An Iterative and Incremental Process Ch5
To be effective, a software process needs to have a sequence of clearly articulated milestones (Appendix C) that provide managers and the rest of the project team with the criteria they need to authorize movement from one phase into the next of a product cycle.
Within each phase the process moves through a series of iterations and increments (Appendix C) that lead to these criteria.

In the inception phase the essential criterion is viability, approached by

Identifying and reducing the risks (Appendix C; see also Section 12.5) critical to the system's viability.

Moving from a key subset of the requirements through use-case modeling into a candidate architecture.

Making an initial estimate within broad limits, of cost, effort, schedule, and product quality.

Initiating the business case (see more on the business case in Chapters 12-16), that the project appears to be economically worth doing, again within broad limits.

In the elaboration phase, the essential criterion is the ability to build the system in an economic framework, approached by

· Identifying and reducing the risks significantly affecting system construction.

· Specifying most of the use cases that represent the functionality to be developed.

· Extending the candidate architecture to executable baseline proportions.

· Preparing a project plan (Appendix C) in sufficient detail to guide the con​struction phase.

· Making an estimate within limits narrow enough to justify a business bid.

· Finalizing the business case-the project is worth doing.

In the construction phase, the essential criterion is a system capable of initial operation in the users' environment, approached by

· A series of iterations, leading to periodic builds and increments, so that throughout this phase, viability of the system is always evident in executable form.

In the transition phase, the essential criterion is a system that achieves final oper​ational capability, approached by

· Modifying the product to alleviate problems not identified in the earlier phases.

· Correcting defects (Appendix C; see also Section 11.3.6).

One of the goals of the Unified Process is to enable architects, developers, and stakeholders in general to grasp the importance of the early phases. To this end, we can do no better than to cite Barry Boehm's advice from some years ago [1]:

I can't overemphasize how critical the Life Cycle Architecture milestone [which corresponds to our elaboration-phase milestone] is to your project and your career. If you haven't satisfied the LCA milestone criteria, do not proceed into full-scale development. Reconvene the stakeholders and work out a new project plan that will successfully achieve the LCA criteria.

The phases and the iterations within them receive more detailed treatment in Part
5.1 Iterative and Incremental in Brief

As we pointed out in Chapters 3 and 4, that the software development process should be use-case driven and architecture-centric are two of the three keys to the Unified Process. These aspects have a clear technical impact on the product of the process. Being use-case driven means that every phase in the drive to the eventual product refers back to what users actually do. It drives developers to assure that the system meets users' real needs. Being architecture-centric means that development work focuses on achieving the architectural pattern that will guide system construction in

the early phases, assuring a smooth progression not only to the current product release, but to the whole product life.

Achieving the right balance between use cases and architecture is much like balancing function and form in the development of any product. It is achieved over time. Which comes first is a chicken-and-egg problem as we said in Section 4.3. The chicken and the egg came about through almost endless iterations during the long process of evolution. Similarly, in the shorter process of software development, developers consciously work out this balance (between use cases and architecture) through a series of iterations. Thus, the iterative-and-incremental development approach constitutes the third key aspect of the Unified Process.

5.1.1 Develop in Small Steps

The third key provides the strategy for developing a software product in small man​ageable steps:

· You plan a little.

· You specify, design, and implement a little.

· You integrate, test, and run each iteration a little.

If you are happy with a step, you take the next step. In between each step you get feedback that permits you to adjust your focus for the next step. Then you take another step, and then another. When you have taken all the steps you planned, you have developed a product that you can release to your customers and users.

The iterations in the early phases are mostly concerned with scoping the project, removing critical risks, and baselining the architecture. Then, as we proceed through the project and gradually reduce the remaining risks and implement the components, the shape of the iterations changes, resulting in increments.

A software development project transforms a "delta" (or change) of users' requirements into a delta (or change) of software product (see Section 2.2). With an iterative and incremental approach this accommodation of change is done little by little. In other words, we split the project into a number of miniprojects, each one being an iteration. Each iteration has everything a software development project has: planning, working through a series of workflows (requirements, analysis and design, implementation, test), and preparation for release.

But, an iteration is not an entirely independent entity. It is a stage within a proj​ect. It draws heavily from being part of a project. We say it is a miniproject because it is not, by itself, what the stakeholders have asked us to do. Also, each of these mini projects is like the old waterfall model because it proceeds through the waterfall activities. We might label each iteration a "mini waterfall."

The iterative life cycle delivers tangible results in the form of internal (though preliminary) releases, each of which adds an increment and demonstrates the re​duction of the risks with which it was concerned. These releases may be shown to customers and users, and thus provide valuable feedback to validate the work.

The planners try to order the iterations to get a straight path where the early itera​tions provide the knowledge base for the later iterations. Early iterations in the proj​ect result in increased knowledge of the requirements, the problems, the risks, and the solution domain (Appendix C), whereas later iterations result in additive increments that eventually make up the external release (Appendix C), that is, the customer product. The ultimate success-for the planners-is a sequence of iterations that always moves forward; that is, it never has to go back two or three iterations to patch up the model because of something learned in a later iteration. We don't want to climb a mound of melting snow, two steps forward and one step sliding backward.

In summary, a life cycle is made up of a sequence of iterations. Some, particu​larly the early ones, help us understand the risks, establish feasibility, build the initial core of the software, and make the business case. Others, particularly the later itera​tions, add increments until we have reached a product ready for external release.

The iterations help management plan, organize, monitor, and control the project.

The iterations are organized within the four phases, each with particular needs for staffing, funding, scheduling, and entry and exit criteria. At the beginning of each phase, management can decide how to execute it, what results must be delivered, and what risks must be mitigated.

5.1.2 What Iteration Is Not

Some managers think that "iterative or incremental" is a fancy name for "hacking." They fear that the words merely conceal the reality that the developers don't know what they are doing. In the inception phase, even early in the elaboration phase, there may be some truth to this. For example, if the developers have not resolved critical or significant risks, then the assertion is true. If they have not yet proved the underlying concept or established an architectural baseline, the assertion is true. If they have not yet figured out how they can implement the most critical requirements, the assertion is true. Indeed, they might not know what they are doing.

Does it do any good to pretend that they do know what they are doing? Does it do any good to base a plan on insufficient information? Does it do any good to track to this unreliable plan? Of course not.

For the record, let us emphasize what the iterative life cycle is not:

· It is not random hacking.

· It is not a playpen for developers.

· It is not something that affects only developers.

· It is not redesigning the same thing over and over until the developers finally chance on something that works.

· It is not unpredictable.

· It is not an excuse for failing to plan and manage.

In fact, controlled iteration is far from random. It is planned. It is a tool mana​gers can use to control the project. It reduces, early in the life cycle, risks that may

threaten the progress of development. Internal releases (Appendix C) after iterations enable stakeholder feedback, leading, in turn, to earlier correction of the project course.

5.2 Why Iterative and Incremental Development?

In two words: better software. In a few more words, to achieve the major and minor milestones with which we control development. And in still more words,

· To get a handle on the critical and significant risks early.

· To set forth an architecture to guide software development.

· To provide a framework that better handles inevitable requirements and other changes.

· To build up the system over time incrementally rather than all at once near the end when change becomes expensive.

· To provide a development process through which the staff can work more effectively.

5.2.1 Mitigating Risks

Software development encounters risks, just as any engineering activity does. "Risk is inherent in the commitment of present resources to future expectations," in the view of the management seer, Peter F. Drucker [2]. In software development, we deal with this reality by identifying the risks as early in development as we can and addressing them promptly. A risk is an exposure that may lead to loss or injury. Risk is a factor, thing, element, or course constituting a danger, the degree of which is uncertain. In software development, we can define risk as a concern that has some degree of probability of endangering the success of a project. For example,

· The object request broker (Appendix C) that we initially consider may not be able to deal with 1,000 remote-customer-account object lookups per second.

· A real-time system may have to acquire a number of data inputs that were not specified in the inception phase. It may have to process the data through extensive computations that are not yet spelled out in detail. It may have to issue a command signal within a short but presently unspecified time.

· A telephone switching system may have to respond to various inputs in num​bers of milliseconds specified by the client telecommunication operations company.

What the software field needs, as Barry Boehm wrote many years ago, is a process model that "creates a risk-driven approach to the software process rather than a primarily document-driven or code-driven process" [3]. The Unified Process meets these criteria because it addresses important risks in the first two phases, inception
and elaboration, and any remaining risks in order of importance early in the construc​tion phase. It identifies, manages, and reduces risks in the early phases by means of iterations. As a result, unidentified or ignored risks do not pop up later and imperil the entire project.

The iterative approach to risk reduction bears little resemblance to the waterfall approach (Appendix C). The waterfall model shows development flowing one way through a series of steps: requirements, analysis, design implementation, and test. In this approach, the project would have all of its developers involved when it reached implementation, integration (Appendix C), and testing. During integration and test​ing, problems would start exploding all around them. The project manager would then be forced to reassign people-often the more experienced developers-to resolve these problems before work could proceed. However, with all the developers already engaged, project managers found it difficult to "pry loose" the few who were best qualified to solve the newly discovered problems. To compound these difficul​ties, reassigning the more experienced developers to "clean-up duty" often left the less experienced developers sitting and waiting. Deadlines passed, and project costs mounted. In the worst case, competitors got to market first.

If we plot risk against development time, as in Figure 5.1, iterative development begins to reduce serious risks in the earliest iterations. By the time work reaches the construction phase, few serious risks remain and work proceeds smoothly. By con​trast, using the waterfall model, serious risks are not addressed until the "big bang" of code integration.

FIGURE 5.1 Serious risks are identified and reduced early in iterative development in contrast to waterfall development. There, the most serious risks remain until inte​gration and system test address them (dashed line). The iterations indicated at the bottom of the figure are, of course, relevant only for the iterative and incremental approach.
About two thirds of major software projects fail to perform adequate risk as​sessments, according to Capers Jones [4], so there is room for great improvement! Attacking risks early in the development process is the first step .

5.2.2 Getting a Robust Architecture

Achieving a robust architecture is itself the result of iterations in the early phases. In the inception phase, for instance, we seek a core architecture that satisfies the key requirements, overcomes the critical risks, and resolves the central development problems. In the elaboration phase, we establish the architecture baseline that guides further development.

On the one hand, the investment in these phases is still small and we can afford the iterations that assure that the architecture is robust. After the first iteration in the elaboration phase, for example, we are in a position to make an initial evaluation of the architecture. At that time, we can still afford to change it, if that is our finding, to meet the needs of significant use cases and nonfunctional requirements.

If we follow the waterfall approach, by the time we discover the need for an architectural change, we have invested so much in the development that making a change in the architecture incurs a serious financial penalty. Moreover, we would be close to a date of promised delivery. Caught between costs and schedule, we would not be motivated to make major architectural changes. By focusing on architecture in the elaboration phase, we avoid this dilemma. We stabilize architecture at a baseline level early in the life cycle when costs are still low and schedule time still stretches before us.

5.2.3 Handling Changing Requirements

Users can comprehend a system that operates, even if it does not yet operate per​fectly, more easily than they can a system that exists only as hundreds of pages of documents. Also, they have difficulty recognizing project progress if all that exists

is documents. Therefore, from the standpoint of users and other stakeholders, it is more productive to evolve the product through a series of executable releases, or "builds," than to present piles of difficult-to-penetrate documentation. A build is an operational version of part of a system that demonstrates a subset of the system capa​bilities. Each iteration may work through a series of builds to approach the planned result, that is, the increment.

Having a system in partial operation in an early phase enables users and other stakeholders to provide suggestions on and point out requirements that may have been overlooked. The plan-budget and schedule-is not yet set in stone so the developers can more easily accommodate revisions. In the one-way waterfall model, users do not see a system in operation until integration and testing. At that point, changes, even those that have merit or seem to be small, almost inevitably add to the budget and schedule. Thus the iterative life cycle makes it easier for customers to see the need for additional or changed requirements early in the development cycle and for the developers to work them in. After all, they are building the system as a series.
of iterations, so responding to feedback or including a revision is just an incremental change.

5.2.4 Allowing for Tactical Changes

With the iterative, incremental approach, developers can resolve problems and issues uncovered by the early builds and incorporate changes to correct them almost at once. By using this approach, problems are uncovered in a steady trickle with which devel​opers can easily keep pace. The gush of fault reports that show up in the "big bang" integration of the waterfall often disrupts project progress. If the disruption is severe, the project may come to a halt, with developers kneeling under the pressure, project managers running in circles, and other managers panicking. By contrast, a series of operational builds gives everyone a sense of accomplishment.

Testers, manual writers, toolsmiths, configuration-management staff, and quality​assurance people can all adapt their own plans to the evolving project schedule. They learn of the existence of serious delays early in the project when the developers first encounter the problems that lead to them. They have time to adapt their own sched​ules. When problems lie hidden until testing, it is too late for them to reschedule efficiently.

When quality assurance has tested an iteration, project managers, architects, and other stakeholders can evaluate it against predefined criteria. They can decide whether the iteration has resulted in the right increment and the risks have been addressed properly. This evaluation allows managers to determine whether the itera​tion was successful. If it is, they can authorize the next iteration. If the iteration was only partly successful, they can extend it or carryover unresolved issues and neces​sary rework to the next iteration. In the extreme case, where the evaluation is com​pletely negative, they can cancel the whole project.

5.2.5 Achieving Continuous Integration

At the conclusion of each iteration, the project team demonstrates that it has reduced some risks. The team delivers increasing functionality with each iteration, which is evident to stakeholders, who can see that the project is progressing.

Frequent builds force developers to closure at regular intervals-closure in the form of a piece of executable software. The experience of builds makes it hard for them or anyone else to support the "90% completed" attitude. This attitude arises when a count of code or other artifacts (Appendix C) purports to find that the product is almost finished. In the absence of operable builds, however, the most difficult work may still lie ahead. The problems may not yet have been revealed by attempts to inte​grate and test the system. In contrast, because the successive iterations function, they produce a series of results that accurately indicate the status of the project.

Even if developers fail to achieve the planned result in an early iteration, they still have time to try again and improve the models in subsequent internal releases. Since they work on the critical issues first, they have several opportunities to improve their solutions./
comes after analysis. The risk of "analysis paralysis" (too much time spent on analy​sis) is greatly reduced.

Additionally, it is easier to train new people because they can be trained on the work itself. The project doesn't have to design special pilots just to help people understand what the process is. They can break in directly on mission-related work. Given that they have received appropriate training and that they work with someone who has done it before, they quickly come up to speed. If new people fail to under​stand a point or make a mistake, their error is not critical to the long-run progress of the project, because it shows up on the next attempt to make a build.

The iterative approach also helps a project address risks of a nontechnical nature, such as organizational risks. For example, developers may not learn quickly enough how to:

· Build applications using an object request broker.

· Use the tools for testing or configuration management (Appendix C).

· Work according to the software development process.

As a project iterates, a small team gets acquainted with these new technologies, tools, and processes. In subsequent iterations as the team uses them more, it gains further proficiency. The team grows gradually as the project moves through the itera​tions, perhaps starting with a small 5 to 10 people, then growing to 25, and finally to some 100 people. As the team grows stepwise, the core team is available to mentor new team members as they come onboard. The iterative approach allows the initial team to fine-tune the process and the tools before most of the developers join the team.

By working in phases and iterations, developers are better able to meet real cus​tomer demands and reduce risks. By building in increments, all concerned can observe their level of progress. By reducing late-term difficulties, they hasten time to-market. Moreover, this iterative approach is beneficial, not only to developers and, ultimately, to users but to their managers. Managers can apprehend real progress by noting the completed iterations.

5.3 The Iterative Approach is Risk-Driven

A risk is a project variable that endangers or eliminates success for a project. It is "the probability that a project will experience undesirable events, such as schedule delays, cost overruns, or outright cancellation" (see the glossary in [4]).

We identify, prioritize, and carry out iterations on the basis of risks and their order of importance. This is true when we evaluate new technologies. It is true when we work to fulfill the customers' needs-the requirements-whether they are func​tional or nonfunctional. It is true when, in the early phases, we are establishing an architecture that will be robust, that is, one that can accommodate changes with little risk of having to redesign anything. Yes, we organize iterations to achieve risk reduction.
Other serious risks are matters of performance (speed, capacity, accuracy), relia​bility, availability, system interface integrity, adaptability, and portability (Appendix C). Many ofthese risks are not exposed until the software that implements the under​lying functions is implemented and tested. That is why iterations exploring risks should be carried, even in the inception and elaboration phases, all the way to coding and testing. The objective is to nail the risk in an early iteration.

An interesting observation is that, in principle, all technical risks can be mapped to a use case or a scenario of a use case. Here, map means that the risk is mitigated if the use case with its functional and nonfunctional requirements is realized. This is true not just for risks pertaining to requirements and architecture but for verifying the underlying hardware and software. By carefully selecting use cases, we can exercise all the functions of the underlying architecture.

Risk reduction is central for the iterations we do in the inception and elabora​tion phases. Later, in the construction phase, the risks have, for the most part, been reduced to a routine level, meaning that they yield to ordinary development practices. We try to order the iterations so that each one builds on the previous one. By this phase, we are trying, in particular, to avoid the risk that, if we do not get the order of iterations right, we might have to rework several previous iterations.

5.3.1 Iterations Alleviate Technical Risks

Risks have been classified into many categories [3] and [4]. However, for our pur​poses it is sufficient to be suggestive, not exhaustive. We have identified four broad categories:

1. Risks related to new technologies:

· Processes may have to be distributed over many nodes, possibly leading to synchronization problems.

· Some use cases may depend upon computational techniques that are not yet well developed, such as natural language recognition or the use of Web technology.

2. Risks related to architecture. These risks are so important that we have designed the Unified Process to deal with them in a standard way; that is, the elaboration phase and the architectural iterations within it provide an explicit place in the process to deal with them. By establishing a risk-accommodative architecture early, we eliminate the risk of not being able to accommodate changes easily. We eliminate the risk of later having to redo a good deal of work. This risk-resistant architecture is robust. Accepting change gracefully is characteristic of architectural robustness (Appendix C). Another advantage of getting a robust architecture early includes showing where reusable compo​nents fit in, which allows us early in the project to think about buying instead of making. It also reduces the risk of discovering too late that a system will be too expensive to build. For example,

· The use cases we initially select fail to help us find the subsystem structure we need to evolve the system with later-to-come use cases. In early itera​tions, say, during the elaboration phase, we may not note that several actors will use the same use case via different interfaces. An example of this situa​tion is several interfaces for cash withdrawal: One employs a graphical user interface and a personal computer; another uses a communication protocol over a network. If we design to meet only one of these use cases, we may end up in an architecture that has no inner interface that will allow us to add new kinds of interactions. The risk is that it will be hard to evolve such a system .

· Certain frameworks (Appendix C) planned for reuse have not, in fact, been used outside the original project on which they were built. The risk is that such a framework will not work well with other frameworks or that it will not be easy to reuse.

· The new version of the operating system we plan to use may not have reached the quality level necessary for us to rely on it. The risk is that we may have to delay release of our own software while we wait for the vendor to upgrade the operating system.

3. Risks related to building the right system, one that supports the mission and the users. This risk underscores the importance of finding the functional and nonfunctional requirements, which essentially means finding the right use cases with the right user interfaces. It is important to find the most important functions early and to make sure that they are implemented early. Here we arrange use cases in order of importance for meeting customer needs and meeting performance requirements. We consider both behavior and capabili​ties, such as performance. When we select use cases, we base the order of dealing with them on their risk potential, such as the possibility of problems with the performance of the use case. Particularly in the inception and elabo​ration phases, there is a close correlation between certain requirements (and the use cases that express them) and the risks that lie in them. The use cases the team selects impact the architecture it develops. For example,

· The Follow Me use case enables a telephone subscriber to redirect calls to another number. Should this redirection apply to all calls? What about a wake-up call? The subscriber will probably be at his or her basic number then and will not want the call to be rerouted.

4. Some risks are related to performance. For example,

· The response time of a use case must be less than I second.

· The number of concurrent use-case instances exceeds 10,000 an hour.

The identification of problem areas such as these depends largely on people with extensive experience. Since no one person is likely to have all the experience that is necessary, a number of people will have to study the proposed system, make lists of

possible problems, and come together for risk-identification sessions. These sessions are not intended to solve the problems, merely to identify them and prioritize the order in which they will be further studied in iterations during the inception and elab​oration phases.

5.3.2 Management Is Responsible for Nontechnical Risks

Nontechnical risks are those that alert management can detect and divert. Examples in this category include

· The organization presently lacks people with experience in certain unusual aspects of the proposed project.

· The organization plans to implement parts of the proposed system in a lan​guage new to it.

· The schedule proposed by the client appears to be too short, unless every step clicks into place with no problems.

· The organization can meet the proposed schedule only if subcontractors who have not been used before can deliver certain subsystems on time.

· The client may not be able to turn around certain approvals within time limits necessary to meet the delivery date.

Risks of this kind lie beyond the scope of this book. Suffice it to say that the software organization should identify them, set up administrative means to follow developments in each risk area, and assure that responsible managers take action when one of the risks materializes.

5.3.3 Dealing with Risks

Once the risks have been identified and prioritized, the team next decides how to address each one. Essentially, the team has four choices: avoid it, confine it, mitigate it, or monitor it.

· Some risks can and should be avoided, perhaps by replanning the project or changing the requirements.

· Other risks should be confined, that is, restricted so that they affect only a small part of the project or the system.

· Some risks can be mitigated by trying them out and seeing if they materialize or retire. If a risk materializes, the plus side is that the team has learned more about it. The team may then be in a position to find a way to avoid, confine, or monitor it.

· Some risks, however, cannot be mitigated. The team can only monitor them and see if they materialize. If one does appear, the team has to follow its con​tingency plans (Appendix C). If a "project killer" risk arises, we take a deep breath and assess the situation. Do we want to proceed, or should we cancel the project? At this point we have spent only limited time and money. We

knew a "project killer" could happen-that is why we were doing early itera​tions. So we did a good job by finding a risk of this magnitude before bringing all the developers into the project.

It takes time to address a risk. Avoiding or confining a risk takes replanning or rework. Mitigating a risk might require the team to build something that exposes the risk. Monitoring a risk involves choosing a monitoring mechanism, setting it up, and executing it. Mitigating or monitoring risks, in turn, takes serious development effort, that is, time. Because addressing risks takes time, a project organization can seldom address all risks at the same time. That is why prioritization of iterations is necessary. This is what we mean by risk-driven iterative development. That is sound risk management.

5.4 The Generic Iteration

As we have seen, iterations differ markedly in the different phases of the develop​ment cycle because the challenges that developers face in each phase differ. In this section our intention is to present the concept of an iteration on a generic level: what it is, how to plan one, how to sequence it, and what the result of an iteration is. In Part III, we deal with iterations in each of the four phases in separate chapters.

5.4.1 What an Iteration Is

An iteration is a mini project-a more or less complete traversal of all core work​flows-resulting in an internal release. This is an intuitive understanding of what an iteration is. However, in order to be able to describe the work going on in an iteration beyond the surface level, we have extended this definition.

We can think of an iteration as a workflow, which means that it is a collaboration between workers (Appendix C) who are using and producing artifacts. In the Unified Process we distinguish between core workflows and iteration workflows (Appendix C). By now, we are familiar with the five core workflows: requirements, analysis, design, implementation, and test. These core workflows are there for pedagogic rea​sons only, to help us describe the iteration workflows. Thus there is nothing magic about what constitutes a core workflow; another set of core workflows could just as easily have been used, such as one that integrates analysis and design.! It is used to simplify the description of more concrete workflows just as an abstract class helps us describe concrete classes. These more concrete workflows are iteration workflows. We describe the core workflows in detail in Chapters 6-11, and we describe the itera​tion workflows using the core workflows in Chapters 12-16.

I. Workflows should not be confused with concurrent processes. Workflows are collaborations that are useful for creating descriptions.

FIGURE 5.3 Every iteration makes a pass through the five core workflows. It is initiated with a planning activity and finished with assessment.

In Figure 5.3, we describe the generic elements of each iteration workflow. They all pass through the five core workflows. All are initiated with a planning activity and conclude with an assessment. In Part III, we describe four archetypal iterations, one for each phase of the Unified Process. Each reuses the descriptions of the core work​flows, but in different ways.

How is this different from a traditional waterfall model? Every core workflow is a collaboration between a set of workers and artifacts. However, there is overlap between iterations. Workers and artifacts may participate in more than one core workflow. For instance, the component engineer participates in three workflows: analysis, design, and implementation. Finally, the iteration workflow is created by superimposing a selected subset of the core workflows on top of each other and then adding what is extra, such as planning and assessment.

Early iterations focus on understanding the problem and the technology. In the inception phase, the iterations are concerned with producing a business case .2 In the elaboration phase, the iterations are directed at the development of the baseline archi​tecture. In the construction phase, iterations are devoted to building the product via a series of builds within each iteration, culminating with a product ready to be deliv​ered to the user community. However, each iteration follows the same pattern, as shown in Figure 5.3.

Each iteration is assessed at its conclusion. One objective is to determine whether new requirements have appeared or existing requirements have changed in a way that will affect subsequent iterations. In planning the details of the next iteration, the team also examines how the remaining risks will affect the continuing work.

One function deserving special emphasis at this point is regression testing (Appendix C). Before finishing an iteration we need to ensure that we did not break

2. During the inception phase, an iteration may follow a simplified variant of the workflows when studying particular technology problems.

any other part of the system that worked in previous iterations. Regression testing is particularly important in an iterative, incremental life cycle, since each iteration pro​duces a substantial addition to the previous increment as well as a fair amount of changes. We note that it is impractical to perform regression testing on such a mas​sive scale-every build in every iteration-without appropriate testing tools.

Project managers should not agree to start the next iteration unless the goals of the current iteration have been achieved. If not, the plan will have to change to accommodate the new situation.

5.4.2 Planning the Iterations

If anything, the iterative life cycle requires more planning and more thought than the waterfall approach. In the waterfall model all the planning is done up front, often before risks have been reduced and architecture settled. The resulting plans are based on much uncertainty and lacked fidelity. By contrast, the iterative approach does not plan the whole project in detail during the inception phase, it merely takes the first steps. Not until a factual base has been established during the elaboration phase does the project team attempt to plan the construction and transition phases. Of course, there is a working plan during the first two phases, but it is not very detailed.

Ordinarily (except at the very beginning of a project) the planning effort consid​ers the results of preceding iterations, the selection of use cases relevant to the new iteration, the current status of risks that apply to the next iteration, and the state of the latest version of the set of models. It ends with preparation for the internal release.

At the end of the elaboration phase, then, the basis exists for planning the rest of the project and setting forth a detailed plan for every iteration in the construction phase. The plan for the first iteration will be very clear. Later iterations will be in the plan with fewer details, subject to modification, based on the outcome and knowledge gained in earlier iterations. Similarly, there should be a transition-phase plan, but it may have to be modified in light of what the team learns from the construction-phase iterations. This type of planning enables controlled iterative development.

5.4.3 Sequencing the Iterations

Evolution in nature occurs without a plan preceding it. This is not the case with soft​ware iteration. The use cases set a goal, so to speak. The architecture establishes a pattern. With this goal and pattern in mind, the developers plan the sequence in which they will work product development.

The planners try to order the iterations to get a straight path where the early itera​tions provide the knowledge basis for the later iterations. Early iterations in the proj​ect result in increased knowledge of the requirements, the problems, the risks, and the solution domain, whereas later iterations result in additive increments that eventually make up the external release, that is, the customer product. For the planners, the ulti​mate success is a sequence of iterations that always move forward, never having to go back to the results of an earlier iteration to patch up the model because of something learned in a later iteration.

FIGURE 5.4 Iterations sweep through the workflows from requirements capture to test.

Iterations can overlap in the sense that one iteration is about to finish while another one is starting, as shown in Figure 5.4. Planning for and early work on the next iteration may begin as we finalize the previous one and prepare it for release. However, we cannot go too far in overlap since one iteration is always the basis for the next one. Remember that the end of an iteration means that we have obtained closure within the development team. All the software of the iteration has been inte​grated and can be internally released.

To a considerable degree, the order in which we plan iterations depends on tech​nical factors. The most important goal, however, is to sequence the work so that the most important decisions, those that involve new technologies, use cases, and archi​tecture, can be made early.

5.5 The Result of an Iteration Is an Increment

An increment is the difference between the internal release of one iteration and the internal release of the next iteration.

At the end of an iteration the set of models that represents the system is in a par​ticular state. This state, or status, is called the baseline. Each model has reached a baseline; each essential model element is in a baseline state. For example, the use​case model at the end of each iteration contains a set of use cases that represent the degree to which the iteration has carried through requirements. Some of the use cases in this set are complete, while others are only partially complete. At the same time, the design model has reached a baseline state consistene with the use-case model. The design model's subsystems, interfaces, and use-case realizations are also in base​lines that are mutually consistent with one another. To work efficiently with multiple baselines within a project, the development organization needs to maintain consistent and compatible versions of all artifacts within a baseline. When working with iterative

Not all use cases need to be designed, so here the term consistent refers only to those being designed
development, we cannot overemphasize the need for efficient configuration manage​ment tools.

At any given point in the iteration sequence, some subsystems are complete.

They contain all the prescribed functionality, and they have been implemented and tested. Other subsystems are only partly finished, and others are still empty, although they do have stubs so that they can work and be integrated with other subsystems. Thus, in more precise terms, an increment is the difference between two successive baselines.

During the elaboration phase, as we have already noted, we build the architec​tural baseline. We identify the use cases that have a significant impact on the architec​ture. We realize these use cases as collaborations. It is in this way that we identify most of the subsystems and interfaces-at least, the ones that are architecturally interesting. Once most of the subsystems and interfaces are identified, we flesh them out, that is, write the code that implements them. Some of this work is done before we release the architecture baseline and it continues throughout all of the workflows. However, most of the fleshing out occurs during the iterations in the construction phase.

As we near the transition phase, the level of consistency across models and within the models increases. We build increments by iteratively fleshing out the mod​els, and the integration of the final increment becomes the released system.

5.6 Iterations over the Life Cycle

Each of the four phases concludes with a major milestone, as illustrated in Figure 5.5. [1]:

· Inception: life-cycle objectives

· Elaboration: life-cycle architecture

· Construction: initial operational capability

· Transition: product release

The goal of each major milestone is to make sure that the different workflow models evolve in a balanced way over the life cycle of the product. We mean "bal​anced" in the sense that the most important decisions impacting those models, those concerning risks, use cases, and architecture, are made early in the life cycle. Later, work should be able to proceed at increasing levels of detail with higher quality.

The primary goals of the inception phase are to set the scope of what the product should do, reduce the worst risks, and prepare the initial business case, indicating that the project is worth pursuing from a business standpoint. In other words, we aim to establish the life cycle objectives for the project.

The primary goals of the elaboration phase are to baseline the architecture, cap​ture most of the requirements, and reduce the second worst risks, that is, to establish the life cycle architecture. By the end of this phase, we are able to estimate the costs

FIGURE 5.5 Phases aggregate iterations that result in the major milestones where management makes important business decisions. (The number of iterations is not fixed but varies for different projects.)

and schedule and to plan the construction phase in some detail. At this point, we should be able to bid.

The primary goals of the construction phase are to develop the complete system and to ensure that the product can begin transition to customers, that is, to achieve initial operational capability.

The primary goals of the transition phase are to ensure that we have a product ready to be released to the user community. During this phase of development, the users are trained how to use the software.

Within each phase are lesser milestones, namely, the criteria applicable to each iteration. Each iteration produces results, model artifacts. Thus, at the end of each iteration, there will be a new increment to the use-case model, the analysis model, the design model, the deployment model, the implementation model, and the test model. The new increment will be integrated with the result of the previous iteration into a new version of the set of models.

At the minor milestones managers and developers decide how to proceed to the subsequent iterations, as we discussed in the previous sections. At the major mile​stones at the end of phases, managers make crucial go/no-go decisions and determine schedule, budget, and requirements.

A minor milestone (at the time of an internal release at the end of an iteration)

is a planned step toward a major milestone at the end of a phase. The distinction be​tween major and minor is primarily at the business level. The developers iteratively address risks and build software artifacts until they reach the major milestone. At each major milestone management evaluates what the developers have accomplished. Each transition past a major milestone thus represents an important business decision and a commitment to fund the work in (at least) the next phase according to plan. We can think of the major milestones as the synchronization points where the managerial and the technical realms conjunct.

FIGURE 5.6 Emphasis shifts over the iterations, from requirements capture and analysis toward design, implementation, and testing.

These divisions helps management and other involved stakeholders evaluate what has been done during the low-cost inception and elaboration phases before they decide to commit to the high-cost construction phase.

A software development project can be divided into roughly two chunks: the inception and elaboration phases and the construction and transition phases. During the inception and elaboration phases, we make the business case, mitigate the worst risks, create the architecture baseline, and plan the rest of the project with high preci​sion. A small, low-cost team does this work.

Next, the project moves to the construction phase where economy of scale is the goal. Now the number of people on the project increases. They develop the bulk of the system functionality by building on the architecture baselined during the elabora​tion phase. They reuse existing software as much as possible.

While each iteration is a sweep through requirements, analysis, design, imple​mentation, and test workflows, the iterations have different emphases in different phases, as illustrated by Figure 5.6. During the inception and elaboration phases, most of the effort is directed toward capturing requirements and preliminary analysis and design. During construction emphasis shifts to detailed design, implementation, and testing. Although it is not shown in Figure 5.6, the early phases are heavy on project management and developing an environment for the project.

FIGURE 5.7 Work in all models continues over all phases, as indicated by the increased filling-in of the models. The construction phase ends with an (almost) complete set of models. These models do, however, need to be fine-tuned during transition as they are deployed in the user community.

5.7 Models Evolve from Iterations

The iterations build the resulting models increment by increment. Each iteration

adds some more to each model, as the iteration takes a sweep through requirements, analysis, design, implementation, and test. Some of these models, such as the use​case model, receive more attention in the early phases, while others such as the implementation model get more attention during the construction phase, as dia​grammed in Figure 5.7. In the inception phase, the team perhaps creates the parts of the models that are necessary to support a proof-of-concept prototype. These parts include the most important elements of the (U) use-case model, the (A) analysis model, and the (D) design model, as well as some of the (D) deployment, (I) imple​mentation, and (T) test models. Most of the implementation material is preliminary at this stage. As Figure 5.7 shows, much work remains to be done.

In the elaboration phase, the darker area, which denotes work accomplished, advances quite substantially. At the end of this phase, however, while the team has captured some 80% of the use cases (U) and the deployment model (the second D), less than 10% has been "built into" the system and resulted in implemented (I) and tested (T) functionality. The use-case and deployment models must be this complete after the elaboration phase. Otherwise, we do not know the requirements and imple​mentation preconditions (including the architecture) well enough to plan the con​struction phase with precision.4

The construction phase sees most of the U, A, D, D, I, and T completed, which

is to be expected since the exit criterion is a complete system implementation ready to begin transition to the user community. Later, as the system is turned over to opera​tional use in the transition phase, there will be minor fixes and some fine-tuning.

4. In Chapter 4, we indicated that the use-case and analysis models had reached a lower level of com​pletion at the end of the elaboration phase than Figure 5.7 indicates. The reason for this discrepancy is that in Chapter 4 we focused exclusively on architecture and did not consider what other work needs to be done (i.e., understanding more about the use cases to be able to make a business case).

5.8 Iterations Challenge the Organization

Many software organizations tend to leap right into writing code because lines of code are what their managers count. They tend to resist change, because change slows down the code count. They are not interested in reusing analysis, design, or code because new code is what their managers count.

Moving to iterative development challenges the working practices of these orga​nizations. It requires a change in attitude. The focus of the organization will have to shift from counting lines of code to reducing risks and baselining architectural func​tionality. Managers must take a fresh look at what they measure. They will need to demonstrate by their actions that they measure progress in terms of risks addressed, use cases prepared, and components realizing those use cases. Otherwise, developers will soon regress to what they used to get credit for, lines of code.

Applying the iterative, incremental approach has some important consequences:

· To make the business case in the inception phase, the organization has empha​sized reducing critical risks and demonstrating proof-of-concept.

· To make a business-worthy bid at the end of the elaboration phase, the organi​zation has to know what it is contracting to build (represented by the architec​ture baseline plus requirements) and be confident that it contains no hidden risks (i.e., insufficiently explored cost and schedule expanders).

· To minimize costs, defects, and time-to-market, the organization has to employ reusable components (an outgrowth of early architectural develop​ment based on study of the domain in which the proposed system falls).

· To avoid delivery delay, cost overrun, and poor-quality product, the organiza​tion has to "do the hard stuff first."

· To avoid building a product that is out-of-date at delivery, the organization can no longer stubbornly say no to all changes. The phased, iterative approach enables it to work changes into development much further along the develop​ment trail.

Iterative and incremental development requires not only a new way of managing projects but tools to support this new approach. It is practically impossible to deal with all the artifacts of a system that concurrently undergoes changes in every build and every increment without the support of tools. An organization undertaking this mode of development needs tool support for the different workflows as well as tools for configuration management and version control.

