CH12
In this chapter we return to the idea of the generic iteration, discussed in Chapter 5. The intent of this chapter is to distill the common pattern that characterizes all iterations from the variety of iterations that occur during the four phases.
We employ this generic pattern as a base on which to build the concrete iterations where, in each phase, the content changes to accommodate the special goals of that phase (see Figure 12.1).
The generic iteration workflow includes the five core workflows: requirements, analysis, design, implementation, and test. It also includes planning, which precedes the workflows, and assessment, which follows them (Chapters 6-11 describe each core workflow separately). In this chapter we will focus on planning, assessment, and other activities that are common to all the workflows.
Planning is necessary throughout the entire development cycle. But before we can plan, we need to know what to do. The five core workflows provide a starting point. Risk management, that is, identifying and then mitigating risks by realizing the corresponding set of use cases, is another key aspect of planning. Of course, no plan can be complete without estimating the resources that will be required, and finally, the execution of each iteration and phase has to be assessed.
FIGURE 12.1 The generic iteration workflow is used to describe concrete iteration workflows for each phase. (The intent of this figure is to illustrate the way in which we have structured Part III, with the iteration generics in Chapter 12 and the special​izations for each phase in Chapters 13-16).
12.1 The Need for Balance
At every moment in the life cycle of a software development project many different sequences of activities go on. We work on new functions, we architect, we receive feedback from users, we mitigate risks, we plan the future, and so on. We must at every moment balance and synchronize these different sequences of activities stream​ing through this complexity.
Developers split up the work, which is overwhelmingly complex in its entirety, into smaller, more comprehensible pieces. Over the development life cycle, they divide the work into phases and, within the phases, into iterations, as we outline in Part 1.
Within each iteration the project strives to achieve a balance among the sequences of activities running through the iteration. That means we should work on the right things in each iteration. What the right things to work on are depends on where we are in the life cycle. A project's task is to select the right things to work on for each sequence of activity. In determining the balance of the sequences of activities it is also important to ensure that they are of comparable importance, so that they can be efficiently prioritized and synchronized. Failure to achieve this sort of balance and efficient execution seems to be the undoing of many iterative, incremental develop​ment life cycles.
In an early iteration we work with critical risks, key use cases, architectural issues, the selection of the development environment, all activities that are research.
oriented, whereas in later iterations we work on development-oriented activities with implementing and testing, evaluating performance problems, and deploying the sys​tem. Relating all these activities to each other is a delicate balancing act. It is the fact of this delicacy that makes software development extraordinarily difficult.
Understanding these different sequences of activities and balancing them is what we do in each iteration. In the Unified Process some of these sequences of activities have been identified and described as the core workftows. There are other sequences that we have not identified formally, but that could very well be treated in much the same way as we treat the workftows. For instance,
Interacting with customers on new requirements.
Preparing a bid to clients.
Understanding the context of a system by making a business model.
Planning and managing the project.
Establishing and managing the development environment, that is, the process
and tools.
Managing the risks.
Deploying of a product to a customer site.
Responding to user feedback.
12.2 The Phases Are the First Division of Work
The first step toward dividing the software development process into pieces is to separate it timewise into four phases: inception, elaboration, construction, and transi​tion. Each phase is further divided into one or more iterations. This chapter outlines the general nature of these phases and iterations. The next four chapters consider each phase in detail.
12.2.1. Inception Phase Establishes Feasibility
The primary goal of this phase is to establish the business case-the case for going forward with the project. This case will be further developed in the elaboration phase as more information becomes available. The inception phase is not a complete study of the proposed system. We seek out only the small percentage of use cases we need to support the initial business case. To make this case, we take four steps:
Delimit the scope of the proposed system, that is, define the system boundary and begin to identify the interfaces to related systems outside the boundary.
Describe or outline the candidate architecture of the system, especially those parts of the system that are new, risky, or difficult. We carry this step only to an architecture description, rarely to an executable prototype. The architecture description consists of first cuts of views of the models. Here the goal is to make it believable that we can create a stable architecture of the proposed
system in the next phase. We don't build this architecture in this phase; we simply make it so believable that we can build one. Building it is the major product of the elaboration phase.
Identify critical risks, those that affect the ability to build the system, and determine whether we can see a way to mitigate them, perhaps in a later phase. In this phase we consider only the risks that affect feasibility, that is, those that threaten the successful development of the system. Any noncritical risks that we happen to identify are placed on the risk list for detailed consid​eration in the next phase.
Demonstrate to potential users or customers that the system proposed is capa​ble of solving their problem or supporting their business objective by building a proof-of-concept prototype. In the inception phase we may build a prototype to demonstrate a solution to the problem of the potential customers and users. The prototype demonstrates the basic ideas of the new system with focus on its use-user interfaces and/or some interesting new algorithms. This latter prototype tends to be exploratory, that is, it demonstrates a possible solution, but it may not evolve into the final product. It is usually a throw-away proto​type. In contrast, an architectural prototype, developed in the elaboration phase, tends to be evolutionary, that is, one capable of being further evolved in the next phase.
We carry these efforts to the point at which it appears to be economically worthwhile to develop the product. They show that the system is likely to provide, within fairly broad limits, income or other values commensurate with the investment required to build it. In other words, we have made the first cut at the business case. We will fur​ther refine it in the next phase, elaboration.
The intent is to minimize expenditures of schedule time, effort, and funds in this phase until we find that the system is, indeed, feasible. In the case of a largely new system in a little explored domain, that determination may take considerable time and effort and may extend to several iterations in that event. For a well-known sys​tem in an established domain or the extension of an existing system to a new release, risks and unknowns may be minimal, enabling this first phase to be completed in a few days.
12.2.2 Elaboration Phase Focuses on "Do-Ability"
The primary product of the elaboration phase is a stable architecture, to guide the system through its future life. This phase also carries the study of the proposed sys​tem to the point of planning the construction phase with high fidelity. With these two overall goals-the architecture and the high-fidelity cost estimate-the team does the following:
Creates an architectural baseline that covers the architecturally significant functionality of the system and features important to the stakeholders, as
12.2.4 Transition Phase Moves into the User Environment
The transition phase often begins with the beta release, that is, the development organization distributes the software product, now capable of initial operation, to a representative sample of the community of actual users. Operation in the harsh envi​ronment of user organizations is often a more severe trial of the product's state of development than operation in the developer's realm.
Transition activities include:
Preparation activities, such as site preparation.
Advising the customer on updating the environment (hardware, operating systems, communications protocols, etc.) in which the software is to operate.
Preparation of manuals and other documentation for product release. In the construction phase we prepared preliminary documentation for beta users.
Adjusting the software to operate under the actual parameters of the user envi​ronment.
Correcting defects found after feedback from the beta tests.
Modifying the software in the light of unforeseen problems.
The transition phase ends with formal product release. However, before the pro​ject team relinquishes the project, team leaders conduct a postmortem devoted to two goals:
To find, discuss, evaluate, and record for future reference "lessons learned."
To record matters of use in the next release or the next generation.
12.3 The Generic Iteration Revisited
We make a distinction between core workflows and iteration workflows. The core workflows-requirements, analysis, design, implementation, and test-are described in Chapters 6-11. In the Unified Process, these core workflows occur not just once, as is theoretically the case in the waterfall model. Rather, they recur in each iteration, time after time, as iteration workflows. In each recurrence, however, they differ in detail-they address the issues central to that iteration.
12.3.1 Core Workflows Repeat in Each Iteration
The generic iteration consists of the five workflows: requirements, analysis, design, implementation, and test, and it also includes planning and assessment. See Figure 12.2.
In Sections 12.4-12.7, we discuss the planning that precedes the iteration, and in Section 12.8, the assessment of each iteration. Then in Chapters 13-16 we show in detail how the five workflows are applied in each phase.
FIGURE 12.2 The five core work flows are repeated in each iteration, preceded by planning and followed by assessment.
12.3.2 Workers Participate in the Workflows
We have talked of software development from time to time as "complex." Figure 12.3 provides a simplified overview of the process. Even so, the figure is far from simple, and the reality, as you know, is still more complicated. In this chapter, we are not going to describe in detail how each worker produces the artifacts for which he or she is responsible, nor just what these artifacts are. The small cogwheels in the figure symbolize that work, and the arrows between these activities represent temporal rela​tionships. See Chapters 6-11 for details.
Still, Figure 12.3 gives you an impression of what falls within an iteration. For example, starting in the upper-left comer, a system analyst identifies the use cases and actors and structures them into a use-case model. Then, a use-case specifier details each use case, and a user-interface designer prototypes the user interfaces. The architect prioritizes the use cases to be developed within the iteration, taking risks into consideration.
You can see that the particular activities performed within the requirements "cir​cle" would vary with the location of the iteration in the entire developmentprocess. In the inception phase, for instance, the workers limit use-case detailing and prioriti​zation to the small proportion of use cases needed in that phase. The first four of the workflows follow, largely in time sequence, although there may be some overlapping. The three workers involved in the analysis workflow carry the work on into design.
The test workflow, however, begins very early, with the test engineer planning what to do. As soon as sufficient detail becomes available, in the implementation workflow, the test engineer designs tests. As components that have passed unit testing are integrated, the system tester and the integration tester test the results of several levels of integration. The test engineer evaluates whether the testing he has prescribed has been adequate.
FIGURE 12.3 The worker titles are listed vertically at the left and right, identifying each "swim lane." Time advances from left to right. The core workflows, embracing the workers and the activities they perform, are depicted within the free-hand "cir​cles." The component engineer, for example, analyzes a class and a package in the analysis workflow, designs a class and a subsystem in the design workflow, imple​ments a class and a subsystem, and performs a unit test in the implementation workflow.
In the following chapters, we add on top of Figure 12.3 what we need to repre​sent the iteration workflows in each phase. These workflows are all patterned on this generic figure. Since the focus varies in different phases, the corresponding iteration workflows differ in degree.
12.4 Planning Precedes Doing
As we sit down at the beginning of the inception phase, we know three things:
We are going to carry out the project in a series of iterations in four phases .
We have the information about the proposed system that our predecessors collected (and that led to initiating a project).
We have our own background information about the domain and about similar systems on which we worked in the past.
From this information, we must plan both the project (project plan) and each iteration (iteration plan). In the beginning, with limited information with which to work, both plans contain little detail. As we work through the inception and elabora​tion phases, the plans become more detailed.
First, we describe how to plan the phases and iterations and how to evaluate the iteration. In Section 12.5 we discuss how risks affect the plan and in Section 12.6 how we mitigate these risks by selecting the right use cases. Finally, we discuss resource allocation in Section 12.7.
12.4.1 Plan the Four Phases
We know, from the prescriptions of the Unified Process, what each phase involves. Our task, in the project plan, is to reduce these prescriptions to concrete terms:
Time allocation. We decide how much time to assign to each phase and the date by which each phase is to be completed. These times, while set precisely, may be rather uncertain at the beginning of the inception phase, but they will be firmed up as we learn more. After all, it is not until the end of the elabora​tion phase that we make a firm bid.
Major milestones. A phase ends when the preset criteria have been met. At first, these criteria may be little more than educated guesses, but they are informed by our past experience in the domain, by the extent to which the proposed system differs from earlier ones, by performance specifications the new system is intended to achieve, and by the capability of our software development organization.
Iterations per phase. Within each phase, we advance the work through one or more iterations. The general character of each iteration is contained in the coarse-grained project plan.
Project plan. The project plan outlines an overall "road map," covering the schedule, major milestone dates and criteria, and the breakdown of the phases into iterations.
You can expect the first iteration in the inception phase to be difficult. In addition to the iteration itself, you have to cope with
Tailoring the Unified Process to fit the project and selecting tools to automate
the process.
Beginning to assemble people with the talents required by the project.
Building the relationships that make an effective team.
Understanding the domain, which is often new to the team.
Perceiving the nature of the project, which will be more difficult in green-field development than in extending an existing product into a new generation.
Familiarizing the team with tools appropriate to the tailored process and the project.
12.4.2 Plan the Iterations
Each phase consists of one or more iterations. Planning the iterations proceeds through a set of steps roughly comparable to those followed in planning the phases:
Iteration schedule. We decide how much time each iteration is allowed to require and its date of completion, at first roughly and then with increasing precision as we learn more.
Iteration content. While the project plan outlines the iterations planned in gen​eral terms, as the date of beginning an iteration approaches, we plan what is to be done in more detail. The content of an iteration is based on the following:
Which use cases are to be at least partially filled out during the iteration.
Which technical risks it is time to identify, translate into use cases, and mitigate.
Any changes in requirements that have occurred or defects that may have been corrected .
Which subsystems are to be implemented partly or completely. (This point varies depending on the phase under consideration. In the elaboration phase, for example, we identify most of the subsystems and all of the archi​tecturally significant classes. In the construction phase, we fill the subsys​tems with more and more behavior, resulting in more complete components.)
The plan of the current iteration is fully detailed, and that of the next one becomes more detailed as we learn more. The detail for later iterations may be limited by the knowledge available at the time.
Minor milestones (Appendix C). The attainment of preset criteria (preferably on the planned date) signals the completion of each iteration.
Iteration plan (Appendix C). The activities of each iteration are recorded in a fine-grained iteration plan. At the beginning of every iteration we allocate the individuals available to act as the workers.
The number of iterations planned for each phase varies, essentially, with the complexity of the proposed system. A very simple project might be carried out with only one iteration per phase. A more complex project might require more iterations. For example,
Inception phase (Appendix C): One iteration, primarily devoted to scoping the system.
Elaboration phase (Appendix C): Two iterations, the first for an initial pass at the architecture, the second culminating in the architectural baseline.
use cases can be confirmed by testing. They plan the test cases that define the integra​tion and regression tests, as well as the system tests. In iterative development, the testing cycle is also iterative. Each build created within an iteration is a target for testing. The test engineers add to and refine the tests that are executed for each build, thus accumulating a body of tests used for regression testing at later stages. Early iterations introduce more new functions and new tests than later iterations. As the integration of builds continues, the number of new tests diminishes, and a growing number of regression tests is executed to validate the accumulated system implemen​tation. Consequently, the early builds and iterations require more test planning and design, while the later ones are weighted toward test execution and evaluation.
General criteria are not reducible to paths through the code that testers can test.
They can, however, be perceived, first, in prototypes and, later, in the series of work​ing builds and iterations. Users, stakeholders, and developers can view displays and graphical user interfaces with more insight than they can the static information con​tained in model artifacts.
The evaluation criteria tell how to verify that the requirements for an iteration have been developed correctly. They specify in terms that can be observed or verified what the project manager intends for the iteration to achieve. Their original inspira​tion is the vision statement. The criteria become more detailed as use cases, use-case scenarios, performance requirements, and test cases express concretely what succes​sive increments are to be.
12.5 Risks Affect Project Planning
The way in which we plan the development of a new system is to a considerable extent influenced by the risks we perceive. Therefore, one of the first steps, early in the inception phase, is to create a risk list. At first, we may be hampered by lack of information, but we probably have some sense of what the critical risks-those that will determine whether we will be able to build the system-are. As we proceed with the early work, we will come to appreciate what the significant risks-those that have to be mitigated in order to bid a schedule and cost and to attain a quality goal-will be.
12.5.1 Manage a Risk List
It is one thing to know in a vague sort of way that software development involves risks. It is another thing to get them out in the open where everyone can see them, be guided by them, and do something about them. That is the purpose of the risk list. It is not just something that gets filed away in a drawer or computer folder. Everything you need to know about a risk in order to work with it, including its unique identifier, would be on the list. That includes:
Description: Start with a brief description and add to it as you learn more .
Priority: Assign a priority to it, beginning with critical, significant, and rou​tine. As the list develops, you will probably want to add a few more categories.
Impact: Which parts of the project or system will the risk affect?
Monitor: Who is responsible for keeping track of a continuing risk?
Responsibility: What individual or organization unit is responsible for retiring the risk?
Contingency: What is to be done if the risk materializes?
On a project of some size, people may eventually find hundreds of risks. In large projects, the risks should probably be items in a database so that they can be sorted and searched efficiently. The team cannot focus on everything at once. That is one reason for iterative development. Risks are sorted by degree of seriousness or by their effect on development and attacked in order. As we have emphasized many times, the risks to attack first are those that could cause the project to fail. Some risks do not yield to easy resolution and remain on the risk list for some time. Some organizations have found it helpful to lead off the list with the "Top Ten" as a means of focusing attention.
The risk list is not a static instrument. As risks are discovered, the list grows. As risks are retired or as we pass the point in development at which a particular risk could materialize, they are removed from the list. The project manager conducts periodic meetings, often in concert with iteration assessments, to review the status of the most important risks. Other leaders conduct sessions on lesser risks.
12.5.2 Risks Affect the Iteration Plan
During the inception phase the critical risks are identified and the team tries to miti​gate them. They explore their nature to the point of preparing an iteration plan. To know enough to make the plan, for example, they may have to develop the small set of use cases related to the risk and implement it in the proof-of-concept prototype. Then, with certain inputs, they find that the prototype generates an unacceptable output-premature firing, for example-a critical risk. (These inputs have to be within the specified input range, perhaps on its fringes, but still cause unacceptable outputs.)
In addition to the effect that the most serious risks have on the success of a proj​ect, all risks have some impact on schedule, cost, or quality. Some of these risks may be serious enough to extend the schedule or increase the effort beyond those planned-unless they are mitigated before these undesired results materialize. In nearly all cases an impact on schedule also affects effort and cost. In a few cases, while a risk may have little impact on schedule or cost, it adversely affects other fac​tors, such as quality or performance.
12.5.3 Schedule Risk Action
The general principle is to take action against risks on a planned basis. The phases and the iterations within phases provide the mechanism for scheduling risk action. For example, plan to deal with risks that affect the ability to build the system in the iteration(s) in the inception phase. That is, you retire them, if possible, or at least have a contingency plan.
The alternative, no risk schedule, has not worked very well in our experience. In the absence of a conscious effort to act on risks early, they usually manifest them​selves late in the schedule while performing integration test and system test. At that point, resolving any serious problems, which may require extensive modifications to the system, can delay delivery by weeks or more. In the iterative approach, the con​struction of prototypes, builds, and artifacts from the first phase onward uncovers risks while there is still time to alleviate them.
We appreciate that it is hard to identify and describe some kinds of risks. For many reasons, some risks may be "obscure"-usually because people did not look for them hard enough. Another reason risks may go unnoticed is that some of the people involved are taken in by the hype that overstates what can actually be accom​plished at the contemplated price in the desired time. If some risks slide through the identification screens, then the project cannot plan them into iterations and mitigate them in some kind of order.
Whatever the reason, on some projects some risks will be overlooked until late in the schedule, especially when a project team has little experience in risk manage​ment. With practice and experience, teams will improve their capacity to sequence risks in an order that permits the project to proceed along a logical path. In the con​struction phase, for instance, the risks that could throw the second iteration off sched​ule should be mitigated no later than the first iteration in that phase. The goal is to have each iteration in the construction phase proceed uneventfully and according to plan. That is not likely to happen if the project runs into an unexpected risk that can​not be quickly resolved.
12.6 Use-Case Prioritization
In this section we discuss the selection of use cases to use as drivers within a single iteration. Recall that every iteration in the Unified Process is driven by a set of use cases. Actually, it is more exact to say that an iteration is driven by a set of scenarios through use cases. It is more exact because in the early iterations we don't necessarily take whole use cases. We take only the scenarios or paths through them that are perti​nent to the task at hand. Sometimes when we say that we select use cases, we mean that we are selecting the scenarios that are pertinent to the iteration.
The work that results in this selection is called prioritize the use case (see Sec​tion 7.4.2). The use cases are prioritized in the order in which they-or scenarios of them-should be dealt with in iterations. They are ranked over several iterations. In early iterations some use cases (or scenarios of them) are ranked, but many are not yet identified and thus are not ranked. All use cases that are identified are also ranked. The ranking results in a use-case ranking list.
Controlling this ranking is risk. We rank the use cases in the order of the risk that they embody. Here, we use the term risk in a broad sense. For example, having to change the architecture of the system in later phases is a risk that we want to avoid. To not build the right system is a risk that we want to mitigate early by finding the true requirements. The selection process is thus risk-driven. We place the risks we
identify on a risk list, as discussed in section 12.5.1 and we translate each risk into a use case that when implemented mitigates the risk. That use case will then be inserted at a position in the use-case ranking list that corresponds to its level of risk.
In early iterations we devote the prioritize use cases activity to risks related to the scope of the system and the architecture. In later iterations, we select new use cases to fill in the architecture already selected with more functionality. We put more muscles on the skeleton. The later use cases are added in some logical order. That logical order corresponds to ranks in the use-case ranking list. For example, use cases that need other use cases in order to function are ranked lower and thus are developed after the others. See Section 5.3 for a discussion of the iterative approach as a risk​driven endeavor. In the next three sections we deal with the three risk categories: specific risks, architectural risks, and requirements risks.
12.6.1 Risks Specific to a Particular Product
This is the kind of risk-the technical risks-that we discussed in Section 5.3.1. We translate them to use cases that, when realized properly, mitigate the risk. Each risk is mapped to a use case that, when implemented, mitigates it. We have to identify these risks one by one, because dealing with them is not formally built into the process. What we mean by "formally built into the process" is that the process provides a specific place in which to deal with a certain type of risk. For example, certain archi​tectural risks are considered in the inception phase, others in the elaboration phase, as discussed in Section 12.6.2. Risks that are not formally built into the process need to be managed one by one and mitigated before their presence would affect the progress of development.
12.6.2 Risk of Not Getting the Architecture Right
One of the most serious risks is that of not building a system that can evolve grace​fully over the coming phases or during its lifetime, that is, not establishing a resilient architecture. This risk is dealt with explicitly during the inception and elaboration phases, when we make sure that we have the right architecture and can freeze it (except for minor changes in the construction phase). That is what we meant in the previous paragraph when we said that finding and dealing with certain kinds of risks is built into the Unified Process. In this case, for instance, the inception and elabora​tion phases deal explicitly with architecture.
How do we determine which use cases are most important to getting the architec​ture right? How do we mitigate the risk of not getting a stable architecture? Well, we seek the architecturally significant use cases. They are the ones that cover the main tasks or functions the system is to accomplish. You ask yourself the question, why do we build this system?
The answer is found in the critical use cases-those that are most important to the users of the system. In addition, the use cases that have important nonfunctional requirements, such as performance, response times, and so on, fall into this category.
These use cases usually help find the skeleton of the system on top of which we add the rest of the functions required (See Section 7.2.4).
Other categories of use cases are
Secondary. These use cases support the critical ones. They involve secondary functions, such as supervision and compilation of operating statistics. For the most part, this category of use cases has only a modest impact on the architec​ture, although they may still need to be developed early if, for example, a stakeholder has a keen interest in seeing some data output, such as the transac​tion fee described in the example in Section 12.6.3. Then it would be ranked higher because we want to mitigate the risk of not getting requirements right.
Ancillary (nice to have). These use cases are not key to the architecture or to critical risks. This level of use cases seldom comes into play during the itera​tions in the inception and elaboration phase. If it does, it is only incidental to filling out the critical or important use cases.
Optional. A few use cases may be critical or important, even though they may not always be present. We may need to work on them because they affect the architecture when they are present.
Moreover, we want to be sure that we have been through all the use cases that could possibly impact the architecture. We don't want to leave any functionality in the shadow so that we discover too late that we don't have a stable architecture. We need high coverage of the use cases that might affect the architecture. High coverage is important, not just for finding the architecture but for making sure that we can accurately predict the costs of developing the product in the first cycle. We must avoid the risk of finding out too late that we cannot accommodate a newly discovered functionality.
That is why we need to cover about 80% of the use cases in the elaboration phase. By "cover," we mean that we understand the use cases and the impact they may have on the system. In practice, on the average we identify around 80% of the use cases and include them in the use-case model, but usually we do not find it neces​sary to describe in detail all of them. In a typical project we may find it necessary to describe only parts of the use cases. Some of these descriptions may be brief, only a few lines, if that is enough to clarify what we need to know in this phase. In relatively simple projects we may detail a minor fraction of the use cases when working on requirements. In larger projects with high risks we may find it advisable to describe in detail 80% or more of the use cases.
12.6.3 Risk of Not Getting Requirements Right
Another serious risk is not getting a system that does what the users really want it to do. The means for dealing with this risk is also built into the process. By the end of the elaboration phase we want to be certain that we are building the right system. This finding cannot be deferred because in the construction phase money begins
to flow in larger amounts. Which use cases are required to make sure that we are
developing the system that is right for its users? Which use cases assure that the system can evolve in the other phases in such a way that we will be able to add all
the requirements needed for the first release? We cannot leave any functionality in the shadow. We need to know that what we build can grow.
The first part of the answer, of course, is to do the requirements workflow right.
We might create a business model (or in some cases, a more limited domain model). The second part of the answer is, through early iterations and prototyping, to build the system that users require and get feedback on it as early as possible. It is only through real use that we can be sure that we have built the right system.
Example Billing and Payment System
In the Billing and Payment system we could assume that the bank would decide that it is very important to them to make money on its services. Maybe it wants to charge a small fee for each transaction. Incorporating this fee would be an addition of new functions to the core use cases Order Goods and Services, Confirm Order, Invoice Buyer, and Pay Invoice. From the standpoint of the architect, however, the charging function may not be very important in getting the architecture right. Charg​ing can be dealt with as an extension to other use cases; it can be combined with
a few use cases that cover charging. As far as the developers are concerned, the charging function is quite routine; they have done it before. Yet, from the customer's view, it is extremely important that the charging use cases are correctly implemented before delivery. For that reason, it is categorized as a high risk, so it becomes important.
In consequence, when the project manager considers the order of iterations, he or she has to weigh the importance of the charging function. On the one hand, if he finds that charging in the case at hand is a simple function that poses no real chal​lenges to developers, he might decide that developers do not need to deal with it during the elaboration phase, and he might safely defer it to the construction phase. On the other hand, if he finds that charging presents a number of intricate internal problems (separate from other use cases), he should plan to deal with charging as part of an iteration during the elaboration phase. One of these "intricate problems," might be the customer's need to see charging resolved at an early point.
12.7 Resources Needed
You may feel that the iterative plan of phase-based software development possesses considerable merit, but several questions may be nagging you:
How much are the inception and elaboration phases going to cost, both in terms of effort and in terms of staff qualifications needed?
Where is the money to pay for these phases to come from?
How much time are these two phases going to take?
By how many months will the early phases delay what many people regard as the real business of software development, that is, construction?
12.7.1 Projects Differ Widely
It is no secret, of course, that proposed software systems differ widely in their readi​ness to enter development. Let us list four examples:
A totally new or unprecedented product in an unexplored domain-a green field. No one knows much about what is to be done or even if it is possible to do it. There is little experience to go on. We will have to depend on experi​enced people to make some informed guesses. Under these circumstances whoever wants this system is in some sense responsible for financing the inception and elaboration phases. The phases have to be financed almost as if they were research, that is, on some kind of cost-plus basis. Not enough is known to hold the project in the inception or elaboration phases to a fixed budget or schedule. In this kind of situation, defining the scope, finding a candidate architecture, identifying the critical risks, and making the business case are time-consuming tasks for the inception phase. Similarly, reaching the objectives of the elaboration phase, that is, getting the project to the point at which you can plan the construction phase, takes more time.
A product of a type that has been done before in a field in which earlier prod​ucts provide examples but no reusable components. These earlier products provide a guide to the candidate architecture, but it may take a few days to make certain that the earlier architecture does indeed fit. Under these circum​stances, the inception phase will probably be brief (a few weeks). It may require only one or two experienced people full time, but it will likely draw upon the knowledge of other experienced people that the small project team needs to consult. Because this kind of product has been done before, major risks are unlikely, but it may be necessary to spend a few days establishing that fact.
A legacy product exists, but it is to be converted to an up-to-date form, such as going from mainframe to client/server. To some extent, parts of the legacy code can be encapsulated and used in the new system. The inception team has to find a candidate architecture. Since other organizations have reused legacy products, the team knows it can be done. If the organization proposing to do the work has not done it before, however, cost and schedule information may not be known. It will have to devise an architectural baseline. It will have to identify an interface between the new and the old system starting from use cases and finding subsystems-one of the subsystems being an encapsulation of the parts of the legacy system that need not be changed.
Components exist, either in the commercial marketplace or in-house. The software organization expects that a considerable percentage of the new
system, perhaps 50% to 90%, can be put together from these components,
but there will be gaps that require new code. The project will need to identify and specify the interfaces between both the reusable components and the new components, as well as between external systems and users. Developing from components does take time and effort, and the team may run into risks. On the whole, however, component-based development is faster and less expensive than developing from scratch.
These examples are not intended to define distinct categories. Rather, they repre​sent overlapping positions. Thus we have to think in terms of starting states. How much experience does our organization have in the application area? How large a base of reusable components can we draw upon? Is this proposal more than a new release of an existing product? Will it push the state of the art? Is it a distributed sys​tem (where we have done only single-platform work)?
12.7.2 A Typical Project Looks Like This
In spite of the uncertainties that different starting states introduce, the initial develop​ment cycle of a medium-sized project might distribute effort and schedule approxi​mately as shown in Figure 12.4. In general, to layout the architecture and to mitigate the risks, phase-based development moves work to the front part of the cycle, as com​pared to development based on the waterfall approach.
12.7.3 Complex Projects Have Greater Needs
What is the effect if we hypothesize a larger, more complex project-one with new functionality, distributed architecture, or, for example, severe real-time operation​that is also using new underlying technology? We will probably have to do a larger number of iterations. We will have to put more time and effort into the inception and elaboration phases. As a result, these two phases may grow as shown in Figure 12.5.
FIGURE 12.5 Under the conditions imposed by a still more difficult project, more work is done in the early phases relative to the later phases. Primarily more calendar time is spent in the early phases.
We hasten to emphasize that the percentages shown in these figures are hypothet​ical. They should not be applied arbitrarily to real projects. They are intended to demonstrate the point that the more unknowns a project presents, the more time and effort will have to be spent in the inception and elaboration phases. For instance, in the example we spend more time in inception and elaboration than on the other two phases. However, the effort does not have the same impact, so we don't need to increase the resources in the same proportion, even if they also increase. At the same time, effort and time for the project as a whole increases.
The use of frameworks shortens construction dramatically but has less effect on the earlier phases. The inception and elaboration phases will be longer if reuse must be considered, but functions that are already available as frameworks don't need to be analyzed and designed, so overall, less time and effort are required by the project.
12.7.4 New Product Line Calls for Experience
In most cases, certainly for novel or difficult systems, the team has to acquire infor​mation beyond what it possesses itself. The natural source of this information is persons knowledgeable in the field of the proposed system. Even when detailed requirements are available, the team needs these interviews in order to find the archi​tecture and to focus on the risks. Finding knowledgeable people is half the battle. Ordinary users may know only their piece of the entire process; they may not know what computer systems are capable of doing.
A common failing when beginning work on a new product line is to try to do so without reusing knowledge. Since most knowledge of the way the company actually works resides in the minds of people, rather than in documents (which are often unread anyway), reusing knowledge basically comes down to "reusing" experienced people. This failing expresses itself in the assignment of new people to the initial
project team, rather than reassigning people experienced in the company's ways of doing things, if not in the new product line itself.
When a company plans to develop a new line of products, it knows in one part of its collective mind that this work will require its most competent and experienced people. At the same time, however, in another part of its collective mind, it is thinking that people of this caliber are highly important to keeping the current business going. They have to satisfy existing customers. The company has to keep the existing money stream flowing.
There is no easy answer to this dilemma. The executives for whom these experi​enced people are now working are tom between these two objectives-obviously, both the current product line and the new product line are important. In practice, many of the senior executives have been attached to the current line for many years. They are psychologically wedded to it. Often, most of them are reluctant to risk cur​rent business by giving away their key people to the new project. Consequently, the new team will have only a few people with experience, and they may not be the strongest leaders-managerial or technical. They may be the people that the execu​tives were willing to let go. These new leaders then have to fill out their teams with a large number of new people, often directly from college.
In addition to their inexperience, the new people will bring a particular cultural attitude with them. They tend to view everything old-what the company has been doing-as outmoded. Only the new is good. The newcomers fail to appreciate the importance of subjects they did not learn at school, such as production methods and life cycle management.
We have observed that companies often fail to staff the development of a new product line with the talent needed to develop it fully in time for the market window. Deficiencies are usually not corrected until the second generation of the product. In essence, the first generation turned out to be just a field trial, although that may not have been the company's original intention.
12.7.5 Paying the Cost of the Resources Used
Supporting the team working with the first two phases, small as it may be, still takes funds. In fact, the difficulty of obtaining funds to support these two phases has been one of the forces leading software organizations to undertake the construction phase prematurely, sometimes resulting in well-publicized failures. Where are these funds to come from?
In the case of a software organization producing a product to be sold, the funds come from "overhead" and, as such, are under the control of manage​ment. In the longer perspective, however, they originated with clients or cus​tomers. In other words, the software organization has to set current prices high enough to cover the cost of developing future products .
In the case of a software organization producing a product for an in-house client, the cost of the first two phases comes either from its own overhead, from funds transferred to it from the client, or from funds allocated to it by
higher management. What the latter two methods of financing come down to is that management outside of the software organization has to understand the value of the early phases and allocate funds to support them.
In the case of a software organization producing a product for a separate cor​porate client, the cost of the first two phases may come from its own overhead. It has this overhead to spend, however, only if it built this expense into past bids. If the next project fits within the software organization's normal busi​ness, this source of funds may be sufficient. If the proposed project looks to be risky beyond these normal bounds, there is a case that the client should con​tribute to the costs of the first two phases.
The reality is that important work is accomplished in the first two phases, and accomplishing it takes time and money. Moreover, in addition to funds, accomplish​ing it takes cooperation from the client. That cooperation-providing people from whom the software organization draws the information it needs-also costs money (although it may not be formally entered into the accounts).
12.8 Assess the Iterations and Phases
If the benefits of the iterative way of working are to be realized fully, the project must assess what it has accomplished at the end of each iteration and phase. The project manager is responsible for this assessment. It is done not only to assess the iteration itself but to promote two further goals:
To replan the next iteration in light of what the team has learned in doing this one and to make any necessary changes.
To modify the process, adapt the tools, extend training, and take other steps as suggested by the experience of the assessed iteration.
The first objective of an assessment is to examine what has been accomplished in terms of the preset evaluation criteria. The second is to review progress against the iteration or project plan:
Is work proceeding within budget and on schedule?
Is it meeting quality requirements, as revealed by tests or by observation of prototype, component, build, or increment operation by the stakeholders concerned?
Ideally, the project will meet the criteria. The project manager distributes the assessment results to the stakeholders concerned and files the document. It is not updated, as he reports the next assessment in a new document.
12.8.1 Criteria Not Achieved
Assessments rarely go that smoothly. Frequently, an iteration did not sufficiently achieve the criteria. The project may have to carry this work over to the next iteration (or the appropriate later iteration). This work may involve
Modifying or extending the use-case model.
Modifying or extending the architecture.
Modifying or extending the subsystems being developed thus far.
Searching for further risks.
Adding certain skills or backgrounds to the team.
Or, simply, more time may need to be allocated to carry out the existing plan. If this is the case, the project might extend the schedule of the first iteration. In that event, it should specify a firm completion date.
12.8.2 The Criteria Themselves
One point to consider, however, is the evaluation criteria themselves. The team might have established the criteria at a time when it did not yet have available all the rele​vant information. In the course of the iteration it might have discovered additional needs or found that needs it initially listed had proved unnecessary. Hence the eval​uators might have to change the criteria, not just check to see if they have been achieved.
12.8.3 The Next Iteration
A major milestone (Appendix C) marks the completion of a phase, the point at which not only the project team but the stakeholders, particularly the funding authori​ties and representatives of the users, concur that the project has achieved the mile​stone criteria and that passage to the next phase is justified.
On the basis of the assessment, the project manager (assisted by some of the people who worked on the iteration or phase, amplified by some of the people sched​uled for the next iteration) does the following:
Determines that the work is ready to advance to the next iteration.
If rework is needed, allocates in which of the following iterations it should be
accomplished.
Plans the next iteration in detail.
Updates the plan, in less detail, for iterations beyond the next one.
Updates risk list and project plan.
Compares the iteration's actual cost and schedule against those planned.
We note that, in component-based development, the metric (i.e., lines of code completed) is not a reliable indicator of progress. To the extent that a developer can
reuse already designed building blocks (subsystems, classes, and components), good progress can be made while yet little new code is written.
12.8.4 Evolution of the Model Set
A key characteristic of phased, iterative development is the evolution of the model set. This evolution contrasts with the waterfall model, in which we imagine that, first, the requirements are completed, then the analysis, and so on. In iterative develop​ment, the models grow together, as an accord, through the phases. In earlier iterations some models are ahead of others. For example, the use-case model is ahead of the implementation model. Instead of one model evolving rather independently of the next model, we think in terms of one state of the entire system evolving into a more advanced state of the entire system, as we diagrammed in Figure 5.7. Each iteration-perhaps each build within an iteration-represents an advance in state of the entire system. This advance is reflected in the gradual movement toward comple​tion of the model set. The degree to which this evolution has progressed at each assessment is an important indicator for the assessment group to consider.
In the next chapter we return to project beginnings and consider the inception phase on its own merits.
