original
business requirements; and
production environment, where systems finally get deployed for final use by their intended end users.

The code is tested at various levels in software testing. Unit, system, and user acceptance testings are often
performed. This is a grey area as many different opinions exist as to what the stages of testing are and how much, if
any iteration occurs. Iteration is not generally part of the waterfall model, but the means to rectify defects and validate
fixes prior to deployment is incorporated into this phase.

The following are types of testing that may be relevant, depending on the type of system under development:

Analysis

Design

Environments

Testing

https://en.wikipedia.org/wiki/Feasibility_study#Operational_feasibility_study
https://en.wikipedia.org/wiki/Feasibility_study#Financial_feasibility
https://en.wikipedia.org/wiki/Feasibility_study#Technical_feasibility
https://en.wikipedia.org/wiki/Feasibility_study#Legal_feasibility
https://en.wikipedia.org/wiki/Analysis
https://en.wikipedia.org/wiki/Work_breakdown_structure
https://en.wikipedia.org/wiki/Systems_design
https://en.wikipedia.org/wiki/Software_testing


Defect testing the failed scenarios, including
Path testing
Data set testing
Unit testing
System testing
Integration testing
Black-box testing
White-box testing
Regression testing
Automation testing
User acceptance testing
Software performance testing

Once a system has been stabilized through adequate testing, the SDLC ensures that proper training on the system is
performed or documented before transitioning the system to its support staff and end users. Training usually covers
operational training for those people who will be responsible for supporting the system as well as training for those
end users who will be using the system after its delivery to a production operating environment.

After training has been successfully completed, systems engineers and developers transition the system to its final
production environment, where it is intended to be used by its end users and supported by its support and operations
staff.

The deployment of the system includes changes and enhancements before the decommissioning or sunset of the
system. Maintaining the system is an important aspect of SDLC. As key personnel change positions in the
organization, new changes will be implemented. There are two approaches to system development: the traditional
approach (structured) and object oriented. Information engineering includes the traditional system approach, which is
also called the structured analysis and design technique. The object oriented approach views information system as a
collection of objects that are integrated with each other to make a full and complete information system.

The final phase of the SDLC is to measure the effectiveness of the system and evaluate potential enhancements.

The systems analysis and design (SAD) is the process of developing information systems (IS) that effectively use
hardware, software, data, processes, and people to support the company's businesses objectives. It is a process of
planning a new business system or replacing an existing system by defining its components or modules to satisfy the
specific requirements. System analysis and design can be considered the meta-development activity, which serves to
set the stage and bound the problem. SAD can be leveraged to set the correct balance among competing high-level
requirements in the functional and non-functional analysis domains. System analysis and design interacts strongly
with distributed enterprise architecture, enterprise I.T. Architecture, and business architecture, and relies heavily on
concepts such as partitioning, interfaces, personae and roles, and deployment/operational modeling to arrive at a
high-level system description. This high level description is then further broken down into the components and
modules which can be analyzed, designed, and constructed separately and integrated to accomplish the business goal.
SDLC and SAD are cornerstones of full life cycle product and system planning.

Training and transition

Operations and maintenance

Evaluation

Systems analysis and design

https://en.wikipedia.org/wiki/Model-based_testing
https://en.wikipedia.org/wiki/Test_data
https://en.wikipedia.org/wiki/Unit_testing
https://en.wikipedia.org/wiki/System_testing
https://en.wikipedia.org/wiki/Integration_testing
https://en.wikipedia.org/wiki/Black-box_testing
https://en.wikipedia.org/wiki/White-box_testing
https://en.wikipedia.org/wiki/Regression_testing
https://en.wikipedia.org/wiki/Automation_testing
https://en.wikipedia.org/wiki/User_acceptance_testing
https://en.wikipedia.org/wiki/Software_performance_testing
https://en.wikipedia.org/wiki/Software_deployment
https://en.wikipedia.org/wiki/Software_maintenance
https://en.wikipedia.org/wiki/Object_oriented


Object-oriented analysis (OOA) is the process of analyzing a task (also known as a problem domain), to develop a
conceptual model that can then be used to complete the task. A typical OOA model would describe computer
software that could be used to satisfy a set of customer-defined requirements. During the analysis phase of problem-
solving, a programmer might consider a written requirements statement, a formal vision document, or interviews with
stakeholders or other interested parties. The task to be addressed might be divided into several subtasks (or domains),
each representing a different business, technological, or other areas of interest. Each subtask would be analyzed
separately. Implementation constraints, (e.g., concurrency, distribution, persistence, or how the system is to be built)
are not considered during the analysis phase; rather, they are addressed during object-oriented design (OOD).

The conceptual model that results from OOA will typically consist of a set of use cases, one or more UML class
diagrams, and a number of interaction diagrams. It may also include some kind of user interface mock-up.

The input for object-oriented design is provided by the output of object-oriented analysis. Realize that an output
artifact does not need to be completely developed to serve as input of object-oriented design; analysis and design may
occur in parallel, and in practice the results of one activity can feed the other in a short feedback cycle through an
iterative process. Both analysis and design can be performed incrementally, and the artifacts can be continuously
grown instead of completely developed in one shot.

Some typical (but common to all types of design analysis) input artifacts for object-oriented:

Conceptual model: Conceptual model is the result of object-oriented analysis, it captures concepts in
the problem domain. The conceptual model is explicitly chosen to be independent of implementation
details, such as concurrency or data storage.
Use case: Use case is a description of sequences of events that, taken together, lead to a system
doing something useful. Each use case provides one or more scenarios that convey how the system
should interact with the users called actors to achieve a specific business goal or function. Use case
actors may be end users or other systems. In many circumstances use cases are further elaborated
into use case diagrams. Use case diagrams are used to identify the actor (users or other systems) and
the processes they perform.
System Sequence Diagram: System Sequence diagram (SSD) is a picture that shows, for a particular
scenario of a use case, the events that external actors generate, their order, and possible inter-system
events.
User interface documentations (if applicable): Document that shows and describes the look and feel of
the end product's user interface. It is not mandatory to have this, but it helps to visualize the end-
product and therefore helps the designer.
Relational data model (if applicable): A data model is an abstract model that describes how data is
represented and used. If an object database is not used, the relational data model should usually be
created before the design, since the strategy chosen for object-relational mapping is an output of the
OO design process. However, it is possible to develop the relational data model and the object-oriented
design artifacts in parallel, and the growth of an artifact can stimulate the refinement of other artifacts.

The SDLC phases serve as a programmatic guide to project activity and provide a flexible but consistent way to
conduct projects to a depth matching the scope of the project. Each of the SDLC phase objectives are described in
this section with key deliverables, a description of recommended tasks, and a summary of related control objectives
for effective management. It is critical for the project manager to establish and monitor control objectives during each
SDLC phase while executing projects. Control objectives help to provide a clear statement of the desired result or
purpose and should be used throughout the entire SDLC process. Control objectives can be grouped into major
categories (domains), and relate to the SDLC phases as shown in the figure.[17]

Object-oriented analysis

Life cycle

Management and control

https://en.wikipedia.org/w/index.php?title=Problem_domain&action=edit&redlink=1
https://en.wikipedia.org/wiki/Concurrency_(computer_science)
https://en.wikipedia.org/wiki/Distributed_computing
https://en.wikipedia.org/wiki/Persistence_(computer_science)
https://en.wikipedia.org/wiki/Use_cases
https://en.wikipedia.org/wiki/Unified_Modeling_Language
https://en.wikipedia.org/wiki/Class_diagram
https://en.wikipedia.org/wiki/Interaction_diagram
https://en.wikipedia.org/wiki/User_interface
https://en.wikipedia.org/wiki/Object-oriented_analysis_and_design
https://en.wikipedia.org/wiki/Conceptual_model_(computer_science)
https://en.wikipedia.org/wiki/Use_case
https://en.wikipedia.org/wiki/Scenario_(computing)
https://en.wikipedia.org/wiki/System_Sequence_Diagram
https://en.wikipedia.org/wiki/Look_and_feel
https://en.wikipedia.org/wiki/Relational_data_model
https://en.wikipedia.org/wiki/Object_database
https://en.wikipedia.org/wiki/Object-relational_mapping


SPIU phases related to
management controls[17]

Work breakdown structure[17]

To manage and control any SDLC initiative, each project will be required to
establish some degree of a work breakdown structure (WBS) to capture and
schedule the work necessary to complete the project. The WBS and all
programmatic material should be kept in the "project description" section of
the project notebook. The WBS format is mostly left to the project manager to
establish in a way that best describes the project work.

There are some key areas that must be defined in the WBS as part of the
SDLC policy. The following diagram describes three key areas that will be
addressed in the WBS in a manner established by the project manager.[17] The
diagram shows coverage spans numerous phases of the SDLC but the
associated MCD has a subset of primary mappings to the SDLC phases. For
example, Analysis and Design is primarily performed as part of the
Acquisition and Implementation Domain and System Build and Prototype is primarily performed as part of delivery
and support.

The upper section of the work breakdown structure (WBS) should identify the
major phases and milestones of the project in a summary fashion. In addition,
the upper section should provide an overview of the full scope and timeline of
the project and will be part of the initial project description effort leading to
project approval. The middle section of the WBS is based on the seven
systems development life cycle phases as a guide for WBS task development.
The WBS elements should consist of milestones and "tasks" as opposed to
"activities" and have a definitive period (usually two weeks or more). Each
task must have a measurable output (e.x. document, decision, or analysis). A WBS task may rely on one or more
activities (e.g. software engineering, systems engineering) and may require close coordination with other tasks, either
internal or external to the project. Any part of the project needing support from contractors should have a statement of
work (SOW) written to include the appropriate tasks from the SDLC phases. The development of a SOW does not
occur during a specific phase of SDLC but is developed to include the work from the SDLC process that may be
conducted by external resources such as contractors.[17]

Baselines are an important part of the systems development life cycle. These baselines are established after four of
the five phases of the SDLC and are critical to the iterative nature of the model .[18] Each baseline is considered as a
milestone in the SDLC.

functional baseline: established after the conceptual design phase.
allocated baseline: established after the preliminary design phase.
product baseline: established after the detail design and development phase.
updated product baseline: established after the production construction phase.

Complementary software development methods to systems development life cycle are:

Software prototyping
Joint applications development (JAD)
Rapid application development (RAD)
Extreme programming (XP);
Open-source development

Work breakdown structured organization

Baselines

Complementary methodologies

https://en.wikipedia.org/wiki/File:SDLC_Phases_Related_to_Management_Controls.jpg
https://en.wikipedia.org/wiki/File:SDLC_Work_Breakdown_Structure.jpg
https://en.wikipedia.org/wiki/Work_breakdown_structure
https://en.wikipedia.org/wiki/Statement_of_work
https://en.wikipedia.org/wiki/Software_development_process
https://en.wikipedia.org/wiki/Software_prototyping
https://en.wikipedia.org/wiki/Joint_applications_development
https://en.wikipedia.org/wiki/Rapid_application_development
https://en.wikipedia.org/wiki/Extreme_programming
https://en.wikipedia.org/wiki/Open-source_software_development


End-user development
Object-oriented programming

Comparison of Methodology Approaches (Post, & Anderson 2006)[19]

SDLC RAD Open
source Objects JAD Prototyping End User

Control Formal MIS Weak Standards Joint User User

Time frame Long Short Medium Any Medium Short

Short

–

Users Many Few Few Varies Few One or two One

MIS staff Many Few Hundreds Split Few One or two None

Transaction/DSS Transaction Both Both Both DSS DSS DSS

Interface Minimal Minimal Weak Windows Crucial Crucial Crucial

Documentation
and training Vital Limited Internal In Objects Limited Weak None

Integrity and
security Vital Vital Unknown In Objects Limited Weak Weak

Reusability Limited Some Maybe Vital Limited Weak None

Few people in the modern computing world would use a strict waterfall model for their SDLC as many modern
methodologies have superseded this thinking. Some will argue that the SDLC no longer applies to models like Agile
computing, but it is still a term widely in use in technology circles. The SDLC practice has advantages in traditional
models of systems development that lends itself more to a structured environment. The disadvantages to using the
SDLC methodology is when there is need for iterative development or (i.e. web development or e-commerce) where
stakeholders need to review on a regular basis the software being designed.

A comparison of the strengths and weaknesses of SDLC:

Strength and Weaknesses of SDLC [19]

Strengths Weaknesses

Control Increased development time

Monitor large projects Increased development cost

Detailed steps Systems must be defined up front

Evaluate costs and completion targets Rigidity

Documentation Hard to estimate costs, project overruns

Well defined user input User input is sometimes limited

Ease of maintenance Little parallelism

Development and design standards Automation of documentation and standards is limited

Tolerates changes in MIS of staffing Does not tolerate changes in requirements

Projects canned early on the result in little or no value

An alternative to the SDLC is rapid application development, which combines prototyping, joint application
development and implementation of CASE tools. The advantages of RAD are speed, reduced development cost, and
active user involvement in the development process.

Strengths and weaknesses

https://en.wikipedia.org/wiki/End-user_development
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Decision_support_system


The system lifecycle in systems engineering is a view of a system or proposed system that addresses all phases of its
existence to include system conception, design and development, production and/or construction, distribution,
operation, maintenance and support, retirement, phase-out and disposal.[20]

The conceptual design stage is the stage where an identified need is examined, requirements for potential solutions
are defined, potential solutions are evaluated and a system specification is developed. The system specification
represents the technical requirements that will provide overall guidance for system design. Because this document
determines all future development, the stage cannot be completed until a conceptual design review has determined
that the system specification properly addresses the motivating need.

Key steps within the conceptual design stage include:

Need identification
Feasibility analysis
System requirements analysis
System specification
Conceptual design review

During this stage of the system lifecycle, subsystems that perform the desired system functions are designed and
specified in compliance with the system specification. Interfaces between subsystems are defined, as well as overall
test and evaluation requirements.[21] At the completion of this stage, a development specification is produced that is
sufficient to perform detailed design and development.

Key steps within the preliminary design stage include:

Functional analysis
Requirements allocation
Detailed trade-off studies
Synthesis of system options
Preliminary design of engineering models
Development specification
Preliminary design review

For example, as the system analyst of Viti Bank, you have been tasked to examine the current information system.
Viti Bank is a fast growing bank in Fiji. Customers in remote rural areas are finding difficulty to access the bank
services. It takes them days or even weeks to travel to a location to access the bank services. With the vision of
meeting the customers needs, the bank has requested your services to examine the current system and to come up
with solutions or recommendations of how the current system can be provided to meet its needs.

This stage includes the development of detailed designs that brings initial design work into a completed form of
specifications. This work includes the specification of interfaces between the system and its intended environment
and a comprehensive evaluation of the systems logistical, maintenance and support requirements. The detail design
and development is responsible for producing the product, process and material specifications and may result in
substantial changes to the development specification.

System lifecycle

Conceptual design

Preliminary system design

Detail design and development

https://en.wikipedia.org/wiki/Systems_engineering
https://en.wikipedia.org/wiki/Conceptual_design
https://en.wikipedia.org/wiki/Design_review


Key steps within the detail design and development stage include:

Detailed design
Detailed synthesis
Development of engineering and prototype models
Revision of development specification
Product, process and material specification
Critical design review

During the production and/or construction stage the product is built or assembled in accordance with the requirements
specified in the product, process and material specifications and is deployed and tested within the operational target
environment. System assessments are conducted in order to correct deficiencies and adapt the system for continued
improvement.

Key steps within the product construction stage include:

Production and/or construction of system components
Acceptance testing
System distribution and operation
Operational testing and evaluation
System assessment

Once fully deployed, the system is used for its intended operational role and maintained within its operational
environment.

Key steps within the utilization and support stage include:

System operation in the user environment
Change management
System modifications for improvement
System assessment

Effectiveness and efficiency of the system must be continuously evaluated to determine when the product has met its
maximum effective lifecycle.[22] Considerations include: Continued existence of operational need, matching between
operational requirements and system performance, feasibility of system phase-out versus maintenance, and
availability of alternative systems.

Application lifecycle management
Decision cycle
IPO Model
Software development methodologies

Production and construction

Utilization and support

Phase-out and disposal

See also

References

https://en.wikipedia.org/wiki/Application_lifecycle_management
https://en.wikipedia.org/wiki/Decision_cycle
https://en.wikipedia.org/wiki/IPO_Model
https://en.wikipedia.org/wiki/Software_development_methodologies


Cummings, Haag (2006). Management Information Systems for the Information Age. Toronto, McGraw-
Hill Ryerson
Beynon-Davies P. (2009). Business Information Systems. Palgrave, Basingstoke. ISBN 978-0-230-
20368-6
Computer World, 2002 (http://www.computerworld.com/developmenttopics/development/story/0,10801,
71151,00.html), Retrieved on June 22, 2006 from the World Wide Web:

1. SELECTING A DEVELOPMENT APPROACH (https://www.cms.gov/Research-Statistics-Data-and-Sys
tems/CMS-Information-Technology/XLC/Downloads/SelectingDevelopmentApproach.pdf). Retrieved 17
July 2014.

2. Parag C. Pendharkara; James A. Rodgerb; Girish H. Subramanian (November 2008). "An empirical
study of the Cobb–Douglas production function properties of software development effort". Information
and Software Technology. 50 (12): 1181–1188. doi:10.1016/j.infsof.2007.10.019 (https://doi.org/10.101
6%2Fj.infsof.2007.10.019).

3. "Systems Development Life Cycle from" (http://foldoc.org/Systems+Development+Life+Cycle).
FOLDOC. Retrieved 2013-06-14.

4. "Software Development Life Cycle (SDLC)" (http://condor.depaul.edu/~jpetlick/extra/394/Session2.ppt).
5. Taylor, James (2004). Managing Information Technology Projects. p. 39.
6. "What is Scrum?" (https://www.scrum.org/resources/what-is-scrum). December 24, 2019.
7. Geoffrey Elliott & Josh Strachan (2004) Global Business Information Technology. p.87.
8. US Department of Justice (2003). INFORMATION RESOURCES MANAGEMENT (https://www.justice.

gov/archive/jmd/irm/lifecycle/table.htm) Chapter 1. Introduction.
9. Everatt, G.D.; McLeod Jr., R. (2007). "Chapter 2: The Software Development Life Cycle". Software

Testing: Testing Across the Entire Software Development Life Cycle (https://books.google.com/books?i
d=z8UdPmvkBHEC&pg=PA29). John Wiley & Sons. pp. 29–58. ISBN 9780470146347.

10. Unhelkar, B. (2016). The Art of Agile Practice: A Composite Approach for Projects and Organizations
(https://books.google.com/books?id=ZqnMBQAAQBAJ&pg=PA56). CRC Press. pp. 56–59.
ISBN 9781439851197.

11. Land, S.K.; Smith, D.B.; Walz, J.W. (2012). Practical Support for Lean Six Sigma Software Process
Definition: Using IEEE Software Engineering Standards (https://books.google.com/books?id=SsBF_lVb
K_gC&pg=PA341). John Wiley & Sons. pp. 341–3. ISBN 9780470289952.

12. Kay, Russell (May 14, 2002). "QuickStudy: System Development Life Cycle" (http://www.computerworl
d.com/s/article/71151/System_Development_Life_Cycle). ComputerWorld.

13. Taylor, G.D. (2008). Introduction to Logistics Engineering (https://books.google.com/books?id=gqpZDN
c5_Y4C&pg=SA12-PA6). CRC Press. pp. 12.6–12.18. ISBN 9781420088571.

14. Control and Audit, Information Systems. SDLC (August 2013 ed.). Chapter 5: Institute of Chartered
Accountants of India. p. 5.28.

15. Radack, S. (n.d.). "The system development life cycle (SDLC)" (http://csrc.nist.gov/publications/nistbul/
april2009_system-development-life-cycle.pdf) (PDF). National Institute of Standards and Technology.

16. Marakas, James A. O'Brien, George M. (2010). Management information systems (10th ed.). New
York: McGraw-Hill/Irwin. pp. 485–489. ISBN 0073376817.

17. U.S. House of Representatives (1999). Systems Development Life-Cycle Policy (http://www.house.gov/
content/cao/procurement/ref-docs/SDLCPOL.pdf). p.13.

18. Blanchard, B. S., & Fabrycky, W. J.(2006) Systems engineering and analysis (4th ed.) New Jersey:
Prentice Hall. p.31

19. Post, G., & Anderson, D., (2006). Management information systems: Solving business problems with
information technology. (4th ed.). New York: McGraw-Hill Irwin.

20. Blanchard and Fabrycky (2006). Systems Engineering and Analysis, Fourth Edition. Prentice Hall.
p. 19.

21. Dr. Joahn Gouws (2007). Introduction to Engineering, System Engineering. Melikon Pty Ltd.
22. Cunningham, James. "HERC Maintenance" (https://www.hercbpm.com.au/). Fargo. XXI (North

Avenue): 49. Retrieved 13 May 2009.

Further reading

https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/978-0-230-20368-6
http://www.computerworld.com/developmenttopics/development/story/0,10801,71151,00.html
https://www.cms.gov/Research-Statistics-Data-and-Systems/CMS-Information-Technology/XLC/Downloads/SelectingDevelopmentApproach.pdf
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1016%2Fj.infsof.2007.10.019
http://foldoc.org/Systems+Development+Life+Cycle
http://condor.depaul.edu/~jpetlick/extra/394/Session2.ppt
https://www.scrum.org/resources/what-is-scrum
https://www.justice.gov/archive/jmd/irm/lifecycle/table.htm
https://books.google.com/books?id=z8UdPmvkBHEC&pg=PA29
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/9780470146347
https://books.google.com/books?id=ZqnMBQAAQBAJ&pg=PA56
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/9781439851197
https://books.google.com/books?id=SsBF_lVbK_gC&pg=PA341
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/9780470289952
http://www.computerworld.com/s/article/71151/System_Development_Life_Cycle
https://books.google.com/books?id=gqpZDNc5_Y4C&pg=SA12-PA6
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/9781420088571
http://csrc.nist.gov/publications/nistbul/april2009_system-development-life-cycle.pdf
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/0073376817
http://www.house.gov/content/cao/procurement/ref-docs/SDLCPOL.pdf
https://en.wikipedia.org/w/index.php?title=Blanchard,_B._S.&action=edit&redlink=1
https://en.wikipedia.org/wiki/Fabrycky,_W._J.
https://www.hercbpm.com.au/


Management Information Systems, 2005 (https://web.archive.org/web/20060901145404/http://www.cb
e.wwu.edu/misclasses/MIS320_Spring06_Bajwa/Chap006.ppt), Retrieved on June 22, 2006 from the
World Wide Web:
This article is based on material taken from the Free On-line Dictionary of Computing prior to 1 November 2008 and
incorporated under the "relicensing" terms of the GFDL, version 1.3 or later.

The Agile System Development Lifecycle (http://www.ambysoft.com/essays/agileLifecycle.html)
Pension Benefit Guaranty Corporation – Information Technology Solutions Lifecycle Methodology (htt
p://www.pbgc.gov/docs/ITSLCM%20V2007.1.pdf)
DoD Integrated Framework Chart IFC (front (https://spacese.spacegrant.org/uploads/Project%20Life%
20Cycle/DAU_wallChart.pdf), back (https://www.dau.edu/cop/space/DAU%20Sponsored%20Document
s/Ver%205.4.14%20Space%20back%2025%20Jul%202012%20Final.pdf))
FSA Life Cycle Framework (https://web.archive.org/web/20100707055603/http://federalstudentaid.ed.g
ov/static/gw/docs/lcm/FSALCMFrameworkOverview.pdf)
HHS Enterprise Performance Life Cycle Framework (https://www.hhs.gov/ocio/eplc/eplc_framework_v1
point2.pdf)
The Open Systems Development Life Cycle (http://OpenSDLC.org)
System Development Life Cycle Evolution Modeling (https://www.scribd.com/doc/103966748/SDLC-Ev
olution-Model)
Zero Deviation Life Cycle (https://web.archive.org/web/20130217023015/http://0deviation.com/)
Integrated Defense AT&L Life Cycle Management Chart (http://spacese.spacegrant.org/uploads/Projec
t%20Life%20Cycle/DAU_wallChart.pdf), the U.S. DoD form of this concept.

Retrieved from "https://en.wikipedia.org/w/index.php?title=Systems_development_life_cycle&oldid=965684979"

This page was last edited on 2 July 2020, at 20:04 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you
agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-
profit organization.

External links

https://web.archive.org/web/20060901145404/http://www.cbe.wwu.edu/misclasses/MIS320_Spring06_Bajwa/Chap006.ppt
https://en.wikipedia.org/wiki/Free_On-line_Dictionary_of_Computing
https://en.wikipedia.org/wiki/GNU_Free_Documentation_License
http://www.ambysoft.com/essays/agileLifecycle.html
http://www.pbgc.gov/docs/ITSLCM%20V2007.1.pdf
https://spacese.spacegrant.org/uploads/Project%20Life%20Cycle/DAU_wallChart.pdf
https://www.dau.edu/cop/space/DAU%20Sponsored%20Documents/Ver%205.4.14%20Space%20back%2025%20Jul%202012%20Final.pdf
https://web.archive.org/web/20100707055603/http://federalstudentaid.ed.gov/static/gw/docs/lcm/FSALCMFrameworkOverview.pdf
https://www.hhs.gov/ocio/eplc/eplc_framework_v1point2.pdf
http://opensdlc.org/
https://www.scribd.com/doc/103966748/SDLC-Evolution-Model
https://web.archive.org/web/20130217023015/http://0deviation.com/
http://spacese.spacegrant.org/uploads/Project%20Life%20Cycle/DAU_wallChart.pdf
https://en.wikipedia.org/w/index.php?title=Systems_development_life_cycle&oldid=965684979
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License
https://foundation.wikimedia.org/wiki/Terms_of_Use
https://foundation.wikimedia.org/wiki/Privacy_policy
https://www.wikimediafoundation.org/

