Part III 
Iterative and Incremental Development 
A software system goes through a number of development cycles during its lifetime. Each cycle results in a new release of the product to customers and users, and the first one may very well be the most difficult. It lays the founda​tion, the architecture, for the system; it explores a new area that may contain serious risks. A development cycle, thus, has a different content depending on where the system is in the overall life cycle. In later releases, if the architecture changes seri​ously, that may mean more work in the early phases. In most later releases, however, if the original architecture is extendable, the new project simply builds on top of what was already there; that is, a later release of the product will be built on top of the previous release. 
More and more people seize the idea of working on problems earlier rather than later within each development cycle. They are applying the term iteration to problem solving sequences in the inception and elaboration phases, as well as to each series of builds in the construction phase. 
Risks do not come in a neat package with an identification card tucked under a pink bow. They must be identified, delimited, monitored, and mitigated-and it is best to tackle the most significant risks first. Similarly, the order in which the itera​tions are added has to be thought out carefully so that the most serious problems are solved first. In short, do the hard stuff first. 
In Part II we described each workflow separately. For example, Figure 6.2 describes how the requirements workflow is in focus throughout the different phases. Similarly, Figure 8.2 does this for analysis, Figure 9.2 for design, Figure 10.2 for implementation, and Figure 11.2 for test. 
In this part we show how the workflows are combined in different ways, depend​ing on where we are in the life cycle. We describe first, in Chapter 12, what is com​mon for all phases, that is, things that cross all phases, such as planning an iteration, setting the evaluation criteria for one, establishing a risk list, prioritizing the use cases, and assessing the iterations. Successive chapters focus on each phase. 
In the inception phase (Chapter 13) activity is concentrated in the first workflow, requirements, with a little work carrying over to the second and third workflows (analysis and design). This phase seldom carries work as far as the final two work​flows, implementation and test. 
In the elaboration phase (Chapter 14), while activity is still heavy in completing requirements, the second and third workflows, analysis and design, see more activity, as they underlie the creation of the architecture. To reach the executable architecture baseline, there is necessarily some activity in the final workflows, implementation and test. 
In the construction phase (Chapter 15), the requirements workflow tapers off, analysis lightens, and the last three workflows represent the bulk of the work. 
In the transition phase (Chapter 16), the mix of work flows depends on the feed​back from acceptance or beta test. For instance, if the beta tests uncover defects in the implementation, there will be considerable activity in revived implementation and test workflows. 
The final chapter, Chapter 17, returns to the central theme of the book. In a single chapter we show how the many strands-workflows, phases, iterations-come together to form a well-designed process for developing mission-critical software. This chapter also devotes a few paragraphs to how these relationships should be man​aged and to how an organization can transition from where it is now to the Unified Process. 
