
Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 1

Principles of Software
Testing for Testers
About this course
This course is intended to help customers learn how
to test software better. Parallel to the Rational
courses, RMUC and OOAD, this course focuses on
principles and proven software engineering practices,
and does so in the framework of RUP. The course
does not require a computer and does not delve into
tools.

Most of this course was developed by Cem Kaner,
with guidance from Paul Szymkowiak, who wrote the
RUP content in this area. The course draws on
Kaner’s notes from his industrial courses on black
box software testing, his academic courses at Florida
Institute of Technology and his work (supported by
the National Science Foundation) to produce a
national core curriculum in software testing.

About these notes
These supplemental notes are
intended only to help you, as a
Rational instructor, prepare to
teach this course. These are not for
distribution.
Most of these instructor notes are taken from
transcripts of Cem Kaner’s delivery of a Master Class
4/6-7/2002 to RUP instructors. When you see the
first person singular in the notes, it is a quote from
Kaner’s presentation.

As compiler, I (Sam Guckenheimer) have tried to edit
the transcripts for improved readability and to tie the
discussion to the appropriate slides. I have not done
a thorough copy edit. There are lots of transcription
mistakes that remain in these notes. (These I have
classified as P4 bugs – no plan to fix.)

Only four modules are covered – the ones from the
master class. Not all slides have supplemental notes
here and the notes vary enormously in length,
depending on the breadth of discussion that a topic
received in the first master class.

Along with the course notes, every student will get a
book, Lessons Learned in Software Testing by Cem
Kaner, James Bach, and Bret Pettichord. The student
notes make frequent reference to this book. To keep
the student notes simple, where the content overlaps

with Lessons Learned, the notes reference the pages
or chapter of the book.

Sam Guckenheimer
August 28, 2002

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 2

Table of contents
Principles of Software Testing for Testers..........................1

About this course ...1
About these notes...1
Table of contents..2

Common controversies...4
Purpose of this section...4
General classroom management4

Which is the one technique / style I should use?............5
Can I mix techniques? ...5

Automation ..7
Should all tests be automated?...................................7
What experiences have you had with automated
testing?...7

Requirements, specs and documentation........................9
Should testers demand specs or requirements
documents as a prerequisite to testing?......................9
Do you need to update the project documentation
every time you run a test that wasn’t directly in the
spec? ..9

Staffing ..11
Who should you hire as a tester?11
How do you get subject matter expertise?12

Is the test group’s role QA or testing?..........................13
Context ..13
Short Answer ...13
Kaner’s Answer ...13
Steve Hunt’s Answer ...14
The Process Improvement Rathole14
Variation: What is the ship-decision role of your test
group?..15

Module 1 - What Testers Should Know About Software
Engineering Practices ...16
Module 2 - Core Concepts of Software Testing17

Slide 2.2 ...17
Slide 2.4: Functional Testing18
Slide 2.5: Exercise 2.1..19

Exercise guidelines ..19
•Transition ...19

Slide 2.6: How Some Experts Have Defined Quality...20
Slide 2.7: Quality As Satisfiers and Dissatisfiers21
Slide 2.8: Quality Involves Many Stakeholders22
Slide 2.9: Exercise 2.2: Quality Has Many Stakeholders
(1/2)..23

In-house class ..23
Open enrollment class ...23

Slide 2.10: Exercise 2.2: Quality Has Many Stakeholders
(2/2)..25
Slide 2.11: A Working Definition of Quality26
Slide 2.12: Change Requests and Quality27
Slide 2.13: Dimensions of Quality: FURPS.................28
Slide 2.14: It May be Useful to List More Dimensions 29
Slide 2.16: Test Ideas ...30
Slide 2.17: Exercise 2.3: Brainstorm Test Ideas (1/2) ..31
Slide 2.18: Exercise 2.3: Brainstorm Test Ideas (2/2) ..32

Sample discussion..32
Slide 2.20: A Test Ideas List for Integer-Input tests.....33
Slide 2.21: Discussion 2.4: Where Would You Use Test
Ideas Lists? ..35
Slide 2.23: Identify a Generic List of Test Ideas36

Slide 2.24: A Catalog of Test Ideas for Integer-Input
tests.. 37
Slide 2.25: The Test Ideas Catalog 38
Slide 2.26: Apply a Test Ideas Catalog Using a Test
Matrix .. 39
Slide 2.27: Exercise 2.5: Your Own Test Ideas Lists .. 40

Does context of the application help the
brainstorming? .. 40

Module 4: Define Evaluation Mission 42
Slide 4.2: Module 4 Content Outline 42
Slide 4.3-5: Workflow: Define Evaluation Mission 43
Slide 4.7: Exercise 4.1: Which Group is Better? 44
Slide 4.9: Exercise 4.2: Which Group is Better? 45
Slide 4.10: So? Purpose of Testing? 50
Slide 4.11: Varying Missions of Test Groups.............. 51
Slide 4.12: Optional Exercise 4.3: What Is Your
Mission? .. 52
Slide 4.13: A Different Take on Mission: Public vs.
Private Bugs .. 53
Slide 4.14: Defining the Test Approach 56
Slide 4.15: Heuristics for Evaluating Testing Approach
... 58
Slide 4.17: What Test Documentation Should You Use?
... 59
Slide 4.18: IEEE Standard 829 for Software Test
Documentation .. 60
Slide 4.19: Considerations for IEEE 829..................... 61
Slide 4.20: Requirements for Test Documentation 63
Slide 4.21: Test Docs Requirements Questions 64
Slide 4.22: Write a Purpose Statement for Test
Documentation .. 66
Slide 4.23: Exercise 4.4: Purpose for Your Test
Documentation?... 67

Module 5: Test & Evaluate .. 68
Slide 5.2: Module 5 Agenda .. 68
Slide 5.3-5: Workflow: Test and Evaluate................... 69
Slide 5.8: Discussion Exercise 5.1: Test Techniques... 70
Slide 5.9: Dimensions of Test Techniques 71

Is oracle a widely used term? 72
Slide 5.10: Test Techniques—Dominant Test
Approaches.. 73
Slide 5.13: Module 5 Agenda 74
Slide 5.14: Test Techniques—Function Testing.......... 75

Skills involved .. 75
Take home exercise (in student manual) 75

Slide 5.17-19: Test Techniques—Equivalence Analysis
... 77

Stratified sampling .. 77
Printer compatibility ... 78
Subject matter expertise .. 79
Blind spots .. 80
Doug Hoffman’s story... 80
Skills involved – Lead in to exercises 81
Equivalence classes for configuration testing 82
Timeout example... 82
Background for exercises .. 83

Slide 5.21: Optional Exercise 5.3: Myers’ Triangle
Exercise ... 85
Slide 5.22: Exercise 5.3: Myers’ Answers................... 87
Slide 5.23: Optional Exercise 5.4: Equivalence Analysis
with Output.. 89

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 3

Slide 5.25-6: Test Techniques—Specification-Based
Testing ...92
Slide 5.27: Traceability Tool for Specification-Based
Testing ...95
Slide 5.28: Optional Exercise 5.5: What “Specs” Can
You Use?..98
Slide 5.33: Definitions—Risk-Based Testing99
Slids 5.34: Test Techniques—Risk-Based Testing100
Slide 5. 35: Strengths & Weaknesses—Risk-Based
Testing ...102
Slide 5.36: Workbook Page—Risks in Qualities of
Service ...103

Take-Home Exercise ...103
Slides 5.37-38: Workbook Page—Heuristics to Find
Risks ..104
Slide 5.39: Workbook Page—Bug Patterns As a Source
of Risks ..105
Slide 5.40: Workbook Page—Risk-Based Test
Management...106
Slide 5.41: Optional Exercise 5.6: Risk-Based Testing
...107

Top down approach ...107
Bottom-up approach ..107

Slide 5.43: Test Techniques—Stress Testing.............109
Slide 5.46: Test Techniques—Regression Testing.....110
Slide 5.49: Test Techniques—Exploratory Testing ...111
Slide 5.50: Strengths & Weaknesses: Exploratory
Testing ...112

Who should do exploratory testing?112
Slide 5.52: Test Techniques—User Testing (1/2)113
Slide 5.53: Test Techniques—User Testing (2/2)114
Slide 5.55: Test Techniques—Scenario Testing (1/5) 115
Slide 5.56: Test Techniques—Scenario Testing (2/5) 116
Slide 5.57: Test Techniques—Scenario Testing (3/5) 117
Slide 5.58: Test Techniques—Scenario Testing (4/5) 119

Order of applying test techniques119
Slide 5.59: Test Techniques—Scenario Testing (5/5) 121
Slide 5.62: Test Techniques—Stochastic or Random
Testing ...123
Slide 5.66: Applying Opposite Techniques to Boost
Coverage ..125

Can we automate exploratory testing?...................125
Module 6: Analyze Test Failures....................................126

Slide 6.2: Module 6 Objectives126
Slide 6.10: Championing Your Defect Reports..........127
Slide 6.11: Discussion 6.1: What happens to your defect
report? ..128
Slide 6.12: Motivating the Defect Fixer: Analyzing the
Impact ..129
Slide 6.13: Overcoming Objections: Think About Your
Audience ..130
Slide 6.15: Analyzing Failures with Follow-Up Testing
...131
Slide 6.17: Analyzing Severity: Follow-Up Testing ..132
Slide 6.18: Follow-Up: Vary Your Behavior133
Slide 6.19: Follow-Up: Vary Options and Settings....135
Slide 6.20: Follow-Up: Vary the Configuration.........136
Slide 6.21: Analyzing Generality: Configurations137
Slide 6.22: Analyzing Failure Conditions139
Slide 6.23: Uncorner the Corner Case........................140
Slide 6.24: Analyzing Non-Reproducible Errors141
Slide 6.25: Analyzing Non-Reproducible Errors143

Slide 6.26: Analyzing Non-Reproducible Errors....... 144
Slide 6.32: Writing the Defect Report: Make It Clear 145
Slide 6.33: Writing the Report: Keep it Simple 147
Slide 6.34: Writing the Defect Report 148
Slide 6.38: Writing the Report: The Headline 149
Slide 6.44: Exercise 6.3: Defect Reporting (1/18) 150
Slide 6.45: Exercise 6.3: Defect Reporting (2/18) 151
Slide 6.46: Exercise 6.3: Defect Reporting (3/18) 152
Slide 6.47: Exercise 6.3: Defect Reporting (4/18) 153
Slide 6.48: Exercise 6.3: Defect Reporting (5/18) 154
Slide 6.49: Exercise 6.3: Defect Reporting (6/18) 155
Slide 6.50: Exercise 6.3: Defect Reporting (7/18) 156
Slide 6.51: Exercise 6.3: Defect Reporting (8/18) 157
Slide 6.52: Exercise 6.3: Defect Reporting (9/18) 158
Slide 6.53: Exercise 6.3: Defect Reporting (10/18) ... 159
Slide 6.54: Exercise 6.3: Defect Reporting (11/18) ... 160
Slide 6.55: Exercise 6.3: Defect Reporting (12/18) ... 161
Slide 6.56: Exercise 6.3: Defect Reporting (13/18) ... 162
Slide 6.57: Exercise 6.3: Defect Reporting (14/18) ... 163
Slide 6.58: Exercise 6.3: Defect Reporting (15/18) ... 164
Slide 6.59: Exercise 6.3: Defect Reporting (16/18) ... 165
Slide 6.60: Exercise 6.3: Defect Reporting (17/18) ... 166
Slide 6.61: Exercise 6.3: Defect Reporting (18/18) ... 167
Slide 6.61: Exercise 6.3: Defect Reporting................ 168

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 4

Common controversies

Purpose of this section
The purpose of this section is to help you as the
instructor prepare answers to topics that students
might raise, sometimes very legitimately, and other
times with private agendas. The sections that follow
distill the discussion from the master class on 4/6/02.

General classroom management
My responsibility to the room is to close the
discussion down when I see only a small portion of
people that look to be engaged. It does not mean it is
not a valuable discussion, it means that there are
some discussions that will be just as valuable with 3
as with the full room. And for those we’ll need to
take it off-line. The time’s that we’ll take discussions
off-line will be as follows, I am available every day
at lunch to meet with 3, or 4, or 5 people to sit
around the table and carry the discussion. In fact,
we’ll have a flip chart and we will note what the
lunch time discussions are and we’ll pick them on a
day to day basis – this is the day we’ll talk about this.

I’m also willing to come in ¾ of an hour early for
class if at least 3 people will actually sign up and
show up to do it to facility a relatively private
discussion. Given that, does anyone object if I close
the discussion when it’s my sense that there are not
more than 3 or 4 people actively engaged? I’ve never
had anyone have the nerve to object. As a ground rule
for the class, this is something I say this during the
time I’m telling them where the bathrooms are.
During the opening ground rules for the class, no one
has wanted to invest in a fight with me.

And later if there’s a discussion I think is going too
long, and someone protests when I suggest we close
it, I get to say, okay, how many people want to spend
10 more minutes on this. I can’t remember a time
when I’ve been surprised by a lot of people saying
this. But if the whole class wants to go with this,
great. But if only a few put their hand up, you say
great, we’ll move this to one of the lunch time
discussion and that’s wonderful. I get pretty nice
course reviews from those people who got bored in
those things and I shut the discussion down, they say
thank you, thank you, thank you. And the people I do
shut down, understand it’s part of an organized
process and it’s not personal.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 5

Which is the one technique /
style I should use?
(a.ka. If I have an infinite stuff of things to do and a
limited time to do them how do I pick which
technique to do?)

The course gives perspective on a wide range of
testing styles. All of those are valuable to practice in
any company. Most companies don’t apply all of the
techniques; they apply a subset. I’ve seen some that
were very successful and applied 4, 5 at most. But
picking which 5 are right for the organization it’s a
lot better to make that decision based on your
knowledge on what the alternatives are and which
things are easily automated in a practical way inside
your organization.

From my point of view, the more senior a tester gets
the wider the range of techniques they understand
and the wider the range of relationships among the
techniques they understand and to a greater degree
they understand what juggling is required for each
specific case.

And the second answer is: Start where you are and
expand your scale incrementally by adding a new
technique. Give your team six months to master it
and then add another in the next round. And repeat.
Nothing else will work anyway.

Get better at what you're doing but broaden yourself.
As you broaden yourself you’ll discover that you're
getting deeper you're going to understand the
techniques you know better as well {audio not
audible} and over time you'll discover that you know
many more things and we'll have more complex test
documents, more complex plans but richer ones.
There is a distinction between the tester who has ten
years experience gaining breadth over ten years and
the tester who has twenty six-months strung together
over a period of ten years who really has six months
experience repeated twenty times. But you will
unfortunately often find are people who have been in
the business for ten years redoing the project twenty
times.

One of the core pieces that distinguishes really
skilled, capable, mature testers from junior's is our
ability to understand that there are many different
attacks that can be effective on the same problem.
Many combinations of those can be effective on the
same problem. And then to apply judgment to find
out which piece would be more efficient today for the
situation we are in. The recognition of the diversity
of approaches, I've got a lot of different tools, and I
want to pull the right one out-of-the-box for today
and I know how to use that tool well is something

that builds up over a long period of time. We can try
to develop education that will make that process
faster that's part of the objective of this course but
that build up of skill is a gradual thing whether it’s in
University, in private teaching, or in practice {audio
not audible}.

When people don't have varied experience as testers
and have locked themselves into a specific paradigm,
they have a big career retraining problem that they
are going to have to face as soon as the situation
changes. .

It's not a lesson than that everybody can learn the first
time that they hear it. It's an experience-based lesson.
It's hard for somebody to hear that the work they’re
doing is going to be tougher next week that it was last
week. They don't necessarily want to hear that. Oh
well.

Can I mix techniques?
Many of the techniques readily, obviously blend
together.

So if you go into testing this morning and you say
what I want to is really good specification based
testing the most important thing for me to think about
is the spec and I will do whatever it takes for me to
really understand how to compare the program to the
spec - you're doing spec-based testing. If you're
doing that and creating tests for reuse at the same
time, you're still doing spec-based testing. If you’re
doing that and exploring you're still doing spec-based
testing. If you look at the spec and you say well, to
tell whether this item is true, I want to analyze every
risk associated with this claim, you're still doing
spec-based testing.

Now tomorrow maybe you come in and it happens
that you still have the spec but you say I want to
analyze every individual function that is mentioned in
the spec and kicked these individual functions as hard
as I can. I don't care where they are in the spec’s
claims, I'm going to say let me find all the
information about printing. I will put it in one list
called printing then I will take each subpart in
printing and hammer it down in itself and if
something is not in the spec but I know it is in
printing then I still want to look at printing. Well,
you're kind of doing spec educated testing but you're
doing function testing.

If your focus is on current learning and testing, you're
focus is exploratory no matter what object you're
testing.

If your focus is on the many ways it could fail you're
doing risk-based testing, which might be done

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 6

exploratory or might be done spec-based. The real
question is where is the primary focus in your mind.
All of these techniques end up complementing each
other in use. Although some individuals get so caught
up in the one dominant way of thinking that they
don’t look at the others as things to round themselves
out and help them do this one approach.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 7

Automation

Should all tests be automated?
(a.k.a. How can we implement a testing process that
is agile, exploratory, constantly brain engaged, with
automation tools?)

There are a lot of testing practices that can be
automated. There are a lot of programming practices
that can be automated but not all of them. Tom
DeMarco talks at length about the distinction
between programming practices that become routine
and then get folded into tools and programming
practices that are unique project to project and can
never be well measured, and never be well
standardized, and never be folded into tools.

We have the same problem in testing. As we come to
understand more about testing, we come to an ability
to automate more and more of the tasks. Automated
testing is computer- assisted testing. It is not
computer-does-it-all testing. So there’s always going
to be room for people to be operating by their wits. In
fact, as the tools get better, the role of the tester is
going to be more and more of someone who has to
rely on her own judgment more and more while using
the support of increasingly powerful tools to take
away work that doesn’t need to be done directly by a
person.

Exploratory testing by its nature is testing that is not
routine and yet testing that we have to do under a lot
of circumstances because we don’t have routine
practices that have any assurance of working
efficiently for the problem that the exploratory tester
is trying to solve. Some of the things we do in
exploratory testing turn out over time to be
stereotyped enough that we can convert those into
practices and automate them, as we spin off the
things that look routine.

Equivalence class testing is a great example. People
intuitively understood that boundaries were good
places to test. Now test case generators generate
boundary conditions, it’s a routine thing. Exploratory
testers who live their life in a boundary testing world
end up generating results that are not necessarily very
interesting. Not if the testing was done by the
programming staff was any good at all.

So we’ll find out that as we spin off the routine things
from the exploratory tester, the extent to which the
exploratory tester is going to be making one of a kind
judgments constantly is going to get greater and what
we’re doing in this course largely is educating that
person’s judgment.

Similarly, there’s a whole lot of testing that can be
done through automated regression tests. We’ll see
that there are risks to applying automated regression
tools in some ways and there are benefits to applying
them in some ways. We’ll probably have some
discussion from several folks here about that and
there’s some discussion in the course notes. No tool
solves all problems. All of Rational’s tools solve
some problems. No one’s tools solve the problems
that we’re leaving as open problems here.

Can we automate exploratory testing?
The only automation would be to clone intelligence
and imagination which we’ll probably not be able to
do within the next year. An exploratory tester brings
to the table a curiosity and some intelligence to put
together new paths to travel in the application. There
are certain tools that can figure out how to travel
every path in the application and all permutations
given a certain amount of time, but that’s not
exploratory testing.

So short of cloning the exploratory tester and their
capabilities, the only tools we can really offer are
those tools that can assist the exploratory tester. What
would those tools be? Documenting the moves
they’re making so that after the tests they are
performing we understand what they did. Or tracking
ideas, I may be percolating full with ideas but I need
to write them down. I need to try this, I need to try
this, I need to try this. In the process of doing a test,
four other ideas come. So right now the yellow pad is
the best vehicle I have for that. So from an
automation standpoint, all I can really do is add a
small piece of assistance to that.

What experiences have you had
with automated testing?
This is a controversy to the extent that you have
people who come into the room who say that either
automated testing should be done for everything and
that any testing that isn’t automated is the stuff for
fools. And if you don’t think there are people who
think that way, just go to the Extreme Testing
mailing list.

So the two opposite perspectives are:

1. Everything has to be automated

2. Anybody that does automated testing is wasting
their time. You evil tool vendors are overselling
something that has really gotten some people
into trouble.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 8

Both of these are based on experiences, and an
experienced tester might be justified by her
experience in drawing either conclusion. It’s
important to show tolerance and respect for either
extreme view (and the many middle grounds),
encouraging people to describe the experiences that
led them to their view.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 9

Requirements, specs and
documentation

Should testers demand specs or
requirements documents as a
prerequisite to testing?
Let me set your understanding of the context of these
questions. Here you are, teaching away, and
somebody says, “What, you need to come up with
test ideas to figure out how to test a numeric input
field? Why, that should be laid out in the
specification! You wouldn’t want to do any testing
without understanding exactly what things need to be
covered, and that’s all covered in the
specification/requirements document. So why are
you wasting your time on that kind of thinking?”

It needs to be acknowledged, time limited, and gotten
past.

The sabotaging nature of this discussion comes from
the group of three people in the back of the room who
allege that their company follows a process, an ideal
process, they are QA and in their company there are
genuine and real specs. They write thorough test
plans and everyone else is just subhuman. They’d be
happy to teach the class. What they would teach
would be an interesting, perhaps non-iterative
process, that requires a great deal of work to be done
by other groups before they can start.

The response that I give to those folks who are quite
persistent sometimes is to say that testing is done on
the basis of whatever information is available and in
different companies operating under different risk
strategies, different kinds and different amounts of
information are available to the testers.

No test organization has complete information. Some
test organizations have adequate information for me
(as a lawyer) to base a contract on, but still not
complete because there’s a great deal about how to
use the product and how the product will fail in the
field until the product emerges, even if the
specification was perfectly written. Whatever
information they can get, they should. They should
go for the most valuable information they can find to
the maximum extent the company will provide.

But if they believe they can block development
process by saying they won’t be ready to test until
information somebody else has to provide is provided
to them, the odds are that they will discover at some
point that they are frozen out of much of the
development process and put on a schedule that
makes it impossible for them. And maybe in tester

Valhalla that they’re in at the moment, that’s not true.
They have the bigger axes to knock everybody else
down, that’s great. But they’re going to find on the
next project, that having skills to deal with
incomplete information will be of value to them.

I don’t know what else to say to them. And I think
that no class that succeeds in being realistic can
assume that you have complete information walking
in or that you can get complete information by
interacting with the development team.

Do you need to update the project
documentation every time you run
a test that wasn’t directly in the
spec?
Cost-benefit trade-off is not an unreasonable
approach to thinking about the value of
documentation. As with every other aspect of the
software development project, we have a finite
amount we can do, we have a finite amount of time,
we have stakeholder who value some things more
than others, and the stakeholder values varies across
projects in ways that are project specific. It is the
responsibility of the project manager to come up with
the right balance of investment to maximize the
satisfaction of the stakeholders, which includes
preserving the safety of anyone who might interact
with the software. Safety sometimes is a big issue
and sometimes is not.

I don't think that a general process should give
guidance beyond saying do something that makes
sense and here are some ways of thinking about what
makes sense, like a cost benefit analysis. I don't
think we can say it's good to fold these back into
specifications or that it's bad. For example, if the rest
of the development group is not updating the spec
when the software design or limitations change, it
might well be a waste of your time to try to update
the spec as you discover new constraints or new risks
while you test.

Whether you update a development spec, you might
or might not update testing specs. Later in this class,
we’ll talk about the requirements planning that testers
might do, to decide what information they should put
into testing documentation (and how much
maintenance they should do to keep it up to date). In
some circumstances, it is essential to update and
extend the test documentation regularly. In others,
this is entirely inappropriate.

Companies also sometimes roll testing stuff into user
documentation, especially in cases where we actually
have very intensive customer calls and so it pays to

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 10

put frequently asked troubleshooting questions into
the manual instead of just leaving them in tech
support.

One of the things I like to do is create a release kit for
testing into tech support. The release kit includes
things like here are all of the last tests that we did on
the printers we actually tested. Here's what the
printouts are, the cover all the boxes, this is what we
got from the video cards, this is what we got from the
modems, this is what we got from the printers, this is
what we got from all of these other kinds of things.
And the tech support person is happy to have all of
those things so when someone calls up and says, “I
have this letter and it's printing oddly in this way.”
The tech support person can say, “Gee, I don't recall
having heard about that but we did test on that
printer.” He opens the binder and flips to the
appropriate page and says, “Oh it looks kind of
vertically stretched, right?” And the customer says,
“Yes.” And the tech support person says, “Yeah,
that's our product works with that printer. If that's
unacceptable, would you like to refund?”

It might not be the most delightful thing for the test
support person to say, you would like to say all our
test results were fine but if it didn't work -- fine, you
don't have a lot of baloney going back and forth.
“Yes this is the way the product works, if it's not
acceptable, the product is not acceptable. Let's not
waste any more of your time and our time on this.
This is how it is. If that's not good -- fine we will
deal with it from there.”

We found release kits of value with products that
were selling into market space of like a million
people. Where many thousands of configuration
related calls would come in and the cost of those calls
and the cost of trying to troubleshoot those sorts of
problems on the phone when you couldn't see the
output was enormous. I have been involved in that
but it was guided by the cost benefit trade-off. It was
very clear that there was a processing cost of testing
and creating the release kit and that processing cost
saved the company many times that cost instead of
wasting tech support time on the phone.

I'm saying that the level of the documentation in any
place has to be appropriate to the objectives of the
product. And those objectives will vary across
products, and across stakeholders, and in my
experience, it's just not possible to come up with
guidance that works in all cases.

There's a good line in Scott Ambler’s book, Agile
Modeling, on the principal of when to update
documentation. His rule of thumb is, Update the
documentation when the wrong or missing

documentation causes pain. So if there's a problem
created by not having the right documentation,
update the documentation. Otherwise his guidance
is, don't take the time to do it.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 11

Staffing

Who should you hire as a tester?
The most common controversy I see is between the
viewpoints:

1. All testers should be programmers.

2. No reasonable programmer would ever work as a
tester.

So I’m hearing that some other folks are pretty talked
out that way. And that debate takes what might be a
straightforward discussion and turns it into a long,
emotionally based dance. What answer would you
give?

Let me introduce you to one way of thinking about
requirements for a position you want to fill. KSAO is
a fairly standard, unpronounceable short form.
Knowledge, Skills, Attributes, Other.

• Knowledge – what have you learned in
university. You can discover what someone’s
knowledge is through factual questions.

• You can discover someone’s Skill by having
them do tasks.

• Attributes – punctuality, characteristics of the
person.

• Other is literally that. Do you have a car? Are
you willing to fly?

So, any job description you are going to come up
with carries with it specifications for all four of those
dimensions. And any job description you are going to
come with should be specific enough.

Sometimes what you want this person to do, and they
might have the same title, Senior Tester, but
sometimes what you want this person to do is be your
test architect. The person who’s going to come in and
handle the automated testing issues for your
organization. Well that person has to be a reasonably
accomplished programmer who has used the tools at
a level that goes beyond mere creation of scripts and
has built more than one, preferably more than two
test frameworks. Preferably in more than one
language and can talk in general terms of benefits and
unbenefits of certain structures that will support
automated testing. So, we have a lot of knowledge
there and ideally you will give that person a skills
test. They have to show they know how to design a
decent structure that will work in your organization,
in your company.

On the other hand, the same job title, Senior Tester,
might really mean analyst to work with the domain
experts and understand what the customer values are
and how to turn those customer values into use cases,
combination use cases and scenario tests that are
based on complex use cases. That’s highly skilled
work. That person might need a lot more knowledge
of tasks analysis, and human factors. They might
need much stronger interpersonal skills.

And the test you might give that person might indeed
be to have them interview somebody and come back
to you with a job description for the task that person
is doing laid out in terms of the subtasks that person
has to worry about. That person’s ability to interview
in terms of skill is there but also ability to interview
in terms of do people like this person? There’s the
ability to gather information from you once. And then
there’s the ability to win me over if I’m the person
being interviewed so that I’d like being interviewed
by you every week. That charming personality is
what I think of as Attribute.

So as you envision what this person is going to add to
your organization, you are envisioning very different
people. One of the critical things you should think
about in your organization is the issue of diversity.
Now diversity certainly includes the diversities our
lawyers make us conscious about needing to worry
about. The more populations that are represented in
an organization, the more ways we can imagine how
things can fit. And so that’s, different subcultures use
products in different ways, read things in different
ways, and so forth.

That’s one kind of diversity. A different kind of
aspect is technical diversity. If everybody on your
project team is a programmer then none of your
project team has any clue about customer experience.
And you will have major holes in what you can find
because you have no tax analysts and no way to build
scenario tests, not really good scenario tests.

If everybody on your team is a SME, then heaven
help you when you try to automate. It won’t happen
and so as you start thinking about the different roles
that your group actually plays in your company, or
should play, the different services you provide, you
can ask, who is the leader for this service? Who is the
champion for this service that we supply? And if your
answer is – nobody who is really good at it, you just
found out a little block that you will want a senior
tester to fit in. That’s a different attitude from or a
different answer from the – needs 3 years of testing
experience, experience with 4 different test tools, etc.
– but it’s one that I’ve found much more practical.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 12

Contrary view
My questions are mainly focused around the fact that
at Rational Software we have this process called the
Rational Unified Process that says, test feeds back
into development for future iterations. If you've
learned something and are up to the fact that
requirements change until the day that you deliver the
product and then for that product, that release, those
requirements have finally gotten frozen. Up to that
point, they've never been frozen.

So, my concern is if testers are so far a field from
what we say the product should do, could do, for
good reasons perhaps, then not folding the
information back into the product, back into the spec,
back into the design, then I think we’re losing
something. We’re getting some value out of that
effort but it is a onetime value as opposed to a
guiding set of information brought in from the test
group back to everybody, the documentation folks
everybody…

How do you get subject matter
expertise?
So in terms of hiring, if I'm a testing group with a
common problem, I know as an expert the last place
he wants to go is test because that’s a stigma.

So it's incumbent upon me as a test manager to grow
one internally. So is that what you’re saying, if you
can't find one, you make one?

If you can't find an expert, you may have to make an
expert. But you might be surprised at how many
people who have a lot of knowledge of subject
domains would be interested in working in a test
group. If they are valued for their dollars.

If you decide that you want someone who really
understands number devices and then posted an ad
that says we’re looking for someone with this skill set
and these are the kinds of things they would do
instead of posting an ad that says bachelors degree in
computer science, three years experience
programming automated test tools, and knows a little
about printers too. You will not find anybody with
an ad like that, at least not the subject matter expert
for printers. On other hand, if you post ad talking
about how interesting printers are and what you
might do with them in a test group you might find
some folks that understand tons about printers that
live in tech support, or who live in hardware
companies, or who knows where they live, and say
that's an intriguing next step in my career.

So don't assume that people won't come into a test
organization if you point to their background and say

we’ll respect you for what you know. That is a very
attractive thing to say to someone.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 13

Is the test group’s role QA or
testing?

Context
[This question often comes up in the context of
someone who is happy to disrupt the class where
disrupt the class means – I want to hijack the class
and have a discussion on this topic for at least the
next hour. We might not get anywhere, but I will
have a lot of fun when we do it. So, before I come
back to any answers to that person when they bring
that stuff up, you were laughing enough that I think
each of you have dealt with that person. Can you give
me some examples of what that person says to open
the discussion or what claims that person makes?]

• My group is not called the testing group, my
group is called QA group. We called ourselves
that because we all got raises over the people that
were just testers. And now we can call ourselves,
Quality Assurance Engineers, and, of course,
that’s twice the salary. So we don’t want to be
called testers and therefore I don’t think what we
do is testing, I think we do is quality assurance
which is a much higher level function.

• Another common one, is our group had the
responsibility to make the ship/no ship decision,
the buck stops with us. So when we’re not happy
with the quality, it doesn’t go out the door. So
we’re more than just testers, we’re actually
concerned with the quality of the product.

• And that’s another claim that people use to say
that they are quality assurance but let me try to
focus on, what is the derailing question or
comment that hijacks the meeting? Why are you
wasting my time teaching only about testing
when we should be studying something that’s
much more than testing. I’m a quality engineer
not just a tester. Testers are technicians that get
paid a lot less than I do. They’re low skill – I
have a Bachelor’s Degree in Science. What are
some other versions so that people who are going
through this who have not taught testing are
going to recognize when the rat with the nest
pops up and squeaks at them, they can go, oh, a
rat’s nest, I don’t need to go there.

The really enthusiastic hijacker who I decide to come
back on, says - I’ve been in quality assurance
groups, I’ve seen quality assurance groups. I
promised I was going to do this and please don’t take
this personally, but I’m going to ask you some
questions and you know I might be a more
intimidating questioner than some folks. You tell me

that you’ve been in a quality assurance organization I
think that’s pretty interesting. That means it was your
organization that figured out what the customer
requirements were, is that right?

Short Answer
Rational Unified Process –indeed, almost every
product and service that Rational offers – is about
assuring quality. This class is about testing.

Let’s look at the Rational University curriculum as a
whole and all the pieces that are relevant to QA, etc.
We’d love to have you in a class on our requirements
management stuff if that’s what you do. Maybe you
should transfer you to that other class. Yes?

Kaner’s Answer
Many groups call themselves Quality Assurance.
“Assure quality” means that you can determine
quality criteria and have the authority to drive some
aspects of the development process in ways that will
make sure those quality criteria are met.

These groups may sometimes have quality assurance
authority -- maybe they can retrain the programming
staff. Maybe they can write the requirements and
have them enforced. Maybe they can fire the Vice
President. What level of assurance is an interesting
question. But it goes beyond mere finding bugs and
reporting. And it certainly goes beyond just counting
numbers. A Quality Assurance group – adding
metrics doesn’t make you Quality Assurance – but
the point where you can change the company process,
development process, support process, hiring
practices, training practices, in ways that will align
the company more with the goal of achieving certain
quality characteristics than against those
characteristics, then you are involved in Quality
Assurance.

If we were to sit back and ask, what would an
organization that actually assured quality do, well
maybe they would own the customer requirements.
And when I say own, I don’t mean get to kibitzing, I
mean we’re supposed to figure out what the customer
needs and therefore what has to be built. After all, if
quality is a value to some people, you can’t assure
quality until you know what the values are. No, that’s
not your group’s role? So you’re in charge of tech
support budget to make sure customers are happy
when problems happen? No? Okay, you’re in charge
of the training experience the customer, the
documentation to make sure communication happens
correctly? No, you’re just involved in reviewing that
stuff. Oh, that’s interesting. You hire the

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 14

programmers and train them to the right coding
practices? No? What do you assure? It’s an
unpleasant thing to do to somebody who I’ve
basically decided to write off and have them sulk in a
corner. But there people who will adamantly,
repeatedly come in with a political viewpoint and
push it. And at a certain point, getting them in a
corner and then saying we have a terminology
difference.

I think I understand what you mean by QA and the
piece we’re focusing on in this class is the testing
piece. The class was advertised as a testing class. Our
issue is that there are many technical skills that are
involved in testing that are very important from
whatever political place in the organization where
they work, there are pieces of information that
organizations need about the operation of the product
and it’s those questions we’re focused on here. Going
into the broader perspective, there are a lot of places
we could go, not all of them necessarily would be fun
to talk about, but we need to take those off-line. I’ve
probably done that once without embarrassing a
person, maybe twice without embarrassing a person,
but if they go further, I take that shot.

So far, I haven’t had them come back from there.
They sit back and they realize there is a different
terminology game that they’re not going to win. I’m
not likely to get a good reference from that person,
but I’m not likely going to get a good reference from
that person already. And what I’m trying to do is
salvage the rest of the class. Does anybody else have
experience in dealing with the persistent person who
says, this isn’t what’s important to be looking at. We
should be looking at the overall development process
cuz we’re really QA instead of just looking at this
testing stuff which is just fluff anyway?

Steve Hunt’s Answer
Yes, so here’s what I’ll throw out. My belief is that
it’s every member of the project teams as part of their
role, is QA. So, I’m not just talking about testers, I’m
talking about analysts, and developers, and the
Project Managers. Everybody is responsible for the
quality of the artifacts that they are dealing with, that
they’re creating, to make sure they are good for the
rest of the team.

The primary artifact produced by a tester is a defect
report and that should contribute overall to product
quality and they have traditionally, some grab it -
some say, we are QA and we’re testers, we are
whatever those two terms mean that’s what we are,
everything dumps to us. So, we don’t have unit

testers doing unit testing so therefore they’re not
assessing or being responsible for the quality of the
code they’re creating and everything is getting
dumped to the back end. Some companies do that by
design.

I think that the test group primary responsibility is
testing. It is QA to the extent that they need to
produce quality artifacts coming out of that effort. I
would prefer to see and from organizations I worked
where it was effective, software quality group that
measured all phases of the software development
process. So they came to peer reviews, they looked at
test results, they looked at test plans, and they
provided feedback to the individual worker, and the
Project Manager, and to the customer saying, this is
how they’re doing against their guidelines for quality.
But I don’t think that that’s the test group…

But does measurement assure the quality because it
makes a big difference? When I go into a company I
like to see where they’re fitting organizationally. Are
they fitting under the development group or are they
under a separate group? And where those managers
are over that, what empowerment do they have to
change the process? If you’re just a measurement
group with no empowerment to change things, it’s
like the defect inspector at the end of an assembly
line at the GM plan where I worked right out of
school. The inspectors couldn’t fix anything. They
had to go back to engineering to change something
on the line that was putting the defects into the cars.
So is the group’s role QA, and if it is and they’re not
empowered, then they’re just frustrated because they
cannot change the process, they can just report the
problems.

I don’t think they are QA beyond the role of
everybody having some QA responsibility.

In some organizations I’ve been in the test group is
actually a subset of the QA group and the QA group
had that empowerment. But specifics are done by the
test group to report back to the QA group.

The Process Improvement Rathole
One of the other possible ways to get into this
discussion or one an awfully lot like it, is to say that
the testers ought to also be working on improving the
process. It follows on to the we-don’t-use-RUP-but-
we-should. That’s a huge rat hole that testers really
shouldn’t go down, but many do. And it might be
another way to bring up the same discussion. We
ought to start a software process improvement group
and try to get everybody on board for that. Especially
if it’s an in-house class. One guy’s been wanting to
do it and here’s a platform for him to do it.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 15

It’s dangerous to get into the discussion of we-
should-really-start-a-software-process-improvement-
group. There are some people that are really invested
in the notion, especially if it’s in-house, that they
need to take more political control of the company.

I sometimes get called in to teach class where it’s
explicitly a joint classroom presentation and
consultation. Instead of having a three-day class, I
have five. And, it’s not five days of material, it’s
three days of let’s go through material as a way to
structure discussion and then we’ll have a group
mission study and then on the fifth day a meeting
with Project Manager folks to try to reach a
compromise with them or an agreement with them.
And the discussions in those meetings, when we need
to expand our territorial reach, are very emotionally
charged discussions. In-house, if my mission is there
as a consultant as well as a teacher, I’m responsible
for dealing with that. You know, this is let’s try to
figure out what we need to do.

In-house, I end up asking a lot of questions about
what’s realistic. I don’t give answers for what is
realistic, but I may give it a shot by asking questions
like, “Has anybody tried this before and what
happened? Who are the people in the rest of the
organization who support this? What do you think
they’d do, are the willing to spend time on this,
what’s their political power and treat it as a proposal
that would have to have general corporate buy-in to
succeed, ask who else in the company would buy
in?” And if the answer is “No one else in the
company would buy in, but I’m really frustrated and
because they should. They’re evil people, and they’re
bad, and I wanted to join the post office just so I
could shoot them…” Sometimes I get into that and at
that point I look at the manager of that group and say,
“I need your help to understand how to deal with
this.”

In other cases, it takes them awhile to get a plan
together for who they would have to convince. And
then you wind them up and go, “Okay, go convince
them, have a nice day.” And in some companies they
might actually succeed. I don’t think that’s a path that
will help any tester on her career path. Am I right for
every person on every career path? Not a chance. If
they want to manage their career on that path, then
that’s their choice. The real question for us in this
course is whether is that the focus of this course and
whether we can move through that quickly and get
that person off in her direction and still willing to
either leave the room with a smile or stay in the
room.

But understand that part of the process that needs
improving is the technical process of finding defects

in software which is what we do. It’s just like in
programming, it’s important to understand the
requirements development practices and so forth, but
at some point it’s important to be able to write some
really good code. You have to be able to figure out
how to break things apart and how to merge things
together and what your architecture looks like today
and what it will probably look like tomorrow. And
those are fundamentally technical issues. They’re in
an organizational context, but they are fundamentally
technical issues. And those have to be done with
polish. We’re trying to get fundamentally technical
issues in this room and those have to be done with
polish as well. And those will fit within any in
whatever structure you come up with. We can spend
a little time on the structure, but fundamentally we
need to get beneath that and say, given finite
information, what’s your best technical strategy for
dealing with this. Some people will play with that
and for some people that’s harder.

Variation: What is the ship-
decision role of your test group?
• Final approval?

• Joint sign-off with others?

• Provide end-of-release quality evaluation?

• Provide ongoing input about problems in the
product, serving primarily as a technical
information provider to management rather than
a management function.

Why?

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 16

Module 1 - What Testers
Should Know About
Software Engineering
Practices
As you will see, this a reduced set of the materials
normally presented in the Best Practices module.
The intent is to allow you to quickly set context for
this course, without triggering the objection, “But I
thought I was coming to a testing course!”

Be sure to keep your delivery crisp and on point to
for a testing audience.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 17

Module 2 - Core Concepts
of Software Testing
Slide 2.2
The objectives for this set are simply to look at the
foundations for software testing. After this set, after
Module 2, we are going to be wandering through the
different activities that come up in the Rational
Unified Process. But before we can do that, we have
to ask questions like, “Well, what is testing? What
are test techniques? And how should we think about
test design in general?”

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 18

Slide 2.4: Functional Testing
Now the course title is Principles of Software Testing
for Testers. Our main focus is an introduction to
Functional Testing. And surprisingly, there are many
definitions of the words “functional testing”. Here is
the definition we mean. We basically mean black box
testing. The initial definition of functional testing
said think of a program as a function, you give the
program inputs, the program processes the inputs, it
gives you outputs. Any aspect of the inputs and the
outputs that you could study could be thought of as
functional testing. If you treat the program as a
function and look at all of its characteristics, you are
doing functional testing.

Two things ended up making that definition too
broad. First, people wanted to study the inside of the
function and how it processes. That’s great but many
testers don’t have access to the inside of the program.
So I want to separate that off as something that is not
part of this course it’s part of the study of what we at
Rational call developer testing. The other issue is
when you think of functional testing, if you are
looking at any attributes of the function, you end up
looking at things like security, performance,
maintainability, and we have stopped thinking about
those as attributes of functional testing.

So in this course, we want to narrow the scope of the
class to is anything you can learn about the product
without having to look at its code – is black box
testing. It doesn’t involve performance testing. I say
it doesn’t involve performance testing because
there’s an entirely different set of tools and an
entirely different set of skills that people should be
learning who are performance testing. That’s
covered in a separate Rational course. I’ve seen
black box testing courses try to stretch to
performance but all of them in my experience have
failed because they get too broad.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 19

Slide 2.5: Exercise 2.1
If we think we’re going testing then I think we are
executing a program, running a program, with a
bunch of questions about quality. And so another
interesting question we can ask is “what is this
quality thing anyway?”

Exercise guidelines
• •Count off to form pairs

• •Ask every group to do the exercise

• •Give them 10 minutes or so

• •Collect answers and write on the flipchart

•Transition
• “Now we’ll look at what some experts have

defined Quality…”

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 20

Slide 2.6: How Some Experts
Have Defined Quality
It’s interesting that many of the discussions that
developers and testers have focus around the notion
that the program does or does not conform to a
specification. It doesn’t matter if the program works
to spec if the spec is wrong. If the spec says that
2+2=5 and the tester writes up a defect report saying
I don’t think so, well, 2+2 is not 5, I’m sorry, it just
doesn’t work that way. And if you go back to other
fields, you look through all the discussions of quality
through the recent history of American
manufacturing then you find several discussions of
quality, none of them, not one of the leading theorists
of quality control in the US talks about conformance
to spec as an important definer of quality.

Joseph Juran, one of the folks the US sent to Japan
right after the second world war to rebuild the
Japanese economy and teach them the American way
of doing manufacturing. And as we know between
Deming and Juran, the Japanese learned a
tremendous amount about doing quality control and
ended up eating American industries lunch because
they did it so well. Juran talks about fitness for use.
Specifications are useful as describing what you think
you’re trying to build. Ultimately, somebody has to
use the thing you are making and if it doesn’t work,
it’s not any good. That’s fitness for use.

Phil Crosby talks about conformance with
requirements but he doesn’t mean conformance with
a piece paper that’s called a requirements document.
The piece of paper called a requirements document is
an incomplete representation of what it is that the
various stakeholders who have to interact with this
thing actually need. It’s conformance with the human
needs, not the conformance with a piece of paper.

Armand V. Feigenbaum is the founder of the field of
total quality management. And talks about quality
basically if you boil down what he says is, think of
all of the people and all of the different ways they
might use this product and ask, is it going to work? If
not, it’s a failure.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 21

Slide 2.7: Quality As Satisfiers
and Dissatisfiers
Juran came up with a distinction that became a
breakthrough in a lot of thinking in how to talk about
quality. He talks about satisfiers and dissatisfiers.
Satisfiers are things like this feature is really easy to
use and I can do everything I want to do with this
combination of features. If you read Consumers
Reports you see checklists, here are all the features
these products have and almost all those checklists
are lists of satisfiers. You get little footnotes in
Consumers Reports “oh, it has this feature but we
don’t like how it does it”.

The footnotes are the dissatisfiers. If the satisfiers
collectively are the things that would make you
recommend the product to a friend, the dissatisfiers
collectively are the things that make you wish you’d
never bought the thing and make you wonder if it
would be ethical to recommend this thing to your
worst enemy.

• Testers tend to focus on dissatisfiers. Testers
tend to think that a product is of a high
quality if it minimizes dissatisfiers.

• Marketing staff tend to focus on satisfiers.
They tend to think a product is of high
quality if it has the right collection of
satisfiers.

One of the disastrous kinds of meetings that I’ve been
in, and I’ve been in a bunch of these, and I’ve been in
these as the Project Manager sitting beside the
Marketing Manager and as the Documentation
Manager sitting beside the Test Manager as well as
having been the Test Manager in this thing. But it is
fascinating being a witness instead of a participant in
the debate and watching the Test Manager and
Marketing Manager bang heads like this {beating
heads} four weeks before release.

• The Marketing Manager comes in and says,
“We’ve just finished the last set of beta
trials and we have to have these features, the
competitors just came out and they have
these features and we have to have to have
these features. It won’t be a product if we
don’t have these features, we’ve got to have
these changes!”

• And the Test Manager says, “We have 300
bugs. They have to be fixed. You’re not
going to fix those, you are insane.”

And they go back and forth, they go features-bugs-
features-bugs-features-bugs, and at the end of the
meeting no matter who won, who wins is a politically

result at that point, no matter who won, both of them
walk out and I’ve had both of them turn to me,
Project Manager/Marketing Manager come out and
point to the Test Manager behind the Test Manager’s
back and go “That idiot knows nothing about
quality.” The Test Manager comes out and points to
the Marketing Manager and says, “That idiot knows
nothing about quality.”

Well what they really know nothing about is how to
understand that every person in that meeting
understood quality in a different way and was
advocating enthusiastically for a very clear vision of
what’s needed in the product to make it conform to
customer’s needs. But different groups in their nature
look at different aspects of those needs.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 22

Slide 2.8: Quality Involves Many
Stakeholders
There are a lot of stakeholders on any project.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 23

Slide 2.9: Exercise 2.2: Quality
Has Many Stakeholders (1/2)

In-house class
If this is an in-house class, by now you would have
started, probably in the first session, understanding
what products the company makes, and how many
project teams there are in the company that are
represented here. In the ideal case, there are only
two or three project teams and so you might split
them and say, Look, let’s work on one or two
products right now.

Open enrollment class
This is a harder exercise in a public place but what is
useful to do at this point as an exercise is to get
people to try to think through different angles on
what quality would feel like. My public exercise at
this point is one that is focused on a programmer
who joins your group and has these characteristics.
The group starts like this.

Imagine that you are a tester in a company where the
programmers had all agreed on a set variable of
naming conventions. Variable naming conventions
are important because if everybody understands how
variables are named, than anyone can read anybody
else’s code and gleen something just by learning
what the variables are. In the old days, we didn’t
have variable naming conventions, I started
programming in the late 1960’s and it was common
in those days to identify the type of variable by its
first letter. For example, you might name your
integer variables, Irene, Jane, and Karen after your
three most recent girlfriends. Totally reasonable, I J
K, these are all integers that’s all you need to do to
specify what they are. And they can only be eight
characters anyway so you didn’t have the meaning
you can have with 32 or more character names like
we have now.

So here’s this group, they’ve come up with their list
of variable name rules, they hire a senior programmer
from generations ago to now. This person is called
experienced, this person comes in, he starts writing
code, and he starts naming his variables after all the
people he’s never liked. The rest of the programming
are appalled and say you can’t name your variables
that way. He says, yes I can -- watch me.

So one of them decides to report into the bug tracking
system a change request. The change request says,
We have a variable naming convention standard
here. Our standard says variables will be named in

the following way that identifies the type and use of
the thing and the place where the variable is first
defined so Irene doesn’t cut it. All of these variable
names have to be changed.

Here’s the question I want to ask. Does that belong
in the bug tracking system? What do you think?

[Spark discussion.]

Well I want you to play a role. I’d like you to play
the role of the Marketing Manager who is going to
skim the bug tracking system for information about
aspects of the product that might make it less
marketable. Why don’t you be the Documentation
Manager? What do you care about?

You’re the Tech Support Manager. You’re going to
use the bug tracking system too, right? Would you
care about seeing this change request? How come?

So if one of the quality characteristics for a
product is supportability, and if variable
names have anything to do with
supportability, then if he doesn’t see
information like that, he’s crippled.

For saleability, it doesn’t matter. For end user
description it doesn’t matter. For support, it matters
vitally. You are a programmer, not the one who wrote
Irene, Jane, and Karen, do you want that tracked
officially? Do you think that kind of thing is
appropriate in a change request system?

If issues about defect counts arise, where students
want to keep bug counts down, then:

So we have an interesting conflict, which
we’ll come back to later, between metrics
derived from the database and other
purposes of the database.

Every problem report or change request that goes
into the bug tracking system, is a demand for a
management decision on the record: Does this
meet our corporate quality standards or not?

Every different stakeholder in the company has a
different subset of quality standards. The Marketing
Manager is going to worry about some issues, the
Documentation Manager is going to worry about
some issues, the Tech Support Manager is going to
worry about some issues. All of them have different
interests, different worries, about what things to track
in the quality of the product. But anything that goes
in, goes in as a statement that the development team
as a whole or the manager of the development team is
being required to decide whether this meets corporate
quality standards or not.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 24

Now as a tester, you have an interesting situation
because if you talk to different stakeholders in the
company you’re going to have very different visions
of what is acceptable and what is not acceptable. The
Marketing Manager might easily look at a dispute
over variable names and wish that the programmers
would grow up and start making features. Whereas
the Tech Support Manager might feel like this is a
vital discussion and development should stop until
this is dealt with.

As testers, you cannot and should not make the
decision about which one of those stakeholders is
right. That’s not our job. The thing we can do is help
the person writing the report express their perspective
in a change request clearly enough that the rest of the
development team can go “Ah, whether I agree with
this perspective or not I understand what it is and I
can see why this stakeholder thinks this is important
and I can understand how important this stakeholder
thinks that it is.”

There are many different people who have write
access to a change request system. The test group is
typically the group who helps people improve their
change requests in a way that will make them the
most effective requests they can be and if we start
drawing judgments from our little piece, is this a
dissatisfier to a customer, than we are missing all the
other dimensions of fitness for use that all the other
stakeholders in the company are going to see.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 25

Slide 2.10: Exercise 2.2: Quality
Has Many Stakeholders (2/2)
There are some other examples that you might work
as exercises in the class. We worked the first one. I
hope it’s obvious how you’d handle those.

In different groups, if this is a group that’s making
products that translate everywhere then they’re going
to find the localization issue much more compelling
than the programming issue.

In an in-house class, it’s worth finding out what their
quality controversies are and having them play the
roles of Product Manager and so forth for that
product. Then ask them, What have been the most
controversial three bugs that have gone into the bug
tracking system over the last three years, over the last
year? Why should that particular one have been
there?

Don’t be bound by these slides.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 26

Slide 2.11: A Working Definition
of Quality
We’re going to adopt a working definition of quality
for this course. That quality is value to some person,
different people who have different notions of what is
important for the product. But if you’d look at
product and say, “This is less valuable than it should
be because this decision was made,” then what you
are saying is this product has lower quality and
unnecessarily lower quality than you think it should
have.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 27

Slide 2.12: Change Requests
and Quality
As soon as you can attach either an emotional value
or an economic value to a decision you’re talking
about a quality value. From that point, we can think
about the word “defect” in a little broader way than
failure to conform to a specification.

I think of the word defect as something that is
qualitative, something that happens in the eyes of one
of the stakeholders. The TSM and some of the
programmers thought that Irene for a variable name
was a defect. The Marketing Manager didn’t think it
was because it has no impact on the customer
experience and it has no impact on the current
salability of the product.

I want to suggest that a defect in the eyes of some
person who thinks about quality is something that
unnecessarily lowers the value of the product to that
person. They look at it and say, They didn’t have to
make that decision. That decision really reduced the
value of the product in my eyes. I think they should
reverse it and approve the product.

That’s a defect report. Several folks call those bug
reports but the distinction between a “bug” and a
“defect”. In court “defect” is often taken as an
admission that something is truly wrong with the
product in a way that might be legally enforceable
whereas bug is typically taken as a statement “well,
we didn’t like something about the product”. So
many companies use the more neutral words
“anomaly”, “problem”, “bug”, or “desired change”
instead of the word “defect” which has connotations
that not everybody will like to see in their database.
Here we’re going to talk about change requests and
defects most often because that is what is most often
used in the Rational Unified Process.

We’re going to hit In Module 6 on what testers
should report. The test group is, of course, not the
only source of change requests. If someone else
comes in with a change request, they’re saying
they’re not happy with the product and if they’re
willing to sign it, it’s their political capital that’s
being spent, not yours. The constructive thing you
can do with that person is to help them word their
report and troubleshoot their report well enough so
that everybody else on the team will understand why
they are spending that political capital and raising the
issue.

The tester might not be willing to write under her
own name, “I don’t like variable names like Irene.”
But if one of the programmers comes in says, “I think
we need to have this in the defect tracking system.”

In most companies that is the programmer’s right. It
would be inappropriate for the tester to say, “I don’t
think people want to see that. I’m not going to let you
put it in.” It might be much more appropriate for a
tester who sees a change request that says, “Irene is
an improper variable name.”

It might be very helpful for the tester to walk up to
the person who wrote that report and say, “I’m not
sure that’s enough information for people to make a
reasonable decision about this report. Why don’t you
like Irene? What is the problem? What are the
consequences for the project associated with the
problem? Why don’t we put those all together in
something that would take the Marketing Manager
for example and make him understand the big deal.”
Every stakeholder has the right to report a defect but
many stakeholders don’t understand how to put their
perspective down on a piece of paper in a way that
will convince the other stakeholders it was worth
reading. A big part of our task in quality
improvement assistance is to help people get that
communication.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 28

Slide 2.13: Dimensions of
Quality: FURPS
So we can think a lot about dimensions of quality. A
traditional way to think about dimensions of quality
is being called FURPS. You can think about a
product in terms of its functionality, its usability, its
reliability, its supportability, and performance. There
are some challenges in applying the FURPS notion.
FURPS is a very good classification system . If
somebody starts talking about something you can
say, “I think you’re talking about the functionality of
the product” so folks will sometimes keep statistics
based on FURPS and that’s useful.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 29

Slide 2.14: It May be Useful to
List More Dimensions
But sometimes you need to get underneath these five
“ilities” to a broader list of “ilities” in order to
generate tests based it.

Imagine a quality risk of the form, it doesn’t have the
functionality that I want. Well, how would you test
for that. Maybe that’s too broad. On the other hand,
suppose we that we said an aspect of functionality is
that it doesn’t have enough accessibility.

Well, what does accessibility mean? Accessibility as
an attribute of software means that the software has
been designed to be useable by someone with a
certain handicap. The handicap might be that they’re
deaf. The handicap might be they’re colorblind. The
handicap might be that they only have one hand. So
the product can be accessible to one subpopulation
but not another. If you want to test the accessibility
characteristics of a product, then you are going to
start thinking about, “Hmm, which subpopulations
are there, are the contrast on the screen high enough,
do they every have to click the mouse and press the
space bar at the same time, do they have to hear
things or are there also visual cues.

If you were to think about accessibility you could
come up with a list of issues that might not
immediately come to you if you thought about the
broader attribute or broader characteristic of
functionality. When we try to classify what quality
characteristics are in general, FURPS works fairly
well. When we try to use generators you are well off
to ask yourself in your company, what are the main
things that are quality related categories or issues for
your products. And then start driving things from that
lower level. Localizability is another class that some
people remember but some people forget. If it
doesn’t show up on your checklist to think about
localizability, it will never happen.

Localizability of the product is the set of features
associated with that product that make it easy to
localize that product to another culture. An example
of localization is to translate all the text from German
to English, English to Japanese, and so forth.

But I’ve been involved in localizing products from
American to British, and while it‘s true there were
some spelling changes from American to British,
many of the changes had nothing to do with the text.
It had to do with replacing the flag – you don’t
necessarily want to have the American flag waving
everywhere if you’re selling a product outside the
US. They had to do with words that were used to
express certain concepts – not just translations, how

do we display dates, how do we hyphenate, not just
translations but a wide range of other things that the
people in the place that you’re localizing for expect
about your product.

So for every one of these and I can guarantee you’ll
think of others. I’ve been reviewing a list that a
Masters student at Florida Institute of Technology
has been generating and this student at this point has
65 quality categories that he’s generating test cases
out of – it’s an enormous list – whether he’ll end up
bringing that under the FURPS classification or some
other one, at some point he’ll have to get a hierarchy.
But as a generator of test ideas, the 65 categories are
actually proving remarkably effective. He’s coming
up with hundreds of ideas for “how will we test a
shopping cart?”

When you take an experienced tester and put him
against some technology they’ve never gone to, they
end up asking “Okay, how would I analyze this thing
for accessibility, how would I analyze this thing for
maintainability?” They come up with a lot of specific
questions that they wouldn’t come up with from a
simple classification system. So coming up with a list
like this for your company could be a useful tool.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 30

Slide 2.16: Test Ideas
I mentioned test ideas when I talked about generating
ideas for testing a shopping cart.

A test idea isn’t yet a test case. A test idea is a
description of what I think it is of what I want to test
with a little bit of a notion of how I want to test it.
We don’t yet have the details. You can generate tons
and tons of test ideas and we’re going to go through
an exercise where we do. One of the problems that
people are going to have to face and you’re going to
see this as we generate for the very, very simple data
input field, is an explosion of good ideas to test. You
can’t test them all. You don’t have enough time, the
critical problem with testing is that we have an
infinite amount of work for any non-trivial program
we have a virtually infinite population of test cases
we could run. Of those, many of them are desirable
and more of them are desirable than you will have
time to run and so we fundamentally have to trade off
all through the process.

All through the development process, we’re
constantly going to be asking the question “Are we
doing the right thing for now? Are we coming up
with the most important test cases? Are we spending
our time in the right ways? Every iteration we should
ask that question another time.

The fact that we can come up with great ideas for
testing doesn’t mean we should run all those tests, we
can’t afford too. But having a good population of
great ideas especially ones that have been made in
advance so you don’t have to spend the time, gives us
a chance to select.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 31

Slide 2.17: Exercise 2.3:
Brainstorm Test Ideas (1/2)
We’re doing something called brainstorming. I just
want to lay out a couple of ground rules for
brainstorming before we go back. The goal of
brainstorming session is to generate a lot of really
good ideas and we’re going to end up as we do this
generating some ideas that can be very well refined
but start out as pretty rough.

The most effective way to brainstorm instead of
thinking about this one is better than that but is to say
here’s another one. People are going to come up with
wild guesses the first time through and I’d like to
make sure that everybody in this room feels very
comfortable saying something that, well, it’s the first
thing that comes to my mind in this class, we get the
class that way. The other thing we get is the example.

Tomorrow, if we were generating a test ideas list,
tomorrow what you’re going to have is a set of flip
chart notes and vague memory and if you have
specific examples so when you see this thing, real
numbers, you go, “Oh, now I remember what we
were talking about” they meant this. So the specific
example is useful not as the best case but as the
reminder of the class.

Every one of these will be able to come up with a
better example for the class and we’ll probably do
that refining off-line. One person will take the list
and come up with the best list after that. BTW, I’ll
come to your question in a second.

It’s okay to make jokes in a brainstorming session.
Brainstorming sessions are allowed to be fun. If you
have something that strikes you as funny in the
middle of one of these sessions, you’re probably
hitting some hidden truth. Irrelevancies fall flat as
jokes. So if you come up with something that is
funny to you, it’s probably also going to trigger
someone else to come up with a relevant idea that
may be rather powerful.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 32

Slide 2.18: Exercise 2.3:
Brainstorm Test Ideas (2/2)
So here’s our test idea exercise. Imagine that we have
a data input field. It will take numbers between 20
and 50. What would you test? I want you to give me
two pieces of information.

1. I want you to suggest a test case.

2. I want you to tell me what’s in your mind
when you’re thinking of that test case.

Draw two columns on the flip chart: Test and Reason

Sample discussion
Non-integers, Okay, well, I’m going to take that as
more of a description of a group of them. Give me an
example of what you would test.

Okay, so we’ve got real numbers as well as a
subclass. I couldn’t type at a keyboard a real number.
If you told me to type a real number I’d start by
going R E A L and that’s probably not what you
mean. What would you type, give me an example.
20.1 – why is that a good real number?

Okay, it’s in range and everything is valid about it
except it has decimal point. Now, are there any other
non-integers besides non-integers that have decimal
points?

So a huge number is another one. And an alpha
character. Which alpha character would you use?
Okay, what else?

If that came up we’d make a decision so what’s your
definition of a long integer? Okay, that’s going to
vary across systems. What I’m going to suggest is
that we think about an integer as having a maximum
as its maximum value and the odds are good that in
any integer that we define, 20-50 is within the range
of valid values for that integer so max-n is probably
out of range for that. Now let’s come back to
generating a list here.

So I’m writing down all valid values, 20 and 50
upper and lower bound. What else?

020 What’s special about 020?

0 Space. So, I’m going to capture the 0 space.

What’s interesting about 0? Murphy supplies a lot of
laws for testing. One of Murphy’s Laws for testing is
if you can sneak a 0 somewhere, someone can divide
by it. So, it’s not supposed to accept 0 but that
doesn’t mean it won’t. And now we have space, I
draw a space character as a little half box.

What’s interesting about space? Ah, what’s
interesting about deleting space?

Good, 19 – 51 the other boundaries.

I’m going to stop the brainstorming. But I am going
to say, this is a method people use to generate test
ideas all the time. A lot of independent test labs will
generate standardized test idea lists and a standard
test idea list is one you are going to reuse from
product to product, to field to field.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 33

Slide 2.20: A Test Ideas List for
Integer-Input tests
If you want to test numeric input fields, do you really
want to do this reasoning every time you get a
numeric input field? Of course not. So what is useful
to have is a standard set of test ideas for any numeric
input field that is integer, any numeric input field that
is float, any one character field, multi-character field.
You will not find those published.

The brainstorming process that folks go through in
developing these is a three-phase process. The first
phase is something everybody does at home alone,
tell people in advance a group of 4-5 other testers
think about this for 15 minutes overnight, sleep on it.
We’re going to look tomorrow at this kind of a field
or this kind of a problem. Please come up with a
standard set of test cases, bring some notes, whatever
you can scribble in 15 minutes but make those
scribbles the night before not the morning before. Let
yourself come up one or two other creative ideas
while you are sleeping.

The discussion that happens runs between often 1
hour to 3 hours, the less prepared the students are the
longer it takes. It starts out with people with reading
off the test ideas from their notes. All these are test
ideas. People start off reading those ideas they came
in with and once they get those ideas done, you have
an interesting silence.

Inexperienced facilitators of brainstorming stop at the
silence. That is when the group is just starting to get
their work done. Count silently to yourself for 10
seconds. Most of the time the pause will last less than
10 seconds. Your most powerful tool as facilitator is
your ability to control your own mouth. Make silent
eye contact with every person. Raise your eyebrows.
And you will discover, after 15 seconds somebody
will come up with something. And somebody will
come up with something after that.

You now have the value of the meeting, the people
have laid out the foundation for the thinking, they’re
now thinking together and bouncing ideas off each
other. Up to this point it was dominated by people
coming up with the ideas they had now they’re
coming up with the ideas no one could think of in the
first few minutes. That’s why we want to have people
working together.

Let the group keep going until you hit another 10
seconds of silence. Wait, if you wait you will be
rewarded. People will come up with yet more ideas.
In my experience, people will come up with creative
ideas in that last group. Let them go for another 10
seconds and at the end of the 3rd group of 10 seconds

some folks are finally getting very impatient. There’s
no point in fighting that as a group.

As we do this brainstorming they get more mature
and less impatient because they realize what’s
happening as you point it out to them, but you point it
out to them at the end of the session. At the end of
the 3rd group of 10 second silence, you say, “Okay,
let’s go for 5 more than we’ll stop.” Just like
someone running a race, see the finish line speed up
giving their fastest pace. It’s stunning what some of
the ideas are that come in at the last five to ten pieces
come in as people do that one burst of thinking and
then walk away exhausted.

Now that gives you pages and pages like this. I
facilitated a meeting recently where we did one
character wide character field and we had 15 charts.
Does that mean we’re going to use them all in a test
ideas list? No, some of the ideas were wild and crazy
ideas. Some of those led to some really interesting
stuff. We ended up at the end of the first day with 14
charts.

Another person who was responsible for that. I was
merely the facilitator, the person saying, “Okay
you’re next.” I was not the person responsible for
taking that and turning it into a good test idea list for
a single-character character field. She took those,
wrote the why a little more coherently and also
refined the ideas.

The refinement’s important. Let’s think for example
of the alpha character. Alpha characters are an
example of non-numeric characters. If we think about
how we tell the difference between numeric
characters and non-numeric characters, for someone
thinking from a purely black box point of view, A is
a letter, it is one of the extremes of the letters, its
ASCII code is closer to the ASCII code for the
numbers than any other letter.

But if you were to look at how that number is
processed, there’s probably a routine whose name is
probably IsDigit and that routine probably says
something like: “If the ASCII code for the character
that just came in is less than 47 (I think), less than 48,
it’s not a number. If the code is bigger than 57, it’s
not a number.” And the ASCII code for an A is 64 or
65, it’s not a good boundary.

If I wanted to see whether IsDigit was making a
comparison in the wrong place to accept or reject
numbers, I’d look for a character whose ASCII code
was 58 or whose ASCII code was 47. I think it’s a
semicolon and a slash. Those aren’t letters, they’re
not intuitively obvious but they’re the ones that if you
put numbers on a linear dimension where we say this
is the encoding for things that come off keyboards.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 34

Then the things that are most similar to numbers turn
out to be semicolon and slash and those would the
ones I test.

I wouldn’t expect to see those to come up in a test
ideas list. But if I was the person working from this
test ideas list, then I would ask that on each one of
these is there something more powerful that I could
do with a real number than the one that is listed here?
20.0 is pretty good, that might be as refined as I get.
The huge number, max+1, I might stop at that or I
might say, gee, if it will accept something that is
three digits, maybe I’ll try 100. If it will accept three
digits and I want to go to something that is huge,
suppose our max is 65535, I might try 65535, and
then 65536, and then I might go to Notepad and
create something that is 65535 characters/digits, copy
it, and paste that into the input buffer and see what
happens.

Stunningly, if you can put three characters in and
have them echoed on the screen and then rejected you
can often paste a remarkable number of digits in and
get yourself a buffer overflow. Buffer overflows, of
course, are the most common security violations that
we have or the root for the most common break-ins
that we have.

So huge numbers, there are a lot of huge numbers
that can be interesting procedures that the person who
is going from this can say, “What do I know about
huge numbers?” Leading space, space point is pretty
good, I might start with space two to see how it
handles spaces. And if it let me get away with space
20, then it’s time for space space 20, and space space
space 20, and 65535 spaces 20, we’ll paste that in
and see what happens, see if it chokes.

So I can come up with a lot of nastier test cases but
I’m guided as an editor as the person who’s coming
up with what is a little more powerful version than
this, I’m guided by these categories. The
brainstorming gives me the categories. That’s the
creativity that’s hard to come up with. What’s a risk?
Oh, gee, that’s a risk – I can come with a nasty test
case to face that one. But the group of possible risks
is the group that the first brainstorm helps us out with
a lot.

Here are some of the common answers people come
up for this kind of an exercise. And notice if I was
creating a format that I was going to keep, notice the
brainstorming format, the format that’s going to
come out of the list that the company publishes and
keeps, I’d want three columns. Give me a specific
example, tell me what’s useful about that, and tell me
what I expect.

And this is going to generalize, for example, the 20
that we saw wasn’t 20, the 20 was the lower bound. If
we had 10, we would have said 10. If we went
through the entire analysis and said what about 10-60
then we would have ended up with test is 10. Why is
it interesting? It’s the lower bound. So instead of
saying that, we should just say LB, lower bound. UB,
upper bound. The format is the same. But if we want
to have the general test ideas list that is reusable
across products, we have to substitute some variables.
And here’s a list that is going into the next iteration
of RUP that handles numeric input fields. This is a
fairly standard version of the test ideas list for
numeric input fields. Let’s try “completely nothing”.

BTW you might not be able to do completely nothing
off the start because there might be a default
character in the field so we might end up at “clear the
default value and empty the field” then try nothing.
Try any valid value, try something at the lower
bound, try something UB, upper bound and so forth.
So here we have is a list of too many things to do for
a numeric input field, but all of them good ideas. And
we’re going to come back in a second, I’m going to
show these in a matrix form, we’re going to see how
to delegate this, and I’m going to suggest ways to
minimize or limit the number of cases you actually
run. Before we do that, let’s think a little further on
the general question of where do these test ideas
come from.

I saw you have a puzzled look. {I have this enormous
list. If I run all of them I run out of time. If I don’t
run all of them then one that fails the field is the one
that they’ll ding you about. And so, I’m in a dilemma
here. I’d rather not generate these lists and remain in
ignorance than generate these lists and say, okay just
skip these.}

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 35

Slide 2.21: Discussion 2.4:
Where Would You Use Test
Ideas Lists?
When we think of dimensions of quality, we have to
question, how do we test for each of those
dimensions and we have to come up with a set of
notions for each dimension of tests that might be
effective. Those notions boil down to collections of
test ideas.

In RUP, the Test Ideas List is input to the activities:
• •Implement Test

• •Determine Test Results

• •Define Test Details

• •Develop Test Guidelines

• •Identify Test Ideas

What are other sources of test ideas lists?

• •Bug lists (for example, Testing Computer
Software’s appendix, and BugNet)

• •Business domain. For example, walk
through the auction web site, the shopping
cart, customer service app, and for each one,
list a series of related ideas for testing.

• •Technology framework: COM, J2EE, …

• •Fault models

• •Representative exemplars (such as the
“best” examples of devices to use for
compatibility and configuration testing.
Testing Computer Software illustrates this in
its chapter on printer testing.)

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 36

Slide 2.23: Identify a Generic
List of Test Ideas
The question I have from here is, “How do we
generate questions from test ideas. Now I could come
up with a brainstorming process to have us try to
figure out what a good population of accessibility
tests would be. I can tell you from experience that
would be a terrible place to start not just in a course
but also in consulting to an organization that wanted
to do test idea collections. You need to develop your
skill, there’s a lot of skill in test idea lists, you need
to develop your skill on the simple things. Once a
group can make a good set of simple test ideas, they
can come up with more complex questions and work
on those. But I’ve talked about a brainstorming
process that you might want to use in your company
to develop this stuff.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 37

Slide 2.24: A Catalog of Test
Ideas for Integer-Input tests
These lists turn out to be proprietary. Companies that
develop these invest a lot of time and money in them
and don’t publish them. So many companies put
together test idea lists for how to test printer
compatibility, video card compatibility, network
configurations, file handling problems of various
kinds. There were a slew of different test idea lists
unpublished for data fields and the ones I saw were
general better than the test idea lists I saw that were
published. Every company is going to have some
very complex things that they would like to capture a
list of test ideas for but if you go to the nasty ones
first, you won’t get it done.

You’re better off starting off with something simple.
Getting good at this, by having sample test idea lists
for simple things, against reliability it’s good to have
the simple things covered. But once get practice with
this you can go to more complex issues and come up
with a similar quality lists.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 38

Slide 2.25: The Test Ideas
Catalog
Numeric input fields are not the only input fields or
aren’t the only things you can do. One of the
intriguing test ideas list that I worked on asked the
question, What if we’re trying to save to a file and it
fails. What does the error handling look like?

Now here’s some of the test ideas that came into that
list: The janitor is doing the vacuuming and knocks
out the internet connection in the middle of trying to
save, trying to save and it failed. A remote hard disk
runs out of storage versus a local hard disk. The local
hard disk might be a little easier to check if you have
space or not. The power goes out in the middle of
saving. The disk is full or almost full but the attempt
to save was an attempt that involved a file
automatically saved by the program, something
where it saved internal variables instead of a save
where you explicitly said save this. You’re still not
going to make it onto the disk. There’s a different
risk there because the program is trying to do its
housekeeping instead of you trying to do yours.

So, we came up with that by drawing pictures of all
the places disks could live, all the ways we might
save information to disk, and all the ways that a disk
could try to accept data and discover that it couldn’t
do it. And then we started drawing “X” through every
one of these and said, okay, here’s a failure point,
here’s a failure point, here’s a failure point, not
enough room, not enough power, not enough
connection, and so forth. That became a pretty
efficient generator. But that was a model of the
system that we were able to draw.

That became a pretty efficient way to describe a
system for us and from there the test ideas pretty well
fell out. You might come up with test ideas lists by
reading specs, you might come up with test ideas lists
by going through if you’ve got a mature product by
going through the tech support database and ask the
question, what are people calling about.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 39

Slide 2.26: Apply a Test Ideas
Catalog Using a Test Matrix
I like to publish the list in a matrix form. So across
the top I have the things I’m testing for, or could be
testing for, and then I’m going to list all the fields I
could test in. In practice, I might have one page that
lists all the relevant fields for one dialogue and then a
different page for the next dialogue and so forth.

In practice, this is a physical piece of paper. It
photocopies, you have a stack of them. And one of
the best uses of these is you bring someone in who is
a moderately experienced tester into the project and
they don’t know much about the product at this point
and you say, okay, go figure out how to test these
kinds of fields. If they’re moderately experienced,
they know how to work with a chart like this and it
takes you 10 minutes and they go, oh, okay.

You can add people like that to the end of the project
safely if you have something good for them to do.
You cannot add people like that to the end of the
project safely if you don’t have organized stuff for
them to do because you’ll spend so much time
training them that you will never get anything done.

Now, whether it’s somebody new who comes in or
you are early in the test and you are guiding yourself,
my approach from here is I actually use pink markers
and green markers/highlighters go through and test a
field and mark it in pink if I ran the test and it failed,
mark it in green if I ran the test and it passed and skip
it if I didn’t run the test. And what you’re going to
see at the end of running this is that every column has
some tests in it. I tested some fields for upper bound
+1.

Every row has some tests in it. But no row has all the
tests and no column has all the fields because we
don’t have time. What I’ve done is sampling on both
dimensions.

If someone comes back to me and says, you only
sampled you didn’t exhaustively test, I’m going to
ding you. Then I show them a chart like that and say,
look, I treated each of these like a risk area and I did
a sample and there were no problems. Do you really
want me to spend at least 20 times as long, 20 times
my budget so that I can go through every possible
test and run them all?

At that point, a reasonable executive is going to say,
Oh, I see what you were doing. That’s very efficient.
Congratulations, I understand we can’t do everything.
And an unreasonable executive is just going to be
unreasonable. But this is an organized and easily
communicated process and in my experience people

look at it and say, yeah, I don’t think I could have
done anything more efficient than that and more
reasonable than that.

Every time somebody calls about a problem that is an
actual error in the product, you have a class of test
cases that you seem not to have run. Maybe that’s not
true and you ran the class, but you sampled and just
missed this one by bad luck. But more often, you just
missed the idea for that test so now you have a
generator for a new set of ideas. So catalog or lists of
test ideas could be generated on your own from a
model or they could be generated in a group or both,
have the group work up the model and then work
from that. The value of the catalog is its reusability
across many, many projects. That’s what makes it
worth spending your time getting something that has
a lot of stuff in it and formatting it so that it can be
easily reused.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 40

Slide 2.27: Exercise 2.5: Your
Own Test Ideas Lists
Pick a topic of interest to the room and expand into
test ideas list and matrix of ideas. Doesn’t need to be
input fields (probably shouldn’t be.)

If the students don’t have ideas, suggest installation
testing as a technical example; internet stock trading
as a business domain example.

NOTE: This exercise is most successful if you
suggest a topic one day, encourage people to spend
15 minutes generating test ideas on their own
overnight, and do the actual brainstorming session
the next morning.

Does context of the application
help the brainstorming?
If I’m trying to build a test ideas list that could be
reused across many applications, then in the ideal
case the more context free I can make my list the
happier I’ll be because it will be more easily reusable
across a broader context of applications. In practice
though, the brainstorming session to come up with
these have only worked, I’ve facilitated a variety of
groups trying to develop lists like these. Independent
test labs, how does an independent test lab work?

They go to a company and say, we’re an independent
test lab. That’s all we do for a living – that makes us
experts. We have lots and lots of little experts we can
rent out to you because we’re an outsource agency
and that means we’re cheaper than having employees
in-house. That’s the pitch, right?

How can they be so cheaper and manage their
overhead? The answer is they hire people for $10
bucks an hour and they charge you $30 - $40 bucks
an hour. For those of you who think that’s a big
markup, I should point out to you that every
independent test lab I’ve ever worked with who only
charged a multiple of 3, 10 to 30, has gone out of
business. It’s not enough. The amount of training
support, executive support, facilities, and so forth,
eats that money like you wouldn’t believe.

So here’s an organization that can’t really afford to
discount much who’s going to sell you a tester for
$50 bucks an hour, okay, so they can pay $16 bucks.
I don’t know what you can find for $16 bucks an
hour but in California where I’ve been seeing most of
this done, $16 bucks an hour will not hire you people
with 20 years testing experience who are good. So
how do you make people who came in last week to

your lab and agreed to work for $10-15 bucks an
hour look really productive on the first day.

And a lot of the answer comes with test ideas
catalogs. You take these new folks who have some
background in software, if you’re dealing with total
juniors, then you have a supervision cost and maybe
you’re going to pay that supervision cost, but if
you’re dealing with mid-level testers then you take
some test ideas, you sit them on this product.

The product comes in on Monday, you say, uh oh,
let’s find some bugs. You take a bunch of very
standard tests, you throw people at those tests. You
generate a ton of bug reports, through tons of bugs
reports back at the development group, and they say
WOW. You catch your breath and try to figure out
how to test this thing. So the broader range of test
ideas you have canned, the more you can sell your
services as if you were really experts. And so test
ideas list are in fact, are the valuable intellectual
capital of some of the best test labs in the country.

Now, if you’re dealing with a test ideas list
generation process like brainstorming, with people
who have never attacked that type of problem before,
you are going to spend hours, and hours, and hours,
in brainstorming coming up with a second rate list.
Figuring out what’s really relevant and what’s not
relevant isn’t going to work. On the other hand, if
people have a lot of experience with this and they go,
oh, yeah, write to a bad file problem or write to a file
and don’t succeed in saving it properly.

Even though that’s kind of an esoteric area, if you’ve
done that kind of testing 28 times, and you go, that’s
such a boring thing, I’ve done it 28 times boom, it’s a
wonderful opportunity for a test ideas list. If you are
dealing with folks who don’t have that range of
experience in something you want to capture. You
have to go through some specific contexts to bound
what they’re going to come up with. Just like we
didn’t start with let’s come up with a test ideas list for
a numeric input field where it’s lower bound and
upper bound, we could have. We came in with let’s
think of a database application with 20-50.

You might end up with a brainstorm of essentially the
same problem. But here’s this particular problem for
this product. Now let’s look at this same problem for
this other product. Now look at the same problem for
this other product. What did we just extract? The
context is either in the head of the people who are
already there, many contexts so you can come up
with general questions, or else you have to go find
context as part of your building process or building
the final list.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 41

Multiple contexts are essential. But if you’re lucky,
the people you are working with will already have
those multiple contexts in their heads and so you
don’t have to confront context in your list. The list
that gets output needs to be as context-free as it can
be. But the inputs are not well educated unless people
have done them in real systems, seen what works,
and from a variety of contexts can tell us which were
the most valuable things.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 42

Module 4: Define Evaluation
Mission
In the Module 2, we talked general about the notions
of quality, the notions of testing, the notions of
quality categories, and then we burrowed down to
test design and the bottom up view of test design lets
us come up with test ideas. Those concepts give us a
nice background to look at the workflow in RUP. All
of the modules after this go through the workflow of
the RUP. In Module 3, we look at a broad overview
of the testing related workflow of RUP and how
general testing is handled in RUP.

This will be a quick familiarization.

Slide 4.2: Module 4 Content
Outline
The first workflow for testing in RUP is the one that
defines the evaluation measures.

So what we’re going to do in this outline is to go very
quickly through the definition of the workflow.
Notice the definitions of the activities and the
artifacts. When I say notice, I mean those are in your
text notes. I’m not going to through all those in
detail.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 43

Slide 4.3-5: Workflow: Define
Evaluation Mission
In general, the structure of these modules is a RUP
transition in each module. Basically what we have is
a quick peek at RUP followed by statement – let’s
focus on one or two things in this workflow and I say
– let’s focus on…, then I start focusing. The place
where people should have understood that structure
was either in in Module 3.

The instructor is going to have to make it clear that
there is a pattern we see with every workflow. The
pattern goes like this. The workflow talks about all
sorts of activities done by all sorts of people. We
can’t begin to teach all those things in a 3 three-day
class. What we can do is take the one or two things
within this workflow that we think face-to-face
instruction might really help you understand what’s
special about that workflow and work on those.

What I’m going to do is focus on the specific most
important question in this workflow: How do we
figure out what the mission for test group should be?
The rest of the stuff people can get as guidance from
RUP and there are ideas in the course notes for them.
And certainly there are lots more in Lessons Learned
in Software Testing.

So Workflow Define Evaluation Mission is defined
in terms of identifying the appropriate focus for the
testing effort and gaining agreement with
stakeholders. The other key piece to recognize is as
well every else in RUP, this is an iterative process.

You want to check every iteration – is the mission the
right mission. We will see as we go through, that the
mission for the test group in fact changes throughout
the release and it should. Yes.

Even if you say, “We don’t develop software
iteratively so that won’t work for me,” this
ocnsideration still applies. The short answer I’m
going to give you is that test groups end up facing
changes in their mission over the life cycle of the
product whether that’s explicit or not. We will see
that in an example, but I’m going to defer that and
come back to until after we see the example. I hope
you will say, oh yeah, I see that. If not, then we
should talk about it then.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 44

Slide 4.7: Exercise 4.1: Which
Group is Better?
Let’s hit the mission question. I want to hit this with
a simple example, an artificial example, I want you to
have some patience with the artificial nature of it. To
get to the question of mission in the way I want to get
to it, we’ve had to simplify everything else enough
that we don’t get bogged down in all sorts of
irrelevant facts.

Imagine that we had two different test groups that
were given exactly the same program and imagine
that we went through this program and found five
areas that were interesting and had some risk. There
are a bunch of other areas of the program that were
less interesting. But there are five we look at and say
these were equally important, we care about all of
them, and additionally we have some reason to
believe, that on average a defect in any one of these
areas would be as severe as a defect in any other of
one of the areas.

Here’s what happens with these groups. We give the
program to Group 1 and Group 1 follows fairly
normal testing strategy. They start out looking at all
five functions lightly, check to see the functions are
there, test the functions with easy values and basic
happy paths. Functions B, C, D, E pass. That doesn’t
mean they pass everything you could ever through at
them, on a simple look there’s nothing obviously
wrong.

Function A on the other hand starts out sick and stays
sick. All through testing, Function A is the bad
function. In fact it’s such a bad function, that the test
group even thought they try to allocate time to B, C,
D, E and they do a little more testing on B, C, D, E.
They haven’t ignored B, C, D, E but this is a group
that’s motivated toward finding all the bugs they can
and every time they turn around, more nests are being
found in Function A. Every time they send bug
reports back to the programmers and get reports back,
this is supposedly fixed, they are finding side effects
coming out of Function A. and so most of their
attention gets spent on Function A

At the end of testing, Group 1 found 100 bugs in A
and none in B, C, D, E.

Group 2 has a different strategy. They start with the
same strategy. Most groups start with the same
strategy; let’s wander through all the functions and
do some light testing quickly to find the areas that
might be at the greatest risk. So they see that
Function A is pretty bad too and they allocate a little
more time to Function A. But overall their testing
philosophy is we have a minimum level of testing for

anything we care about, a minimum level of coverage
that we’re going to hit for anything we care about and
it’s a substantial amount and so they work pretty hard
on B, C, D, E and they find six bugs apiece. There
were bugs there, it just took them more work to find
them.

Of course, if you spend your time on B, C, D, E there
less time to spend on Function A so they only found
50 bugs on Function A. The first group found 100
bugs, the second group found 74. Which group did
the better job of testing? You say Group 2 – Why?

Let me clarify the facts. Group 2 kept testing
Function A they just didn’t spend as much time on it.
If you had 5 people to test, Group 1 spent almost all
those 5 people’s time on A; Group 2 kept cranking on
A but they spent more time on the others. That meant
that 50 bugs were left unfound in function A and
unfixed. Anybody have any thoughts, let me take a
show of hands. How many folks think Group 2 was
the better group? About half.

How many think Group 1 was better? 3 – Why do
you think Group 1 was the better group? They found
more bugs and all bugs are equally significant.

Of all you folks who thought Group 2 was the better
group, what do you think of that? Who’s a Group 2
person here? Coverage was better in Group 2 and
that’s better results because the functions are equally
important.

The 3 of you who thought Group 1 was the better
group, what do you think of that? Your hand was up,
what do you think? End users will find fewer bugs.

So remember that for both groups everybody tested
the happy paths for all the functions. We’re not
talking about groups that are fundamentally
incompetent. They started out saying what’s the
purpose of this function, let me check the basic
purpose with reasonable values and Function A failed
for both, B, C, D, E passed for both on those tests.

So now they’re getting into harsher testing. Group 1
allocated their time here and Group 2 allocated their
time into harsher testing into B, C, D, E and less
harsh testing in A. For both groups, it is unlikely that
just walking in and pressing a key will stop you in the
water. They did test it they just didn’t do as thorough
a job in one set as the other.

This is all the testing for the project. In fact, let’s go
to the next slide. Here we are six months later.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 45

Slide 4.9: Exercise 4.2: Which
Group is Better?
So Group 1 shipped the product, Group 2 shipped the
product. You know, some companies operate on the
schedule that says on February 1 we will ship the
product and on February 1 Group 1 had found 100
bugs in A and nothing else. These guys found 100
but missed all 48 that were found outside of Function
A. This is the product that got shipped.

On February 1 Group 2 found 74 bugs in A, B, C, D,
E. Now what’s really in the product was 148 bugs.
These guys spent their time and found half the bugs
in A and half the bugs in B, C, D, E. So 74 bugs got
found and 74 bugs got missed. 74 bugs got missed
out of a total of 148.

So let me ask again, how many think Group 1 did the
better job? A few more. How many think Group 2 did
the better job? Several. Why do you think Group 2
did the better job? Group 1 found more bugs faster
and so that of course is a good thing, but Group 2
covered B, C, D, E and assured a broader range of
use flows are likely to work. Any group 1 advocates?

So Group 1 probably has better negotiating power to
get Function A fixed than Group 2. What if it turned
out, what if you were in a company where every
significant bug that got found, a serious attempt was
made to fix it. The company had a corporate standard
which was, we don’t leave bugs that we know about
unfixed unless desperate circumstances happen.

So in this case, the 100 bugs were fixed and in this
case the 74 were fixed. Would this change your point
of view? It would make you sit on the fence on the
issue.

The statement is that Group 1 found 100 leaving 48
in the field. I’m going to add one tiny note to that,
you mention the notion of metrics and I’ll mention
the notion of customer call costs, if we assume the
bugs were equally significant, then the tech support
budget associated with Group 1 was probably lower
than the tech support budget associated with Group 2.
And so by that measure, Group 1 did more successful
testing than Group 2. And yet, we still have folks that
want to advocate for the better effectiveness of Group
2.

So how do you argue against that? Group 2 found
half versus either 100% or 0.

But I want to address a different point which was that
at some point when you have a function that is in bad
shape, the wisest thing for a tester to do is say, we’re
not going to test this anymore, this is just not stable
enough to be worth testing. That’s true. And another

factor no one has mentioned but is certainly true,
when you find one bug, the fix to that fixes
something that would have been found and reported
if you’d continued testing. On the other hand, I
certainly have had the experience of telling people
that I’m done testing an area, that it is broken and
they need to fix it, watched them not to do any more
work on it because there was nothing else listed to do
on their todo list and watched the product go out with
weaknesses in the area where I’d documented
fundamental weaknesses.

It depends on the company. If you think that merely
saying this is so badly broken I’m going to stop
testing is good enough, and in some companies it is,
in some companies after finding 10 bugs in 10
minutes in Function A, you could toss it back and
say, give me a complete rewrite, we’re done. And the
programming team would say, yup, you’re right, we
need to start over. Yet, in other companies that’s just
not going to happen.

The example is artificial to keep all the numbers
around it easily calculated. The experience is that
some test groups have the vision that they’re
supposed to find the most bugs and the heuristics that
where there have been bugs before, there are more
bugs. That’s a very common heuristic. A heuristic is
a rule of thumb. And one of the first things that has
been taught to testers in all of the testing textbooks
point out that all of the areas that had bugs before are
probably still unstable are and worth devoting more
test time to. If you follow that approach and take your
time away from investigating other areas.

It’s zero-sums game as far as time is concerned -- if
you spend more on one thing you spend less on
something else. Everything we spend chasing bugs in
one area, we take away from broad coverage of the
others. All I’ve done is taken that to the logical
extreme so that we can see that as a real contrasting
strategy.

Let me hit the contrasting strategy a little different
way. I want you to pretend for the moment that you
are the Project Manager. I’m going to come to you as
the Test Manager for Group 1. BTW, the ship date is
February 1, it is now January 23, basically we’re
done. Here’s my quality status report: Function A
was really sick. You should never have given me this
code and having given me this code, you should have
taken it back a long time ago but you didn’t. We’ve
finally beaten it into submission. As far as we can
tell, Function A looks okay now. We’ve lightly tested
Functions B, C, D, E. The main use cases work and
as to the rest, we’ve sampled but we don’t have a lot
of data. That’s Group 1. Now think of yourself as
Project Manager and it’s January 23. I am the Test

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 46

Manager for Group 2. Let me tell you the status of
this program. The mean time between bugs
discovered in Function A is still about one per hour.
By the time we finish this meeting we’ll have another
one. We don’t know when it will end but it probably
won’t be tomorrow. Functions B, C, D, E had some
bugs, we found some bugs, there are probably some
more bugs, they’re getting hard to find.

As the Project Manager, which do you like better,
Group 1 or Group 2? Why do you like Group 1
better? Your focused your time on the Function that
worked least well, drove your test case through your
testing for use cases for all functions and they appear
to be more or less okay. What else would you expect
from the test group?

You’re the Project Manager, do you like Group 2
better? Who is in that category? Group 2 covered
more of the alternate paths and enabled a stronger
statement about quality than Group 1. Not stronger
bad or good, but stronger in terms of more
informative. And a strategy that can enable a stronger
statement about quality is a better strategy than a
strategy that merely finds more bugs. Is that a fair
summary?

Group 1 is in a far better position to ship because
they’re saying they’re not in a crisis, of course,
Group 1 hasn’t discovered the bugs in B, C, D, E that
might make it nervous.

Whereas Group 2 can say to the Project Manager,
you’re in trouble. Now let’s add yet another twist to
this. Suppose that you were a PM that was indeed a
hard, fixed ship date. It will not ship after February 1.
Whatever you find is what you find. Whatever you
find is what we fix. We will fix nothing you don’t
find. And we find nothing you don’t find and we will
ship February 1 even if it is erasing people’s hard
disks. Under those circumstances, which do you care
about? Maximum number of bugs found or best
quality report? How many folks think that under that
circumstance you are looking for max bugs? A few.
And how many of you think that you’re looking for a
quality report under that circumstance? One.

The circumstance is an absolute fixed ship date, the
only bugs that will get fixed are those that get
reported, so the test group that finds more bugs, get
more bugs fixed. But if the test group only found 2,
the product would ship. If the test group found 400,
the product would ship. The ship date is totally
independent from what the test group would find. Do
you need a quality assessment from the test group at
that point or do you need bug fixes?

How many folks think they need bug fixes more than
they need a quality assessment? Some of the folks

that liked Group 2 say, oh in that case, you need bug
fixes more than quality assessment. How many of
you think we still need quality assessment more than
bug fixes. 3-4 of you think we need quality
assessments than bug reports.

Okay. I want to suggest to the four of you who said
that, you have a conflict of mission with the Project
Manager. Because the Project Manager probably
couldn’t care less about your quality assessment. The
Project Manager is definitely trying to get bugs found
and very minute spent assessing quality, the Project
Manager is going to sit back and say, What are you
doing? Spending time when you could be finding all
these bugs and you’re not! I don’t care about your
report – just find the bugs.

Now on the other side, I can say from my experience
that one of the less pleasant moments that I had as a
Project Manager was getting a Group 1 type of report
and writing a note back that I was going to slip the
schedule for two weeks to allow the test group could
do its job which was to find enough information
about the product so I could decide whether to ship or
not. The distinction was that I was not facing a hard
ship date, I was facing an embarrassing schedule slip,
but I had the authority to slip the schedule. At that
point the testing group was a technical information
provider of the kind that could help me make the
decision about ship instead of the only the kind that
could help me make the decision about what to fix.

For a Project Manager who has flexibility based on
a quality assessment and wants that quality
assessment from the test group, Group 1 is off
mission. Group 2 is on. The worst mistake you can
make as a Test Manager is to cross missions.

Group 1 and Group 2 are both fine groups for
different Project Managers. If you have a Project
Manager that has no value for your quality
assessment, and Project Managers who in good faith
are up against certain kinds of deadlines simply do
not have a value for your quality assessment. For
that person, the more time you spend on assessment
and the less time you spend finding bugs your not
serving them and they’re going to wonder what you
are doing. On the other hand, for the person who is
looking to you for an overall assessment the more
time you spend just finding bugs and the less time
you spend finding out what the overall product looks
like the less helpful you are being.

Now I mentioned the notion that people’s mission
changes over time. Imagine there’s still a February 1
ship date but imagine we had these data in December.
In December both groups might be hunting for bugs
and both groups might be taking different strategies

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 47

for finding out where the real nests are. Group 2
might be saying you know a little broader coverage
might give us better risk management overall and
Group 1 says let’s clean up one, then the next worst
one, then the next worst one.

Both of them early on probably have the main
mission: find bugs, get them fixed. And as the ship
date approaches the group that might be looked at for
assessment is going to be under increasing pressure
to stop looking merely for bugs and start looking for
indicators of quality. An indicator of quality might
be, I tested as thoroughly as I could for three days in
this area and nothing was found. We can’t find
problems in this area. That’s an indicator of quality
for that area. If I have a hunch that there’s nothing
there and I spend ½ day and there’s nothing there, my
task would be find the most bugs I could, that would
be the end of that area.

But if I was trying to do an assessment, I might do
the whole three days and come back with a more
thorough assessment. I will spend more time perhaps
looking at the lower pay off areas if I was trying to
gauge how reliable the product is in those areas than
I’ll spend if I’m just trying to find the maximum
number of bugs.

As my mission shifts from find the largest number of
problems because the programmers are ready to get
into help me understand what this product really is
and what my schedule risks are, I’m going to change
how I’m spending my time from being a Group 1 to
being a Group 2.

And that’s true even in a company that practices
waterfall development, a company that follows zero
iteration development, the test group is still going to
get builds. And every time a new build comes in it’s
worth the tester saying, what should we focus on,
why should we focus on it, how would this serve the
needs of the Project Manager and the rest of the
project team this week. And the answer to that
question might be a different answer each week of
the process even though from a Project Manager’s
point of view it’s one unified process.

One of the advantages of Group 2 is lack of surprise.
If you really had a test group that operated in series,
will thoroughly test the highest risk area, the test the
next highest risk area, and so forth and the Project
Manager doesn’t understand that, this coordination of
mission is very important. If the Project Management
doesn’t understand that’s the approach of the test
group, then you’ll have a situation where at the end
of December, Function A had a 100 bugs reported
and B, C, D, E had nothing and then two weeks into

January, the Project Manager is seeing bugs in B and
saying I knew there were no bugs in B.

On the other hand, if you have a common agreement
about a mission, the PM says I only have two
programmers and I want to focus their time
everything on Function A, everything on Function B,
I don’t want to have people shifting their attention
back and forth. Get to an area, beat it up as hard as
you can. Go on to the next area, that’s going to help
me keep my staff focused on related problems. Then
the Group 1 approach in series would be exactly
what’s needed. It depends on what the two groups
have.

We provide information to people who use the
information and we need to provide the information
in the way that they can best use it. There is no test
group mission independent of the needs of the
organization for the services we provide. We’re a
service organization.

The Project Manager might have a heart attack at
finding out later on that there are problems in these
functions. The statement is the Project Manager’s
product still has the better methods. Now in this
example that happens to turn out to be true. The
problem for me as the Project Manager or you as the
Project Manager is that as you look at these numbers,
you don’t yet know that these will be the numbers
and when they become the numbers, the question you
get to ask yourself is: “Was this by skill or by luck?”

In the case of Group 2, there’s a lot less room for
good or bad luck. Group 2 is sacrificing the total
number of bugs found in return for less surprise. In a
group that values a reduction of surprise Group 2 is
better. In a group that values minimization of total
bugs but is tolerant of surprise, Group 1 is better.
Management is never tolerant of surprise, some
management is willing that they face risks and that it
is necessarily the case when you take a risk that some
of the risk might bite you. And so they may have a
tolerance for a certain number of them.

So let me just speak again as a Project Manager that
has made this decision and doesn’t regret the
decision. At the end of the day for me, when I faced
the Group 1, I stopped ship on the product not
because there were bugs but because there was too
much uncertainty for me to be willing to ship and
while what they found probably would not have
justified me stopping the ship, that is I wasted two
weeks. I was not willing to sign my name on the
release until I had more information about the areas I
considered under tested. At the end of the day, it
didn’t matter to me what the metrics were, it mattered
to me what information I didn’t have. As the person

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 48

in charge of making the release decision, I was
counting on the test group to give me the information
they didn’t provide.

Now was I managing properly? The way that I was
managing improperly, was that somehow I had not
succeeded in working with the test organization to
make sure we both had the same mission. I wasn’t
able to get them to not do their thing in their way
until finally I said, I have the ship/don’t ship decision
and we don’t ship. Now I have been in the exact
other role as Project Manager where all I wanted was
bugs and I got frustrated with the process. It is not a
question of what is the one true way, the question is
how do we achieve congruence in the organization.
And the critical thing a Test Manager has to consider,
you might decide that in your sense of your integrity,
and your sense of your group’s integrity, and your
sense of your responsibility to the people other than
the Project Manager to a broader corporate mission,
there’s some guns to be stuck to and you’re going to
go and do it this way even though you have a Project
Manager who’s asking you to veer off in another
direction.

So when you make that decision what I want to urge
you to do is make that decision absolutely
consciously. This is the mission that would best serve
the Project Manager and this is the best mission that I
believe best serves the customer or the company, and
this is the one that I’m going to choose or this is the
one that I’m going to choose. But understand where
the pull is and how comfortable you are with it.
That’s the hard part that we need to do to define what
our tasks are going to be for the rest of the testing
project.

The comment was, in Group 2 they made their ship
date and were willing to absorb the cost of more bugs
in the field, that might be one success. Here’s a
different success. Imagine as the Project Manager I
go the Vice President of Development and say, let me
explain why I need to slip the ship date for two
weeks. Now when I slipped for two weeks, the way I
had to slip was say the test group did not do its job,
we had zero information about this, those people are
causing a slip based on their incompetence. Let me
just give you a piece of career advice, that’s not the
memo to have written about your group.

If you’re running Group 2 on the other hand, then
you have some cover. I get to walk up to the Vice
President of Development and say, you know what?
Every hour we find a new crash in this. It’s a
problem. It takes us longer to find a problem here but
we know there are a few left. I think we should hold
it for another week and see if it gets better because
it’s just not commercial yet. That’s very different

from I can’t tell that I don’t trust it and they haven’t
given me any basis for confidence.

Here we have an assessment and say, this is probably
what it will cost us. Tech Support can sit with me and
say, this is $100K/year, this is $1M/year, this is
whatever it is per year in probable problems and
we’ve can make a cost/benefit decision. With Group
1, on the other hand, we start consulting astrological
tables to make our ship decision. If we have
flexibility in the ship date, this is fundamentally
uncomfortable. And Group 2 gives me the basis to
make a reasonable decision. Group 1 doesn’t.

Of course these numbers are oversimplified. But I
want to suggest to you the strategy behind the
numbers is an appropriate strategy. And that works
like this, if you know that you are facing a firm ship
date with zero flexibility and you also know your
Project Manager is not much interested in an
assessment, BTW those are separate things, you
might for example on facing your firm ship date still
be able to predict tech support costs and the value of
being able to staff tech support appropriately and
train tech support appropriately might be so high in
your company that they’re happy to have you do
quote “less efficient”, in terms of bug metrics, testing
in order to be able to make quality predictions.

Some companies want that, some companies don’t
care. A few companies I know in the last two weeks
before release, assign two or three tech support folks
to do their own assessment and to do their own
estimation. They don’t trust the test group’s numbers,
they don’t care about the test group’s numbers, they
come up with their own.

So in that company, whether your like that style or
not, that company is not being blind, they’re just
managing risk in a certain way without using the test
group. In that company, you don’t have influence
over the ship date, you are not relied on to give an
assessment of product, what they want you to do is
hunt bugs. Your task is to hunt in the fastest way you
can for the worst bugs you can find and of course to
check the areas you think are unlikely to fail lightly,
briefly to make sure that there are no easy pickings.

Certainly, if I was testing Function A I wouldn’t
spend all of my time on Function A for every build.
I’d do a little into Function A, I’d get enough to say
you have rot, I’d leave it. I’d go into the next thing
and see what they’ve got done. As soon as they come
back to me and say they’ve got A more or less okay
now, I’d go back and discover you still have rot then
pull off and go on to the other stuff. You can manage
this with some efficiency and still say that every time
it is sensible to test Function A, I will. That’s my

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 49

number 1 priority area. Every time it is sensible for
me to test the next highest risk area, I will. That’s my
number 2 priority area. And just keep hammering
back on those areas based on what you think you are
likely to find. And while I agree that you will be
unproductive to go past a certain level in any area
because you are likely to generate enough change
within the code that anything you find after this point
won’t map onto the code when it’s redone. You’ll
still focus your time on where’s the next serious bug
likely to be. Fundamentally a Group 1 strategy, and
fundamentally not a Group 2 strategy.

The Group 2 strategy is: Where is the next most
valuable piece of information about the status of the
project likely to be. That might be in finding a bug
and it might be in not finding a bug. Group 1 not
finding a bug has no value but in Group 2 not finding
a bug carries something.

Every build you have to reassess your test mission.
Every build it’s worth sitting down with the other
stakeholders and asking, are you getting value from
what we’re giving you? If you have a Project
Manager who feels the most important thing you
could have given him in the last week were all those
integer tests, then collaboration has had the value that
that Manager was hoping for but probably this week
they will ask for something else.

Every build it’s worth asking should we be doing
this? And you know early in testing, very early in
testing, you have the very strong question, function
by function is this thing working okay. We would
like to be in a company where they do enough of
their own unit testing on the programming side that
most of the really simple tests just pass. In a lot of
companies, that’s true. The obvious problems, the
simple boundary tests and so forth rarely generate
bugs. And in some companies that’s not true and so
you end up in the situation where in a company
where there’s a lot of risk associated with some
elementary operations, do you spend a lot of time
testing them, well maybe you do and maybe you’re
not dealing with code that this current group has a lot
of control over.

During the Y2K projects, people found some wild
problems. They would change some code that was
obviously, completely and totally unrelated to
everything else and break everything else in horrible
ways and not understand how to fix it because all
sorts of the changes had been made years ago by
people no longer there by patches. And so the source
code everybody had was a more or less
approximation to what was running inside a computer
that was the company’s financial record keeping
system, lightly documented. In that world, people

ended up having to do all sorts of crazy regression
testing at very basic levels. There was no such thing
as unit testing, nobody had source let alone the ability
to test at the source level.

So, there are circumstances where running the
hundred test ideas for the integer field is not
irrational. If you’re in those circumstances and you
are not doing that, it’s a problem.

It’s the congruence of mission issue. And if you’re
not congruent you fail. If you are congruent, you may
need a lot more time, jointly, than you budgeted so
far. But if you are congruent and you’re spending a
lot of time on this stuff let alone the complex stuff, at
some point the Project Manager is going to come
back, not just the Test Manager, and say, we need
more time, more money, and more people.

Whereas if you are non-congruent you are finding
problems where the Project Manager says I wish
you’d spend more time over here. And you say, can I
have more testing staff? They’re likely to say, no I’d
rather give you fewer and have you work on the
mission I want for you. And as the Project Manager,
the person responsible for getting the product shipped
on time at the right quality level, within budget, with
the right features, it might even be appropriate for the
Project Manager to say, you are overspending on the
wrong services on my project. I’d rather give you
less.

It depends on the company and how they view the
management structure for a project. But somebody
has that ultimate responsibility. And that somebody
should have the right to say that an organization is
not operating congruently with the management
philosophy with that project maybe doesn’t get to
spend much more even if they’re finding problems
they think are important. I need to close this
discussion down. I think the point has gotten across
about mission.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 50

Slide 4.10: So? Purpose of
Testing?
We’ve made a contrast between the two most
common missions of testing groups: find bugs and
assess quality. I can’t count the number of times I’ve
seen debates between:

• “Our job is to find bugs. A test that didn’t
find a bug is a waste of time. Only bug
finding has value.”

• “Our job is quality control. A process that
doesn’t lead us to an estimate of reliability is
a broken process.”

And it get s vituperative: “These guys are negative!”
“And these guys are process weenies!”

The real issue is congruence, not right or wrong. But
at the point where we think about congruence in
general, we recognize that in fact there are really
many different missions in the field of test
organizations. The same test organization might go
through many of these missions through the course of
the project, but some companies will focus their test
group primarily on one of these missions throughout
the project.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 51

Slide 4.11: Varying Missions of
Test Groups
Let’s look at a few of these. Find defects we know.
Maximize the bug count – here’s the group that wants
to prove it is the primo, suprimo best metrics group in
the organization – we can find more bugs than
anybody. BTW, in shootouts between independent
test labs -- I’ll give four labs the code and try to
figure out which of the four labs I want to retain --
maximize bug count might be exactly the mission.

Block premature product release – your task if you
have a company where executives have announced
that on January 1 the product will ship. There’s no
way the product, well, it could ship January 1 if the
company doesn’t mind getting sued, but there’s no
way that a reasonable person would ship it on
January 1. Sometimes the test group gets to play the
role of organization standing on the railroad tracks
advising the train to slow down or stop. Now most of
the time that’s an interesting way to get flattened out.
You can do exercises or you can stand in front of
trains, eventually things will get redistributed.

If you decide you’re going to block the train, you
may as well do it well. If that’s what you’ve decided
is your goal, then blocking premature product release
does not necessarily mean finding the most bugs, it
means finding the bugs that will stop ship on the
product. And so, it might be that you find only one
horrible bug per week, but you get to walk in to the
project team meeting each week and go, guess what
want to ship with this one, look at this one. And
everybody else in the room go “oooooo”. And while
they’re busy fixing that one, have your testers busy
going “where’s the next bad one”. Your metrics
might be terrible but your schedule might really get
slipped.

If your strategy is blocking an out of control project,
the net effect of that is if you block it long enough the
executives of the company will come and do a
thorough investigation of the project. Some groups
adopt as their secret mission getting a Project
Manager fired. And some Project Managers need
that. And if that’s your mission, and I’m not
suggesting it should be, but if that’s your mission,
blocking that person’s releases is part of the strategy
to do that. If that is what you’ve decided to do, figure
out a way to do that well and that also doesn’t get
you fired.

The assessment issue really is at two levels. Assess
quality to the point where we can tell the DOD what
the probable reliability level is, +3%. It takes a much
different investigation than assess quality to the point

where the Project Manager can rely on her educated
instincts to say, I think we’re okay, we’re going to
ship it. We’ll absorb the rest of the costs. I hope I’m
right.

For many safety critical products, the question is not
exhaustive testing of the device against all possible
uses. Instead the question is whether there a safe way
to use this product that is thoroughly documented and
that we have absolute confidence in. And so, you end
up with a series of happy paths and a small number of
alternate paths that are the ones that are reasonable
foreseeable misuse, if someone were trying to follow
the instructions. The then device manufacturer sells
the device to a hospital for example, and says you
will use this thing only in these ways. That product is
assured as management throughout the project have
made sure that, if they do it in the way that they’ve
been instructed or with any reasonable variation
including wrong ones, nothing bad will happen. That
level of testing is a very common level of testing for
professional-use medical devices for example. And if
you go off into extreme cases that no one trying to
follow the instructions would do, you’re not really
spending time on it in a way that meets the corporate
goal of getting a project that they expect to
sufficiently safe. Safety is not merely safety of the
device -- it’s safety of the practices of using the
device. And in some cases you can take a device and
if used this way there is a high risk and have it be
completely safe by making sure no one would use it
that way.

So, a goal of making sure that a product is
sufficiently safe for marketing might not involve all
the kinds of testing you would do if you were trying
to maximize overall reliability. Or even assess overall
reliability.

Different missions. We have to figure out which one
is yours.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 52

Slide 4.12: Optional Exercise
4.3: What Is Your Mission?
Possible exercise/discussion:

If you do this as an exercise, split the class into
project teams. Teams should include the test
manager, product development manager, marketing
manager, and the company’s lawyer. For larger
teams, add the tech support manager and the sales
manager. If this is an in-house development group,
consider replacing the marketing manager with the
customer representative.

What would be an appropriate mission for testing a
PBX? A computer game?

Have each group tackle the same type of product and
negotiate their mission. At the end of the exercise,
compare missions across groups and get to the
reasoning underlying the differences in choices.

Then transition to next slide by saying,

Now let’s look at mission a little differently. How
many of the product’s total bugs do you think the test
team is finding?

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 53

For in-house teachings, you may want to skip some
of the next slides.

Slide 4.13: A Different Take on
Mission: Public vs. Private Bugs
I want to look at a different aspect of mission.
Functional testers are doing black box testing.
Sometimes people look at people doing functional
testing and say, why bother? Wouldn’t you be more
efficient if you just read the code? You could find all
sorts of bugs that you can only guess at if you’re
working from the outside. It is interesting to look at
some statistics on bugs that are found by the
programmers and bugs that are found later on by
testers.

So let’s think about public bugs and private bugs. A
public bug is a bug that has been left in the code for
anyone else in development to see. Testers can find
them. If testers miss them, customers can find them.
Whoever; the programmers missed them. A private
bug is a bug that a programmer found herself. She
made it, she found it, she fixed it, it’s hers, no one
notices. Counts of public bugs end up saying that
average programmers make 1 bug per 100 lines or
code, 3 bugs per 100 lines of code, .5 bugs per 100
lines of code – somewhere in that region. It varies a
lot across individuals but that’s the order of
magnitude.

Private bugs rate have been reported more widely.
It’s pretty embarrassing to report private bug rates
honestly. But one report was 1.5 bugs per 100 lines
of code. I thought that particular estimate was so
outrageous that I ended up working with a group of
pretty skilled programmers and having us all count
our bugs as we went. And after a couple of weeks we
went to a Chinese restaurant and were doing a family
style passing everything around, we also did family
style statistics. Except we were all embarrassed to
admit our actual numbers. And so instead as we went
around the table, the answer was, yeah that 150 isn’t
so embarrassing after all. Of course, mine was a little
better.

The way we counted the bugs, if you were typing
away and noticed something as you were typing and
backspaced over it, it didn’t count. But as soon as
you leaned back, lit a cigarette (this was a long time
ago), started editing, as soon as you were no longer in
production mode, you were once again in the look
and think mode, changes you made from there went
onto your tally sheet. All of those were private bugs.
Most of those were found by compilers. There are
lots of other tools we were able to use to find
problems without testing in the traditional sense.

If you go to some data from Capers Jones, who
counts or private bugs starting from the time the code
is checked into the source control system, it has now
been compiled successfully, he still says there are 14
bugs left per 100 lines of code. And yet, testers are
only going to be finding one bug per 100 lines of
code and the programmers will find the other 13.

So the folks who say, gee, if you could look at the
source code you could find a lot of stuff, are kind of
correct. Somebody looking at the source code could
find tons, and tons, and tons, of stuff, but by the time
that code gets to the tester, that road has been pretty
well cleared. If you end up doing the same things the
programmer did when she was testing her code,
you’re probably not going to find anything more than
she found. And yet there are things left. The things
that are left reflect the blind spots in how the
programmer analyzed the program and how the
programmer and her tools analyzed ways to find bugs
in the program. You don’t address those blind spots
by using the same tools or using the same sources of
information.

And so the query becomes if you take the code and
give it to somebody else and say, I think I found most
of it, what’s left – the somebody else is going to have
to attack it in a totally different way. And in the
functional testing approach we say, okay, great – I’m
glad that in a totally technical point of view we
understand everything we can understand. But let’s
now look at what the stakeholders think about this
product and check the point of view of every
stakeholder associated with this product, does this
help them meet their needs. And as we look at the
code through that filter, we come up with
combinations of tests that are probably not
combinations the programmer thought of as she was
going through the code in her way.

So yes, source code driven testing in some ways is
much more powerful, but it misses stuff. On the other
hand, there are some test groups that have this wild
idea that if they could write test cases and automate
them, then the programmers could run the test cases
and then the code that comes to the test group would
be better because the programmers had done as part
of their build process all this testing defined by the
test group.

So let’s take this process that finds 99% of the
problems and replace it with a process that finds 1%
of the problems and say, oh this will be better. To the
extent that we discourage programmers from using
the techniques they are best at, instead have them use
the techniques we’re best at, we’re risking increasing
the net number of bugs that come into testing by 2
orders of magnitude. I’m not sure that’s the best

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 54

approach and as groups think about doing this, as
groups think about giving large automated functional
test suites to programmers, they might want to ask
themselves, how the risk will be managed – the
programmers will rely on those tests instead of
relying on their own unit tests and their own other
tools. You might come up with a good management
strategy in your company but it is a risk that must be
managed.

Am I convinced that 80% of developers do activities
to clear the road in their code? Well I’m convinced
that at least 100% of the programmers that use
compilers discover that they have a tool that is
designed to catch all sorts of errors in their code. I
think that even beyond compilers, programmers use
tools like Link, source code checkers. Do I think
programmers will spend time doing exhaustively
doing planned unit testing and specifically writing
test cases before writing their code or after writing
their code, I think there’s a lot of variation across
that. I think that many programmers want to do that
and are not given enough time, many programmers
want to do that and do it, the entire extreme
programming community kind of does that
religiously.

And then there are some programmers who have
been successfully trained by their management that
that is something a tester should do. But even those
folks will sit back and read their listings and in many
cases will pass their listing to somebody else and say,
why don’t you look this over. To the extent that we
guide them to spend their discretionary time, or time
that would have been discretionary time on tests that
we would design and run anyway, whatever practices
they might use the folks who are very time pressed or
very uninterested in testing, whatever practices they
might do, they are probably a little less likely to do.
The informal code review and so forth are less likely
to happen. The fact is that it is a rare programmer that
is giving us more than a few bugs per 100 lines of
code. And yet, even really good programmers end up
if you count where they start from generating 100-
200 bugs per 100 lines of code.

So they have to be doing something. My question is,
at what point to we risk interfering with what they’re
doing instead of supplementing what they are doing
and I think there is a risk to that. I think I’ve seen it.

Is that risk in terms of creativity or workflow?
Company X had a product that the programmer staff
weren’t entirely enthusiastic about. The testing staff,
sensing that, decided to give the programmer staff a
suite of automated tests. The result of that was the
programming staff didn’t follow even the minimum
normal practices that might follow and instead tested

what they were told to test and went off and did other
things. That product went off into the marketplace
and was famous for being across different operating
systems for that product, that port made magazines
for how unreliable it was. Was it the lack of creativity
or the lack of work, I think it was the sense of the
programming staff that they were no longer
accountable for their own work. They could get away
with saying, I tested the way you told me to test,
that’s enough.

Whereas, if what you tell them is, give me something
that’s fit for testing, you know how to do that, we’re
not going to tell you. That’s a very different message
than, give us something that passes this suite of
functional tests. really Let me rephrase that question
for the film. What can testers do to help the
development staff generate better code in tests.

One answer is, if the programming group decides to
experiment with Watts Humphrey’s PSP or with any
other process that has them tracking their work in
order to improve it, a key thing the test group could
do is to support the right of the individual
programmers to keep their work products private.
There’s a wonderful book by Robert Austin called
Measuring and Managing Performance in
Organizations by Dorsett House Publishing, Austin is
referenced both in Lessons Learned in Software
Testing and a little bit in the measurement
discussions in these course notes.

Bob Austin talks about measurement dysfunction and
the distinction between information only
measurements and motivational measurements.
Information only measurements are things that tell
you how you are doing but in a way that doesn’t
allow anybody to manipulate your performance based
on them. Motivational measurements are
measurements that eventually land in the hands of for
example of managers who can use them to get you
raises, give you unpaid vacations, etc. Motivational
measurements are more likely to distort what’s going
on in an organization. Sometimes for the better, that
is a result of a change. Sometimes for the worse, in
general American workers are resistant to having
motivational measurements made of their work. I
think for extremely good reasons, but that is my
personal opinion. Read more in Austin as he goes
through some of the problems with that. But to the
extent that somebody is tracking their failures.

Watts Humphrey and I talked about the need to keep
private records private. He said, “Don’t give anybody
your notebook unless you would also be willing to
give them a full set of signed blank checks.” It’s the
same level of trust. You are giving the ownership of
your job to the person you give that kind of data to. It

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 55

has to be totally private or available only to someone
you trust running your life which is probably not your
manager.

One thing we can do to support process improvement
by individual programmers in a way that says we will
help you keep your stuff private instead of into our
metrics empire. Another thing we might do is
research some tools they might use if they respect us
on what tools are usable. Another thing that we can
do is to advocate for testability features in the
product. Testability features are features that make a
product’s performance more visible and give us more
control over aspects of the product.

If we can set the state of internal variables, look if we
can check the content of the stack, if we can see more
and do more, we can test more. But in designing the
interfaces for us that let us create diagnostic tests,
quite often we trigger a whole wave of questioning,
well what should the value be here, how should I be
able to monitor that, and maybe I should write some
routines to monitor that myself.

As you encourage people to design for testability,
you probably also end up encouraging people to pay
attention to the information they are now generating
and they might code for better results in that more
highly testable code. Even if they don’t code for
more better results, you are going to find the
problems more cheaply and be able to automate
effectively your testing.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 56

Slide 4.14: Defining the Test
Approach
We have the mission of the test group, we have the
test ideas, and somehow we have to have a mapping
that selects from too much stuff to a broad goal. And
that mapping is called the test approach and test
strategy. The set of selection rules for deciding what
test cases to use and what areas to focus on and there
are some attributes that are important to that test
approach. Now there are some more notes in the
notebook and there are lots more notes in the booklet.

Let me just suggest that there are at least five
attributes to a good test approach. The first one is
diversification. That was what Group 1 wasn’t. You
diversify because even if you think you know what
the primary risk areas are in the program one of the
risks is that you are wrong. We start with imperfect
knowledge about the product. We gain information as
we test. If on the basis of our imperfect information
we choose not to test an area at all, or not to use a
certain kind of testing technique because we know it
will be ineffective because there’s nothing it would
trip in that area or against that technique, then we’ll
never discover that we might have been mistaken.
That area might have serious problems in itself.

A diversified approach is one that covers a lot of
different areas, in a lot of different ways. Focused,
we spend more of our time in the places we think will
give us the best pay off. Best pay off against
whatever mission we have, but not exclusively
focused. We’ll still play around the edges just in case
there’s a surprise that is an obvious one. There was a
comment made earlier today, where if I went through
the list, I had the list, and there was something
obvious that I could have done and I didn’t do it. I
came back and said make a list obvious in its breadth
too and a certain point, a reasonable manager will
say, yes, I understand why you wouldn’t do that. On
the other hand, there are some bugs that are just so
obvious, that if you didn’t find them everybody in the
organization including the tester sitting to the left and
right of you will go, how could you have missed that?
And the way you missed that generally is you didn’t
test in a certain area or even perform the most basic
tests in certain area. Don’t get lost in that. That’s the
goal in diversification – to make sure that you are
varied enough that it is cheap to find problems that
would embarrass you clearly if you missed them.

Risk focus I should have to push too much in an
audience of Rational customers because the entire
Rational Unified Process is about risk management.
The entire iterative development approach is about
risk management. We figure out what problems are

the problems we most need to manage for this
iteration, we run that iteration to do that and we move
on. And of course, if we’re taking on the
programming side, the risk is that we that don’t have
a certain feature or don’t have it in a way that is well,
it’s the most important thing and needs to be there.

In an infinite population of tests, if you aren’t asking
yourself the question, which parts of the program
scare me the most, which kinds of the problems are
the ones that would be most acceptable to the
customers, how could I find those – then you will
thrash. If all you do is randomly sample, 10% of
infinity is infinity, right? If we have an infinitely
large population of tests, any sample we could
actually achieve, 100K tests, 1M tests, is a grain of
sand on the beach compared to the total number tests
we could run. If we randomly sweep a few pieces of
sand from the beach, we’re not likely to find
problems that we find. We have to focus. The tiny
amount of rework that we have has to be focused on
the things on our most-afraid list, we won’t get there
by luck.

There are a lot of canned test strategies. We’ll talk
later about test documentation and templates for test
documentation that tell you the one true way to
define your test documents. It just doesn’t work.
Different products have different risks, different
project teams have different risks. Some project
teams handle some problems brilliantly and are weak
in other areas that other project teams are very strong
in. You’re not going to worry very much about
whether it’s a lot of fun to fly a Boeing 727, but if
you’re flying a flight simulator computer game, being
not fun is worse than crashing. If you were to adopt
the same strategy for the flight simulator game and
the flight, that would be horrible. The strategy has to
reflect the problem, the development group, the
mission for the product.

Practicality is another important question. Imagine
running a test organization where every person in the
test group is not a programmer. There are a lot of test
groups where that’s true. Then imagine telling them
that you’ll give them the source code, you’ll give
them j unit, you’ll give them automated test
generators, and they should go off and do the unit
testing for the programmers. This is not a strategy
that is likely to succeed. It will look wonderful on
paper, but you better fire all your testers and the
people who hired them. That group probably has
other expertise like a deep understanding of the use
case, or is at least capable to develop that expertise.

If you’ve hired well, there probably very capable of
developing that expertise even though they couldn’t
plug their way out of a loop. On the other hand, if

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 57

what you found are a bunch of fresh college
programmers wanna be’s, who came into the test
group as their entry into the rest of the company but
really didn’t want to be testing in the first place,
they’re bright, they’re enthusiastic, they’re hard
working, they live and breathe code, and you tell
them let me teach you about black box testing, you
may as well bring pillows because they’re gone. Give
them some good automated test tools and have them
interview SME’s and have them figure out as their
task, how to automate tests associated with those
customer stories, and you might find some very
excellent work that the first group couldn’t do. This
group can’t do the first group’s work and the first
group can’t do this group’s work.

If you’re designing a test strategy that doesn’t take
into account who your test are, what you can find on
your market, what tools you actually have in-house
and what you can afford, what resources you have in-
house, then you don’t have a test strategy, you have a
fantasy. It has to work in your environment. It has to
be clearly enough thought that when the VP in charge
of saying that your testing strategy is stupid, comes
up to you and says, “Explain your testing strategy to
me, I’m waiting,” you can explain it. And when you
say, “I don’t know why anyone would do that,” you
can explain that.

And it’s not just in this adversarial case. Three
months from now the product will be out on the
market and surprises will have happened, the product
will in some ways fail that no one expected, and
people will come back to you and say, why did you
do that. Maybe you need to explain.

Three weeks from now you’re going to go up to an
executive and say, “I need more testers.” And they
will say, “OK, what are you doing with the testers
you have now?” If you merely give them details –
these are doing this and these are doing this – the
executive, if they have any level of sophistication at
all, will say, “OK, there are an infinite number of
tests possible and I’m hearing that the test group is
choosing a subset of the infinite number of tests and
wants to choose a bigger subset of tests. It’s always
nice to do more, why? Why do we need to do more
this time? What’s the added benefit from the extra
staff? And how do I know that you are using the staff
you have today in choosing the optimal subset given
your resources?”

That’s the issue of defensibility. If you want to add
staff and you have a rational executive who is
budgeting, they need to know that there will be an
incremental increase in quality or an incremental
decrease in their ongoing costs risks for this product.
If you don’t have that, you don’t have a defensible

test strategy. If you don’t have that, you probably
won’t get the staff.

This defines a context driven approach. Somebody
commented before, “How come we don’t talk about
context driven in testing?” This is the notion of
context driven test plan. Instead of coming up with
the one general approach that guide test strategy
development always, we end up saying there will be
different test plans, different strategies, different sets
of documentation, different tradeoffs to get made for
every different project. That’s just how it is.

It may also be per iteration, you’re going to think
things through again per iteration. But your overall
strategy might last a lot longer than one iteration.
There will probably more fundamental differences
across products than across iterations. The flight
simulator and the plane are more different from each
other during the first week of development on the
plane than the last week of development on the plane.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 58

Slide 4.15: Heuristics for
Evaluating Testing Approach
Given that we don’t have a pat set of answers for
what a test plan should be or for what a test strategy
should be, we end up coming through it a different
way. What are some good ideas for test strategies and
some good ideas for evaluating test strategies, so one
of the pieces in Lessons Learned that we reference in
the slides is a collection of test heuristics. There’s a
chapter at the end of Lessons Learned about
developing testing strategies. We cut down the
number of slides specifically deciding that it would
be easier to work with by just going through the
chapter on test strategy in the book.

Here’s an example of one of the heuristics we
suggest. Optimize your testing to find important
problems fast instead of optimizing your testing to
find all problems with equal urgency. Now, you saw
that test strategy reflected in both Group 1 and Group
2’s testing where I said the first thing both groups did
was to walk every feature and look for obvious
problems. For some folks, that is naturally what you
would do. For other folks, they would concentrate on
function 1, then go to function 2, then go to function
3 or they would concentrate on the highest risk
function, then the second highest risk function or the
best specified function and the second best specified
function. If functions 1, 2, 3 were specified and were
still waiting for specs on 4, 5 some groups would not
touch 4 and 5. Some groups will say, it’s code, it’s in
my hands, I will touch it. If something really horrible
happens, I can give it back to them and they can start
working on it even before I get the spec. Maybe that
would be a good thing, maybe when it finally comes
to me specified it will come with a spec that actually
means something.

In Bach’s view and mine, you want to make sure that
you’re looking for big things early and looking
broadly for big things early. And after you’ve scraped
off that first broad view layer, you ask the question,
what are the things I want to most look for things
now instead of asking the question, how can I most
cover the product. Now, you can imagine that under
some circumstances that “how can I most cover the
product” may be the most important question.
Heuristics are heuristics. They are rules of thumb.
They are suggestions that are usually useful but not
always right.

We provide with the heuristics to test approach, a
serious of assertions with some backing some
statements on what to think about, things you want to
think about but not necessarily follow. You might
reject one, you might reject all sixteen for the project.

But rejecting them consciously, no I don’t want to
follow this heuristic, is probably a wiser approach
than just not thinking about it.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 59

Slide 4.17: What Test
Documentation Should You
Use?
Let me hit another aspect of mission. That’s the
mission for the test documentation. There are several
different questions we’re going to ask in this section.
This is an overview slide. We’re going to start with
by thinking about the notion of test planning, test
documentation standards and templates.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 60

Slide 4.18: IEEE Standard 829
for Software Test
Documentation
We’re going to focus on IEEE standard 829, which is
really the ancestor of most of the templates you’ve
seen. And then we’re going to ask some harsh and
critical questions about when these are cost effective.
As with the other mission question that we hit, the
question about mission for test documentation is not
a real easy question. It’s not like, oh, yeah, this is
always effective, or oh, no, this is always bad. We
have a congruence problem again. Sadly, none of the
standards that I’ve seen for test documentation take
context into account at all. And so the discussion in
the literature on when one technique is more or less
appropriate are weak. The Kaner, Bach, Petticord
book tries to pick up some of that material. Some of
that material is well covered there and some of it is
still just published in conference talks. OTOH, a
great deal of this is unpublished, word of mouth,
discussions in conferences, the type of material that
has been collected for these course slides and this
notebook and as you think through some of the issues
that were raised, you will hit more of them. This is
certainly not a complete thinking through of the
problem.

It’s certainly a more complex problem than simply
coming up with a template. There’s template you can
get with RUP that follows standard 829. How many
of you have seen test plan templates. They ask for the
project plan, they ask you to layout things you are not
testing and why, they ask for the test environment,
they ask you to define the overall specification for
testing the overall strategy, they ask you to define all
the items or areas that are to be tested and then they
ask for details of the testing. These are all 829 basics
for templates. Many of them have gone through six
or seven generations of copiers. They’ve been
plagiarized by somebody, who plagiarized somebody
and probably didn’t even realize it they were taking it
from standard 829. so most people have not heard of
that standard.

IEEE 829 is where all that comes from. It was an
extremely carefully thought out standard that was
published in 1983. Every type of information that
standard 829 asks for is useful information. If you
had infinite time, you would undoubtedly want to
supply all of it.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 61

Slide 4.19: Considerations for
IEEE 829
But we have an interesting problem. If I actually give
you all this information for a single test case, and if I
can fit this on one page, I’m a pretty concise writer or
the test case is trivial. How long does it take to write
up a test description? I used to manage
documentation groups and I used to have tech writers
tell me it took them an hour to write a page. And it
did take them an hour a page to write on average if
they had done all of their research already, and had
done all of their outlining already, and were merely
sitting down at the computer to type what they
already new they wanted to say. But as soon as you
started taking into account, the investigation time, the
outlining time, the thinking about what you’re going
to say time, the checking whether it’s right or not, the
editing, but also the fact checking, it came down to
more like 8 hours a page.

Joanne Hackos in her book on managing technical
documentation projects (referenced in the notes), ran
extensive studies while she was running her own
technical writing consulting company. Her company
did tech writing and tracked metrics and she also did
extensive studies as the president of the Society for
Technical Communications gathering all sorts of data
from other companies. And the data that we came up
with in the companies that I was at were merely
consistent with the numbers Joanne Hackos was
already teaching. It wasn’t surprising that they were
consistent, a whole lot of other tech writing
departments were also finding numbers consistent
with Joanne Hackos.

So think about this. 8 hours a page for tech writing by
professional writers. I don’t think testers are going to
write faster than people who are paid to write fast for
a living. I also don’t think we’re likely to investigate
faster than tech writers. Good tech writers are pretty
good at this.

So if this is only a page, then if we counted all of the
costs associated with generating this instead of
merely the writing time, it will probably be a day per
page. But let’s pretend that we get the information
magically implanted in our heads or that reading
specifications and doing stuff is something we can do
at night off company time, and take ourselves down
to an hour a page. And let’s take that we want to
support some moderately high volume testing, maybe
we’d like to support a group that does automated
testing and has a lot of tests.

10,000 tests is not an outrageous number of tests. But
if we’re talking about 10,000 tester hours of test

documentation, if all they ever did in their lives was
write test documentation, that would be 5 tester
years, more likely 8 or 9 tester years worth of work
that you’ve just tacked onto your project. If you’re in
a project where you are designing aircraft, then “No
problem, spend the time.” If you are in a project
where you have a client, you’re doing custom
engineering and the client says, “I’d like to buy some
IEEE 829 standard test documentation as part of my
purchase.” Then you say, “No problem, I sell labor
and products and my time for doing time test
documentation is this much including my overhead,
I’ll make this profit on it, if you’d like to have 9
testing years worth, great, no problem. Would you
like that on white paper or yellow paper?”

However, on some other projects, those 9 tester years
are the difference between getting done and not. It’s
just not that sensible to add that level of burden. In
fact, for many high volume test strategies, the
documentation costs would be higher than the cost of
creating the test cases.

The key point to think about is there is cost whether f
you use the tool or not, the information takes time to
collect. And if you have tools that make it cheaper
than the first question that you can ask IEEE 829 gets
answered a little differently, what’s the
documentation cost per test case?

If we want to evaluate this standard, one way to
evaluate the standard is to evaluate it the way they do
it in the way they do in the Software Engineering
Body of Knowledge (SWEBOK) that the IEEE is
publishing now that basically says this standard is
good for all purposes. If you’re going to turn your
brain off, no problem.

But if your goal is to help your Project Manager get
out the right product, with the right quality, on time
and within budget, then you face tradeoffs. And if
you’re going to trade time on this against time
finding problems or against time helping people
improve other aspects of their process, then it’s worth
taking a very careful look at your costs and benefits
associated with doing this and so we end up with
some cost questions. How much does it cost? And
not just to write it but to maintain it, if you change
the design, how much do you change these very
detailed specs for test cases.

Do we end up with the situation where at the end of
the project, the Marketing Manager runs screaming in
and says, I need you to change the project and the test
organization says, we can’t; it will cost too much to
change the test documentation. This happens. You
have to decide if that’s what you want to have happen
in your organization.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 62

If you think you’re doing iterative development, then
in every iteration you need room for change,
including room to rethink what you did last time.
And to the extent that anything you do creates a
maintenance cost, if you change then you’ll have to
change this and it’ll cost you money, then you are
creating inertia. You are creating resistance to
change. Every time you look at an iterative project
and say, “I’m going to build something now that
downstream will create resistance to change,” you are
creating a less iterative process and one that is more
like a waterfall process. Changes made early create
high taxes, if you want to change those decision later.
Now it might be worth it to add that inertia, this isn’t
tell you it’s not; it’s telling you to think about it. How
much inertia does your process want to afford?

Another kind of inertia that I mentioned relates to
what I’m calling invariant regression testing. If
you’re documenting every little bit of your test case
than you’re creating a price that might discourage
people from variation for reasons other than the value
of the bugs that might be found or the difficulty in
coding a more flexible solution. You are adding a
price associated with the paperwork and that price
might not be where you have the decision point for
whether you want to add variation or not. Anything
that blocks you against change, is a cost against
change.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 63

Slide 4.20: Requirements for
Test Documentation
Now, standard 829 in my experience leads to fairly
inflexible testing strategies. It was developed with the
assumption of a non-iterative waterfall process. It’s
used in my experience almost exclusively in groups
that want to do waterfall based development. It can
be applied elsewhere but rather than starting from
saying, I want to use this. It’s like someone comes up
to you and says, I need to write a program. And the
first answer you give is, use COBOL. It’s an answer,
it has some costs and benefits, but it might not be (it
might be), but it might not be the best solution for
their circumstance. You might need to ask why do
you need write this program, what kinds of things do
you want to do before telling them a detailed
solution. 829 reflects a detailed solution.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 64

Slide 4.21: Test Docs
Requirements Questions
Lessons Learned has a lot of requirement oriented
questions. Here’s an example. Is the documentation
you are about to provide a product or a tool? Here’s
an example of the product. You are building a
telephony system. The people who will resell your
telephony system, you are a small PBX developer or
a small system developer, and the people who will
market your system are large telephone companies.
They will assume that they’re going to have to take
care of the maintenance and the software if you go
out of business. All sorts of telephone equipment
comes with warranties that last 10-25 years and all
sorts of companies that make these components
don’t.

So if you’re writing software for a product that must
work well, like telephone software, and will be
supported for 10-25 years, then the company that will
take over the resell and maintenance for this has a
very strong interest getting very good test
documentation. Because if they don’t understand how
to change your software and fix it after you’re long
gone, they can’t afford to take over the sale and then
maintenance of the product. In that world if you’re
not giving them documentation like the 829
documentation, you are probably making a horrible
mistake. What you really have in this situation is you
are selling the ability to maintain your software to
somebody who has no real access to the original
development system or original development
thinking, and if you’re not selling them with that
extensive documentation they probably cannot afford
the risk of buying your product.

Many complex products that are done under contract
must be documented that way. This is part of the
reason why DOD standards look very much like 829.
You end up – are we going to build an aircraft, great
– we’re going to hire a contracting company to
design the aircraft and by the way this is contract,
when we ask them to do some maintenance later, we
may ask the same company and we may not, and they
may have the same development team and they may
not, we aren’t going to have any control on who they
are going to put on the project this time and if we
don’t have great documentation to pass right back to
the next team that’s going to work on whatever it is
they’re going to work on, they’re going to bill us
through the nose for all the reverse engineering time.

So if we’re DOD, we’re going to demand as part of
the cost of the product up front when we get the
contract for thorough enough documentation that as
we go along the next 20 years we can keep passing

this information along. As the company that’s
making the product, we have a customer who says, I
need documentation of this quality, we say sure, no
problem, we have that. Now contrast this with a
company that’s making a word processor for the
mass market. Your word processing customers don’t
care. You guys are all word processor customers –
how many of you have inspected the test plan for the
Microsoft Word?

Yes, there is a test plan. But we don’t look at that. To
the extent that we still have a choice in the market,
the question isn’t what’s the test plan – that’s not
what is going to guide our purchase of the thing.
Those are the kinds of things we’re going to think
about. It doesn’t matter if it’s been thoroughly tested
or not thoroughly tested. A thoroughly tested product
that’s going to get us a macro virus everyday is
undesirable compared to a less well tested product
that just doesn’t have certain kinds of problems that
we don’t want to have.

So we evaluate from the outside, what does it do for
me? Not from the process side of how well tested
was it – who cares – it’s how well it works not how
well it was tested.

So in that case the test documentation is a tool, it’s
not part of the product. It’s part of the development
team’s arsenal for building a great product. In that
case, the expenditure we want to make for this
product, this subproduct – this set of test documents –
is the minimum we need to be able to develop the end
product we need to sell at the quality level that we
need. Anything beyond that is waste. Any level of
documentation beyond what we need to generate the
product at the level of quality we want, is waste.
Whereas when we have a customer saying, I want it
this way. Even if we go way beyond the minimum we
need to develop first release of the product in good
shape, way, way beyond, if they understand their
business reasons for wanting that extra level of detail,
then we’re giving them a product. It’s not our waste,
and if their business analysis is correct, it’s not their
waste either.

If we’re only thinking about this, 829 might be a
good documentation standard for delivering the tool
depending on what the customer needs. You might be
able to use 829 to help you and the customer define
what he needs. It is a very effective tool for that
purpose. It’s kind of a shopping list of the kinds of
documentation you need and then creating the
documentation to match the shopping list. If you’re
developing something in-house, the message might
be to select from 829 those things that are useful, or
the message might be to shred 829, or the message

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 65

might be to still use 829 to the extent that it protects
you from some other risks like remediation.

But to the extent that you are publishing a product
that someone else will pay for, publishing
documentation someone else will pay for that, a
standard like 829 is probably a useful structure for
that publication.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 66

Slide 4.22: Write a Purpose
Statement for Test
Documentation
Your test documentation has to support the mission
that you had for testing. And so, let me give you two
examples of mission statements for test
documentation to give you an illustration of the
difference. After you go through trying to figure out
what your requirements are and the test requirements
questions in my experience as a consultant are handy
for doing that for interviewing a client and asking
what are you really trying to achieve.

At some point you write a statement that preferably
fits in a paragraph, that is short, preferably, but not
necessarily is one sentence. The main thing is not
whether you can fit it into one sentence, but whether
it has more than three components. The more
complex it is, the less meaningful it is.

So here we have the first one.

The test documentation set will primarily support our
efforts to find bugs in this version, to delegate work,
and to track status.

For mass market commercial software, that’s almost
always the level of documentation I’m looking for, I
don’t know if I’m going to have another version, I
don’t know how much change there will be between
this version and the next version but it will probably
be substantial. I have the problem of the staff coming
and going in my project and so I need to come up
with ways to, as with the matrix for example, ways to
use new people very efficiently, how to understand
what they gotten done and how to report back to
management this is what I had in mind to be done
and this is how far we gotten. If I can get all that
from my test documentation, I’m a really happy
camper.

Now let me describe something that reflected much
more the experience I had working in a telephone
company, a PBX manufacturer.

The test documentation set will support ongoing
product and test maintenance for at least then years
and will provide training material for new group
members, and will create archives suitable for
regulatory or litigation use.

For that we want a standard set of materials. We want
something that is going to pass from generation to
generation to generation of tester. By the end of 10
years it is likely that the last person who worked on
the original test documentation set will not be
available to talk to the most recently hired person 10

years later. There will be a complete turnover of
people in the chain.

So the only record for many readers will be the
written document, this is what we had in mind. If
that’s where you are and you really believe you’re
going to making software changes and therefore
doing extensive testing 10 years later, now it’s worth
investing in the lifetime value of the product. If you
think you are making something that will be obsolete
in a year, the investment is very different.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 67

Slide 4.23: Exercise 4.4:
Purpose for Your Test
Documentation?
Regroup into your project teams and take ten minutes
to discuss the exercise. Write down the answer, so
you can share it with the group.

• Use the company and product from Ex. 4.3

• Reform project teams

• What’s the test documentation mission

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 68

Module 5: Test & Evaluate
Slide 5.2: Module 5 Agenda
Module 5’s basic workflow is test and evaluate. This
is really the workhorse workflow and we’re going to
spend two different modules on this workflow.

If we think about this module itself, what we’re going
to focus on are the primary types/styles of functional
testing. The next module we’re going to focus on
problems reports, change requests.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 69

Slide 5.3-5: Workflow: Test and
Evaluate
Then within the workflow itself, basically the point
of the workflow is to look at the breadth and depth of
testing and how it’s done.

And, so in each cycle of testing you have a build, you
take that build and you subject it to a bunch of tests
and you’re trying to figure out what’s wrong with
that software and how we can talk about it in ways
that might get it fixed.

So there are a variety of test activities that you look at
in rough, basically you’re defining tests, running
tests, finding problems, logging problems, and
advocating quality.

And the usual cast of characters are doing all the
activities. I have those activities defined and
characters defined in the notes. They produce the
predictable kinds of artifacts that are also defined in
the notes like test results, a summary of what actually
happened during testing, test data the data you use to
feed the test cases, test cases themselves, this is what
we mean and how we define the stuff that we do
against the program one piece at a time to find bugs,
and … You can go to RUP itself to get more detail
but we talk about test cases.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 70

Slide 5.8: Discussion Exercise
5.1: Test Techniques
Test cases really in a lot of ways are generated
according to your notion of what testing technique
you want to use. And one of Kaner’s grad students
did an inventory recently across literature of the
number of things that have been identified as
distinctly published test techniques. She found about
200 of them. They all sounded the same.

So, here are three examples that might help us
understand when people say, oh I’ve got a new test
technique how the focus of different test techniques
might differ.

Can anyone tell me what user testing is?

OK, testing that involves the end user.

When you think about end user testing, are you
thinking of how that test would be done?

No. Doesn’t specify.

What things would we test – is that specified?

No. Doesn’t specify.

The key thing about that term (user testing) is it’s
focused on who does the testing. It is not focused
how they test, what they test, when they test, how to
figure out whether or not the product is right or
wrong, the key thing that we know when somebody
says – we’re in user test now – is that there is a
certain class of humans that’s involved with the
product in some way.

Usability testing is not necessarily the same. What is
usability testing?

Ease of use.

Okay, you’re looking at ease of use. Any other
comments on usability testing? Okay. Accessibility
testing may be a subset of usability testing. Okay,
fitness for use. Okay, so if it’s a high volume, like a
data entry thing. Productivity type of metrics that
would go along with it. Okay, productivity,
efficiency of the user. . . I mean when people start
how many mouse clicks does it take to do this task, it
takes 47 but I want to do it 3. How angry people get
using it, how easy it is to learn, how happy they are
playing with the program.

All of this kind of stuff I want to suggest focuses on a
class of problems. The class of problems that are –
this really might not be usable. This might not be
accessible. This might not be any fun. This might
waste my time.

Now if I told you we were doing usability testing,
would that tell you who’s doing the testing? We
might be doing it with normal humans, on the other
hand we might be doing it with testers? We might be
doing this with experts, we might be doing this with
anybody as long as the information they can give us
back will be information about whether in the hands
of the people we want to have it in the hands of, the
result will be a useful result.

And what about user interface testing? What is that?

User interface, check it against standards.

Try every damn thing I can do with this combo box
to make sure it doesn’t give me a bad event. Try all
the controls. User interface testing generally refers to
what I want to call coverage. Here are all the little
elements of the user interface and we better check
each one. Now when I’m doing user interface testing,
I’m more focused on making sure that every piece is
there and works in the expected way that conforms to
some standards if they exist than I am about who is
clicking the box to see.

The risks I’m looking at are really the risks that this
thing doesn’t work in the normal way. I’m not
driving the testing by saying, “Hmmmm, what would
unusuability mean? What sort of problems are
usability problems?” I’m not coming in with a class
of, “Gee these are failures -- let’s try to figure out
what things we’d test find out what is weak in this
area.” Instead, I’m saying, “Let’s look at all the
things and see if they’re weak.”

Here we have three commonly talked about
techniques, user testing which is nothing more than a
certain class of people we’re going to subject to our
program and see if they can use it, usability testing –
here’s a class of problems we’re going to try to find
out about, user interface testing – here’s a class of
things we’re going to check out.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 71

Slide 5.9: Dimensions of Test
Techniques
In general, when people describe techniques, they
describe things that focus on one or two or three of
these five dimensions.

1. Who’s the tester?

2. What are we testing?

3. Why are we testing it – what kind of problems
are we looking for?

4. How do we test it? An example of how we test it
– GUI regression testing – who’s the user, well
the machine but who’s the person driving the
GUI regression test, well somebody. What are
we testing? Whatever we can reach with the
GUI regression test tool. What problems are we
looking for – whatever we can find with the GUI
regression test too.

5. Evaluation – how this particular test tool works
given the level of custom controls and standard
controls that are available?

People constantly talk about it, “The technique I’m
using is gui regression testing using tool X.”

Then we have evaluation based techniques and so for
example, there are tests that are based on oracle. I’m
not talking about Larry Ellis and the Oracle program.
I’m talking about the old Greek oracle you’d walk up
to and say, what’s the truth? She’d say, 72. You’d
go, “Hmmmmmm, what does my program say the
truth is – 72 – ack, it passes!”

If you have an oracle, a reference program that can
let you know if your program is giving you correct
data or not, then you can write massive automation
series. Basically driving your program, driving the
oracle and saying what’s the answer, what’s the
answer, they’re the same, what’s the answer, what’s
the answer, they’re the same, what’s the answer,
what’s the answer, they’re different – call a human,
something’s broken. It might be the oracle, it might
be the program under test. The oracle is a program
you trust more than the program under test to give
you the right answer. Doesn’t mean it’s perfect, it
means it’s more perfect that the software under test.
If you have an oracle, you can do a lot of testing
without human intervention whereas if you don’t
have an oracle, every time you run a test, you have to
call the human over and say, what do you think. “Is
that right or no?”

It’s still not fully automated. But if you have an
oracle available, then the execution tools that you
guys sell, you can use them brilliantly to achieve very

high volume testing, very thorough testing of some
parts, anything you can evaluate, some parts of the
system. And if we look at oracle based testing, who’s
doing the testing? Well it could be anybody, anybody
who understands how to use the oracle and how to
use the tool.

What gets tested? Whatever is in the scope of the
oracle. What are the potential problems? Anything
that we could detect by comparison against the
reference program. That, by the way, is an important
piece. Let’s suppose we have a program that we
know adds correctly, and we have a program under
test and it’s supposed to add correctly. Two
spreadsheets, for example. One is perfect and the
other is the latest version of a spreadsheet that you’ve
been coding for yourself.

So you add two cells. You add 2 + 3 and the oracle
says 5 and your program says 5 – you suppose it
passed. But what if your program went, “Hmmmm,
hmmmm, wait five hours hmmmm, 5,” the oracle
looks at the answer 5 and supposes your program
passed. But any human at this point would have said,
“Nah, something really bad is happening with your
program!”

All oracles are partial. We still have a lot of room
for human observation and human judgment. And if
you do very high volume testing based on the oracle,
the only things you can detect are those dimensions
that you can compare from your program to the
oracle. Everything else is an unmanaged risk. That is
to say a risk that has to be managed by someone in
formal testing. It’s not a complete automation and it’s
not a complete technique in that when you do this,
you don’t have to do anything else.

Many techniques really can be defined as one
dimensional, other techniques might be defined as 2-
3 dimensional, but just about anything that anybody
names as a technique could be characterized along
one of these five dimensions. And when you finally
get around to applying a technique to an actual
situation, then you have to specify all five things.
Somebody has to do the test. They better evaluate the
results are they are not testing. They are testing
something, if their brain’s engaged, they are looking
for some problems and they are testing it in some
way.

And when we finally get down to it, we specify all
five things but the most general techniques specify
one and leave the other four or three undefined.
Which is why many organizations will do testing of a
certain kind, all we do is user testing, and yet achieve
a very thorough, evaluation of the program. All we
do is user testing but the all we do turns out to test

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 72

everything from many, many different angles in lots
of different ways. Somehow we’ve found a user
community that’s really invested in – we’re doing in-
house development – the user community hates the
programming organization and they’ve set up some
really thorough tests before they accept this software
being applied to them and so, yeah, it’s user testing
but it’s the kind of user testing you pay a test lab to
do and be happy. OTOH, other user testing might be
very literal.

Is oracle a widely used term?
The term “oracle” is used widely in two slightly
different ways. The way that I've been using it is the
narrower sense -- an oracle is a reference function: a
function that generates a value that you can compare
to your program’s value with these to tell whether the
program has passed or failed the test.

The broader use is that an “oracle” is an evaluation
function which will tell you whether the program has
passed or fail the test. In my use of the terminology,
I have both an evaluation function and a reference
function, so when I have software in test I have
something I can use to tell me whether the program
passed or failed. Very often that something is a
comparison to the output of some other program; say,
“Do these match?” So I have an evaluation that
checks an oracle or I have an evaluation that doesn't
check an oracle but checks something else.

(BTW, the odd thing about the Greek oracle even
though we use the word is that you look at what the
oracle actually said back in Greece - it was always
widely ambiguous. It might turn out to have been the
truth but you know you had a series of horrible
tragedies that occurred because people misinterpreted
with the oracle meant so…)

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 73

Slide 5.10: Test Techniques—
Dominant Test Approaches
Having hit the general notion of a test technique,
which I say is basically a five dimensional thing, the
next piece that I’m going to take this to is 10 wildly
different test techniques that I think are the dominant
testing techniques.

Well, here are bunch of what you could call
techniques. Sometimes they are called testing
paradigms and are sometimes called testing styles.

So if you were to go around a wide range of
companies, what you would find is that some
companies would completely focus on function
testing, that’s all they do before releasing a product.
Some would focus only on risk based testing, some
would focus only on stress testing, and so forth.

For each of these, you could probably find one or
several companies that adopt one of these types as
their dominant style of testing. They might do a little
of a different style, but when you talk to them about
their style of testing, they will talk in terms of one of
these approaches.

When I was a less experienced consultant, I had my
favorite two approaches, I knew those were the two
true approaches. If you did these, equivalence
analysis and scenario testing, then that was good
enough. And it took me along time to learn that
clients of mine were finding problems much more
easily than I could with my techniques because they
were using other techniques. I would look and say,
this is strange stuff to do for testing – why don’t you
take my ideas. They would take my ideas and get
better because made them diversify.

It took me awhile to understand that diversification
should work both ways. That I should learn the other
techniques as well because there were a lot of things
that I would learn how to do cheaply that I didn’t
know yet how to do. Very few companies operate
with more than 2 or 3 of these techniques as prime
things that they pride themselves on practicing.

The best thing that you might take out of this entire
course, is take one technique that your company
doesn’t do very much, take just one – don’t make too
many changes at the same time – and add it to the list
of things that you really drill in. Get really good at it
in six months, then add one more.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 74

Slide 5.13: Module 5 Agenda
What we’re going to do for the next many slides, is to
look at each of these general approaches in isolation
and to say, imagine we were in a company that lived
and died by function testing. What would that feel
like, what would we do, what are they looking for,
what are the strengths of that approach and what are
the weaknesses of that approach. Similarly for
random testing and domain testing and so forth.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 75

Slide 5.14: Test Techniques—
Function Testing
Let’s start with function testing. The general notion
of function testing is, is it’s black box unit testing. It
is testing each function one at a time, usually people
talk about you confirm that it works. If it is the only
style of testing that you do than you probably test
every variable in that function pretty harshly. You
look at anything within this one but you aren’t
looking at interactions among functions and saying
here’s a feature, here’s a feature, here’s a feature,
here’s a feature, test this one, test this one.

You check off a function list and once you finish the
function list you say you’re done. And your belief is
if all the pieces work, it will all work together. It’s
not always true, but that is the belief of the people
that operate in this style. Now, many, many
companies adopt this as a secondary style. When I
say secondary style, many companies use this in a
less extreme way to qualify the program for testing.

It is a good practice to focus on function testing first
is a project risk management approach. In your
structure you can assure yourself that testing of a
certain kind won’t block you and delay the discovery
of certain kinds of problems. That's the only reason
people start with functions first, or with individual
things (whatever the unit is), to avoid blocks.

Skills involved
Please think about the mission exercise we did
(Slides 4.6, 4.8). The first thing that Group 1 and
Group 2 did was function testing. Let’s check A, B,
C, D, E but that’s not what they finished with. They
probably tested A in lots and lots of ways, and may
well have tested A in conjunction with B, C, D, E but
the first thing they did was wander through and say,
is there anything obviously wrong with this one,
anything obviously wrong with that one, anything
obviously wrong with this one. And it’s important to
start your testing by testing the items in isolation
because early in the program’s life with you, it
probably doesn’t work in a lot of fundamental ways.
If you come in with really complex tests, all you get
when the program fails is a really complex
troubleshooting job. It’s much faster, much simpler to
come in and say, how about this, how about this, how
about this, and qualify the program to be worth doing
combination testing.

The core tasks of function testing involve isolating
what the functions are. Now I note these in the
student notes, not the instructor notes, the student
notes and your course hand out.

And so you can refer to those, you can say look, if
you were to practice this at home, the core thing you
would be doing, the first thing that you would be
doing, is going through the program and asking
yourself what are all the features, what are all the
benefits, what are all the variables, what are all the
individual things that I can test and make a massive
list of them - this is often called a function list. I don't
think a function list was ever really just a list of
functions in the program; it’s a list of all of the things
that can be manipulated by a tester in a program.

Then you ask for each one - how can I test it on its
own. And you might use boundary techniques for
one variable at a time. You might use use cases for
one function at a time but you're not going to use
complex use cases that will carry you across several
functions. You are going to use the happy path and
as many alternate paths as you can think of this
individual function.

Now is the function the thing inside the code that is
labeled function? No you can’t see that. It's a stand-
alone piece of functionality that you notice as a
tester. In recognizing those many folks are pretty
blind to all the pieces of functionality they end up
interacting with in the test program. But the first skill
you develop as a functional tester is the ability to
walk the program and build that list.

Take home exercise (in student
manual)
An exercise for you is take part of a program that
people know like Microsoft Word.

Have people work in pairs, it is always in my
experience more effective to have people work in
pairs, have two people sit down at one machine and
start making notes and talking about what they see
and crank a list out.

Then have folks compare their list - everybody's
working on the same function. Pass the lists around –
0h, gee what did you get, what did you get? If you
take a small piece, it might be a fair task to have
people work on this over an hour. (If you take
something smaller, like Notepad, they can do this in
much less time. But you're not going to have the rich
variation of experience if you do a trivial program.)

What you find when you have something that is
complex when you do this exercise is that different
groups will do a creatively interesting job and they'll
have places where they don't overlap. This group
does a really great job on these things and they have
blind spots. This group does a really great job on
these things and they have blind spots. And you end

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 76

up saying if you're going to get skilled at this you
have to be building for yourself a list of categories of
things to look for that you can then break down -
here's another one of these, here's another one of
these, here's another one of these, here's another one
of these, here's another one of these. Having
something complex enough for people to compare
notes and really see differences is an important part
of the learning experience.

Although in a two-day seminar the hour that it could
take, plus the debriefing time - debriefing isn’t
necessarily everybody stand up and do a presentation
in the class whilst everybody else in the class falls to
sleep. But debriefing where everybody photocopies
their notes and passes them around or debriefing
where you have flip charts and everybody having
basically having finished their flip charts walks to
everybody else's flip charts and goes oh, gee so that's
what you did, can both be interesting ways of folks
understating what they got and what they didn't. At
that point you pretty well exhausted function testing.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 77

Slide 5.17-19: Test
Techniques—Equivalence
Analysis
The next approach is equivalence analysis testing and
there are a bunch of different names for this.

(Sometimes people call equivalence class analysis
“domain testing”. “Domain testing” is not a good
name to use in the context of Rational, because
domain is an overburdened word and it has other uses
in your process. But people call it domain testing
because they think of a function as having a domain,
input space, and a range beyond the input space and
so your focus is on input variables and all the
variables you think it can have, people call that
domain testing.)

Stratified sampling
The core idea in equivalence based testing is the
recognition that there are way too many tests to run.
We just can’t run them all.

So, here we have this universe of too many tests and
the strategy we follow is to divide it into a bunch of
equivalence classes and then to sample it, one or two
values for each class. How many of you have every
wondered how they do a Gallup poll? I see several of
you nodding. The Gallup poll involves something
called stratified sampling. These people can call up
2000 people across the US and predict with some
accuracy the results of the election.

It’s not a random sample. They subdivide the
population into equivalence classes, and they say –
we can represent this portion of the American
population with this one person. We can assume that
this one person will vote the same way as everybody
in this class. This person is a good representative of
that class and our classes are fairly complex. It’s not
just people who make lots of money, people who
make a fair amount of money, people who don’t
make quite as much, and people who really should
make a lot more. That’s one dimension, but we also
have where people live, what their gender is, what
their age is, what their race is, and what kind of car
they drive as other variables. But we end up picking
somebody who is a point on many different places –
this kind of car, that age, and so forth, and we say
they represent a bunch of other people who have this
kind of car or this kind of income group, and so forth.

They’re dividing the world 3 or 4 or 5 dimensionally,
but they still end up with equivalence classes. Where
they say there are a whole lot of people who have the
same kind of income, drive the same kind of car, and

basically live in the same kind of neighborhood, and
who have basically the same kind of sexual
preference. And any one of them could speak for the
group, we just hope we get a “most” typical
representative. The one who would vote the way
most of them would vote. And then they call up their
list of 2000 great representatives and weight them
according to how often that subgroup fits into the
population and then predict on what these folks say
what the whole subgroup would do. They actually
take more than one representative from each
subgroup just in case. That’s called stratified
sampling. You divide your population into different
strata, into different layers, and you make sure you
sample from each one. We’re doing stratified
sampling when we do equivalence class analysis.

These strata are just equivalence classes. The core
difference between testing and Gallup-poll-type
sampling is that, when we pick somebody in this
case, we’re not looking for the test case that is most
like everybody else, we’re looking for the one most
likely to show a failure.

Think about the example we looked at in Exercise
2.2, the integer group from 20-50. Now 25-30,
they’re okay, they’re all members of the two digits
between 20 and 50 the computer should like them,
equivalence class. They should all work. But 20 is a
little more interesting because if a programmer
somehow misspecifies, or whoever does the
specifying misspecifies, the program miscoded or
somebody misspecified the lower bound, maybe it
will reject 20. And we wouldn’t see that on 21 or 47.
We’ll only see that at one place, if the bottom end of
the relation is misspecified we’ll only see that at 20.

If we know that 20 is as likely to fail as anything else,
it doesn’t like the two digit numbers, it won’t like 20.
20 is as likely to fail as everything else, except it has
one other way to fail. Maybe the lower bound is
misspecified, then 20 will be the best representative.
A little better than any test we could run, because it
can fail in all the ways any of the others can fail plus
one more risk.

Since we’re looking for the greatest efficiency we
can get in testing, every little bug we can fit into one
stone, kill a bunch of bugs or at least look for a bunch
bugs with one stone, that’s great. And that’s the
essence of the equivalence class analysis.

Now historically, we think of boundary cases as best
representatives. We think of them as best
representatives, because there’s that extra little risk in
boundaries. But sometimes once we’ve started
thinking about it as a stratified sampling approach,

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 78

we realize that sometimes the equivalence class is not
on a simple straight line.

Printer compatibility
Testing Computer Software, which doesn’t come with
these course notes, comes with an entire chapter on
printer compatibility testing. And the focus of that
chapter is how to take what was at that time 1200
different models of Windows compatible printers,
which no one could test all of them. No manufacturer
software tests all of them. And even if they were
willing to try to test all of them, they wouldn’t try to
test all of them with the average 5 drivers they could
work with. And then interacting with all the video
cards used on the system, BTW sometimes if you use
this video card and that printer, you crash. That has
been a kind of failure that has come up with
Windows 3.1 and Windows 95 with some specific
applications, a conflict between printer and video
drivers.

Pretty soon you end up with this enormous number of
tests, times another enormous number of tests, and
you say, “We can’t do that!”

How do you decide what printer compatibility you
do? Well, you say 1200 printers – too much – we
need equivalence classes.

So for example, there are about 300 printers that are
Hewlett Packard LaserJet II compatible. How do we
know they’re Hewlett Packard LaserJet II
compatible? Because their marketing people say so.
They advertise, LaserJet II compatible – what could
be more trustworthy. Well, some of them might be
more likely to fail than others. But that makes them
real good representatives.

In general, printers that are advertised as LaserJet II
compatible, could be tested as a group. Or at least if
you’re saying I have time to run 40 printers, except to
say I need one or two representatives of the LaserJet
II’s, I need one or two representatives of the LaserJet
4’s, one or two representatives of each of the classes
of Canon’s and so forth, you end up with Postscript
level 1 or Postscript level 2 or Postscript level 3.

You have to break them into classes. Are there
incompatibilities within classes? Of course. With
Postscript level 1 you have for example several
different Apple laserwriter printers that are all
Postscript level 1 printers, yet they all behave
differently from each other. It happens. And Apple
has often been talked about as the reference standard
for Postscript level 1 compatibility. Yet there’s slight
variations.

If you’re facing 2000 Windows compatible printers,
you can’t do exhaustive testing. It would be silly to
do random testing. You’d end up with an over-
proportionate of basically equivalent LaserJet II
compatible printers.

Instead you want to stratify and say, “I want one of
this group, and one of this group, and one of this
group.” Now the next question is, how do we find the
best representative of the class? Once we’ve said,
let’s do LaserJet II compatible printers, where is our
best representative. What is a boundary for LaserJet
II? What does it mean to have a boundary for
LaserJet II? What would it mean to have a boundary
for LaserJet II? They don’t all fit in a number line;
they’re all in a box. Anything in this box that says
LaserJet II compatible fits.

There’s no linear relationship. The way that you
operate with that group is through specific risks. I’ll
give you an illustration. Suppose that you’re testing
an application that makes a substantial use of
memory. It will push very complex images through
the printer.

The LaserJet II’s all had two memory related error
messages they could give us, 20 and 21. 20, if I
remember correctly, is out of memory and 21 is too
complex. I may have those backwards. 21 may be out
of memory and 20 may be too complex. Out of
memory you can fix by turning the printer on and off
and try to print again. Too complex might mean this
will never go through the printer. You get a too
complex when the printer looks at the image – how
does this thing print right, you take this paper, you
have the rollers going chug, chug, chug, and the
paper says – I’m going through – and you have this
laser that’s going zap, zap, zap, zap, zap, zap, and the
page is rolling while the laser is going. Now if the
processor in the printer takes too long to decide
whether to zap – oh, yeah, back there I should have
zapped – in the meantime the page has rolled. Too
late.

If the software in the printer evaluates it and realizes
it will not be able to control the laser gun at the right
speed, it punts. It just rejects the image and says, I
can’t print this. Now, the 20 error – too complex –
has been the subject of a tremendous amount of work
by different manufacturers to use the underlying
Canon print engine. It’s not really the fault of the
Canon print engine, it’s the fault of the software that
drives it. But, different printer manufacturers have a
lot of challenge trying to set up their print software so
that they never get a 20 error. Folks who haven’t used
that engine for some reason, like Lexmark for
example who came up with printers that were

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 79

LaserJet II compatible but didn’t have the risk of 20
errors.

So you have some things that have zero risk that are
not worth testing for memory problems, they’re not
going to fail. They might fail in other ways but not on
that dimension. If you look at the 20 problem and you
say I want to make sure, here I’m testing my
application – say it’s a desktop publishing program –
I want to make sure that I never get a call from my
customer that says, I made an image with your
desktop publishing program, I spent hours and hours
and hours, I need to print out the brochure and now it
will not print. You told me your program was
compatible with my printer and I’m angry with you.
That’s the kind of call you can get with 20 errors.

And so, what you have as the application software
vendor at this point is the desire to make sure that
whatever you do, you simplify the image enough that
it will pass through the printer.

So what printer do you test with? It turns out against
that risk, the original LaserJet II is probably the best
representative. As they progress beyond the LaserJet
II, they kept adding more and more optimizations to
fail less and less often.

So if you passed the original LaserJet II you’ve
probably passed all the subsequent LaserJet II
printers and if you’re looking at the non-Hewlett
Packard LaserJets, they either cloned the original
LaserJet II software or they cloned the LaserJet II+
which was plus better memory handling or they
closed something subsequent. And to the best of my
knowledge, there were no printers who were worse
on that dimension than the two. There were a lot that
were the same, but there weren’t any worse.

So as the best representative of this class against the
risk of this kind of memory failure, you had the
LaserJet II.

But here’s another kind of risk. Suppose you had to
print at precise locations on the page. Every printed
on preprinted forms? It’s nice if you can print
between the lines instead of crossing over them. But
if you’re going to line your paper up exactly,
especially if you’re going to print your form over and
over again, consistency in the printer is a very
important issue. And that consistency is partially
determined by the software, partially determined by
the mechanics of the printer, and partially determined
by the software of the application instead of the
software driving the printer.

So here you are testing the application and saying,
are we doing as good a job of achieving consistency
as can be done. The HP LaserJet’s – it’s a waste of

time testing them. They’ve been made as consistent
as they can be made, they handle their paper paths
just wonderfully. There’s a model I used to test for
Panasonic that was just a dream for giving the
application developer the opportunity to screw up and
do inconsistent paper handling when they thought
they were doing it consistently. And in my
experience, if I could get software to work with that
one, it worked with the rest.

Different risks, different ways it could fail, end up
driving us toward different specific members of the
class.

How do you figure out which member of the class is
the best one against a specific risk? Hopefully you
have a technician in your company that wears a
propeller beanie that is marked “I know printers.” Or
“I know network cards” or “I know whatever it is”
otherwise you’re going to have to do more generic
testing. But if you really thoroughly know your
domain, then what you’re going to see is that you’ve
got an equivalence class, a group of printers that
work basically the same way, and then a small
number that are just slightly more likely to fail in a
certain way and when you want to test for that error,
you want to represent the class with them.

That’s a very real life example of multi-dimensional
equivalence class based testing. Still stratified
sampling but with this notion of best representative is
the one most likely to show a problem if it’s there.
The more dimensions you work together, the more
you have to know about the domain. But this is a
very powerful approach for taking massive and
intractable conditions and boiling them down to 40 or
60 tasks. Something we can work with instead of
thousands or millions.

This particular kind of equivalence analysis based on
the printer example is easy to teach. It generalizes
well. If they can understand how to do it on one
dimension and two dimensions, then theoretically,
they can understand how to do it on three or four.
Training people how to do it for video cards and
modems and so forth, how to get the domain
expertise for the stuff they’re trying to do takes
longer. But people understand why they have to do
that and what they need to do. It’s just work. It’s not
conceptually hard to do. And that’s made this the
dominate form of test planning, when I say dominate,
you can read several books on testing that teach only
this test technique and test design.

Subject matter expertise
One of the things that I want to highlight is the need
for subject matter expertise when you're doing that.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 80

The question came up, I'm not sure when in the
sequence of tapes you're going to see a discussion of
this group about hiring of software testers, we had a
short discussion of that yesterday, but one of the
points that came up yesterday was it’s important to
staff the test group to boost diversely in terms of
theirs skills and backgrounds. If you were selling a
product that does printing extensively where the
quality of the output is an important part of the
benefit to your customer, then you probably want
one-person in your group to be an expert in printer
output. You don't want your entire group to be
experts in printer output but if you don't have at least
one expert in printer output, then you will never be
able to do printer compatibility testing in a way that
can cover the things that you need to cover and free
you from spending all of your time installing and
uninstalling printers.

The Subject Matter Expert understands what
historical patterns of risk have been associated with
the domain that they’re an expert within, and that is
domain specific knowledge.

And some people understand networks, some people
understand printers, some people understand
databases, some people understand programming
languages, and some people understand more than
one. But there is no substitute for expertise when
you're going for efficiency. If you're going to risk-
based partitions, let's look at a group of tests and say
these are similar because they will all fail in the same
way. That's really what equivalence class is. If
they’re failed, they will all fail in basically the same
way. The same trigger will cause all of them to fail if
you're going to do risk-based partitioning. Then you
are going to say there's a best one for this risk, one
that is a tiny bit more vulnerable than the others. You
can't know that unless you really understand the risks
that are involved. The less you know, the less
efficient your partition is going to be.

Blind spots
However, we have some problems with this
approach. It’s not a silver bullet. None of these are
silver bullets. Let’s suppose in this program that goes
from 20 to 50, let’s suppose that there was an
optimization at 27, which is the most commonly
entered number in this system. At 27 the programmer
has cleverly written a new set of code that runs much
faster than how everything is handled in 20 to 26 and
28 or 28 to 50. Of course, the optimized code does
not work. Well, you are not going to notice
optimizations if you always test at the extremes. And
you don’t think the programmers are going to tell you
about every optimization in the code. Now, hopefully

if the programmers have done their own unit level
testing, this is an example of the situation where if
you see the code, you can see conditions you can
never see on the other side.

But values like this, sometimes people say that never
happen. People never do those optimizations. There’s
even a way of dismissing this among folks who like
to do equivalence class based testing, they talk about
what’s called the Competent Programmer
Hypothesis. And the Competent Programmer
Hypothesis boils down to the statement, no
competent programmer would make a mistake like
that or do something as irresponsible as that, so I
don’t have to test for it.

Doug Hoffman’s story
I’m going to close today’s class with an example
from the MassPar computer that is talked about by
Doug Hoffman who is one of the test team lead on
the MassPar. The MassPar stands for massively
parallel. This massively parallel computer has 65000
parallel processors. It was designed to be a really fast
computer. And what Doug was testing were the
integer mathematics functions.

So one of those functions being tested was integer
square root. Now, let’s imagine what a test of the
integer square root would look like. Any number that
you can fit inside the integer is valid. What this
means is that any bit pattern between 000 (32 zeros)
and 11 (32 ones) is valid. All the bit patterns you can
fit into the 32-bit word, can be square rooted by this
routine. There’s no such thing as an invalid entry. It
looks at one word, it takes whatever is there, it says
that’s a number, I’ll take the square root. What tests
would you run?

Any bit pattern is interpreted as a number. So if you
can specify an alpha, it has a bit pattern and it
becomes a number.

So all zeros, it’s a good point, but what gets to the
processor is just a pattern of ones and zeros. If you
thought you were typing in letters, they get changed
to ones and zeros. Yup, I know that, that’s a
111111111 – pretend there are 32 of these – and so
just take the square root. You think you’re typing A,
it gives you back the square root of whatever bit
pattern was associated with that. Now, you guys are
tired enough that instead of running this as a
discussion, I’ll just suggest a few other cases you
might like. Like 0111111 and 1011111, etc. run all
the zeros through so that we have one zero and
everything else is a 1 and similarly run the ones so
that everything else is a zero and have the one run
through every possible position. Suppose I did all of

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 81

these, every pattern whether all zeros, all ones, one
zero, but in every position, one one, but in every
position. Would that be enough?

Is that all the cases? How many tests of integer
square root would you want to do? That gives us 66.
Is 66 tests for integer square root enough? Are there
any others that come to mind as obvious things you’d
want to do?

If you have time and you have a massively parallel
computer, why not test all of them? And that’s in fact
what Hoffman did. There was another factor in
Hoffman’s decision too which was that, which might
convince the rest of you that you might want to test
all of them, which is the intended application of this
thing include tasks like targeting nuclear missiles.

So let’s test all of them. And he did that. It actually
only took 6 minutes. It was a fast computer.

And so they wrote an oracle that computed integer
square roots a different way – that’s what slowed it
down to 6 minutes. And they had the built in
processors, and they were doing calculations, and
doing calculations, they’d chat. And they found two
errors. One was in the high 30 thousands and one was
in the not quite 4 billions. Two errors that weren’t at
any boundary, and weren’t at any simple bit pattern.
And what had happened in both those, is one bit had
been miss-set. It was a low order bit, if in your
calculations you added this result to any other result,
then that bit was rounded out of the calculation and
nothing bad happened. On the other hand, if you
multiplied before you added, then the incorrect bit
propagated up into something that could be seen as
significant. And in two places, the error survived all
the rounding errors thereafter. Neither of them near
any boundary case. The only way they could have
found those was the way they did, with exhaustive
testing. Now . . .

Fully repeatable. It was traced to a clear error in the
code. No question. They miss-set a bit. This wasn’t a
random error. They had an actual algorithmic
mistake. Oops, we blew it. We should have added
one bit here instead of subtracting it. Um, now that
was great for 32-bit integer square roots. But imagine
the problem they had when they had to go to 64-bits.
Which they also had built in square roots because
now they had 4 billion times six minutes worth of
testing to do. Not counting the extra time for doing
double precision arithmetic, let’s pretend that didn’t
take any extra time. To do exhaustive testing would
take 4 billion times six minutes – sorry that’s not
going to work.

So they had to sample. They couldn’t do exhaustive
testing. And so when they went into their very

massive random sample, with a certain amount of
stratification, everyone working on that team
realized, they may be missing of these special case
problems. The risk is real. It’s more likely that you
will find errors at boundaries, but everybody who has
done extensive random testing of values and
variables, reports that there are sometimes
intermediate values that wouldn’t be covered by
boundary tests that show up as bugs for some cases
special case reasons, and others algorithmic reasons
but that only show up in the mid-range.

So it’s not a silver bullet. It’s just a strategy that
allows us to find most of the bugs with not very many
test cases. Imperfect, but very useful.

Skills involved – Lead in to
exercises
If only equivalence class analysis were so simple.
There are several different skills involved in
equivalence class analysis. And all of them seem to
be pretty challenging for at least some people to get.
When I say at least some people, the joy of being a
professor for the last two years is that I can give
students exams and find out what they actually know.

And so I can talk to folks and say, oh yeah they got it.
I can stand in front of the room and people’s heads go
{bob}, they smile, they look alert, they’ re not
sleeping. I say do you understand, everybody says
yes, and I give them a test and they’re clueless.

So, I'm still learning what the components are that
people have to figure out to be able to able to do
successful equivalence class analysis. Certainly one
thing is identifying variables that you can then
partition. And there are a whole lot of different kinds
of variables. We have input variables.

And yet, even though the classic descriptions of
equivalence class analysis have been in terms of
domain and input variables and their ranges, the fact
is that everyone who is a skilled tester in this line
goes quickly into output variables to. Because we
want to test results. The point of the program is not
to filter the input. That’s the capability programs
have to have. But you don't buy a program for the
privilege of having it tell you that 32 is a bad date in
any day/month/year field. You buy the program in
order to have it do something with that date, like print
a check on that date. And so you need to look at the
outputs if you want to look at the benefits that the
program provides.

If you're going to test a program and its variables,
you end up needing to think about its input and its
outputs, and by the way you need to think about its

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 82

environment. The printers, the operating systems
versions, the network connections, the amount of
traffic in a system are all examples of environmental
variables. They are not things that are manipulated
inside the application, they are givens from the
application point of view, but they can affect whether
the application works and the application can affect
whether they work.

Equivalence classes for
configuration testing
So of course you want to test them in conjunction
with the application. You can have enormous
numbers even within one variable, what printer are
you testing with, you can have an enormous amount
of tests just on one. Think of all of the different patch
levels, across all the different Microsoft operating
systems that application might test and, or if we
decide to think about the other operating systems,
how many versions of UNIX are there are? For a
while it was beginning to sound like it was an
uncountable infinity.

How many different mainframes are there in terms of
the characteristics of the mainframes? You end up
with people customizing the software on the
mainframes so heavily that mainframes are like the
low riders of the computer industry. Developing a
program that's going to run on mainframes is
developing something that is going to run on a whole
series of wildly different customized machines.
Those are you're environmental variables and you
have to accommodate them. Those are very complex
multidimensional environments and if you can't map
to yourself what kind of equivalences there might be
you're going to find a huge irreproducibility problem
in the field, as the program runs into problems that
you simply did not analyze.

So we have input variables, output variables,
environmental variables, and then we have pseudo-
system-level variables like the file system, the
functionality that was technically hidden from you
that is important anyway. How much memory is
there? How much are we using? How much is left?
When you ask the "how much" questions you have an
equivalence class analysis that you can do. But the
"how much" answer is not part of the obvious
externally visible thinking associated with any
program. How much space is there on your hard
disk? How does your hard disk behave when it's
almost full? How does your system behave if it fails
to write something you needed to write to you're hard
disk? Those are examples of system level variables,
they're not environmental, they're operating system

management variables of how your program interacts
with the core part of the system. And different
applications will interact with the operating system to
different degrees of success and different levels of
fragility. How fragile is the application with respect
to the operating system and how fragile is the
operating system with respect to applications of this
type? All those are subject to equivalence class
testing.

So the first set of challenges is to figure out what all
the variables are and I can assure you that even the
most experienced equivalence class testers that I
know find this enormously challenging and have very
little confidence that they've come up with the list,
the full list, when they analyze any program.

You’re always dealing with a subset. Coming up
with that subset, here take the program, start
brainstorming all different kinds of variables, input
variables, output variables, and so forth, is an
interesting task in itself. You can do drill based
exercises. I think of these as homework, not as stuff I
would do in class. But you can certainly use them as
quick, first-thing-in-the-morning, do-you-remember-
anything-from-yesterday-type exercises. Let me tell
you a field that has its values between 75 at 200 --
what’s the lower bound, what’s the upper bound,
what's the one just below the lower bound, what's the
one just above the upper bound?

Timeout example
Now let me take you to a numerical field where
you're not doing the input, but it still numeric. We
have a process that times out. I'd like to sit at this
machine and tell me what the boundaries are if we
know there's a 10-minute timeout period on input.
And people will say I think I should type a key and
wait 9.999 minutes, and 10 minutes, and well before
10 minutes, and well after 10 minutes. You say
great, let's try a test for that, what would you do?

Well the interesting test for that kind of thing is to
send some message to the process that's waiting for
input that would be handled differently if the process
is actually waiting for input or if the process rejected
the input.

Here's an example of a process that would handle
differently. The telephone. Pickup and start dialing.
Your telephone is in a state where it’s either listening
for the next key or it's not and you can get calls
waiting while you’re dialing, you can get calls
waiting while you're talking, you may get something
else if your telephone is that reorder or in some state
where the computer on the other side is saying
"Cannot complete as dialed; please try again."

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 83

Different phone systems have different timeout
periods; they have different timeout rules.

The simplest case is the 60 seconds timeout rule.
This system starts timing from the minute you punch
the first key and 60 seconds after you finish hitting
the first key and you haven’t hit a valid phone
number seven digits, eight digits, 10 digits, or
whatever the valid recognizable number is, it will
either dial the digits you tried or it will give you tone
saying this doesn't look like a phone number, hang up
and try again.

So here you are with a 60 seconds range. Set your
system up so that at 59.999 seconds that last tone
comes in. Does the last tone come in just after the
phone is actually typed up, just before the phone is
typed up, or just as the phone is tearing down the
session but hasn’t quite gotten it done. At that edge
you might find a value in and of itself. Now throw in
an interrupt, a phone call from another device and see
if the timing on this phone changes just a little bit to
see if it allows part of the system to stay alert even
though the rest of the system has said, it is after 60
seconds -- we’re gone to launch. If part of the system
thinks it is still listening for digits and part of this
system thinks it is not still listening for digits then
you have an opportunity to crash that part of the
system.

If you're in a company where they do real-time
systems, having people talk about those, and have
them analyze them in terms about smallest time,
longest time, what happens if boundary cases in time
can be interesting. If you do them like I just did, it's
not an exercise. If you try to do this with a group of
people who have never tested real-time systems, it's a
mystery; it's not an exercise. If you do it with a
group of people have real-time systems, they go,
“Oh, yeah, gee you could think about that as a
domain, right, I'd map it out this way.” That's the
result that you want to have, starting to draw
sketches. They have to be halfway there or they
won't get there.

Background for exercises
So simple analysis of variables is the first, easiest,
most direct and most boring of exercises. Good for
homework.

The next piece, which I give as an assignment, is like
simple analysis. I ask for just a little bit more. Here
we are with a function of 20 to 50 and I say OK what
I want you to do is write up a boundary analysis chart
and give me the chart. And the chart is going to be a
document that you can hand to another tester because

the wants to test the 20 to 50 deal. Think of it once a
get somebody off to test it.

So in your test documentation how would you create
a chart for somebody else to use? And the classic
version of that chart was published by Glenford
Myers in his book The Art Of Software Testing,
where many of the best ideas in the field come from
even though it was 1979. But here we have a
variable; we have what Myers calls the valid class
and what I call the main class or what in a use class
would be called the happy class or happy case, 20 to
50 in this case. And then we have what Myers calls
the invalid class but sometimes it's not a matter of
valid vs. invalid, it's a matter that gets treated
differently. And so that's more effectively talked
about as alternate. And then you always have a call
for boundaries so what might happen here are would
be 20; the alternate classes would be less than 20,
greater than 50, and not a number.

We can go through the same list that we did before
but I'd like to not bother, but we have boundaries like
20 and 21, 50 and 51, 19 / ; and then we have notes.
And what I ask people to put in the notes is a
statement, why do you think this is the best example
of a test for this range? Now if you're doing a simple
linear field, you would think the answer to that --
why is this the best representative -- would be an
obvious one, it's a boundary, there's an extra reason
why you're there.

Surprisingly, it takes people one or two practice
sessions to even to get that in a way that they can say
it consistently. But as soon as you get outside of 20
to 50 and then talking about 19, 20, 50, and 51 as
soon as they get into things that are not immediately
on the number line, what's the best non-number?
Well you can talk about the best non-number in terms
of the ASCII code and some folks might especially
since we have covered that already. Some people
might talk about the best non-number in terms of "A"
is the most similar letter to a number because it's one
of the letters closest to the numbers in the ASCII
code.

Whatever they come up with as the reason, what you
ask them to do is for any test case they propose, have
them tell you what class is that test case a member of,
and why is it a best member of that class. That turns
into a hard question for people to answer. In my
experience with graduate-level students who have
bachelor's degrees in computer science, we’re not
talking about people who have never had any
thinking of testing, we’re not thinking about people
who could never code their way out of a loop, we’re
talking about people who came in with good degrees
from reputable universities who can code quite well,

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 84

thank you very much. Many of them with industry
experience who for a simple one like this, still cannot
tell you on an consistent basis, what member of a
class or what category they think something belongs
to and why it is recommended as the best.

The simple one gets the juices flowing. You start
them out and give them 20 minutes to try it, take it
up, have people cross look at each other's papers,
walk around a look at a few yourself, point out that
there's not an explanation for some of it. Describe
what some common problems, are again I really hate
debriefing were students stand up and then read their
own stuff or read their neighbor’s stuff, what do you
have to say, what do you have to say, what do you
have to say. In three a student class debriefing works
great. In an 8-student class if you have more than 4
people debriefing, it’s just boring. But if you come
up and say, here are three examples of problems
people had in the random, let me give you an answer.
And post a solution by one of the students but I am
not going to tell you who that might embarrass them,
then critique it and folks can learn from that. Then
you try to find an illustration from every person
across different exercises so that every person sees
something of their own work and gets it. Then you
get to comeback with a slightly more complex
variable and try it again.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 85

Slide 5.21: Optional Exercise
5.3: Myers’ Triangle Exercise
During the break I was asked about another example
of a domain class exercise. It is one of the classic
exercises in the field. It comes from Glenn Myers
book, the Art of Software Testing, and it's called the
triangle problem. A triangle problem seems like a
very simple problem. We have a program that will
accept three numbers, call them A, B, and C. You're
going to enter values into A, B, and C. We will
pretend for the moment that all you can put in are
integers. It will dutifully reject anything that is not
an integer and the program will feedback to you
whether the triangle that you entered is an isosceles,
scallion, or equilateral. Of course if you use this
exercise, you'll find for your students that isosceles
means a triangle that has two sides the same. And
equilateral means a triangle that has three sides the
same. Scallion means a triangle that has no sides the
same. Anyway, the task for the students is to list a
sufficient set of tests to test this program and to find
out which parts of the program are isosceles, scallion,
and equilateral. Of course, the output we have
forgotten to mention is not a triangle. But you're
bright students will figure that out. There are a lot of
"not a triangles" that they can come up with. One of
the most common "not a triangles" that I get from
students is 1, 1, 3, which they call isosceles. Now an
isosceles triangle whose sides are 1, 1, 3, looks like
this. It's got 3 on the base and 1 and 1 and they just
don't match the sides are not long enough. The sum
of these two sides has to be at least as big as the base.
If it was one and a half and one and a half by three,
they would match but they would match by being a
line; they fall directly online.

So, when students don't get that one, I smile and say
this shows why you need domain expertise. This
happens commonly in specifications. The piece the
programmer had in mind is something she was
controlling for deliberately, like the case statement: is
it isosceles, is it equilateral, is it scallion, she’ll
specify that. But the piece that she assumes you
know, everybody understands geometry knows that
the smallest two sides have to be at least as big in
their sum as the larger one. That's just domain
knowledge, everybody knows that. We don't have to
put that in the spec. But as soon as you come against
that spec and you're not knowledgeable in that
domain, you'll come up with stupid test cases. And
of course if the programmer didn't know it either then
you'll come up with troublesome test cases.

So the first learning I get for my students is that many
of them don't have the domain knowledge and it

gives them a chance to realize that. My structure by
the way in my academic class, which is the only
place where I use Myers program, is to start people
out in the first 10 minutes of the first day with a
Myers program. And I say this is your opening quiz,
after all this is a testing class, I start with a test ha ha
ha. And they go, darn professor. And then they
write-down the test cases they would use and the
other thing I asked them to write is what percentage
of the task they think they should run they’ve
covered. One of the amusing correlations is the
people who give me numbers like 100% coverage
typically give me three or four cases at most. The
people who know the least think that they have tested
the most thoroughly. Many of the students have
bachelor's degrees in computer science and have
written programs much more complex than this
themselves. They come up with one case for
isosceles, one case for scallion, and one case for
equilateral. The smartest of the students also comes
up with one case that's not a triangle. And then they
say that’s enough here it’s 100 percent. Whereas
students who give me 25 end up saying, I don't know
what the percentage is but I'm not there yet. They
might not express in that exactly those words, I can’t
give you a percentage, or they might say I guess this
might be 50%. They're a lot more tests but I'm out of
time. And then I basically tell them it's about 10
minutes and I stop when I see that are people are
looking at me more than they're looking at their
papers.

I take their brainstorms home and bring them back
the next day. And then we do a takeoff and class but
before we do the takeoff and class, we've gone
through an exercise like the 20-50, we've developed
the test ideas matrix, and said then I come back and
say OK, how would we come up with a test ideas list
for a triangle? And we do a little bit more in class and
I point out some of the cases. The reason I am
mentioning this on the tape is that Glenn Myers in his
book gives you 11 classes of test cases that he thinks
collectively cover interesting tests for these. One of
the pieces of an assignment I get my students is what
really interesting cases did Myers miss? And most of
them can find at least one but if you go through his
notes you can probably find at least one if you can't
don't worry, just don't asked them to tell you which
ones were missed. Just don't ask them to tell you
which ones were missed because then they will say
what do you think it was and you'll be lost. And after
the first time you teach this, somebody will come up
and say, "Well teacher, isn't this an example of
something, shouldn't it be on the list?" And then you
have one.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 86

So the next time you can ask for it. Um, there's a risk
of spending too much time on this exercise. I'm told
that there's a consensus within teachers who teach out
of the British Computer Society to stop using the
Myers example because they think it teaches people
the wrong thing, especially in the hands off
inexperienced instructors. The risky thing that it
teaches in the hands of inexperienced instructors is
that you should test all 11 or 28 or whatever the
number is that you come up with all of the interesting
cases and they're a lot.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 87

Slide 5.22: Exercise 5.3: Myers’
Answers
Several classes of issues were missed by most
students. For example:

• Few students checked whether they were
producing valid triangles. (1,2,3) and (1,2,4)
cannot be the lengths of any triangle.

• Knowledge of the subject matter of the
program under test will enable you to create
test cases that are not directly suggested by
the specification. If you lack that
knowledge, you will miss key tests. (This
knowledge is sometimes called “domain
knowledge”, not to be confused with
“domain testing.”)

• Few students checked non-numeric values,
bad delimiters, or non-integers.

• The only boundaries tested were at MaxInt
or 0.

For example this side could be zero, this side could
be zero, this side could be zero, any combination of
that can be zero. This could be bigger than these two,
this could be bigger than these two, this could be
bigger than these two.

This could be maxint although actually Myers doesn't
get into maxint. the whole notion of buffer overflows
and that kind of stuff is not there, by the way that is
one that is not the list now you don't even have to
wait for your students anymore to talk about buffer
overflow problems.

But the sum of them can also exceed maxint, why
does that matter? Because even though all of them
individually or find, there's an internal calculation.
Let's suppose that we try to have an equilateral
triangle that is max-in, max-in, max-in. What's going
to happen what we add this side to this side to see if
it's his biggest this side -- can't do. How does the
deal that? It’s got to be special code.

So, it has to behave at the little different than just a
simple addition of two sides. And it might reject it,
or it might have some error handling and do the
analysis in a different way. It doesn't matter, it is a
qualitatively different test case from two and three
and four.

So, we can come up with lots and lots and lots of
examples. If the message the students get across is
there are umpteen-gazillion tests they’re at risk.
There is the same risk that we talked about earlier
with a test ideas list if you try to test them all, you
lose your ability to do any other tests in the program.

And what you've created is the excuse for never
getting done. Some testers live by the excuse of
never getting anything done. They walk in and say,
"My project is a failure from the start. There are all
these tests. I have to do them all. Those evil project
managers won't let me do all the testing I need to do.
They’re so bad, I'm so sad. I better put down lots of
paperwork to explain why I can't get things done and
tell them that I need more staff and of course, do the
best I can and test it." This should not be a course
that trains people to be victims. They have to come
up with a sampling strategy. The way that I use the
Myers exercise, is that it hits in my sequence of
exercises I start them out thinking about the question,
how do we come up with out of a big population of
tests of something that gives us some percentage of
coverage? And then we look at how we guesstimate
coverage out of that. We also look at how we come
up with a long list of tests. But then we come back to
the question of representatives. People want to say
let's get big numbers, great, there's a population of
possible test that are big numbers size. Let's pick one
and make that the best representative or at least the
representative we are going to use.

So I tend to use this as an exercise of test case
reduction; whereas many of the folks who teach from
Myers make it case of test case expansion. Myers
uses it that way too. In the opening exercise he says
come up with a list. And then he says, see, you didn't
get them all. Most experienced testers don't get them
all, you're not thinking clearly enough. Well that's a
useful thing on the first half day of lecture and then
we have to get them sophisticated enough to know
that even if they get them all, they cannot use them
all.

And so now we have to go to the reduction part. And
my sequence the reduction part is another case of:
give me the test, tell me the category of additional
representatives, tell me how big the category is, and
tell me why this is as good a representative as any
other, then give me at least one example of
something you think this is a member of the class too
but this one is a better example of a member from
that class.

So in the equilateral triangle instance, it's interesting
to look at a triangle who sides when you do real
numbers look like 0.0001, 0.0001, 0.0001 to see if
they can handle little, itsy-bitsy sides. Another
example of sides better identical, max-in, max-in,
max-in. You know, we’re looking at extreme cases
were the curve is getting tough.

Those two cases might be the nastiest examples of
the general class of equilateral triangle. Maybe you
can come up with another nasty example, that's great.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 88

The students come up with a variety of them and I
say pick one and tell me why you think that’s a
particularly good representative. And the goal is to
come with 10 or 12 tests that will become the
representative group. We have 15 minutes to test the
triangle and then we have to get on with dealing with
the square. And how many geometric shapes are
there in the world, we are going to be testing each
one. We’ll put the program in the little perspective --
this is the program that can generate every geometric
shape you can ever imagine.

How many sides can a geometric figure have? I
think it's infinity. So take a little time for each one
you are going to run out of time before you run out of
shapes. Let's start with a triangle. And that gives
them a sense of the urgency. And some people say
that's not realistic, so I say OK let's use a word
processor and let's think of every document you
could ever print and they go, “Oh.”

What's the representative set of documents? -- it is
the same problem. How much time do you want to
spend on the document that has three words. There
are a lot of tests for the document that has three
words. How many letters have you written that has
three words and that was all? That's what you're
testing with a triangle program. It's good to know it
can handle three words, but at a certain point you
have to move on. Give me 10 or 12 test that you
think are better given that we have to move forward
and tell me for each one why that's a good one.

That's my use of that exercise. As with some of the
other exercises, the grading is a critical part. It's not
just writing it down and it's not just taking it off at the
front of the class. It's looking at some of the very
strange answers that people give and trying to figure
out how they could think that this is representative of
that class much less a good representative. And then
twist your head a little for you to see how this one fits
and say back to the student, that's an interesting
theory but maybe you could think of it a little bit
differently.

To some degree you can achieve that by having
people trade notes and rate each other’s stuff. To a
large degree if you're doing exercises with that goal,
you're going to have people turn stuff into you and in
your copious spare time at the hotel, you're going to
be making notes on exercises that they can look at the
next day. Now as a professor I can be that happily.
My students expect that. As an industrial instructor
I've never even tried it. I don't know how people
would react. But that's the way to give them the best
feedback. If I was really focused on equivalence
class testing, I’d probably give them one example

where I could actually see what their four or five
classes were and make notes on them.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 89

Slide 5.23: Optional Exercise
5.4: Equivalence Analysis with
Output
Here is an example of a more complex situation.

Let's divide a variable “K”, that is an integer variable,
however many bytes an integer is in your system
doesn't matter, it's that many but it's a result. K is a
product of I and J. I is also an integer variable. J is
also an integer variable. K is an output variable; you
can't enter anything directly into K.

For an equivalence class analysis on K, you have to
think what you would enter into I and what you
would enter into J to drive K through the interesting
values. This is a classic problem that we face all the
time and testing. We see a report and we say how
can I get these three values into this report? And the
only way you can do that is to figure out what inputs
you need to get to get these three values. It's a
normal thing but what they're going to have to do is
to start out by saying OK, K can run from minint to
maxint. If you don't want to play with negatives, no
problem, deal with K as 0 to maxint. (By the way, I
can also run from minint to maxint and so can J.)

So we have K, who's values can be minint to maxint
running through zero. And we have other interesting
values like 1 and minus 1. Now how many possible
values are there of the pair I and J that can give us a
result value of 0. What's the set?

Anything where I is 0; anything where J is 0. All of
the I’s and J’s where I draw them give us 0. It's a
huge set.

What's the set a gives us -1 as the answer?

-1, 1 and 1, -1.

So some of these sets are big and some of these sets
are small. And there are some pretty interesting
invalid ones. What is the system going to do when
you try to multiply maxint times maxint? You can't
have a value K for that, right it's not to work. In fact
you have an interesting question, how do we get to
the biggest possible value for K?

Let's think of a small maxint. Let's suppose that our
integer was only one byte. The largest possible
positive integer if we have signed bytes is 127. If
that's too big for your students, think about something
that ranges up to 7. It's just as good an example
except we are fitting into four bits I think positives
and negatives, maybe six bits or something I forget.
How do you get to exactly the maximum values that
K can have, well maxint times 1 and 1 times maxint
will do it.

But as soon as you start thinking about multiplying at
a big value of I, or mid-level value of I times a mid-
level value of J, you discover that people want to
multiply the square root of I or the square root of
maxint times the square root of J, and that can't work
because it's an integer system. The square root of 7 is
2; it's 2 point something. But in integer, poof, the
point something goes away. And so the square root
of 7 times the square root of 7 is 4. Well, that's not
maxint.

So we end up saying what's the largest integer and
started playing around with square roots and that can
get into fun.

What people end up saying is that for the results they
end up with sets. And some of those sets have lots of
numbers and some of those sets have very few
numbers. And now that you have a set, what's the
best representative of the set? Well, for the 0 case, I
don't think there is the best representative for the set,
I think they're all about the same so pick one. Maybe
the boundary is (0,0); maybe the boundary is (maxint,
0) or (0, maxint); you can play with those, that would
be fun. But I'm not sure that any those are more
likely to fail than any of the others, so I might
randomly sample from that group. But what you can
see is there is a group that you've got to sample from,
and if there is another group you've got to sample
from it, and if there is another group you've got
sample from it, in each case it you have a set. It's not
exactly clear what the boundary is. If there is the
boundary it's a two-dimensional boundary. You have
a set you have too many across all the sets to be
worth testing.

And so you say OK I have a small number of sets I
want to pick one for each. And then I want to justify
why (1,1) is the interesting case to use if that's the
one I pick. Why did I pick this instead of the (-1,-1)?
And maybe my answer is I'm going to pick (1,1) here
and (-1,-1) here. I'll cover my negatives in some
other place, I can only afford to do few.

So have people justify that. Again, have them do that
in a group. This turns out to be an extremely
challenging case, the first time they try it. People will
get frustrated. I take my students out to a café, I take
them away from the lab atmosphere. We go to the
Sun Shop Café, we start a Saturday mornings and I
pay for their breakfast and while they work on this
thing. They stay till noon or 1:00; we have flip charts
that we set up. The owner of the cafe thinks it's kind
of cool that we have all the stuff and we can take the
back part set of tables to play with. And I sit in
another part of the cafe and when they get really
frustrated, they come by and talk but most of the time
they talk to each other.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 90

And so I've heard from across the cafe some loud
discussions about how to handle this problem the first
time. If you really want your students to master a
problem like this, then let them fumble with it, pick
up what they did well on this problem and then solve
it for them.

Now let's do

K = I / J

and let them do it again. They tear their hair out more
but they're likely to get a lot further on this one. And
if they don't do this one, I know it didn't stick.
Because when I just give them this one and then I
have a final exam or have another problem that's
another variation on the theme, they don't necessarily
do well. When I give them this as an assignment and
this as a follow-up assignment, they come to the
exam with skills then.

It takes that much. This is a lot of work to go
through in a class to get to them finally to the point
where they can look at a report and say, how I test
this is with these classes. Now is that an important
skill? Yes. But were not talking about an hour's
work of practice. If we added up all the time they
spend on the exercises that they do to the place where
they get to this, they probably spend a day, including
feedback time. How much of that day you want to
put this class through, that's up to you.

But any subset of this is going to be valuable in
getting the growth in skill and without any of it they
might articulate, they might say, oh yes I understand
equivalence class analysis but that doesn't mean that
they know even where to start. And anything less
obvious than 20 to 50 integer range. And here's
another interesting question to ask them, this same
group. I'm going to give you any input range that
supposed to range from 20 to 50 but we’re going to
structure the field in a way that you can type any
amount of characters you want and press return and
that will give you a message if it’s out of bounds.
What testing do you do in this case?

What you have is two boundary cases here. You
have 20 to 50, that's the boring obvious one. And
then you have the buffer; the field that you get to put
the data into before it gets processed. And that one
obviously has a wider limit to it. Whenever you see
two fields disguised as one, you see an opportunity
for all kinds of fun testing to go on an all sorts of
serious errors. Now you start asking the question,
what is the biggest number I can put into this, and
how will it respond?

If I give students the task, find me the upper limit and
then find me a value that exceeds the upper limit and

see what it does. People don't necessarily have a good
strategy for this. But here's a bad strategy. 1 that's
OK, 2 no that's OK, 3 no that's OK, 33 yeah that's
OK, 34 OK. Here's a little better strategy but it's not
very timely 2, 4, 8, 16, eventually you'll get to
something pretty big but it takes a while.

I end up with a strategy that goes like, it goes from 2
to 50, OK, let's try three digits. Oh, it takes three
digits. Wow. Let's try 6 digits; it takes six digits,
terrific. Let's try 12 digits, gee it takes 12 digits.
Let's try 24 digits. Hmmmmmm. Now up to this
point I am cutting and pasting but pretty soon when I
get into more than a few digits, I erase that and go
123456789A. If I possibly can, I will put in larger. It
will be rejected anyway. And then it's 123456789B
so I like to see what actually took when I scroll
through. In a little bitty scroll box with a number this
big, you can't tell unless you have identifying marks.
But now my pasting is going to be paste nine digits
type a letter, paste nine digits type a letter, paste nine
digits type a letter, paste nine digits type a letter and
on we go. And just keep pasting in large lots.
Maybe I'll end of pasting 100, lots of 100 inputs.
Eventually I'm going to get something that is too
large for it to process. But the first too large for the
process that's just fine for the starting point. It still
let me put it in.

So maybe it's 255 characters it tells me I shouldn't
have given it that many characters. Which means
256 is a great case to see what it does. And indeed in
some fields that I've worked with, it gives you
different messages until finally you crash the
operating system, or you crash something else. The
process of an organized and determined search for
boundaries is an important skill for anybody that has
ever had a program that didn't specify the boundaries
for the fields. Which probably is everybody with
probably every specification they’ve ever worked
with, some field is unspecified.

So you end up saying what is the down, how you
handle things that are obviously out of bounds, and is
this boundary a reasonable thing.

So giving people search tasks is practicing another
skill they have to use on the job all the time for
boundary cases. But it's going to take time as an
exercise. That one might well work as an interesting
exercise where you have the field, and you have
people tell you what the next thing is to type in. at
certain points you comment, this is getting really
tedious, can’t we come up with a strategy to get me
to the next level of interestingness as far as bigness a
little more quickly. The -- get me to the next level a
little more quickly -- is a fundamental issue of
domain testing, equivalence class testing, and with

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 91

everything else. But the point for equivalence class
testing is to get ourselves into the next group as fast
as we can because we have way too many possible
tests so we’re trying to go from group to group
quickly. The more time we spend with one group,
the less benefit we're getting out of the strategy.

So that's another class of exercises we can try to
come up with. Certainly on an exercise basis, it's an
interesting thing to do. In person-to-person coaching,
I've done a lot with happy success. With groups it
depends on people really being willing to walk with
you and keep the focus. I don't think this will work
in a group of 20. You will have three people
participating, and 17 people wondering what their e-
mail is like, whether they can get out of here and
make connections on their machines here.

So there are a bunch of other examples of tasks that
people perform when they are do equivalence class
testing that are in the student notes and you can make
exercises out of any of those. If you don't give
people some of these exercises they will not master
the skills. And if you give them some of these
exercises and you give them enough time to get the
full value then you’re going to take a few hours out
of your day and you will lose the pace of the here's a
technique, here's a technique, here's a technique,
here's a technique, see that was an interesting tour.
They see a budget hills instead of the mountain
range.

So that's at a trade-off different instructors will make
differently. When I taught this kind of material in-
house, my general approach has been to go a day
early to the company site, sit with the sponsoring
manager or managers of the class. Walk through the
course notes with them and ask them questions like,
how important is this skill and how much time can
we spend on this skill? If we did this with it, will this
benefit you are not? Do they need overview more or
do they need drill more? What do you hope they will
come up with at the end of four days and focus on
that material. You can't practice everything. Any
comments are questions?

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 92

Slide 5.25-6: Test Techniques—
Specification-Based Testing
You can't do spec-based testing if you don't have a
spec. Therefore not every test group will do spec-
based testing. If you have a spec, and that it’s close
to complete, and it’s up-to-date, and it’s intended to
be accurate, then there is some value in making sure
that the program conforms to this spec.

You might remember the last time you ordered books
from Amazon.com. On the outside of the box was
the invoice and it said there are three books here and
these are the titles. What would have happened if
you opened the box and saw four books and they
weren't any of the three that you ordered and they
were more expensive? Would you say oh good I got
a great deal? Or would say what they tell me I was
getting these books and I got those. In fact, what if
you ordered 10 books and they give you a partial
shipment? They said we will send the other seven
next week but here are these three. You opened the
box and you have three books from your order but
they are different from what were listed. Would that
make you nervous? Of course it would.

The nervousness comes from the mismatch between
the statement of what you are getting what was
actually delivered. Anytime we tell the customer
what they're getting and it is not what they get, it's a
bad thing. Let me quantify a bad thing in some other
ways. If you sign a contract with the customer and
you promised to deliver 1000 features these 1000
features, and then you don't, that's called breach of
contract. If you shipped the product to the customer
without having a little checklist of the 1000 features
checking to make sure that each one is in the box and
works at least through the happy path. If you don't do
that much, you're begging for breach of contract
lawsuit. “I will ship you $1000 of stuff. Here is
$800. Your order is complete.” Would you accept
that as the customer? It’s the same thing. Now in
mass-market software, we have another interesting
piece, because in many states the user manual is
taken as the binding specification. For other
products, that is certainly true.

The classic legal case happened in West Virginia
somebody went into a diamond store about a
diamond ring. And the interaction between the
jeweler and customer went like this. "I want to buy a
diamond ring for my anniversary. I want it to be
really pretty." "Good" the jeweler said, "we have a
big stone right here and it's really pretty." The
customer said, “That is a big stone and it is very
sparkly. I like it. How much as it?" They agree on a
price and they wrap it up and the jeweler wrote an

appraisal, which the jeweler put it into the box
without even telling the customer about it. And in
the appraisal it said the diamond was of the VBS
quality. The VBS is diamond talk for really good.

The customer took away, didn't know anything about
the statement. Four months later he gave it to his
wife. She opens the box, likes the big rock. The
little piece of paper falls out of the box. She sees the
little piece of paper, folds it back up and sets it back
in the box and ignores it. A little more than three
years later her daughter is trying to get the diamond
appraised. Probably the mother died and they were
now doing appraisal for that reason. She takes the
diamond to the jewelers and the jeweler said, “It's a
nice diamond but it's not VBS quality.” The daughter
says, “We were sold a diamond that was VBS
quality. This was not the VBS quality.” She goes
back to the original jeweler and says, “I want you to
replace this rock with a VBS rock.” And the jeweler
says, "Well, it's not really a VBS rock and I'm not
going to give you a new one because that would be
way more expensive. I tell you what, I'll buy back
the ring."

The price had gone up at this point. This was a good
thing for the jeweler; well it might have been a good
thing for the jeweler. But the daughter said, “You
wrote down VBS quality. That's a description of the
product. It's a spec. I am entitled to the product
specified.” “I remember that sale. We negotiated this
one. It was right here in the case and you got this one.
It's a nice diamond.”

So it went to the Supreme Court of West Virginia and
what the Supreme Court said to the jeweler was,
“Sorry. You wrote down this is VBS quality, even if
the customer didn't see that before they bought the
product. But the product was delivered with a
description of the product; and it's binding. Of course
it's binding.” Well what’s the difference between that
description and all the claims we making user
manuals? I don't think there are any.

You might say: “In the diamond case we have an
accepted standard whereas in the user manual we do
not. While the standard the judge applied to this was
a very simple standard, is the statement true or false.”
Legally, the definition of an express warranty is the
statement of fact that applies to the product as made
by the seller to the customer and becomes part of the
basis of the bargain. The meaning of the statement of
fact is you can prove true or false, you can prove true
or false in the case of the diamond by going to one or
two other jewelers and saying, “VBS?” And they go,
“Well plus or minus one grade, yes.” For a feature
that crashes, you can go out to anybody who uses the
software and say crashes and they say, “Yes.” And

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 93

you look at the manual and it says, “Do this and it
will do that,” but instead the program crashes. That's
an easy standard. If the manual makes the statement
that you can prove true or false and the manual
statement is false, then you have what you need. The
manual creates a reasonable expectation about the
product on the part of the customer. The customer
will be cranky whether or not you can enforce it in
court.

(OTOH, if the manual has an implied use then there
is no statement of fact. If the manual says you're
going to have to stand on your head and twirl four
times before you can do it but it says stand on your
head and twirl, you say this is ridiculous, then the
manual is saying nothing except what's so. You
might not like what's so. But if the manual says it
accurately there's no issue of this kind.)

Where there is a clear cut statement of fact --
something that a reasonable person would read and
say I know that this is making this assertion. I can
imagine the test that would tell me whether this
assertion is true or false. There is great wisdom in
checking your software to see that it's true and not
false.

How does the tester determine what the claims are
that we made. Well that's one of the skills. Just like
one of the skills for function testing is figure out
everything that you can test stand alone. One of the
skills for verifying every claim is figuring out what
the claims are. Another skill is, figure out with the
claims mean. Ambiguity analysis. But given that
you find a claim, your task under spec driven testing
is to check.

I want to get back on the manual in a different way.
Bill Rose, the president of the Software Support and
Professionals Association, wrote a book in 1990 on
tech support. And the last time I talked with him
about this was in 1998, moderately recently, about
what things drive tech support representatives crazy.
And he said that bad user documentation is this single
biggest cause of difficulties between customers and
tech support representatives.

When I was writing a book on software tech support
and software consumer protection called Bad
Software, I interviewed several tech support
managers from several companies. I heard with this
constant story time and time again, actually
unexpected to me at the time. The biggest reason
why tech support folks quit: customers see something
in the manual that's false and it really false, the
writer screwed up it’s not the software. The customer
now expects the software to behave in this way; it's
not even a good way. The customer called up it does

and says, “The software doesn't work.” The software
tech support says, “Yes it does; the manual is
wrong.” The customer says, “Oh, yeah right, you just
say that -- I trust you.” And customer goes through
this very sarcastic conversation with the tech support
rep, because in black and white in print it says that
the program works this way when in fact the program
works this other way. And even if this other way is a
perfectly good way, the customer is dissatisfied
because they were told inaccurate stuff.

That interaction repeated many times during a day
gets the tech support people really frustrated. People
scream at them, people swear at them, people call
them liars constantly and you end up with folks who
say I can go to another company. I don't have to deal
with this abuse. I'll go someplace where they actually
check their manual. Stunningly, at the Customer
Care Institute they studied mass-market software
publishers and over a three-year period. They found
that between 44 and 54 percent of the software
publishers they studied, 300-400 publishers at a
whack whack, basically have the publishers never
submitted their documentation to testers.

The mass-market provides my best argument if I'm
going to take a company to court for breach of
contract and the number one leading cause of
software tech support anger/frustration and people
quitting and so forth and we’ll just say, “Oh, let’s not
do that.”

Let me just add one-piece, my experience with
consumer software is it takes about 15 minutes per
page to do the verification against the manual for one
pass of the manual. It's relatively cheap and yet half
the industry still doesn't do it. Part of the response to
this is now we get skinnier manuals -- less to check.
But we also get a faster escalating number of tech
support calls because people can’t figure out how use
the product. That's a different class of issue.

The issue I want to stress here is, if you set a
customer expectation you need to check the customer
expectation. If the way you set customer expectation
with a spec, then the way you check the customer
expectation with spec driven testing. If you're setting
expectations and not checking them, then you're
engaged in high-risk behavior. And close to half of
our industry does not bother checking. They don't
think they have specs so they don't do spec-based
testing. Well, so even companies where they don't
write formal specs they have a need to do spec-driven
testing, often a big need.

The major things that are missed if your main
approach is spec-driven testing are as follows. If I
have a claim that is made in a spec and I check that it

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 94

is accurate, great. I've now tested the equivalent of
the happy path.

Have we tested anything else? No. What about all of
the behavior of the program that is not specified in
the spec that we've left to common sense? If the only
things that we’ve checked off are the things related to
the spec, no spec can exhaustively describe every
aspect of program behavior. Some of it is left to the
good sense and reason of the people who are
interacting with it or testing it to.

If you are thinking about the implications that can be
drawn and we are don't test those, some of those
things will turn out to be failure cases. That's
problem 1, anything not mentioned in the spec
doesn't get covered if all of your testing is spec-
driven.

Problem 2 is: Even if it is mentioned in the spec, if
you tell me that this will add two numbers, use this
function and you can add to numbers, OK great. Do I
add 2 plus 2 or do we add maxint and maxint. Either
one answers the base question, does it add two
numbers. But if I'm not going to do harsh tests, even
though I can check off an item to say yes I covered
that element of this spec, I'm not covering with
enough power to have confidence that it will be met
under every circumstance that a reasonable person
would use. And so in the one case spec-driven
testing doesn't cover anything missed in the spec and
in and the other case spec-driven testing does not
necessarily cover the more troublesome cases that
weren't separately called out or implied in the spec.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 95

Slide 5.27: Traceability Tool for
Specification-Based Testing
One last piece on spec-driven testing is the notion of
the traceability matrix. There are lots of different
traceability matrices out there. There is a general
concept to the matrix. I say variable 1, variable 2,
variable 3, that might be requirements statement 1,
requirement statement 2, it might be spec statement 1
or spec statement 2, it might be line 1 in the manual
or line 2 in the manual. By what we have all are a
bunch of statements that you can test {across the top}
and a bunch of tests {down the side}. And we say
that it turns out that the first test actually involves
these three claims, and the second test involves these
two, and the third test involves these three.

And so you show in a matrix what's been tested by
what. This is called the traceability matrix. The first
benefit of a traceability matrix is that you can trace
back from the claims to the test cases. Why is that
interesting? Because one day we decide to change
the feature that is documented in requirements
statement 4 and the first question that comes up in the
change control committee is what is that going to do
to testing? And you say test 2, 3, 4, and 5 are going
to have change. By the way that will cost you
$28,000. And they say, “gulp”. If you can trace
back, you can understand a lot about side effects, in
terms of cost to retest that you can’t understand if
you don't have this kind of a tracking of what you're
test cases are. Another benefit of a traceability
matrix is running on spec items is he can get a sense
of this spec items. On this slide I would've had to
squeeze too much to get a total line down here but
it’s probably the case you have a line that shows
totals.

So you say, OK, there were three tests for variable 1,
two tests for variable 2, three tests for variable 3, four
tests for variable 4 -- this is a pretty balanced matrix.
But imagine that we had 1000 claims, 1000 tests, and
claim 1 had 800 tests it was involved in, and claim 2
had 1, and claim 3 had 700, and claim 4 had 500 --
that is an under balanced population of test. We have
under tested claim 2 compared to everything else we
have done; maybe we have a under tested claim 2
maybe we should look and see if we aren't doing
enough. Similarly if we have five tests for claim 1,
five for claim 2, five for claim 3, a thousand for claim
4, and five for claim 5. Claim 4 better be something
like, go to the main file menu and it looks like this
that is something you’re going to reach in every test
because it's of importance. Or it better be something
that is the most critical aspect of the program and if
anything is wrong with it somebody might die.

Maybe that justifies testing this thing two orders or
three orders of magnitude more than everything else.
More often that huge imbalance happens
accidentally.

You can look at the profile how much is each
statement tested. And say is this tested more because
it is greater risk, did we make this imbalance
consciously, or we just investing time in this because
somebody finds it easy to generate a lot of test cases
and they're not thinking about what the balance of
coverage is?

A traceability matrix shows you the pattern of your
testing, gives you a top-level characterization of
every test that you run, allows you to look back from
spec items to things that have to be changed if the
spec changes, and allows you to compare the
thoroughness with which each spec items is tested.

All of those functions have value. It costs to create
such matrices. There are of course several tools that
will assist in creating matrices like this. Trying to do
this by hand without using those tools is an enormous
nuisance especially in the face of code that goes
through maintenance because the chart has to go
through maintenance and that becomes really
interesting. You go through all of your tests and all
your spec items every time there's a change, so
automated support for creating these have a lot of
value. The matrix has a lot of value if you are doing
spec-based testing. In fact if you are doing spec-
based testing and you do not use a chart like this you
need to ask yourself why. Having gotten it to the
point where you know all of the claims that you're
going to test do not tracked them seems very silly.

If the specification includes an example, should we a)
test that example and b) test anything outside the
example that corresponds to it. Yes of course we
should test the example. Speaking as a
documentation manager one of the great
embarrassments in manuals that we would put out
would be the tutorial that we would cobble together
as the last thing that we put in the book that the
customer would use and discover that the example
doesn’t work. I don't think that any group of mine
ever shipped a final documentation that way, but we
did ship draft documentation to trade shows that way.
And it was just really embarrassing. People would
walk through the whole thing, it would fail, and they
would say thank you and go on to the next booth. The
salespeople would say oh thanks a lot don't do this
again. Except they didn't say it that politely.

The example of course is just embarrassing if it does
not work along with everything else, but the example
is probably really easy and if all you do is test the

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 96

example then you're not going to see the more
complex ones that the customer may use. So now we
want to test beyond that. It may be that you can
check off all the features that are listed in this book
without going beyond the examples that are listed,
but if you check them all off with those easy cases,
there can be tons and tons of errors in the crowd that
you would have missed.

We have an interesting trade-off, so how much
testing off the bare spec do we want to do? This is
the question whose answer depends. For example,
you write a contract with someone to do custom
engineering. We create an acceptance test. The
acceptance test is directly derived from the
specification. The customer reviews the acceptance
test. There is a fee for the creation of the acceptance
test and the execution of the acceptance test before it
goes to the customer. There's also a fee for testing in
general but as you look at the fee, you realize that
almost all of what is budgeted will be spent going
through three iterations of the acceptance test over
the last three builds of the software.

Should you test beyond that level of testing? Well, if
your salespeople have sat with the customer and they
say, “If you're really only going to do this level of
testing on these features and that’s it, here are the
risks.” The customer said, “I understand the risk, see
I signed it, I understand the risk, I'm only willing to
pay this much for engineering. If there are few bugs,
we’ll deal with that later under separate contract.
We’ll call that a maintenance contract.” And if
you're billing your customer on time plus materials
for your work, then every minute that you spend on
testing beyond those thousand cases, is work they
didn't order and told you not to do. Either you have
to eat that time or they have to pay for something
they didn't order which is overbilling.

In that world where everybody has their eyes open,
the ethical thing to do is to tell the customer with the
risks are associated with that level of testing and then
tell the customer that if that is what they want, that's
fine. There are some ethical questions if the kinds of
bugs you might miss are the kind that might kill
people. But if what we're talking about is the
customer might lose a lot of the customer's money if
it does not work the way the customer needs it to
work, the customer says I’d like to save $5000 in
order to put one million of my dollars at risk, well
they can go to Las Vegas too that's legal. People are
allowed to make dumb business decisions. As long
as it clear between you what the risk is, if they want
to take that risk and their eyes are wide-open and you
are happy to take their contract for every other
reason, that should not be a variable. You should do

exactly the level of testing that you specified and
that's it.

On other hand, if you don't have this clear
expectation and the customer is basically relying on
you to deliver something that works, then merely
going through 1000 features at the checklist level
doesn’t give you much assurance to spec. The have
to gauge, circumstances will differ. Why are you
doing spec-driven testing is giving you a gauge for
how much of this you have to do.

How much testing beyond the spec should you do?
One student answers: I'd like to answer that. I’ve
never worked on a product of commercial quality
where less than 80% of the code has been dealing
with things like error handling and configurations
that were intentionally not documented and very
rarely specified. By the same token, all of those
things are important to test. And the decision not to
document what happens if the network gets flaky or
whatever is absolutely the right decision. In other
words its something, it's an error condition you want
to handle, it's a quirk of installing on Windows 95
that you want to handle and it’s something that needs
to be tested and there is absolutely no reason in the
world to be documented to the customer or any
outside stakeholder. I have also never seen that stuff.
I have never personally worked on a project where
that stuff has been particularly documented beyond
saying we want to deal with Windows 95 or we want
to deal with network errors or other types of flaky
environmental errors.

So I agree at that level Windows 95 is a supported
configurations needs to be documented as the
configuration requirements. Personally I know that
certain domains, you know, safety critical software
will have your people go will be very tight about
constraints of that. But in most cases I think they are
and frankly I think it is not guidance that we want to
get up to say the solution to those problems is to go
through requirements documentation for all of those
particular cases but it absolutely is good practice to
say test them.

Some companies like to have long and thorough
requirements documents. Some companies are
tempted to have long and thorough requirements
documents and found the expense of the development
is so high that they now have half page requirements
documents because they're not willing to maintain a
larger set.

We have a whole population of development methods
that we call the agile methods, which are dedicated to
lightweight processes and minimizing paper.
Carrying the experience from the test group back into

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 97

the code is something they would do; carrying the
experience of the testing group back into documents
that describe the product is something that they
would only do if there is a clear stakeholder benefit
to justify the time to the extent that there is no more
valuable use of that time on other things that would
benefit the customer more than reporting this on
paper. That cost benefit trade-off is not an
unreasonable approach to thinking about the value of
documentation.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 98

Slide 5.28: Optional Exercise
5.5: What “Specs” Can You
Use?
Now the notes on page 5-27 point out that, even if
you don't have a spec that is a written document titled
“Specification signed off boss or signed off
customer,” or a document titled “Document
Requirements signed by someone of authority,”you
still have things that you can use as specifications.

So for example, every time you get a new build you
probably get a memo. It might come to you directly
or it might be just folded into the source control
system -- the list of things that were changed and
why they were changed. Those are descriptions of
the new behavior of the product and the collection of
those specify a great deal about the product. If the
programmer who loaded the source back into the
system put a comment in and said now I that make
this change all mathematical functions should be
double precision. And you do some tests and you
discover that some things, like division, are still
single precision, you have a basis for saying there's
an error. And when somebody comes back and says
but the original documentation says it is single
precision then you say yes, you updated the spec in
the source control system. It's not an official spec but
it is a description that people expect other people to
rely on as to how the program is supposed to work
now.

Published style guides: I'm not talking about the style
guide that your company writes for itself, that’s a
spec. But if you are writing software for the
Macintosh, Apple publishes a handbook on what
Apple user interface guidelines are. If you publish
software for XWindows, there's an XWindows style
guide. If you publish software for Microsoft there's a
Windows user interface style guide.

And so, if you're in a given platform and you look at
the structure of the dialogue and you say this is really
confusing, and so you write a report back that says, I
don't like the design of this dialogue it's confusing.
And someone writes back, I'm so happy you have an
opinion, go away. On the other hand, if you write a
report that says, I think we have a problem with the
design of this dialogue because it will violate
customer expectations and customer expectations are
described by Microsoft in its book on proper user
interface design for the Windows environment and
you can see that these are the two standard ways of
doing this dialogue, this doesn't match either one.

That's a spec-based report. It happens that this not a
spec that you wrote but it is a well-documented

approach on what should be (according to Microsoft)
normal customer expectations in this market. That's
not going to be blown away. People might still say I
like what I did better. And you might have the
development team say were basing ourselves on a
new standard, it doesn't matter.

They're not going to look at you as a fool who has no
taste. They will look at you as somebody who has
done the research, knows what the relevant spec is,
and quoting it for their information. It's much more
credit all. There are tons of documents available that
were not developed inside your company for the
purpose of being called requirements documents that
in fact lay out the expectations the users of the
software may have that can be cited by you as
reasonably authoritative. And that list is in the notes
or the list of notes is in the notes.

So you can do spec-driven testing in the absence of
specs for many many aspects of the program.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 99

Slide 5.33: Definitions—Risk-
Based Testing
We are moving past spec-based testing into risk-
based testing. And risk-based testing has at least
three common meanings in the test community. I'm
going to focus primarily on one of those meanings.

The one I want to focus on is the technical approach.
Risk-based testing involves designing a series of tests
based on your perception of risk that are optimized to
find problems where you think there is a risk of
finding a problem. You use risk analysis in the
process of designing your test cases.

Another approach that is often called risk-based
testing is really risk-based test management. We
asked the question what aspects of the program are
the highest risks; I will spend my time on those and
not spend much time on the areas that might be low
risk. There are some techniques that are fairly
simplistic for brainstorming, which areas might be
high-risk vs. low risk and then allocating our time
accordingly.

An example of risk-based testing management is the
people to developed this kind of modeling for this
program are not competent with visual modeling, we
don't trust the code they wrote, so we think we're
going to have to spend an enormous amount of time
on very complex test looking at all the special cases
that they rode into the code incorrectly. That is our
prediction, were going to have to spend a lot of time
on that. That is risk-based test management.

Another kind of risk-based testing is risk-based
project management, which is just project
management in general. RUP is the process of a risk-
based management system. And a whole lot of your
project management’s goal is to drive risk out of the
project. Your goal to manage the subproject, called
the testing project, is essentially the same. Examples
of project level risk are your testers are not competent
to do the kind of testing that you need to do to test
this product, therefore you have risk of not being able
to give the information that is needed at the into the
project. That is risk-based project management.

OTOH, in risk-based test design, you might begin by
saying I don't think I trust this particular part of the
program, in fact I think it might fail this way or that
way. I better have a test for each of these possible
failures. So those are the three levels that we can
look and I'm going to spend most of my time on risk-
based test design. That’s what we mean here by
“risk-based testing”.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 100

Slids 5.34: Test Techniques—
Risk-Based Testing
So, if we think about risk-based test management or
risk-based testing the goal stated for both of them is
to first go after the bugs that you are most afraid of.
Find the biggest problems right away.

And so you need to start out thinking about what
things are high risk and then figuring out tactics for
testing against those risks. When we talked about
equivalence classes, we organized things in terms of
ways they might fail and then came up with the best
representative -- that is the one case that is a little
more likely than everybody else to show a problem.
And I give you examples like the printer example
where I say you know if you're looking for memory
related problems test with this printer; if you're
looking for paper positioning problems test with that
printer.

That's a merging of risk-based test design with
boundary instances. It you read papers on
equivalence classes, Myers’ book for example, risk
doesn’t get described. You have a strategy for
breaking things down but you don’t have more than
an implicit theory of the error. And in a more
modern approach of equivalence classes analysis, the
theory of error is made explicit. One is part of the
technique is having the theory of error -- how can this
go wrong and what is the best test case for going after
that.

So equivalence class analysis today is really a merger
of the old boundary analysis approach and risk-based
testing.

Another way that is management driven, I think I just
hit part of your question now, is to use something
called failure mode and effects analysis (FMEA).
Failure mode and effects analysis is something that is
done a lot with hardware testing. Anybody who is
doing safety critical software ends up going through
some failure mode and effects analysis in the only to
be able to check off a list of things that are supposed
to do. But were not yet as good at FMEA in software
as we are hardware.

Let me describe what happens in the automotive
industry for example. Here's a feature for a
component of a car its called a steering wheel. Let's
do a FMEA on the steering wheel. How did we have
a problem with the steering wheel? We need to
check for every possible problem we can have with a
steering wheel. But our first question is, “How could
the steering wheel be bad?”

So we go back to our records because we've made a
lot of models of cars and they have a lot of steering
wheel and we have a lot of complaints associated
with steering wheel. We've also had our own cars that
we keep running around the test track, and so we
gather a lot of experience with our own fleet and
discover over time that certain models have certain
weaknesses. For example, the materials in the
steering wheel get brittle and at some point in the life
of the car you yank the steering wheel and the
assembly breaks and now the car cannot be steered.
That is a bad problem.

So you write that down on the list, “This part of the
assembly breaks /cheap plastic; this part of the
assembly breaks/rusted out; this part of the assembly
breaks/the rubber got brittle -- didn't handle wetness
well.” And so you have this whole list of this with
how it failed by the way this was the consequence.
“On the track we couldn't steer, we crashed -- good
thing it was only going 10 miles per hour. Hate to
think what would happen on the street. Lethal risk
problem.”

Some others – “the fabric on the steering cracked and
had to replace it with a new cover. Cracked after five
years -- not even within warranty.” Minor problem
but it is cheap materials associated with a steering
wheel. You end up listing it and ask questions like
how serious is the problem to the customer, how
expensive would it be to address this problem in
testing, how inexpensive has it been to address this
problem in the field, basically -- how much do we
care.

Now having developed a list of all the interesting
steering wheel problems, we can ask 2 questions”

What would I do to test for this?

Do I have budget to test for this?

Now the "if I wanted to test for this what would I do"
question is the test design question and the "do I have
budget to test for this" is the test management
question.

Notice that we' re not focusing on the general
component and stopping there. We're not just saying,
“I wonder if I should test steering wheels? If steering
wheels were broken would that be a bad thing? How
bad would that be? Is it likely for the steering to be
broken? Gee, I wonder how to test for that. Maybe I
could test for that early.” That level of thinking --
which is often the level people use at the high-level
management decisions, should I test component A
heavily or not -- doesn't take you down into the
failure mode analysis. FMEA is the analysis that
enables you to ask how would I design a test for this

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 101

way for it to be broken vs. that way for it to be
broken.

In Testing Computer Software we have an appendix
that lists 480 (in 1988) common defects in software.
We updated a little bit in the 1993 addition, but by
today's standards it is horribly out of date. If you
want to use that appendix please realize that it is a
tiny subset of what you would want to look for in
today's products. I have some graduate students in
my lab who are working on updates for Web based
products. In a year we will have more and we will
probably fold what’s in the appendix into a different
structure that will be very nice.

That structure still won't be the right structure for
your company because every company will have
different risk and different kinds of information they
track about their products historically, different kinds
of information available. But if you can get a list of
how things fail, go to bugnet.com, go to cnet.com,
go to winfiles.com, go find your user groups and
their discussion list and start tracking how they
complain, go your tech support system and ask to
look through all the complaint letters you've received
and start getting a list of the many ways your product
can fail. And from that list you can say, “How can I
test for those kinds of things in this release?”

So build yourself a risk list and test off the list.

Auditing is another use of the risk list. When
somebody says, “I can I write a test plan for that,”
say “Thank you very much.” They come up to you
with their umpteen hundred thousand pages of test
documentation and say, “Here are the tests for this
product.” If you look through all these pages and try
to understand what they have done, you will not
understand what they have missed. You just can't
keep that many details in your head at one time.

So the strategy that I use to audit test plans that are
given to me is that I have a list of common categories
of bugs and I sample a few bugs, potential bugs from
each category and I say, “Could the program fail in
this way?” Well, theoretically it's possible. And then
I can go through this big set of test cases and say
“Which test case would find this error?” And if there
a test case to find this error, good. And if there's not
a test case to find this error, I go that’s interesting. Go
back and find another possible error in this category
and ask the question again, what test case would find
this error and if there's no test case for that error
either, then I just found a category that the test
planner didn't think about. And if I'm an outside
auditor for a development group, I’ve probably found
a category of error that the development team hadn't
thought about which means very high risk.

So you can do risk based auditing as well as risk
based test design, but you start from thoughts about
how the program could pay fail and then try to figure
out ways to find out whether it did.

If we have a great risk list of ways that the product
could fail, then we test them in a reasonable order or
we look at the nasty stuff before the trivial stuff.
How many of you in going from products for
example to the help system, go through and look for
minor grammatical errors as the first thing you
notice? It's very tempting to do. You start marking
small spelling mistakes, missed commas, and so
forth.

Well you know grammatical errors are important,
spelling mistakes are a bad thing --they can be
embarrassing -- but if it tells me in the middle of
doing something that I should press the nice red
button on the side of the computer that is labeled off,
that may be a really dumb thing to do. I would rather
have that flagged than the fact that they spelled off as
"of" instead of "off".

It is more important to ask if there's something here
that would lead the customer into doing something
that they would really regret. That’s a much higher
risk related issue. In risk oriented testing you ask the
question what would be the most important errors
that I can find with this documentation -- let's look
for them first. And then we will come back and
eventually will get to the commas, but only after we
know the rest of the stuff is okay.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 102

Slide 5. 35: Strengths &
Weaknesses—Risk-Based
Testing
Now there are risks of risk-based testing too. The list
of ways the steering wheel could fail might not
include the new way that the steering wheel could
fail. If you're not thinking about this design on its
own terms and are merely going back to history, you
might discover that this new steering wheel is made
out of a new composite material that doesn't rust,
isn’t rubber, doesn't mind water, and isn’t cheap
plastic. And you've never had anything that
disintegrated after being in the sunlight for three
days!

You don't test for what you haven’t seen before. But
if you knew anything about materials you would go
gee this stuff will really heat up, I wonder if it will
last in the sun. You have the problem that if you're
doing history-based risk analysis, anything new isn't
in your history and so you better check for that
separately. You prioritize optimally only if you
really have covered all of the risks. If there are any
risks missing, you might not even test for them.

We have a coverage problem that’s an interesting
piece. If we think of coverage in terms of hitting
every line of code, hitting every branch, hitting every
basic path, hitting every condition, those are things
that we often test and so I achieved 100% line
coverage, 100% statement coverage.

In risk based testing you talk about 100% risk
coverage. I did all of the risks that I listed as things
that I should test for. But if you were tracking
yourself that way, what about the 14 you haven’t
thought of.

Blind spots happen with risk differently than with
code. It's very easy with code to tell when you hit a
line are not. You can go to the line, you can go to the
test -- did I hit you? The line is there. In the case of
risk, if it's not in your consciousness you don't know
that it's not there and you don't know to count it as
not covered.

So you may be missing risks or blind spots if you
focus all of your testing on risk. You may be testing
only a quarter of the code. Because you have not
thought about the way the rest of the code could fail.

If you're doing risk-based testing alone without
asking the big risk question -- What am I missing? –
you hit the blind spot. Many folks who do risk-based
testing don't get to that fundamental question about
risk. They address the issues they can think of, in the
order they think is important, and then they discover

there are big holes after the fact. OK, they won't
have those big holes next time, but they'll have
others. If you only do risk-based testing then you
have this serious problem -- how do make sure that I
hit most of the problems and that's not trivial
question.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 103

Slide 5.36: Workbook Page—
Risks in Qualities of Service
As we think about risk-based testing, we can think of
the same quality characteristics that we looked at
before. For example, we think to ourselves the risk
error is that the program fails to have accessibility.
Well what does that mean? Well the program fails to
have features that enable it to be read by someone
who is colorblind. The program fails to have features
that enable it to be interacted with properly by
someone who is deaf and so forth.

And so as you look at a quality attribute you can say
that I thought a high-level risk came busting out from
this attribute, what would that mean, let me break
down a bunch of examples, and then test for those.

Take-Home Exercise
An exercise you could do at this point would be to
take a product (especially good for in-house teaching
take their main product under test) take one of the
quality categories and ask the question -- what
problems have been found for this iteration of the
product, of this kind? How do you plan to test for
those things today? If you thought about those things
in the category, how many things to you think could
come out that I guess you didn’t find last time, how
do you make sure those problems won’t come up in
today’s version. And if they generate in effect a risk
list for one category then maybe this group generates
a list for one category, and this group generates a list
for another, in this group generates a list for another,
you develop the stuff that should fold directly into
their test ideas catalog that are useful for their project
that there are all in a testing class to figure out how to
test.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 104

Slides 5.37-38: Workbook
Page—Heuristics to Find Risks
A different approach begins by asking, Where might I
find bugs? It involves thinking about how the
development process might be screwed up.

My favorite example is not on the slide. My favorite
example in real life: two programmers in the middle
of a messy divorce, writing software that has to
interact a lot together – How well tested is that
interface? How many bugs do you think they’re
going to either not found or not fixed? No it’s not
my bug it’s your bug. Don’t tell me that. I’m not
going to change stop in my code just to deal with
your inadequacies.

If you see that dynamic between two people, there’s a
nest of bugs just waiting to be opened up. It has
nothing to do with how the product would normally
fail; this is abnormal. But of course it’s not
abnormal, it happens all the time -- broken office
romances happen a lot.

Another common example of a risk is the
programmer who has a taste for cocaine. The
programmer who has too current a taste for too much
alcohol. The programmer whose parents are dying
and who is staying up all-night comforting other
members of the family. All three of these end up
with somebody who’s coming to work in a state
that’s not really fully functional and so that person’s
work product is probably a risk.

And so now the question is how could this fail? You
have to analyze what things they are coding and what
stuff that there’re interacting with to come up with a
list -- anything they do has risk so what possible
failures you can find?

The slide and notes list places you might find risk.

• OK it’s new technology -- people won’t be able
to make it work the first time;

• its components you have never touched before
and probably don’t work right for your stuff;

• it’s new programmers that don’t know how to
code with this language and they probably make
the usual mistakes people make who’re
newcomers to this language,

• and so forth.

All of those have nothing to do with this class of
products; they have to do with all of the project
management things that go in to make it a product in
any class, especially this class. And any of those can

get you to say I need to test this work a little more
carefully.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 105

Slide 5.39: Workbook Page—
Bug Patterns As a Source of
Risks
We covered the notion of bug patterns, a list of
possible bugs, and I now what to get to the question
of assessing project management level risk. How do
you decide a testing project is in trouble and how do
you manage that?

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 106

Slide 5.40: Workbook Page—
Risk-Based Test Management
Project management risk is a general question is
addressed throughout the project management
guidance of RUP. There’s also plenty of good stuff
at the Software Engineering Institute web site.

You can download course notes and white papers for
free that will give you some insights into how some
other folks do risk management. Tom DeMarco and
Tim Lester write wonderful stuff as well on project
level risk management. Brian Lawrence at
coyotevalley.com has some other pretty good stuff on
controlling projects from a risk case point of view.
Stale Amland is mentioned as an example of the best
description of the high level risk based test
management. His paper is included with the course
notes of this material.

So if you’re wondering about the time, or lack of
time, from managers trying to say I wonder if this
area should be tested or not rolling down into how
are the ways this could fail. You can see that many
of the folks who are operating at the management
level never get the detail that allows you to roll down.
And yet as Stale Amland very well points out,
operating at that level they might still make some
fairly good decisions about how to spend their time
and money, even though they don’t have a list of
failure modes.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 107

Slide 5.41: Optional Exercise
5.6: Risk-Based Testing
The notes are targeted toward the public class in this
case, where I assume everybody’s been shopping at
Amazon.com.

If you go to Amazon.com and you might have to
have a live connection to the room -- at least one for
people to check it out, then you can ask: What are the
functional areas of the Amazon.com web site?

There are 20 of them --brainstorm them out. As
examples we have

• shopping carts,

• credit card handling,

• tracking of customer purchase history (where
you come in and it says, “Welcome Joe. Here
are recommendations that are based on your
previous purchases…” – They have a database
and so that feature may be accurate and it might
not. You can imagine if they got it wrong you
might have a 10-year-old coming in, “Welcome
Joe..” – and start selling pornographic magazines
– oops right? So there’s a certain amount of
embarrassment that could come out of a bad
parameter.

So anyway you come up with a list of the functional
areas and from that you can go one of two ways.

Top down approach
“OK here’s a list of 20 possible errors. If you were
developing this in your organization, which you think
would be the hardest to implement? Which do you
think would be the ones most likely to not be done
correctly?”

This is Stale Amland’s approach. And so we rank,
we’ve actually put them on a scale of 1 to 5, where
we say shopping carts never work (I don’t know if
that’s true but let’s suppose your group came to that
conclusion). Shopping carts never work – 5. And on
the other hand, customer history ha, everybody
understands how do that database function; it’s not a
problem it will always be correct that’s a 1.

Then you ask the question “OK, suppose it’s broken
if shopping cart was broken how bad would that be?”
They may say it would be average bad, customers
with hate us -- this is a 3. Or they might say it would
be really, really, really bad -- the attorney general’s
office and the postal inspectors would come down
and arrest us for mail fraud - 5 whatever.

You end up with how likely is it to fail, how serious
is the failure that I expect, and in Stale Amland’s
approach he then takes the two numbers and says if
you have a 5/5, test that today. If you have a 1/1, let
the customer test it, it’s going to work. And when an
executive comes in and says, “Can we ship today?”
And you say, “Well right now we are in the 3s. Do
you want to ship at a level where we won’t have
tested everything at the 3 level of risk and a 3 level of
possible severity?” An executive says, “Yeah let’s
wait till the 2s.” Fine if the exec says that’s fine, I’m
happy at this point.

You say, “OK I’ve explained what my classification
system means you’ve made a nice wide-open
decision we’ll write that on a little note and when it
goes out into the field we should expect some
probabilities of bugs of a certain kind to show up and
if they do don’t come back and ask me to explain.”
In risk based testing in risk based test management,
your goal is to make sure that the stuff you tested
yesterday was more important than the stuff you will
test tomorrow.

And so when the executive in charge of saying we
want to ship it today comes by, you know that you
have spent your time optimally up to this point and
you’ve justified it.

When you do the brainstorming technique that
applies to Stale Amland’s method, you might find
that people will say, “we don’t know enough about
the application; we don’t know how it will really fail.
Basically we don’t have the failure bugs under our
belt it is too high level and too unrealistic.”

One response you can give back is, “Yes, but it is
actually used by many companies, good or bad, you
should understand the technique because you’ll see it.
And you should understand that it is not based in
failure modes and you should understand what that
risk means.” You might want to sneak in some
testing of low priority areas even though it is not on
your list just in case the estimate which wasn’t based
on analysis of what specific failures there could be
wasn’t perfect. Sometimes these estimates are
guesses that are not well above informed.

Bottom-up approach
The other way you can do the exercise is to say,
“Here are features: shopping cart, credit card
processing, and so forth. Gee, how could a shopping
cart go wrong?”

And some folks will have played with shopping carts
and if not, well you have a live connection and you
say, “Let’s look at the shopping cart - what does it

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 108

that do? What are some examples of how it could go
wrong? What are the functions underneath this broad
categorization – let’s look at this, let’s look at this,
let’s look at this. This could be broken this way, this
could be broken this way, this could be broken this
way.”

You brainstorm up a list and you come up with a
pretty big list pretty quickly and you say, “OK now
we can go after each of these possible errors.” And
the neat thing about this is that you can take someone
who is a reasonably good tester, who has never done
web-based testing, and have them finding bugs today.
Take what you know about how things can fail, get
some information about how Web things can fail, and
merge them with how could this one fail and go
check. And as you discover the order didn’t fail in
this way, you discover more about the product and
you come up with different theories of other ways it
could fail and could run off of those.

This is specifically exploratory risk based testing.
The first wave of work might familiarize you enough
with the kind of application you’re testing, so that
you could go through and do a very systematic set of
test documentation after that to guide the rest of your
testing. But coming up with the sense of how risky
the product is might be exploratory even in an
organization that intends primarily to be formal in its
approach. To the extent that you don’t understand
what you’re testing, you will be exploring for awhile
either intentionally or in spite of your process.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 109

Slide 5.43: Test Techniques—
Stress Testing
Stress testing. (The word stress testing has too many
different meanings. Like so many other words what
is a test case, what is a test plan, everybody has a
different definition of what is a test.)

Here we use “stress testing” to mean a determined
attack on the product with the expectation that you
will drive the product to its knees, in order to find the
first place of vulnerability in the product so that we
can fix that.

The first place I saw this technique was a company,
where several people had congregated after leaving
the company called Tandem. Tandem in those days
specialized in doing fault tolerant computing. They
expected that really bad things would happen to your
computer and your records would stay fine. So banks
would buy Tandem computers, because they were
confident that their bank data would always be safe.
And you would like your bank data to always be safe
and current.

So here I am hanging out with some people who had
been at Tandem and they talked fairly reverently
about one other person from Tandem. This guy talked
about how he tested the fault tolerance of storage
system. He describes a test where he’d be writing
data to the database and he’d walk up to the disk pack
-- disk packs in these days were big machines -- and
he would open the cover and rip the disk pack out
while it was being written to. This might destroy the
disk pack. The interesting question is: Has the data
been successfully updated somewhere else? Would
the end-user even realize except from an error log
that a problem had happened and was addressed, or
would it just go smoothly?

So he would do that and make sure it would go
smoothly. And he described a few of these tests and
then he described one of his favorite ones. One day,
he went out to the rack a got a really complex bunch
of stuff happening and he grabbed the rack and did
this {rocked it} and then did rack-foo…BANG.
Needless to say not everything survived. Amazingly
his job survived. People talk about this like, “One
day he did this, wow, tell him about that one.”

Why would experienced people that I respect have
respected this guy for just being a barbarian? Well,
what he was doing was subjecting in his system to
greater and greater stress until eventually it did fail.
But when he was also tracking was every process that
was involved, so that when it went down, in this case
literally, he could see messages as to what failed first

and given that that failed, what failed second. And
then he could go back and he could ask the question,

Is it inevitable that this will fail given this hardware
event or is this just a weakness in our imagination of
what could go wrong? Should this have failed or
shouldn’t we be tolerant about this kind of fault too?
And if the first one failed, and the second one now
fails is it inevitable that the second one failed or is
that just because the programmer involved in the
second function made the critical assumption well,
the first function would always work and didn’t
protect themselves against a predictable risk in the
system. Do we need to harden the code?

And so we put the code under tremendous stress and
discovered which pieces needed to be hardened.

If you had asked this person why didn’t he do normal
testing like looking for boundary cases? Why don’t
they do regular testing? Why are they going out
looking for problems that would almost always be
deferred? Imagine a bug report, “If I took an axe to
the computer, destroyed everything, and the program
didn’t work…” Can you spell P4 -- not a bug go
away? Work for our competitor please, we’ll arrange
it.

So you can ask people who are working on this kind
of testing, why do you do this approach, why don’t
you do normal testing? And the answer from some
of the most creative of them seems to be,

That should have all been taken care of by the
programmers. Why should we sweep up after
programmers who, if they were competent, would
have taking care of things like equivalence class
analysis testing anyway? That’s not where a skilled
tester should spend their time. This is interesting, this
is stuff you can’t see inside of the code -- you have to
look at the whole system. It takes an expert.

These days we have whole groups that are doing
testing like this. Load test tools have just become
over the last few years discovered as reliability test
tools. You drive the system through way too much
traffic and you discover that there are parts of the
system that shouldn’t be failing but are. And it is
better to notice that during test or during early
deployment than later.

So more and more, this approach to testing is
becoming in some companies a dominant approach
either of the company or some subgroups of the
company that become experts. Now in terms of the
things you’re blind to, and anything you cannot
expose with stress testing, you’re not going to see
this way. But this will expose problems that the other
kinds of analysis we looked at wouldn’t touch.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 110

Slide 5.46: Test Techniques—
Regression Testing
Regression testing is the repetition of tests, often
automated, after changes. It’s important to
understand what variation is built into these tests.

Invariant regression testing (same sequences, same
data, same options, same configuration) is useful in a
very narrow set of circumstances. (Some
organizations found this very valuable for Y2K
testing, for example.) The problem is has been called
the pesticide paradox (Beizer), the minefield paradox
(Bach) or the immunization curve (Kaner).

In short, you immunize the program against a set of
predictable tests. To the extent that the program has
passed exactly this test 20 times already, the degree
to which you might expect to get information from
the 21st run is not necessarily very high.

On the other hand, you can use a set of similar tests
with variable sequences, variable data, variable
options, or variable configurations to look for similar
kinds of risks. This can be a very powerful use of
test automation.

In either case, maintenance of the tests is a vital
consideration. It is important to consider the test
automation in conjunction with the testability of the
software under test and the capabilities of the
automation tool.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 111

Slide 5.49: Test Techniques—
Exploratory Testing
Now we have exploration. I’ve defined exploratory
testing a few times. Basically you’re in the mode of
learning, testing, and interpreting all at the same time.
There is a document the got put together called, The
Software Engineering Body of Knowledge, some
people primarily in the Institute for Electrical and
Electronics Engineering, some people think it is a
collection of best practices for software engineering
and you drive your development of software
engineering university curriculum and would
probably be the basis for licensing software
engineers. Amazingly they talk about exploratory
testing and say that exploratory testing is the most
common form of testing used today and then they say
that it should only be done by experts.

Well, I know that we think we’re doing non-
exploratory testing many times. You analyze a spec
very carefully, you predict a set of results, you derive
specific details of the test cases from the spec, you
run the test cases and see a failure, you write up the
failure. It doesn’t seem like very much of the
exploratory there and it isn’t until you try to
troubleshoot the problem to see if you’re looking at
the tip of the iceberg or if there’s something worse.
And a funny thing about the spec, the spec tells what
the program is supposed to do if it works. It is not
much in most specs that say it’s supposed to add two
numbers but by the way if there is a bug here then it
will fail in this way.

And so what you find out it doesn’t add two numbers,
there is no spec to go to that tells you well it’s error is
really constrained to this circumstance you don’t
have to worry about it except under here or here. It’s
not in the spec. Instead you have to troubleshoot the
bug and say how big is this problem?

Welcome to exploratory testing. Every time that you
competently research a bug, you’re doing exploratory
testing. You hand in a bug. It gets fixed. And you
take that report and you say I wonder if it’s really
fixed? You run exactly the test case you ran the first
time, most testers don’t stop there. Gee, I wonder if a
variation of this test would get around their fix. You
write up a report that says you’re adding two
numbers and I tried that and I tried 2+3 and it gave
me 6. Well, there’s a useful way to fix that and some
programmers actually have done this, they write a
routine that says if the first number is 2 and the
second number is 3 write 5. That’s the most extreme.

They write a special case that gets around your bug
report. OK, all you have to do to find out if they did

that is to write some other pair. Stunning! There
have been some cases in DOD software were the
contractor gets charged eventually for in effect
fraudulent fixes where the product went through a
whole lot of iterations where nobody ever realized
that these Mickey Mouse fixes - if the first number is
2 and the second number is 3 print 5 - were just that
because they only tested the specific case that found
the problem and that they reported. They didn’t do
any variation testing.

You’re not going to make the mistake. You’re going
to see if there are side effects from this fix. Every fix
carries two risks - it didn’t fully fix the problem and
it broke something else. Of course you’re going to
ask the question, what else could have broken? And
at the only fixed part of it, what part might have been
fixed and what part might still be exposed? Welcome
to exploratory testing. You don’t want to do that,
maybe you don’t belong in a testing group. You’re
hearing some emotion because I get stunned when I
see people who are talking about testing say only
really skilled people do exploratory testing. Only
people I wouldn’t hire in a test group don’t do
exploratory testing because any aspect of analyzing a
bug is going to involve some exploration.
Exploratory testing is testing with your brain fully
engaged and I like that in my staff.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 112

Slide 5.50: Strengths &
Weaknesses: Exploratory
Testing
Exploratory testing has several strengths. Apart from
the fact that it is the dominant approach used by
testers, the other advantages are that it recognizes a
reality -- you know less about the program when you
start testing than you will know as you progress
through. Imagine the risk associated with writing all
of your test descriptions at the start of a project when
you are at your greatest ignorance about what that
product is and how it could fail. Even though you
might get, in the best of all possible worlds, a
complete specification that is accurate. That
specification still doesn't tell you how the program
will fail. It describes how the program should work.
But what you will find is it does fail. And what you
will develop will be tests that exploit the weaknesses
in the program as coded not in the fantasy of the
specifier’s head.

You aren’t trying to prove that the program works
according to the spec because it doesn't work
according to the spec. If you think something is
wrong with you and you go to the doctor and the
doctor says, “Everything’s OK.” Your first reaction
is probably not “Oh, I’m so relieved!” It is probably,
“Why did I sign up for an HMO?!” We are not
trying to be the HMO of software development.

To be good diagnosticians means we have to
understand what failures look like. And the failure
pattern associated with a program reflects individual
characteristics of the individual people who make
mistakes in that program. And the individual trade-
offs of what they demand of the stakeholders who
now face limitations they didn't expect and who now
say this is what I want if I can't have what I was
suppose to get.

That evolution goes on throughout the whole project.
That's why you have an iterative lifecycle in RUP.
The idea is that you would go into testing and create
something like a waterfall. Let's plan everything in
advance and then test. It's just as insane as the idea
of trying to beat up for the code. It will not work.
We've seen it fail many, many times, and the
sweeping under the carpet the fact that we have a
highly creative activity is not a wise thing. Now
there's a kind of testing that some people call
exploratory testing which I call testing by idiots.
Testing by idiots works like this: I don't know what
this program is supposed to do and I don't care; I
think I'll just sit down and pound on the keyboard.
And

So when you ask somebody what they mean by
exploratory testing, they say oh yeah I give it the
shoe test. The shoe test is where you take your shoe
and put it on the keyboard and it sits there and just
pounds a bunch of keys. And they say that's the
method. It's really good, it's generic, not every
program can handle the shoe test. Well of course,
input overflow test are just one tiny mean being that
you might do. But if somebody brags that this is
what they know to do to test the program – well, my
daughter did that when she was testing code for me
when she was 6. She used to come out and visit. I
paid her two bucks a bug. Some people have
allowances. I gave her little testing paths. She found
bugs and then went off with her crispy little bills and
earned what she then bought for herself. It was a
nice kind of thing. She can do shoe tests today. We
can do shoe test too. But when somebody tells you
that this is their notion of exploratory testing, they’re
talking about a 6-year-old’s version of testing.

Exploratory testing involves gaining a deep
understanding of the program and its risk overtime
and tailoring your tests to the situations that you face
as you face it. That is the essence of exploratory
testing. It's not easy, but it is what every tester is
trying to do.

Who should do exploratory
testing?
If you’re going to do that I'm just making a note here.
The full point that I said is

Not everyone is a good explorer and what you should
avoid doing is forcing someone beyond their
confidence, their comfort zone. People who are very
good at following a systematic plan as intended, and
very good observers that need to have things either
planned out by themselves or planned for them, and
then execute that plan are not necessarily happy or
good as explorers. Similarly some people who are
great explorers feel very constrained with excessive
written documentation. In a diverse group you want
both populations and they will help you do different
things.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 113

Slide 5.52: Test Techniques—
User Testing (1/2)
I think we basically covered user testing.

The notes mention that there are several different
examples of beta testing. Beta testing is one of the
most common forms of these tests. There is a
particular kind of propaganda that the executives in
some companies have heard about beta testing. And
that is that beta testing is such an efficient way to find
bugs that you can do most of your testing by foisting
a defective product on your customers pre-release
and getting the reports back as to what went wrong.

It’s not all it's cracked up to be. There are certainly
folks who wander through the field as consultants
who claim to have been involved in some very
famous releases, which were allegedly heavily tested
through beta testing and not much testing beyond
that. I have heard consultants who claimed to be
educated testing consultants who are primarily
project management consultants that say an extensive
beta testing program allows you to cut your testing
staff in half. This is a wishful thinking.

It never happened that way. Some of the classic
projects that they talked about as having had their
risks managed by beta testing are projects that I
actually had involvement in and from the inside that's
not how it looks.

I have a nondisclosure problem but let me just
describe one project in an anonymous way as the
project that distributed to many, many users and
vendors pre-release... The manufacturer of that
software had great confidence that their software was
compatible with a wide range of products based on an
absence of beta criticism including calling many
people up and saying, how’d it work? And hearing
people say, oh it worked just fine. Now what many
of those folks actually meant was I have yet to open
up in the shrink-wrapped package that you sent me
but I think I'm not going to admit that over the
telephone.

The manufacturer of that product found out about a
week before the scheduled ship date that one of the
applications they were certain was fully compatible
wasn’t. It happened that the lead tester for that part
of the product had a personal copy of that and
discovered to her shock that the thing crashed under
the fairly obvious circumstances.

That company not only slipped its ship date but
ended up going to a software store and buying over
1100 different products and testing the thing in-
house. The slip of this product was attributed to a

whole lot of the reason but one of the two main
factors behind the slip was that this beta program like
most beta programs was not well designed to find
defects. It was very well designed to find out
whether the product was acceptable to the market. If
you have something that has to go through a lot of
networks for example you want to have deployed an
early version to gain some confidence that the thing
will be well-behaved when they finally buy the final
copy and put it on. But if it's not well-behaved you
can’t count on those people to explain to you in a
competent way a) that there's misbehavior and b)
what that misbehavior is.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 114

Slide 5.53: Test Techniques—
User Testing (2/2)
User testing unsupervised is an extremely hazardous
thing to rely on for liability information. If it is
specific information that you need to get from your
customer sites because for example you can afford to
replicate all their configurations, create test materials
that will allow you to remotely tell whether that
program is passing or fails.

There is a very simple example of something that we
did at Electronic Arts. We made many programs that
printed in very fancy ways on color printers. We
gave you the files to print as part of the beta, you
made print outs and wrote on the back of the page
what your printer was and what your name was. If
you were confused about the settings, when we got
your page back, we called you up. We had a large
population of people with a large population of
strange and expensive printers that we couldn't
possibly afford to bring in-house. But we knew what
the output was supposed to look like and

So we could tell whether it passed or failed. We also
did things like sending people parts of the product
and a script to walk through and we would be on the
phone with them and say what do you see on the
screen? We wanted to do video compatibility where
they’re across the continent

So you are relying on their eyes to be your eyes. But
you’re on the phone, you don't ask them if it looks
okay, you ask them what is in this corner? And you
structure what you're going to look at

So that he can be informative about the kind of bugs
that you think you might find with video
incompatibility. If you think you are at risk on
configuration you should have some sense of how
configurations will show up the configuration
failures. Write tests to expose those, get them to your
customers, and then find out whether those test
passed or failed by checking directly with that
specific test. That will budget's situation where you
can have some confidence. But unsupervised beta
testing while it is very good, a mass unsupervised
beta test is very good for marketing purposes. For
early deployment purposes it is not a reliable method
for assessing reliability find bugs.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 115

Slide 5.55: Test Techniques—
Scenario Testing (1/5)
Now we hit scenario testing. Scenario testing within
the Rational Unified Process has a very specific
meaning and I will hit that. I'm also going to hit a
different very specific meaning that comes out of
user based task analyses that are not used in RUP.

Now, common to both of them is the notion that we
are dealing with things that are expected to be
realistic. Common to many of the scenarios as in the
Rational world and all of the scenarios in this other
world is often the notion of complexity. It's not just a
simple one-flow thing. It is an end-to-end task that
gets done that involves probably many use cases.
And we'll see that.

One variant of the scenario testing world is called
soap operas. And we’ll take a look at Hans
Buwalda’s description of scenarios as soap operas.
It's interesting to see the kind customer story that
Buwalda can come up with and how much his stories
create very effective ways of getting folks to
understand the realism of the test cases he's working
on.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 116

Slide 5.56: Test Techniques—
Scenario Testing (2/5)
Let's start out with use case based scenarios. In a use
case you have several flows through use case you
have the normal path through - what the person is
trying to do - and you take that path, it’s the happy
path. You want to make a phone call you start, you
dial, it rings, you say hello, you talk as long as you
want, you hang up. Everything connected. Everything
worked. You smile and say, oh good that's what I
want - I'm happy. Now we say OK in this start-to-
end telephone case what could've gone wrong? Well
there is the normal case "gone wrongs" like nobody
was on the other end, you called and nobody
answered; you started dialing but forgot the phone
number and hung up.

So there are paths that are driven by what else the
user can do in that situation and there are some other
cases where we say, well what if the system had a
problem? And you called but the other phone was
having some software problems or while you were
calling someone came in and tried to make a call to
you. All of those end up being basically complex
more or less variations on the happy path.

If we apply values, I don't mean values like good and
bad, I mean the values like 555-1212 - that's the
phone number were going to dial. I'm going to call at
this time. I'm going to wait for this long between
digits. I'm going to have this phone generate an
interrupt to my phone when I try call waiting. If I
apply values to make it something that actually gets
done I've gone from a use case to scenario. I've got
substantiation of the use case.

Now a scenario can be complex or can be simple. If I
go through a simple phone call and that's all I do,
that's one thing. If I go through the system and I say
I wonder what's going to have been if I sit a busy
stockbroker at this phone and tried track half a day
worth of calls through the system. We are putting the
system in effect under telephone load - everybody's
trying to call this person this person is trying to call
out to make lots of deals. He's got two phones, he's
juggling people back and forth, back and forth, hang
up and dial again. Constant odd things, we’ll create
conference calls, we’ll have long holds, we’ll transfer
things for one person to another, we’ll end up with a
day's use.

That might still be just one scenario. But way more
complex than one use case. We are asking in this
case, how does the system look in certain
circumstances over time? That’s a valid question to
ask. We can construct that by saying that would be a

concatenation of many use cases that come into play.
What is the use case for transferring calls, what is the
use case for call waiting, what is the use case for
putting people on hold, what's the use case for trying
to carry six different calls on hold if you have that
kind of the telephone at the same time bounce back
and forth between them, you can have every single
one of those things modeled as a separate feature, a
separate transaction but over the day we have as a
random ordering of many of them some imperative.
That can still be one super use case and it certainly is
one kind of scenario.

Is there a difference between a good use case from
the standpoint of requirements solicitation and a good
test scenario? There is a difference. If you don’t
think about that difference well and you say, “Oh I’m
testing all the use cases,” you end up with much less
test coverage than if you think about that difference
thoroughly. “these are the scenarios I’m going to
test because these are the ones that actually represent
a day in the life of a stockbroker.” OTOH, if you
wrote your requirements according to a day the life of
stockbroker that way, you would end up with things
stated much more complexly than they need to be.
You might tease out of those atomic use cases
defined as these sets of flows that provide some value
to somebody, but you probably wouldn't. And the
point of this material is to get exactly for Rational
customers to the heart of what's the difference.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 117

Slide 5.57: Test Techniques—
Scenario Testing (3/5)
Whether or not in a given company there is an
agreement within the company called the Rational
Unified Process it's still the case that use cases may
our may not be well done. They may or may not be
done all. And the code will come to you in the state
that it comes to you. The process will be what the
process will be for listing the requirements and
developing the code. And you will be expected to
help the development organization make the product
better. Whether you have useful use cases or not.

To this point we have focused more on the program
and the components of the program and the things
that the program interacts with and less on the way
that people use the program. If the requirements
analysts came up with great insights about how
people use the programs and documented those in a
way that was useful to the testers, that's wonderful.
And if they didn't you still have to come up with the
set of test cases that ask the question, “Is this
program worth using?”

It's not good enough to have a program that doesn't
accept bad data. “Here, I’d like to pay $1 million for
a program that doesn't accept bad data.” “Oh good
what does it do?” “It doesn't accept bad data.”
Would you pay $1 million for that, probably not.
You want to pay for a program that gives you a
benefit and it gives you benefit under the real-life
circumstances under which you’re going to have to
use it. And those real-life circumstances are not one
feature at a time. And they aren’t one little stratified
sample at a time. They are under very
multidimensional situations, we want to get
something done in the world and we have to
accomplish it. Scenario testing is focused on that.

Many of the folks that talk about scenario testing say,
Look, I'm not interested in the customer’s first-day of
experience with the product. I could come up with
simple scenarios for that. But we probably hit those
with the very basic features test anyway. I'd like to
understand how the customer’s going to feel about
this product six months after they start using it when
they're good at it. Can they make it do what they
bought it to do?

And to test for that, we end up running scenarios.
These are complex tests. The four characteristics that
make good scenarios are:

1) The first is realism. Realistic means that you
can credibly say that real humans who are
within your target market would do this. And I
will relax the target market for a second because

we can have security scenarios where we can
say real humans who could get access to your
system would do this and probably will try. Is
this a credible case if you present it to the
development group or marketing group they can
say yup I believe this case.

2) The second piece is ease of telling whether it
passed or failed. This is one of the huge failings
of complex tests cases as they’ve been done for
many years, especially complex automated test
cases. You end up running a bunch of tests so
that it is so hard to tell if the program passed or
failed that you end up saying if the program ran
it must be okay. And there have been several
disasters of the form: “We ran the test. We
thought everything was fine. We didn't realize it
was corrupting its input data. We didn't realize it
was calculating the wrong estimate for a
construction project and somebody is now going
to build the building and underbid by 1 1/2-
million dollars because everything was
formatted well, everything was plausible, but it
subtracted some numbers instead of adding them
- oops.” If you can't tell quickly what the right
answer should be you’re not going to do a
thorough check. And in that case you get a feel
good from writing the test which is more
dangerous than not running the test at all. It has
to be easy in complex testing to check for
results.

3) The third thing is complexity. We’re not asking
how simple things work. We're asking how this
thing works when you really try to get the
program to show off what it can do.

4) And the fourth thing is the stakeholder. There
has to be somebody in the company you can
appeal to if you took this failure and walked up
to the lead programmer and said, look at this.
And the lead programmer said, “Yeah, so?”
There has to be somebody in the company that
you can walk to end say, “Do you know it does
this?” And that person would go, “Oh no, that's
an important problem!”

The reason that the fourth criterion is there is
that a good scenario test might take you ten
design days just to put together to configure
itself and run. It might take you a huge amount
time. Imagine a tester running in after working
on something for ten days and getting the
system to clearly fail and the entire development
team looking at it saying, “We don't care.”
Worse, that's a huge waste of company
resources on something that turned out to be
irrelevant. How demoralized do you think that

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 118

person is going to be? It is better to ask yourself
while you're designing the test, “Who will
advocate for this bug if I find it?,” than to ask
yourself after the fact, “Why won't anybody
advocate for this bug?” If you ask yourself
before the fact, you might design your test just a
little bit differently to tweak the imagination of
the specific person that you have in mind.
Maybe they’ll let you use some of their data or
run it through their department’s computer and
watch it crash. Whatever, you have to find
somebody who will advocate for the bug.

So those are the four characteristics. You might
derive this through use cases but you might not. But
for the kind of advanced scenarios I'm talking about
these are the common attributes that up saying the
company after company that base themselves on the
sky testing.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 119

Slide 5.58: Test Techniques—
Scenario Testing (4/5)
Now the core risk associated with this style of testing
as the dominant style is late discovery of defects. By
the way, let’s think in terms of the sequence of events
that a healthy test group uses when they do this. New
code comes in -- they start with function testing.
Why do they start with function testing? Because
you wouldn't want to do something like scenario
testing to start.

Let's imagine a what scenario testing would look like
at the beginning of testing. The program has 100
functions, 30 of which work. You start your scenario
test with this combination of 70 functions. It fails on
the first-line, you write about it. You go to your next
scenario test. It fails on the second line, you write
about it. And then you wait while the programmers
fix their code. Because their first bug is a blocking
bug it's going to stop you from testing. Why is it
going to stop you from testing? Because all of your
tests assume these particular features will work and
they don't.

Great, they fix that bug, nice programmer. Now you
rerun your scenario tests. They passed line 1. They
passed line 2. And now they crash on line 3, when
they hit the next feature. Repeat for six weeks. At
the end of six weeks, you finally get to the output
features. You’ve been on input, basic calculations
and they all fail, and you’re finally getting to the
output features and they don't work either. But you're
beginning to get to the end of the time allocated for
testing and you're finding serious output bugs way
late in the schedule. Why are you finding them then?
Well we couldn't get to the features until we got past
those other bugs. Why didn’t you get to these
features? Because you structured your tesst so that
you couldn’t get to output until the input worked.

Scenario testing sets you up for that kind of a
problem. Function testing isn't. Function testing is
designed so that you can get anywhere, not with
complex tests, but you can get anywhere. At the
point that anywhere you can get is at least
superficially okay, then you can feed it more complex
tests. It must have all of the features working for you
to see the more interesting combination of problems.
The risk of scenario testing is that you are delaying
the ability to even look at many other critical aspects
of the program until what may be the last few days of
testing.

Order of applying test techniques
So normally people will start with function tests and
they'll extend their function tests into things like
equivalence-class tests and/or specification-based
tests, and/or risk-based tests depending on the kind
information they have and what the intellectual
orientation of the people in the room is. And they’re
now looking at slightly more complex things, but still
units of some sort, that are fairly well specified, even
though there are many features that may be
interacting together. At some point they'll say, “We
are up two or three levels of complexity past function
testing and the program is still looking stable, now
let's make it dance.”

That’s scenario testing – “Let's make it dance.”
Scenario testing often comes fairly late in testing.
The problems that show up are very often fairly
complex to solve and possibly very dangerous, but
they are problems which could not reasonably have
been exposed before. One of the huge complaints
about scenario testers face when they finally show
that under certain circumstances you can corrupt the
company database and so forth is, “Why couldn’t you
have found that sooner?” The answer is that the code
was never at the point where it was stable enough for
us to get to something this hard to find, or this
complex. Even if you could have found that specific
bug if you knew exactly the path to get there, the
code wasn’t complex enough for you to reasonably
follow this kind of strategy until a certain point.

Now another issue with scenario testing is the
coverage problem. In organizations that rely on
transaction flow testing which I'm going to loosely
equate to scenario testing, basically on business case
testing, it is common to see reports that when you
hook up the coverage monitor to ask what lines of the
code have been executed, it’s common to see reports
that these tests groups have hit 35% of the code and
missed 65%. How can this be? You do this
wonderful business analysis. Well part of problem is
there is lots of error handling that is not necessarily
covered.

If you're thinking about what customers would do
when they're trying to do something reasonable that
you want them to do, you probably are not looking at
what happens when the janitor knocks the Ethernet
cable out in the middle of an attempted data transfer.
That is not a typical scenario test. It’s back in risk-
based testing with simple risks. But even if you say
what are all the interesting things that we would like
to test, for example, what are the interesting use
cases? If you develop a bunch of scenarios and then
gave yourself a traceability matrix and said here's use
case 1, use case 2, use case 3, or feature 1, feature 2,

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 120

feature 3, depending upon what you are starting with
a work customer action 1, customer action 2, or
requirement 1, requirement 2, etc. and you hit your
test cases, here is your scenario 1, scenario 2, and so
forth.

If you develop a great set of scenarios without being
very carefully focused on coverage, you are still
likely to miss many of the things that you think you
should hit. So, for example, I got to interview Hans
Buwalda, one of the masters of this kind of scenario
testing, and ask him, “What about the coverage
problem?”

He drew a chart like this. He said, “When we get all
of the soap operas together (soap operas are a specific
kind of scenario), we map this way we find that we
hit about 65% of the things that we really wanted to
test.” And I said, “That's a lot better than 35% - how
you get to 100%?” He said, “Now that we see what
we have and what we don’t, we have to make
artificial cases to cover the rest because we just
haven't thought of great scenarios to cover them.” If
you're not conscious of that risk and you're relying
primarily on scenario testing, then you are going to
miss important tasks that people do that you need to
test. So coverage is the other core risk with scenario
testing.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 121

Slide 5.59: Test Techniques—
Scenario Testing (5/5)
Let me tell you a little bit about soap operas. I
corresponded with Hans, who is pretty well known
for data driven testing, and some of you taking this
class might have read his stuff on guidance for well
thought out automated test parameters. I started
corresponded with Hans in the mid 1990s about that
and I finally met him at a STAR conference and after
we chatted a little bit about automation he looked at
me and said, “So do you ever watch soap operas?”
And I looked at him -- I didn't know him very well at
this point -- and I said, “Hmmmm, not very often,
why, do you?” And he said, “Oh yes I love them.”
When you’re meeting a new person at the start they
have a little mirror, a virtual mirror, on top of their
head that is the strange mirror. And the strange
mirror was going “Ah, strange, yes.”

So I looked at him and said, “Tell me about this,
Hans, why do you love soap operas?” And he said,
“They are such wonderful slices of life.” And I'm
wondering if he’s been out of the hospital for long --
what happened that got him to think like this? He
said,

No, you might not understand. A soap opera
takes something that might actually happen
and then puts it into wild combinations. It's
just like testing, they are test cases of life.
Look at the strange things that happen.
Somebody gets married to somebody else
and it turns out she’s his sister. He goes off
and commits suicide, at least everybody
thinks he did, but two episodes later he’s
back. No it's his twin brother, his looked
like to twin. They said they were not
genetically cloned they can be married. And
on we go through this ridiculous thing and
somehow people will watch this thing and
think it is believable because the individual
pieces are so close to things someone has
seen that you can suspend disbelief about
the rest.

And I said, “Well, that is kind of a fascinating
perspective. But what does this have to do with
testing?” “Oh,” he said, “I test programs this way. I
write soap operas.” And I said, “Tell me about it.”
One of the several examples that he likes to use
involves a pension system.

So Joseph gets married. He's with a company who
does business all throughout Europe and they offer a
pension plan and so his wife is part of the pension
plan and they have a child and then they get divorced

and then he adopts a child and then he gets married
to someone else and they have more children and
then she dies and then his first child dies and then
another one of his children gets disabled and then he
gets married again but by this time he's moved to
another country -- same company but another
country -- and gets married again but shortly after
that marriage this company is taken over by another
company whose head office is in a different European
country... This goes on for a few more years and he
gives the details of the years until he says, OK, what
share of the pension plan is the second son of
Joseph’s third of wife entitled to?

Welcome to a soap opera. You see this complex
series of life events and you say every one of these
things could happen. This is a realistic pension
situation. This kind of complexity goes on, people
move around inside the European Community,
companies get bought, companies get sold, pension
plans change, insurance companies come and go,
children come and go -- we won’t even ask about the
one he disowned -- but that kind of stuff happens too.
And then you have a system that has to calculate who
gets the benefits. This is a really hard test. But if you
walk up to an executive in the pension fund and ask
could this happen and? They go, “Oh yes.” “Should
the system cover something like this?” “Oh yes.”
And then you walk to the programmers and say, “Do
you code for this?,” and they go, “Uhhhhh, sure...”

Now we check. It’s complex. It's realistic. If you
work with the right people managing the fund, the
business manager, you can figure out what that
person’s share should actually be, it's predictable.
And somebody will surely scream if the system can’t
do that calculation. But it's not at all obvious walking
in whether this system will be able to handle that task
or not. That is an example of a soap opera.

And if you had covered with artificial data-- let's
imagine somebody who had three wives and 17
children, disowned two, 6 died at these stages, moved
countries three times, there was a buyout that
changed ownership -- let's run the test. People would
probably say, “This is a corner case. This is a strange
artificial set of data -- what did you do a random
number generator? -- we don't have to look at this.”
But if this is couched in this person who moves the
around and has these life experiences, people go,
“Yes, of course, that could happen.” That's the soap
opera. When somebody sits back and says, “I can
recognize myself and my friends in this, it's a little
exaggerated, but I can recognize who we are. I can
see this.” You get the soap opera notion. It tells a
story every time. And it’s a story that is believable or
almost believable. Believable enough, that someone

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 122

could say if this didn’t happened exactly like this,
something close to it could, so we better be able to
handle this one too.

Whatever your underlying model is that will help you
understand the components of the soap opera and
help you predict the output of the tests, the goal of
coming up with things this complex and checking the
system against them is constant. How you derive the
details of the test, depends upon what kind of
information the programming team can give you,
what kind of relationship you have with the SME,
what kind of domain expertise you have in your
testing group. But the notion of that class of test (and
you certainly want to test the system against that
class of test cases), it takes a huge amount of
creativity and time to come up with winner cases like
that and that’s the essence of scenario testing.

You end up with a cost/benefit trade-off where you
ask, “What would the cost be to generate a new
scenario and the information value of the new
scenario compared to the maintenance cost and
information value of the old scenario?” Really the
value of a test case lies in the amount of information
you get from it. If you run the test case and it passes,
that is still informative, if you didn't know whether
the program would pass or fail it when you run it.
But if you run the test case and you say I don't even
have to run this I know it's going to pass, you just
wasted your time. To the extent that a test case has
the potential to educate, it's a powerful test case --
more potential = more power. If you believe that
from version to version, or year to year, the program
has had significant risk of not passing old scenarios,
then the old scenarios need to be kept around.
OTOH, if you believe, that once the program has
been tested so that it passes this one and it is likely to
handle that case from year to year, then that case is
less interesting and it's not clear how much work is
justified to keep it going. And I can't tell you what it
means because the system is very tremendous in
terms of long-term information potential for identical
cases. But that analysis has got to be done. What's
the price of the information you're going to get?

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 123

Slide 5.62: Test Techniques—
Stochastic or Random Testing
The last one we are going to look at it is random
testing. We are not going to look very hard, because
this is just too complex to teach in this level of course
in this time. We do have a paper in the notes called
Architectures of Test Automation.

Let me explain the notion of the stochastic testing.
Up to now we have looked at lovingly crafted,
individual tests. The most crafted of them were the
scenario tests, but even the function tests -- we turn
our brain on and we say let's look at this little thing,
one thing at a time. Let’s look at the strength of each
of these approaches.

Function testing - the power of function testing is
every single thing you do hammers at an individual
function. A great function test is one that really
attacks an individual function and gives you insight
into whether that function is working or not.

A great equivalence class test is one that represents a
large population of test that you would otherwise
have had to run but you have a perfect representative
that can assure you that this class of error it that there
will be shown.

A great stress test is one that has the power to show
you what things might need to be hardened.

A great exploratory test is one that takes an
increasingly deep understanding of the system and
translates it right back into attacks of some deep part
of the system where you don't yet know what is going
to happen.

A great scenario test is one that is absolutely
believable but it might be traumatic for the program
once you try it out.

All of these assume some pretty careful thinking.
That's great.

But the main testing problem that we started with ist
that there are a gazillion tests. We have to pick the 5
or the 20 that will represent that population. We
talked about automated test series of 10,000 test cases
a lot of tests maybe 100,000 tests, it’s a lot of tests,
an entire regression suite. Which, compared to
trillions times trillions times trillions of possible
cases, is trivial. I see the analyses of some
moderately complex programs that are into
computing the number of test cases that could be run
- greater than 290th. This is a larger number than the
current estimate of the number of molecules in the
universe. This is all lot of tests that you can run.

100,000 is not even in proportion to a grain of sand
compared to the MassPar computer.

So instead what the random tester says is, We have to
speed up all aspects of testing to increase the number
of test we can run by many, many times -- let's not
think of thousands of tests let's think of billions. To
do that of you have to take the human out of the
design, out of the code, out of the explanation, out of
the evaluation, because everything a human touches
is slow.

So what the human does is scratch and then the
computer executes on the scratch. Now there's a
problem with machines and that is that they’re pretty
stupid. You're not going to see machines generating
believable scenario tests. It's not what they're going
to do. But for instance, pretend that you are testing
Excel 2004 against Excel 2002 to ask the question,
are the trigonometric function in 2004 still basically
the same as the trigonometric function in 2002; have
we introduced any new miscalculations? You could
do that with a few hundred tests of algorithm, sine,
cosine, and so forth. For you could use 2002 as an
oracle and just have an execution program, robot,
generate a random number take sine, generate a
random number take sine.

How many successful comparisons with it take for
you to say I think these two functions are the same?
There's got to be a number and its got to be finite and
at a certain point you're going to say this machine ran
for two weeks comparing all the trigonometric
functions didn't find any different, printed out every
hundred thousand tests from 2004 equaled 2002.
You’re going to say, “Yeah that’s what it’s supposed
to be.” You're going to look for that just in case there
is corruption in the system at some point over time -
you're going to have weird numbers. But you plan
out every hundred thousand tests and what they got
an after a few billion test you might say find I trust
them.

The human time in this would be the time it took to
set the system up the arrest was automatic. But if
you find a bug there's more human time but to
reserving the person for investigating the clear think
that indicate something is broken and having
everything else done by machine that enabled a lot
higher grade of testing. The only problem is there’s
only a narrow range of circumstances where you
could pull it off. Having an oracle you can trust is
one. In general having high-volume automation
strategies ask what can we know about the program
and what almost fully automotive strategy could we
use to exploit this knowledge.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 124

I promised we’d talk about is monkeys. The notion
of monkey testing comes from the statement that if
you had one million monkeys with one million
typewriters and they typed for one million years one
of them will type up the writings of Shakespeare.
And so if you can throw one million testers at a
program and have them test, eventually they would
find all the bugs.

There is the dumb monkey high-volume test
generator. When Noel Nyman started working with a
certain test generator he called it a dumb monkey, in
honor of the claim made by certain testing theorists
that dumb monkey testing would never show
anything of value. The notion of the dumb monkey is
you get to a state, you can apply your random number
generator, and you can’t say what is next. And that
might be a valid next and it might be an invalid next
it's whatever it is on the map. But you generate
basically are random sequences and the program does
whatever is added to and you generate your next
random input, and your next random input and at
some point the system crashes.

Now in the very simplest form, you have what Noel
calls an executive monkey - one that is content to
randomly pushes buttons until something breaks. A
dumb monkey is generally a little better behaved.
You can constrain the monkey in a little better way --
for example, you would never allow access to the
mail system on your computer. One of the things that
we can guarantee in probability theory is, that if there
is any statement system you can get to, a random
process executed long enough will get there. If you
don't want it to format your hard disk, don’t let it get
here. If you decide “Oh, that would never happen.”
then it will.

So we form constraints around the things to
safeguard your system and your reputation and
execute until it fails. And then we use whatever
tracing capabilities you have to try to figure out what
was wrong at the point that it fails. That is your
dumb monkey form of automated testing. T

he variations of that people try on the one hand
people put diagnostics and to assist on and so as
you’re randomly going through the system you might
trigger something that a diagnostic inside had been
suspicious so that even now it doesn't crash, you get a
message back saying this variable is not supposed to
have this value at this time here's what's going on
everywhere else that we think is relevant to look at -
notice this. And the more diagnostics that you have,
the more you're really looking at a what is usually
called simulation-based testing. You run a simulator;
you have a lot looking at the underlying variables and
states and so forth and as the simulator runs you get

to see what might be going wrong and you get to do
some diagnosis. A simulator basically runs on its
own. What changes on a constant basis is what
diagnostics you're actually looking at you can’t run
all diagnostics on a real-time system because the
system slows to a crawl. So you always only look at
a small sample of the behaviors a small sample of the
variables you could check.

On the other hand, you can add intelligence to your
monkey instead of to the system under test. The
diagnostics add intelligence to the system under test.
The monkey, on the other hand, you can start saying
“Hey, let me tell you about a statements sheet. If
you're in this state and you get this sample, then it
means you should probably get to this state here. And
here’s an indicator that you made to the next state --
check this variable in the what happens.”

Some of the folks who do state based testing do it in
a way that I don’t think of as high-volume random
testing. Instead, they use algorithms like the Chinese
postman which basically tells you how many is the
minimum number of steps to take you through one
trip through the states. That's not high-volume
automated testing.

High-volume automated testing is state based and
you'd just keep it walking through the system for as
long as the system has power. constantly checking:
“What state should I get to from here? OK where did
I get?” And you run that until you get tired of it or
until you get a crash. But long before a crash you
might start getting reports in the form, “Excuse me, I
don't think that I got to the place I was supposed to
get to. Here's the history of the states that I got to up
to this point.” And so it might take a long time
before we start seeing some form of corruption, some
delayed reaction that finally shows up as a functional
failure to do the right thing. It's another form of
high-volume test.

This is I think state of the art. I think this is going to
be the general class approaches that are going to be
used to certify critical systems in the future. A lot of
this stuff is being done today. I don't think we have a
theory associated with this stuff today. I think that
company after company will compile stuff together. I
think we’re seeing tools that help people with parts of
this problem and we are going to be reading more
and more of this kind of stuff, better and better stuff
over the next 10 years.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 125

Slide 5.66: Applying Opposite
Techniques to Boost Coverage
One way you can look at the distinction between
exploratory testing and regression testing is to think
of these as processes that have inputs and outputs.
Why am I contrasting them? I think of these as
extremes.

With regression testing the tester of course starts with
the code to test but also with a bunch of different test
cases that he will reuse and hopefully with analyses
that show what those test cases were and how they
were gotten and why somebody once thought they
were worth something. The regression tester
executes those tests, discovers some are out of date,
some can be stricken, and generates two different
types of documents. 1) bug reports and 2) improved
tests with hopefully improve the analyses. The
regression tester is focused on creating materials for
reuse.

The exploratory tester, on the other hand, comes in
with whatever information is available -- quite often
models rather than test descriptions. Does testing,
makes notes -- the testers notebook is a private
notebook, mine not yours -- and from those scribbles
writes bug reports that are fully reproducible, well
troubleshot, perfectly reasoned, competent, analyzed
bug reports. But the scribbles in the book are not
conclusive, not inclusive, not full descriptions.
They're not going anywhere outside this book. Two
weeks later, a person comes back to try to figure out
what to do next she might go back to her notes, she
might have a review with her manager once a week
or once a day

How does a manager collect status from exploratory
testers? I’d go to their cube in the morning ask folks
for status reports. It’s kind of fun I had a huge cup I’d
fill with coffee and go cube to cube and say, “What
have you been up to, show me some of the best bugs
you have found, tell me the strategy you're going
with, the area that your testing how does it feel, what
kind of risks are you encountering, what kind of
support do you need?”

And that would be the current status report I would
expect from exploratory testing. I’d get an idea of
their thoroughness and their creativity. I might coach
them on some tests that they're missing. I might
encourage them to work in some other area and then
find someone who could handle this area better.
What I didn't expect was a lot of paper. It's not a
typical output from this mode of testing.

Exploratory testing is not safe as the only approach to
testing. There are some parts of the program that you

are going to want to test in standard ways. Perhaps
some of those are very well automated. But maybe
their programs are changed over time. The
exploration might give the background thinking for
that sort of stuff but it doesn't take you there. Groups
that do exploratory testing only tend to have plenty of
surprises in the field. where something that was blind
to every person in the group turns out to be an
obvious mistake. You wonder how it could have been
missed but it gets into the field. And yet the same
groups brilliantly find some kinds of problems that
following closely to the other techniques wouldn't
have taken them to. It's one useful tool in a box, very
useful but not the whole box.

Can we automate exploratory
testing?
Now within the context of exploratory technique,
what can we do to automate it? I don’t know. I think
teaching people exploratory modeling does more
good than any note keeping system. The essence of
exploratory testing is simultaneously learning about
the product, learning about the product market,
learning about the product risks, learning about how
to test the product and what the test results have been,
in order to design new tests. Anything you can do to
capture that information in a way that can generate
organized thinking about what the new tests would be
is wonderful.

The ability to represent symbolically an essential part
of the a system as you learn about it and then work
that system and say, these are good pressure points
for it, is a wonderful skill for a testers. So all of the
stuff that you guys are doing with UML is relevant to
skilled exploratory testing. You are really asking how
do we teach people to think more efficiently about
complex systems when you’re asking how do we
teach people to be better exploratory testers. Yes?

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 126

Module 6: Analyze Test
Failures
Slide 6.2: Module 6 Objectives
So we’re still in the workflow test and evaluates. The
last module was on test, time to evaluate. In
particular our focus is on what you do when you
evaluate and say the software under test is broken.
The issues that I want to talk about involve
investigating things that you think are problems,
writing change requests, and trying to persuade
people to actually fix things that think need fixing.
How do you do that? I'm going to start out by
making a point about persuasion.

The bug report is not a stand-alone thing. You do not
write a bug report like you do something in your
diary or your journal when you're exploring, right?
It's not just something you write a little note to
yourself and tuck in the back of your pocket and say,
“Oh I found one. You know, I saw a purple spotted
sparrow today how wonderful. Oh, and I found a bug
too. I’ll put that on a different page.” The reason
you're looking for these things maybe its aesthetic
appreciation some people really think the variety of
bug that they can find is just a wonderful thing, but
most of us are trying to find bugs in order to give
them fixed.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 127

Slide 6.10: Championing Your
Defect Reports
Our reports have value to the extent that we enable
the company to make a sound business decision
associated with the problem we found and to the
extent that we don't help the company make that
decision if we aren't giving the company value in our
reports.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 128

Slide 6.11: Discussion 6.1: What
happens to your defect report?
Now I grew up in a sales culture and I learned at a
very early, age 7, 8, basically as far back as I can
remember, that there are two things that are involved
in the sale. You motivate the buyer and then you
overcome the objections. You make them want it
and then you help them understand how they can
have it when they say that I really couldn’t have it.
You close the sale when you have both things; they
want it and they don't have any excuses for not
getting it. We’re selling bugs. We have to find a
way to make them want to fix them and we have to
find a way to deal with their excuses for not fixing
them. That's the underlying thinking to my approach
of Bug Advocacy.

So let's look at motivating first.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 129

Slide 6.12: Motivating the Defect
Fixer: Analyzing the Impact
It doesn't take very much to get somebody to think
this is an important bug to fix if it crashes the
program, erases the hard disk, and catches the
monitor on fire. There are bugs that have caught
monitors on fire - DOS 1, DOS 1.1, if you had a
black and white monitor and a color monitor plugged
in at the same time and the software didn't handle that
correctly, poof - that was the end of your color
monitor. Smoke was everywhere. It was a wonderful
thing to see. People sometimes would put little
Easter eggs in the program just to watch what would
happen in the computer lab in ________________.
Some people thought that was a bug. Some people
thought it was a feature. In general something that
dramatic doesn't take very much thinking. For
something less dramatic you might want to find some
way to describe this that would trigger some other
response that is positive from the programmer.
Sometimes that is literally just getting them to get
intrigued by the problem. Gee, this is something that
should work, I wonder why it doesn’t? Sometimes,
by the way, the written report is not enough. You
have to walk up to their machine and say yeah, it’s
really strange, let me show you. Take a look at this.
No that can’t happen. Yeah, but it did. Look at this
variation of it, hmmmmmm. As soon as you get that
hmmmmmm, you are in good shape. For several
minor bugs if you don't get that, it won't get fixed. If
you can show that most of your customers will see it,
even if it’s trivial it's probably going to get fixed. A
problem that comes up in install for every customer is
often dismissed as oh it just happened once. But as
soon as you multiply that by every customer you'll
find somebody (probably somebody in marketing)
who says every person experiences this in the first
five minutes of using the program and you think it’s
minor? That gets attention. Another aspect that is
very important to recognize with defect reporting is
that you carry credibility. In fact a lot of your
credibility in the company is based on the credibility
that you've built for yourself in your defect report.
How do most people see you? Do they see you as the
person who produces the work that you produce?
What kind of work do you produce that someone
other than the other two testers and your manager that
you work with see? Your test plans? Do you think
that the marketing manager takes the test plans home
at night and snuggles up and reads them in bed? Not
likely. But a lot of folks take your bug reports home
over the weekend toward the end of the project and
asks themselves what is this? And if while they’re
reading at 2 AM on Sunday this thing is hard to
understand, adversarial, cranky, and verbose they're

probably going to remember your name and it won't
be in the list of this guy should get a raise next time.

So you'll get reputation, positive and negative, based
on these bugs with people that you might otherwise
never meet or meet only once in awhile. And yet
those folks might be in the room when your next
promotion is the topic of an executive discussion.
Your bug reports are your primary work product. It's
worth thinking very carefully about how you present
it.

So we have examples in the notes as well as these on
some way that people who would fix the problem
might be convinced that the problem is worth fixing.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 130

Slide 6.13: Overcoming
Objections: Think About Your
Audience
On the other hand we have the objections. Along
with wanting to fix a bug the programmer has to
believe that it should be fixed that is to say there is
not a reason for not fixing it. There are a lot of
reasons to not fixed bugs, for example when you look
at how many hours it might take to fix it and you
look at how many hours are left in the schedule it
might be impossible to fix it in the time available. It
might be that fixing this thing is so likely to tinker
with areas that you are afraid to touch, that you
believe if you touch this, it will make more bugs that
make this thing look like a mosquito where those
look like flying rats – in Florida, we don't have flying
rats we have enormous flying cockroaches though –
palmetto bugs – which would you rather have, a flea
or a palmetto bug? Well if you're worried about the
plague the flea is bad but otherwise you don't want to
risk unleashing the big ones. And that is a big reason
for not making some fixes. Another issue that causes
people to dismiss bugs, is that they just don't believe
it is ever going to happen in the world. Nobody
would ever do that they say as if they know. But if
you report it in a way that makes it sound like nobody
would ever do that, you're likely to convince
somebody that no one would do that and then they're
not going to fix it.

Right, these are objections to overcome but they are
common objections. If you listed the top ten excuses
for why we are not going to fix this bug, it would
take too much work, no one would do it, it’s a feature
– you know the list - and if you really want
something fix and you know it's going to be subjected
to that list, then you start thinking as you’re
investigating that bug how can I come up with
something that I can report or defend that will get
past those objections.

Most of the time when someone says they can't
reproduce the problem they mean I don’t understand
your report well enough to reproduce the problem.
Or they mean on the systems where I think they
should replicate, it doesn't. Or they mean I did what
you told me and I saw something but I don’t think it’s
a problem here and I don't think you would have
reported what it is I saw. All of those are fair
statements if they are made honestly and in my
experience most programmers make them honestly.

I've reviewed some very large collections of defect
reports and asked the question how good is the
communication in these reports and many, many of
the bugs that ended up not getting fixed, started out

as bugs that were hard to understand or that were
really irritating. But especially hard to understand
and if they were slightly hard to replicate they
probably went by the wayside. But they went by the
wayside because the person on the other side just
basically didn't get it and in the interaction after that
the tester would do stuff like say oh well if you can
replicate it I can just close it then. Or the tester
would say I have to pick my battles whatever. Or the
tester would get offended and say this person never
listens to me and would passively aggressively close
the problem. Or the tester wouldn’t figure out how to
say it a better way and so you see this long fruitless
exchange that basically goes, I don't understand, well
you should, well I don’t, you’re bad person. That
doesn't get the bug fixed. It just makes for an
interesting discussion on the next bug report and on
they go.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 131

Slide 6.15: Analyzing Failures
with Follow-Up Testing
Now, there are ways to try to make your report more
motivational before you put in. If you run a test and
you get a small looking failure that does the mean
that you have a small problem. When you run a test
you have conditions, you have a defect in the code,
and when the right conditions encounter the right
effect the code, the right coding error, you get some
kind of failure. The program does the wrong thing.
And that failure has some visible symptoms. Now, if
you see a symptom like it paints a little nothing on
the screen it might be trivial and it might stay trivial
but given one set of data it might paint something
annoying on the screen but given another set of data
it might take out the screen. Who knows? What you
see is one little instance based on one set conditions.
If you vary the conditions may be you'll find a failure
that’s worse. And so the notion of follow-up testing
to see if there's anything more serious is like seeing a
little bit of ice in the water and asking, is that a little
bit of ice or is it an iceberg? Maybe I should check.

There's another issue that you can look at and that is
the issue of generality. If you're using the program
and there's one thing that if you ever do this you'll see
this failure, OK that's interesting. But suppose that I
can get to this failure this way or this way or this way
or this way, all paths lead to a broken room. That's a
lot more nervous making than the one specific thing
and you get to this bad place. Even if all 20 ways to
get to this bad place don't show something that’s
pathological, a maintenance programmer is likely to
say it doesn't work correctly and everything passes
through it. Either one of the paths we haven't noticed
is going to be an unhappy path or I'm going to change
something someday and what is benign today is
going to turn out to be a tumor.

So if everything goes to a place that exposes a
problem, that is more serious even if it’s a minor
trivial problem, than if you can only get it on a rarely
used path.

So when you try to convince someone that the
problem is an interesting problem when you look at a
minor bug and you say maybe there's more here, if I
wanted someone to pay attention to this, what would
I have to show? Well either there's a worse failure
than the one that you saw or this little bitty failure
comes up all the time if either of those it's true people
will pay more attention to that report.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 132

Slide 6.17: Analyzing Severity:
Follow-Up Testing
So how do I do follow-up testing to look for the
severity? Now I'm only doing this when I'm dealing
with coding errors. There are errors in design. I do
something and I look at the screen. It has a message I
don't like. I will get the same message every time I
get to the screen. It is the message that is intended by
the programmer. I don’t need to do follow-up testing
for that. I need to write a note that says, I don't like
this message and that explain why. But if I get a
message that is of the form, only part of the screen
was displayed and I know there is more there - that is
the coding error, something is wrong. It is at that
point I assume, here we are in a situation where the
programmer has written code that assumes that the
code that was just executed before this was working.
If we have a mistake the program is now in a wrong
state. The variables program is working with
probably have the wrong values. And the timing to
the extent that timing is assumed, it probably takes a
different amount of time to do the wrong way into
doing the right way.

So if we keep going with this thing, maybe there's
going to be a little consequence. Because something
made assumptions about the timing that is now
wrong or the variables that are now wrong or about
the state that is now wrong. The program is now in
an impossible circumstance that is from the point of
view of the programmer if you say can it get to here,
they say of course not that would be a bug. And so
everything they've done after that assumes something
false - that the program didn't fail here. Given that
the chance of discovering something else is pretty
interesting.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 133

Slide 6.18: Follow-Up: Vary Your
Behavior
One of my all-time career favorite bugs happened
when I was working for a word processing company
that ended up commissioning the making of a board
that would allow our word processor to run on an
Apple II computer. We ran on the CPM operating
system, which was a 8085 Z80-based operating
system and Apple II was a 6502-based computer.
But it was an open architecture machine so you take
the peripheral board that had a Z80 processor on it,
put it into your computer, and presto you now had an
Osborne 1 equivalent computer with the Apple II
keyboard. That general platform was actually for a
while the best-selling platform for this word
processor, a word processor called WordStar. And we
decided to make our own board and I can't be project
manager for that.

So, I had a board development group. I had an
operating system group for porting the operating
system so it could run on our board with our very fast
Z80 what are lots and lots of RAM. And then we had
to do the testing. I was the testing technology team
leader for WordStar but I knew enough about the
mechanics of the Apple II that they moved me over
for this one project. And said, by the way manage
this thing. The development is primarily done so
you're mainly managing the testing the put on the
project manager’s hat instead of the testing hat. We
had an independent test lab for the testing.

They sent us a bug report one day. It was classed as
minor severity, deferrable priority - low priority - and
the bug was of this form: if you do this one thing it
turned on the display, the display came up. Now I
had of the belief that anything that was a coding error
deserved a few minutes of follow-up testing just in
case. If the program is in an impossible state,
something bad might happen. And here we had
something bad that was also fooling around with the
devices.

I tried a few different things. The first thing that I
tried was to basically do the same thing. Do the
feature, see the light. Do the feature, see the light. Do
the feature, see the light. Do the feature, see the light.
Do the feature, see the light. That got boring pretty
fast. Nothing bad happened. They knew it was
minor and deferrable by the way because they would
do the feature in see the display and then they would
do a directory (catalog in those days) on the disk and
say no, nothing got changed. Must have been minor,
not a problem. Do the feature, see the light. Nothing
bad happened. But it wasn’t supposed to hit the disk
so I wasn't going to give up on follow-up testing just

for that because I was just a little suspicious that may
be it could get a bit worse.

The next thing I did was instead of changing my
behavior for example my repetition, I started
changing my behavior in terms of the next thing that
I did was take a look at the feature that I was working
with. Do this feature, see the light. Let’s try to do
related features, do this other feature and see the
light. Do this other feature and do my feature and see
the light. That didn't work either.

Any feature that was related to the one I was testing,
I could do that and come back, do my feature, see the
light and nothing bad would happen. So doing tests
that were related to what I was testing didn't matter.

But my next trick was to try tests that were related to
the failure. Now I do the feature I see the light and
then I do a disk related thing. Do the feature, see the
light, take a directory. Do the feature, see the light
turned out to be a failure case. A failure case? It
erased the disk. I got to erase the operating system,
the application, and all the customer’s data in one
bug marked minor/deferrable. It's minor. Who would
mind that?

I haven't always struck gold when I do follow up
testing, sometimes a minor bug is just a minor bug.
But you never know when you're looking at a minor
bug how big it is. Is it just a little baby version of
something that might grow up to be big? Like
spiders, have you seen those tiny little spiders
running around? Are those really tiny little baby
spiders that will grow up to be not very big or are you
looking at tiny little baby spiders that will grow up to
be massive things that you don’t want to hear about
so you better stomp them now.

You don't know without investigating further. I tend
to spend at least ten minutes playing follow-up
testing on any coding error that I see and I trust my
instincts. Of course my instincts have developed
over years, they're still not perfect. If you are a new
tester, your instincts will develop over time but try
ten minutes of varying your behavior. There those
three levels of things that I mentioned try doing it
over again, try doing something related to what you
were doing, and then try doing something related to
the failure.

If you don't see anything worth following up after
that and you don't have any creative ideas let it go.
But if you have a hunch that if you kept looking
you’d find something, give yourself more time.
People have asked me how long? It’s really hard to
say. I've seen some tests be successful after over a
day’s worth of follow-up testing. As you get to know
the application under test, the operating system, and

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 134

the programmer you're dealing with better, you may
take the gamble that it is really worth taking this
thing around for a day before you give up. And
sometimes your gamble will be correct and
sometimes you'll learn that this particular intuition is
not to be listened to quite as closely. You build
judgment by making mistakes but also by making
successes.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 135

Slide 6.19: Follow-Up: Vary
Options and Settings
Another thing do you can do is to change the options
in the program. Here we have program that is
configured to do tricks and will keep 100K worth of
data. That's great. And it turns out that while we’re
testing we are tracing what's going on with the
program and we fill up 100K right away.

So we say OK, may be we should have a MB worth
of data, we can reset that. Maybe we should have 10
MB of data; we can reset that. The size of the
database is an option in the program. A problem that
might not look very serious if you have 100 MB
available might look very serious if you only allocate
100K. And so if you see a problem that looks space
related, maybe you're going to change the amount of
space you allocated to squeeze it and see if it
screams.

And then finally I might vary the data I'm working
with. There are lots of program that operate from
reference data into the extent that you have that, for
example of reference data -- what language is your
program operating in, like French or German - it
reads a file, probably, that lists the names of the
menu items and so forth, that's just data, of course we
can think of that as settings too, but anything that it
will read off the disk that will change its behavior in
some way is something that we can say use this
setting instead of that setting, I wonder it that will
have an effect. You can spend way too long trying to
change what’s going to have an effect, follow your
instincts on what’s relevant. But ask the question,
could this be relevant before writing the report.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 136

Slide 6.20: Follow-Up: Vary the
Configuration
Any the persistent setting that you can make in the
program, any preference setting, might interact with
the failure. Obviously you’ll have theories of what
might be relevant and you'll try those more likely
than randomly resetting the settings. Another thing
you can do is to change the hardware and software
environment. How much memory is on your
machine? How fast is your processor? What's the
load in the background? All of that kind of stuff may
interact with the problem and show that something is
much worse than it first looked.

Let's imagine that you’re testing on a machine that
has tons of room, the latest patch of the operating
system, really high-resolution video but on a card that
has its own dedicated video RAM, no problem with
the processor a really fast processor, and in that case
you see something that seems to slow the system
down and you say, gee, I wonder if it's because it’s
eating so much memory. And I wonder what would
happen if I let it eat so much memory that it ran out.
Maybe it's going to crash - out of memory. Or maybe
something else will happen on the road to crashing.

So you go back to a machine that has high-resolution
video but it's using main RAM instead of video
RAM. Maybe you go to a machine that has the
minimum amount of RAM allowed for your
configuration. You go to a slower system so that you
can see stuff happening a little better as it happens.
In fact you go to the slowest processor that you're
allowed to go to and still have it fit within the
marketing department compatibility list. And let's
suppose in that world you see a horrible failure.

How do you report this? I’d describe the failure, it
corrupts data, it crashes, it does whatever really
obvious thing it does, and then I’d put a note. By the
way on a differently configured system the symptom
is different. I get a performance hit but I don't get
this other visible stuff. That note is going to help the
programmer troubleshoot and it also meets my
minimum standards for honesty in reporting.

I'm not being sneaky when I put my best foot forward
which in this case means the most powerful failure
forward. It was a matter of lock that I found the not
so impressive failure before I found the impressive
one. If I didn't testing on the minimum system
configuration it would have come out the first time as
really ugly. All I’ve done is switch from one legal
configuration to another legal configuration and
under the second configuration the thing was much
more impressive so I report it as I found it on this

configuration. I did, I found it on the other one too,
but I found it on this configuration, here it is and by
the way if you replicate it on this other configuration
it doesn't happen the same way.

That's going to attract much more attention than
“There’s this minor little problem on this
configuration but if you use another configuration it’s
horrible.” The issue is some folks react when I talk
about putting your best bug forward, they say, “You
know that's not really playing fair. You're being too
much of a salesman.”

My task is to help the company make the best
business decision that it can. And they can't make a
good business decision if they don’t have a clear idea
of what is going to look like in the hands of someone
who is in their target market. And just how bad it's
going to look. And if you tell them on the minimum
configuration it looks really awful and when you get
off the minimum configuration it doesn’t look so bad,
they have the data they need but they will pay
attention to it and read carefully because it looks
awful somewhere and they need to know that. On the
other hand if you say it does not look very bad most
of the time but by the way there something really
awful in this one case, they're not going to notice and
they're not going to process it the same way and they
may defer it just because they didn't realize how big
of a problem it could be on that one system.

So as I change my configuration, each configuration
that I test, I test as if this is the first one I’m testing.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 137

Slide 6.21: Analyzing
Generality: Configurations
On the generality side, the biggest generality problem
I run into involves configurations. It is really
annoying writing a bug report, having a problem that
shows up clearly on your machine, it goes over to the
programmer’s machine which has way more RAM,
an enormous hard disk, the fastest processor available
on the market today, six other machine supporting
this one and it doesn’t happen on that system. And
they say, well, it didn’t happen to me. What’s the
problem, it’s not reproducing.

I don’t want to find this out two weeks from now
when the programmer finally gets around to telling
me that they can’t reproduce the bug because there’s
a fair chance that after that amount of time, my
machine has changed too. When I’m full time testing,
I usually have one machine that just stays open and
I’m swapping video cards and stuff like that all the
time. Do I even know two weeks later exactly what
the configuration was? Well, I tried to record it but
some of the things I swap out I never expected to
swap out two weeks ago.

I don’t just test on one machine. It’s common for me
to test on two machines, for example, at this point I
have a fairly recent vintage Dell and I have a Micron
machine that is a P1, 120MHz, a lot less RAM, a
relatively small hard disk – 8 GB, and a very
different video, very different keyboard, it’s got the
IntelliMouse keyboard driver that is incompatible
with some programs and if I replicate, if I find a bug
on this one, that’s great. This now turns into my bug
reporting machine.

The next thing that I’m going to do is swing over and
say, okay, let me replicate it on this guy. On this
machine, I now have a bug report form and can type
stuff in. now on this machine I say okay the first
thing I did with this so I’ll do that. Okay. Do this, got
to do that. Step 2, do this – yeah I did that. Step 3, do
this and you should see a message – what’s the
message? Oh, yeah, here they are character for
character exactly the same message, exactly the same
capitalization I can see it right there so I can get it
right. Different strings have different meanings. If the
programmer searches for the string you typed in and
can’t find it, that becomes a “cannot reproduce”
because of your sloppy typing.

So do this third thing, and you’ll see exactly this.
You want checkpoints, if you have long sequences
especially you’ll want to have times where you say,
BTW this is what it should look like now on the
screen. So finally, Step 5, you say, do this and this

happens. And if there’s any doubt that this is a bad
thing, you say, I was expecting this other thing to
happen.

So you have Step 5, one of two things happen. Either
you get the problem, if you get the problem on my
two machines, they have one processor – a different
processor, one version of the operating system – a
different version of the operating system, one video
driver – a different video driver, one keyboard driver
– a different keyboard driver, a different mouse
driver. There’s basically nothing in common between
the two machines. No version of anything is in
common. No manufacturer of any part is in common
except that Intel makes both chips and that’s a
coincidence – if I was really doing a lot of special
testing at this point I’d probably have an AMD in one
of these just so I’d have yet another thing to be
different. And if those two systems replicate the
problem, I don’t have to worry about it not
replicating on the programmer’s machine. And if it
does fail to replicate on the programmer’s machine, I
can find another machine right off the bat. Okay, it
doesn’t work here, let’s try it over here. Pretty quick.

On the other hand, if it does replicate, if it turns out,
it’s not the same on this machine as that, I know
before I write the report. I can do one of two things.

1. If the failure is pretty serious, especially if we’re
close to the end of the project the company may
have a policy that says as soon as you can make
a serious failure reproducible you must put it into
the bug tracking system. That is not an
uncommon or an unreasonable policy.

2. Another variation of that is that any bug of
severity X or higher (some people have severities
of 1 to 10, some people have them from 1 to 3)
any severity X or higher must go into the
database before you go home at night. Late in the
project you don’t want to have late surprises, you
want to get the worst news in as fast as possible.

Well, if you have two machines that differently
configured and you can replicate on one but not the
other, it might take a while to find out what the
critical component is, so you’re going to write a
report that says “bad thing” as your title, then
describe the steps you went through, and actually it
says “bad thing” “configuration dependent” you go
through the steps, you say on the machine where it
failed, this is the failure, these are the details of the
machine where it fails, these are the details of the
machine where it doesn’t fail, more to follow. And
that’s what you report if you have to report it tonight
before you’ve done the troubleshooting.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 138

Now, that might be plenty for the programmer to
understand a few things to vary, check some code,
what could possibly be different that might be
triggered by configuration difference, find the
problem then come back and say, is this the
replicating machine after all you might get that in the
morning. Or the next morning you might go through
and try to swap back and forth to find out what’s not
working.

It’s way better to know that there’s a configuration
difference in advance and report that as part of the
characteristic of the defect than have someone come
back to you and say, I can’t reproduce it and then you
discover together it’s a configuration problem. In one
case it looks like you’re in control and in the other
case it looks like you don’t know what you’re doing.
For your personal career benefit, the more you look
like you’re in control, the more you get to think in
terms of raises and happy times. Add value.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 139

Slide 6.22: Analyzing Failure
Conditions
Now, let’s come back to the issue of objections. We
started out saying that there are things that make
people want to fix it.

So, we looked at ways to get it to be as secure as we
can. And then there are reasons the programmer
might say, yeah, yeah, it’s a bug, it’s significant but
you know there are reasons why a decent person
wouldn’t do this right now. And first on this list
involves unrealistic, perceived unrealistic problems.
Suppose that you are testing the field 20-50 and if
you enter something that has 65535 characters into
that field the program crashes. And you write that as
a bug report. Odds are the programmer is going to
write a note back that says, don’t do that. Not a bug.
That’s a not very credible report. It might be more
interesting to write a report that says, if I give it
something that is 3-characters or more, it will crash.
It accepts 3-characters and then fails. If that’s true.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 140

Slide 6.23: Uncorner the Corner
Case
Just because you found it, the reason you take an
extreme value is because that’s your fastest road to a
failure, we’re looking for the best representative. The
best representative gives us a slight edge over the rest
of the equivalence class for finding a defect, for
seeing a failure. Once we see the failure, we see
something that might be because of the slight edge,
the extreme case, or might be applicable to the entire
class.

So if you put in 65000 characters and it fails, that
might be because it’s 65000 or it might be because
it’s more than 2. Don’t report 65000 until you check
3. Because if you write a report that says any number
bigger than 100, or bigger than 99 that causes a
system crash, you’re not going to get a response back
that says, well no one would ever do that, that’s
ridiculous. On the other hand, let’s suppose that you
really have to be pushing 65535 to get a failure. Try
65534, no problem, 65533, no problem, 100,000 no
problem, 10,000 no problem, 65,535 – crash. Okay,
now your bug report reads, I have an odd thing at
65535 characters. I have this 2-character field that
I’m supposed something into and if I paste 65535 1’s
into that field, the system will crash. I tried it with
65534 and it didn’t crash. I also tried it with these
other guys.

There’s a pretty likely case here right, people will
read that report and say, thank you so much for
sharing – closed. On to the next one. They might
investigate a little more thoroughly. They might have
a policy that says no crash bugs will go unfixed. But,
they’re not going to spend a lot of time on this
because it is an extreme, unusual case. If our task is
to help the company make the right business
decisions, then having the executives know that this
really is a most extreme case, suppose that you have
300 bugs that need to be fixed and enough
programmer time to get 200 of them fixed; is this one
of 200 that gets fixed or is it one of 100 that you want
to have just stay? Maybe you’d like to make sure that
the right 100 are chosen to survive in your program.
When you give people information on the limits of a
failure, you help them make that decision between
does this belong in the 100 that won’t get fixed or in
the 200 we have time left to fix? The time we spend
fixing this one will mean some other ones will get
bumped off the list and into the 100.

So knowing that it is narrow, and it really is an
unrealistic case is valuable if you demonstrate that it
actually is. People will appreciate that. Great
troubleshooting, we can defer this one with

confidence. Or they might say we don’t care that it’s
narrow, we’re going to fix it anyway. Thanks for
letting us know. The critical point to recognize is the
condition under which you found the problem is
merely the first part of your analysis. Any condition
under which you can replicate the problem is a fair
condition to report it under.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 141

Slide 6.24: Analyzing Non-
Reproducible Errors
Our next issue is the issue of non-reproducibility.
This is probably the most common excuse for not
fixing a bug. I call it an excuse because many
programming teams won’t even look at a bug you
admit is non-reproducible. Because of that, many test
organizations have a rule that if you can’t reproduce
it, it can’t go into the system. That’s a horrible
mistake, terrible mistake.

Simple example. I was a programmer in a telephone
system for a while. One day we came in and the
system had crashed, dead. Phone systems don’t do
this. Phone systems are fault tolerant. Phone system
stay up for 40 years. Our phone system had crashed,
dead. This was bad. We checked everything the
system had saved to the disk. We checked the event
log that had gone out to the printer. Something had
happened before midnight, actually before about
10:00. At least the last event we saw had happened
about 10:00. That’s all the information we got. We
wrote down everything that we could find, but
basically we had a no power system with no lights on
and nothing going on. Didn’t work. Thanks, that’s
useful.

So, we hoped that elves had come and turned off the
machine, who knows? Nothing showed up for quite a
while and then one day we came in and we had a
dead system again. But we wrote everything down
and said, another dead system, and got more nervous
and crossed our fingers and nothing happened for a
while. And then we came in, and we noticed that the
first dead system was February 1, the second dead
system was March 1, and the third dead system was
April 1, and now we understood why we had delays
between the systems and we also noticed in terms of
the times of the logs anything after midnight on those
days.

So we said, there is some end of month processing
going on in this system. We didn’t know what it is,
but we now had it narrowed to about a 15-minute
time window. And from there we were able to find
the bug with a lot of annoyance but we zeroed in and
discovered exactly what the problem was.

How could we have found this without tracking every
instance of the failure and putting it into the system
even though it was completely non- reproducible?
Instead we would have shipped the thing and said it
was non-reproducible and one day, the start of the
first month that it was in the field would have called
us on their cell phone and said, it doesn’t work. My
system is dead. Of course, they wouldn’t have

reached us because our system was dead too. But we
would have dismissed it as not reproducible, it
doesn’t matter, you don’t put that in the bug tracking
system.

You have to put it in otherwise you will never be able
to identify the patterns. Of course you have to be able
to treat your bug tracking metrics in a sensible,
mature way. And some companies are incapable of
this. There has to be a state in which the bug is left
open for the purpose of finding patterns and yet is
considered closed/non-reproducible or
closed/duplicate for the purpose of counting how
many active things are left in the system. But you
want to have it open for the purpose of rummaging
through and every Monday morning come in and say
I wonder if, let me pick this failure, how many things
are like this one, let’s take a look through.

At one company I was at, we called this suspended
state, the dumpster state, take these bugs and throw
them in the dumpster away from the corporate quality
control people who counted metrics so we put it in a
state that they couldn’t actually see. And then every
Monday we did dumpster diving. Let’s sample some
bugs, take a look and see if we can finally get 5 to 10
bugs that compare to this. When we get a population
of bugs that appear to have similar system, pull them
up, make them active, assign a programmer team to it
and see if now we have enough information we can
find a common pattern and break the bug. Sometimes
we could, sometimes we couldn’t, but for non-
reproducible bugs that you take seriously that’s an
important thing to do.

There’s another reason why you want to report every
non-reproducible bug that you can find as long as you
can put some data with it and that is that maintenance
programmers who are serious about this can often
find problems, make them reproducible that you
can’t. After all, they have source code, they have
trace, they have debug. They have the memory of
how they coded this thing. If you tell them I was just
happily doing something kind of like this and I got
this particular bad message, they know there are only
three ways to get that bad message so they work
backwards from there.

When I was doing maintenance programming, 20%
of the bugs that came to me as non-reproducible, I
could fix without further input from the test group.
I’ve talked with other folks who consider themselves
good maintenance programmers, I was an okay
maintenance programmer, and they would remind me
that I was an okay maintenance programmer, they
would say, oh, 20% well you’re trying, that’s nice.
Good boy.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 142

An estimate I got from someone who was an
experienced maintenance programmer was 80%.
Now they assigned programmer teams that worked
like mad for their bugs but for a class of bugs that
were non-reproducible that they said, this is on the
list of ones they want to check out and that check out
was on severity, not based on how promising it was,
they were able to break out 80% once it had gotten to
the programmers and get them fixed. That’s the
largest percentage that I’ve heard.

And then, I get the folks who say, well, if it’s not
reproducible there’s no point even looking at it, you
can’t fix it. Zero means we’re not trying. If you’re in
a company where they’re really not going to try, it
still makes sense to report the bug into the tracking
system so when the problem shows up in the field
and people say, gee, who’d ever imagined that this
could happen, you could say, well, actually, I could
and in fact, I did. I tried to tell you about this and
then you can have a discussion about troubleshooting
standards. Always report the problem. On the other
hand, if you think that you don’t know how to
reproduce it, try. It is better to make it reproducible
than to report it as non-reproducible.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 143

Slide 6.25: Analyzing Non-
Reproducible Errors
A test case is a very complex thing. We have things
we control intentionally and things we don’t control
intentionally. When you’re running a test you specify
certain values but you don’t specify others, they just
happen. For example, there was a period when I was
consulting at Hewlett Packard, we had a new version
of printer on the floor and we would put tests in this
printer and it started giving us really wild and crazy
results. We got very nervous, I was with the group
doing firmware testing, we got very nervous about
the code.

Here’s the actual problem. There was a fan out here.
The printer wasn’t getting any cold air blowing on it.
It was a prototype board; it ran very hot. The memory
was overheating. The random behavior we were
getting was hardware. Did we control the temperature
on this printer – not consciously. Was the
temperature on the printer varying to a range that was
affecting the behavior of the software – yeah. Stuff
happens that is not in your control that you’d never
thought of as the reason you’d have a failure.

So when you see a failure, there are the things you
are paying attention to, and then there’s everything
else. When you have a non-reproducible failure, one
of the critical conditions that caused the failure is in
the population of “everything else” and not in the
population of things you normally pay attention to.

Recognizing that allows you to go to the next step.
Saying, okay, what’s my second tier, what do I
normally not pay attention to, maybe I should start
thinking about that now. And it’s worth building a
list of second and third tier conditions to say, well
what was the state of this machine when we started
this test. In the notes, I give quite a few of those
second tier conditions. Yeah, several pages of them.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 144

Slide 6.26: Analyzing Non-
Reproducible Errors
Let me give a few examples here. Timing is a
common thing people ignore. If you have a stack
overflow it didn’t happen on the last case. The last
case is simply the last case. But the stack got full
over time. If you have a memory leak and finally
your program crashes out of memory, it didn’t leak
all that memory on your last test case. Now here’s a
classic failure to reproduce situation. You test
printing and every time you print there’s a leak.

So you print, and print, and print, and print. You print
200 documents one at a time, you finish testing
printing, you haven’t rebooted the thing, now you
bring up the program and you draw a circle, it crashes
- out of memory. You go, ooo something is wrong
with the circle. No. What was wrong was the printing
leaked so much memory that there was 2 bytes free
and the next feature that was going to come along
was going to get hijacked and crashed. But that’s not
how you perceive it. You reboot the program, you
bring it up, you say – a circle that’s really bad. You
draw a circle and it doesn’t fail. You say maybe it
was a little bigger circle. You draw a little bigger
circle and it still doesn’t fail. Was I using a different
color? Maybe I was just over a little further to the
side of the screen. Gee, what happened? You are not
paying attention to the sequence of things you did
before, right?

As soon as you realize that you can’t replicate based
on the current data, you say, what was I doing
before? Well, gee, I was print testing but I did tons of
that and there was no problem. Maybe I should tons
of that again, there might be a problem, let me check
or let me turn on memory monitoring and see what
happens if I print a few times. And now you find a
problem. If you don’t think backwards, you don’t see
it. And if thinking backwards isn’t on your list of
how to think when the things you pay attention to
aren’t the things that turn out to be critical cases,
you’re never going to notice that problem.

So time delay failures in my experience are the most
commonly not thought of failures that testers who fail
to reproduce could think of and do something about.
We have lots of other examples.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 145

Slide 6.32: Writing the Defect
Report: Make It Clear
A key issue involves the clarity of the reports. It was
fascinating doing a study particular for one company
that had very high quality standards but it had some
recall problems based on problems that had actually
been found but dismissed. And so I looked through
several generations of products reports and it got to
the point that I could predict what the resolution
would be: defer, don’t defer, not a bug, and so forth,
by reading the report for style. A report that was too
hard to understand was almost certainly not going to
get fixed. A report that was really simple and clear
and easy to understand but really minor got fixed
anyway, not a problem.

A simple lesson from this: you got a problem you
want to get fixed, make it look simple and easy to
deal with. You want it to not get fixed, bury it in a
description of what you did on your summer
vacation. Oh, you know I came in last Wednesday
and I did this and I was thinking about that – it’s
amazing what personal diaries get tossed into bug
reports sometimes, don’t do that! I was thinking
about this or I was doing this test and I had this idea
for another thing and you know I was thinking about
the low quality standards of this person who might
have contributed to the code and it’s really
unfortunate that you people won’t fix bugs like this
so when I saw something that kind of looked like that
I went off and did these other things too to see if I
could come up with something more powerful so you
wouldn’t ignore it . . .

You’ve seen bug reports like this, right? They don’t
get fixed. They bury the critical information in chat.
If you really have to say these things to the
programmer, send her a love letter separately. This is
in reference to how you’re going to handle bug 402. I
know you won’t like it but here’s why you should
think of it. But in bug 402 itself, be crisp.

The smallest number of steps in short, easy, simple
sentences. The simplicity of the writing is extremely
important. Many, many of these bugs are going to be
fixed late at night, just before the release by people
who are exhausted. I want you to think back to when
you were college, you were studying, and you didn’t
have the sense to go to bed at a reasonable hour, and
so you’d be studying at 4:00 in the morning and
you’d be reading some paragraph and you’d get
about halfway through the paragraph and you’d
realize you didn’t know what you just read.

So back to the start of the paragraph and you’d keep
reading and you’d get to the point where you didn’t
know what you’d read.

So back to the start of the paragraph. . . You’d do this
for about an hour because you’re too tired to realize
you’re into this loop and finally you realize, I have to
stop processing. You grab a cup of coffee, you get up
and walk around, you go to bed, you do whatever you
do but you give up on that paragraph, it’s done. It
didn’t happen with the other paragraphs, what was
special about that one?

Think about writing style. It might too many
transformations. Let me give you an example of a
transformation. The boy hit the ball – is a simple
sentence. The boy did not hit the ball – is one
transformation away from the simple sentence. The
ball was hit by the boy – is another transformation
away from the simple sentence. And there are people
who have reading disabilities who can handle one
transformation sentences. But – the ball was not hit
by the boy – whew, gone. At 4:00 in the morning
when you’re too tired, your processing capacity is not
100%. The further away you are from simple
sentences, the less likely it is that you can figure out
what the simple sentence underlying this thing was
and the more likely you’ll have to go, uh, did not
compute. Let’s go back to the start.

So here we have a few complex sentences
concatenated into one really long one with the punch
line kind of ¾ the way through the second half of the
sentence. You’re not going to get there if you’re ¾
asleep and neither will the programmer. This report is
going to turn into a paper airplane. Goodbye. Don’t
do that.

Short, simple, declarative sentences, name every step,
don’t skip any, start at a place everyone knows how
to get to, number your steps, make separate
paragraphs. Step 1 do this, Step 2 do this, Step 3 do
this. If there’s any ambiguity at someone may be
seeing at this point, just put a little checkpoint here,
by the way, this is what the screen should look like,
by the way you should have just heard a beep, and on
we go until finally we hit the critical step, Step 6 do
this and this happens and if there’s any question
about what the problem is, you end up saying I would
have expected this other thing instead. And they can
go, oh, yeah.

Now it’s not just exhausted programmers who have
this problem. If you are a development organization
that spreads your development across five continents,
you don’t think that somebody that normally writes
in Russian is going to write their bug reports in a way
that will be easily understood by somebody who

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 146

normally reads in Japanese. The English that has to
be written for a multilingual development scheme to
fully understand what’s going on, has to be fairly
simple. Now, even if you’re not writing across
continents, even if you’re just writing in the US, how
many people on your programming team were born
in the US?

The simpler you write, the more likely it is that you
will successfully communicate with the person who’s
been tasked with trying to figure out what you’re
saying so he can try to fix the bug. If you want to
sabotage the process, write in flowery sentences.
This is not creative writing. This is simple,
functional, technical writing. Get it clean and simple.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 147

Slide 6.33: Writing the Report:
Keep it Simple
Simplicity is another key piece. If you report four
related bugs on one form, one will get fixed, the bug
report will get marked fixed, and the other three –
well, maybe you were lucky and they got fixed too if
they’re related, maybe they turn out to be duplicates
and maybe they don’t.

My rule of thumb is pretty simple, if there are two
different tests I would have to run to see whether the
bug has been fixed, it must be two bugs in terms of
what I’d report. If I’d have to do two tests to replicate
the check, then I’d write up the two forms. Now in
some companies, there are so many politics
associated with bug counting metrics that you do
what you have to do to deal with your quality control.
I can’t talk about dysfunctional quality control and
how to manage those people. But if you’re just
looking at good engineering, if you different
symptoms or different steps, write them on different
pages and cross reference them.

Sample test files are probably the most controversial
piece of advice that I give. My suggestion is that
every bug report should be self-containing and the
sample test file that comes with it should be a
supplement that isn’t necessary to reproduce the bug
or understand the bug. Other folks end up saying,
wait a minute, this is probably an executable, they
can just run it and see the problem. Where’s the
screen shot, they can look. And that’s wonderful. It’s
great to have that extra stuff until the system
administrator decides to purge stuff off the hard disk
one day and there go all your supplementary bugs –
well, nobody has used them for six months category.
Yeah, you can restore them from the backups when
you finally realize two years later that this thing is
there. If you want to preserve the ability to reproduce
the bug, preserve it inside the report.

Another piece is you can’t necessarily assume that
the programmer has your test tool or is willing to use
your test tool. And so you have a test execution tool
that saves things in its own format and will execute
those, so you send the script and say, just run this and
you’ll see. It’s not a safe bet that that programmer
will actually run it. You just can’t assume that
programmers will work with your test tools. Not
unless there’s a corporate directive and incentives
and so forth. Some companies operate differently
than others, but it’s very commonly the case, that
anything that you put in the context of something that
is proprietary to the test group will not be considered
data by anybody else. It will just be considered a null
attachment that takes up space.

So put it in plain text if you can inside the bug report.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 148

Slide 6.34: Writing the Defect
Report
There are several aspects to a well-written report
besides the simplicity. If you can reproduce it,
explain that. You keep it short, as short as you can. If
you have a bug report from the first time you found
the bug and it was in a sequence of 30 things, you
know if you got trace tools, you’re wondering
through playing with the program, and you discover
that between this starting step and this starting step
you got a failure, does that mean that those sixty
steps are all the ones that were needed? No. It might
just be three.

So start here, okay, and then somehow skip 20 of
them, get rid of a bunch and see if you can still get to
the failure. If you can, keep throwing steps out.
Eventually, you will find one that if you throw that
one out you won’t see the problem – ooo critical step.
Get rid of some of the others around it. And
eventually you may get to something that is maybe
five steps, maybe more. But where every step there if
you don’t do that one you’re not going to see the
failure.

That’s the report you want to write. Minimize it. The
longer the report the more somebody is going to say,
no one would do that. This is a special case. The
shorter report the more somebody is going to say is
that could happen. Boy, all you’d have to do is
breathe and it fell over. But don’t skip steps. Assume
this person is going to read literally and just type
what you said. Do this, okay. They’re not going to do
this exactly the way that you said, that’s why in your
report, do this – check – test that it will work before
you put it in.

Don’t call the programmer an idiot in the bug report.
It makes them angry. It makes their manager angry. It
makes their manager talk to your manager about how
you’re beating up their programmers and that causes
them to be demoralized which causes them to less
productive. And that makes your manager say to you,
I need to read every bug report you ever write so that
we can edit them so that you don’t write these nasty
bug reports. And that takes your productivity and cuts
it to a third.

Now that doesn’t mean that you shouldn’t state facts
as facts. You don’t have to talk around the fact that
the program crapped. Some people get so intimidated
that they might offend someone that they end up
saying, the program behaved in an anomalous way.
The program didn’t behave in an anomalous way, it
printed the wrong number. But “printed the wrong
number” is a different statement from “it printed a

really stupid number”. Or “it printed 12 when I
expected 6” is a clean, factual statement. Be direct
but don’t write in a way that a reasonable reader
would believe you are being a jerk.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 149

Slide 6.38: Writing the Report:
The Headline
A headline is a special field some people call a
summary or a title. It’s the short one line description
of the problem. And the short one-line description of
the problem is very often the only description that
people will see. Summary reports of all the open bugs
for example are often printed as bug number, short
description, severity. And you just go through, here
are the severity 1’s, the severity 2’s, and so forth.
People coming into triage meetings may only read
the summary lines. Executives who skim the list of
deferred bugs will say is there anything that will
cause me to intervene –probably will only skim the
summaries.

So if you want your problem to have the most impact
it can have, it has to have that impact on the summary
line. The summary line has to be the invitation that
says, read more. Now there are a few important
aspects of the summary line if you want to achieve
that. One is that your summaries always have to be
credible. Don’t write as a summary, horrible, terrible,
really bad, serious bug, and then inside, I really hate
these missing commas. That’s the last really bad,
horrible, serious report anybody will read that has
your name on it. So the rule is: no exaggeration.

Another important piece about a headline is that
many people will only read the first few paragraphs
or first few words. In fact, nobody is going to read
more than 70 characters depending on how the final
report is formatted. I know that in many systems you
can type in 255 characters or even more, but the way
the reports are printed, you get about 60-70
characters and it just cuts it off. And so if you have a
headline that you come in and start describing the
thing, “Oh, yes, there’s this really interesting problem
that …”– and then you start talking about the feature
but it’s gone.

They’re not going to see it. Even if all of your text
appears in the first 60 characters, the attention of
someone who is skimming this list asking if they
need to pay more attention to it is limited. If they
look at the first three words and they’re boring,
they’re gone. They go to the next thing.

People who write for newspapers understand the
Important Rule; the most important words go first.
You never know when your reader is going to stop
reading. Everything you’ve written so far should be
more important than anything you have left. Same
thing with the headline, you want to capture what the
failure was in a way that the person who reads this

can understand without having to be an expert in how
to use the program.

If executives read anything, they will be reading a
report somewhere of these are the outstanding
problems in the system and they’re only going to be
reading the summary lines. And they’re going to read
them fast. And they’re not going to read them
thoroughly. You describe the problem quickly, to a
degree that a reasonable ready can visualize the
problem more or less accurately. And given that they
can now imagine what the failure is, you want to give
them some information to help them understand how
serious it is.

Now when I say, help them understand how serious it
is, this isn’t the place to say, serious, minor, you’ve
said that in another field. This is the place to talk
about consequence briefly, in 60-70 characters. But
in the ideal case, you are reporting what went wrong,
why they should care, and any constraints that are on
this thing that are so important that it would be
dishonest to write this report without telling
somebody that it doesn’t happen under this
circumstance or it only happens in this event.

So those are my three kinds of content for a headline.
Every bug’s headline will be read. Many bugs will be
read only if the headline is a good enough teaser to
get people to say I need to know more about this and
I think I need to look at this.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 150

Slide 6.44: Exercise 6.3: Defect
Reporting (1/18)
So with that in mind, we’re going to look at a bug
and we’re going to write headlines.

Now a more complete version of this exercise will
take longer, substantially longer, and you could write
the entire report. And my feedback on the exercise
will tell you what it’s like to deal with the entire
report. There’s a fair bit of description of this
exercise in the notes as well.

This is based on Windows 95 Paint. Windows 2000
Paint has the same bug. I haven’t tried it with
Windows XP but I imagine it’s still there. As the
tester in the class, I would urge you, if you are a
student in the class, please don’t spend time
replicating the bug, but as the instructor replicate the
bug and play with the conditions before you come to
class. It’s going to be really valuable being able to
say, I tried this and I tried that.

Here’s our program.

We open up Windows 95 Paint. Some of your
students will not know the difference between a Paint
program and a Draw program.

So it’s useful to point that difference up right away.
In a Draw program you have objects, like circles. If
you draw a circle, there’s a thing called a circle. You
can grab the circle. You can move the circle. You can
delete the circle and everything else stays the same.
In a Paint program, the circle is dots. All you’re
doing is taking a paintbrush and going bump, bump,
bump, bump, bump, bump. If you want to move the
circle, you have to take the thing that the circle is
painted on and move it. You have to move all the
dots that are in the circle because there is no circle,
it’s just black paint. Now, because we’re going to be
doing cutting and pasting and moving, it’s going to
be valuable for us to be able to see exactly what it is
we cut and paste and move.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 151

Slide 6.45: Exercise 6.3: Defect
Reporting (2/18)
The very first thing we’re going to do is select the
paint can and color the background a different color
from the system white background. We’re going to
put a layer of paint on top. Then when we do a cut,
the gray is going to get cut and so we’ll see exactly
what we’re doing every time.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 152

Slide 6.46: Exercise 6.3: Defect
Reporting (3/18)
Let’s color the background gray. There it is, it’s gray.
And now we’re going to start looking at selection.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 153

Slide 6.47: Exercise 6.3: Defect
Reporting (4/18)
We want to cut something, first we have to select it.
There are two different selection tools. The first
selection tool is the Star. And with the Star you can
do what’s called freehand tracing. You draw any
shape and what’s inside that shape gets selected and
can now be cut, moved, deleted, or whatever.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 154

Slide 6.48: Exercise 6.3: Defect
Reporting (5/18)
We’re going to draw a circle, more or less like this,
and the only problem is what we’re going to see is
the bounding box. This is not a bug, well, it’s not an
unintentional bug, this is how they did it. In more
expensive Paint programs if I was to draw a shape
with the freehand select tool, what you would see is
the selection area would be the exact shape that was
selected by the freehand select tool.

In this, you got what you paid for, free program that
comes with the operating system, they avoid this very
rich source of bugs. I’ve worked as a test manager on
projects involving several Paint programs. It is
remarkable in how many different ways you can have
failures trying to draw a marquee, the little line of
moving dots around a selected area – how many ways
that cannot work. And perhaps for that reason, the
engineers at Microsoft said, oh to heck with it, it’s
free. They can draw their circle but what we’re going
to draw is the smallest box around the circle that will
contain the circle, the selected area. So that’s what
we see.

When you write up the bug report, this is not a bug,
this is a feature.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 155

Slide 6.49: Exercise 6.3: Defect
Reporting (6/18)
Let’s go out of the program and come back in and
color the background gray and do our next test. We
draw a circle. We can draw the circle using the circle
selection tool. Hello, circle selection tool. And we’ll
draw a nice little circle and then we’ll go to the
freehand selection tool and select around the circle
and cut and it goes away. And so what you saw here
was that it looked like a nice perfect square area that
was cut but actually it was a pretty jaggy area that I’d
selected. The square around it was just the smallest
square that would fit around the area I selected. But
the circle is gone.

So that worked.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 156

Slide 6.50: Exercise 6.3: Defect
Reporting (7/18)
Now I’ll go out of the program and come back in and
color the background gray and draw my circle and
select around my circle but instead of cutting it, I’ll
drag it. And there we are, it dragged. You can see
that, there is white in the background where there
used to be gray. By setting this thing up with the gray
background you can see the effects of the test. It is
important to structure any test you run so you can see
all the effects of the test, or at least lots of effects of
the test, you can see what you’re manipulating and
not just what you want to be manipulating.

So here we can see that we’ve moved the right stuff.
Oh, goodie. Freehand selection seems to work.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 157

Slide 6.51: Exercise 6.3: Defect
Reporting (8/18)
We’ll go out of the program and come back in and
color our background gray and draw our circle and
now use the Square selection tool. And with the
Square selection tool you draw your nice circular
area and it selects the smallest square around that but
it fully selects that and it says, oh you wanted a
square, so now we’ll drag and we’ll see that a
perfectly tidy square area gets moved.

So that works too.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 158

Slide 6.52: Exercise 6.3: Defect
Reporting (9/18)
This is boring. This is boring because we’re not
finding any bugs. The program works too well. When
the program works to well, you need to up the
harshness of the tests. The only reason you run
simple tests, is because you think the program
wouldn’t pass simple tests.

As soon as it passes simple tests, light the fire a little
hotter and do a combination test. So now, we’ll still
do cutting and pasting but let’s do cutting and pasting
under circumstances the programmer didn’t bother
doing all the time. We’ll zoom to 200%. We could
set zoom to 800%, whatever, but let’s set zoom
somewhere away from the default.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 159

Slide 6.53: Exercise 6.3: Defect
Reporting (10/18)
When I say zoom it, what I mean is at 200% we’ll
stretch the canvas that you’re painting on so what
used to be one pixel wide is now two pixels wide.

There’s the zoom box.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 160

Slide 6.54: Exercise 6.3: Defect
Reporting (11/18)
Here we have the same size window but because we
zoomed by 200% what was in bottom right hand
corner now occupies the entire window that we can
see. If we want to see more, that’s no problem. We
just click here and scroll up or click here and scroll to
the left. And so we could see any part of the original
screen that we wanted. But what was this has now
been expanded so that made twice as tall and twice as
wide, won’t fit inside the original box only ¼ of it
will be visible and that’s our ¼. Great.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 161

Slide 6.55: Exercise 6.3: Defect
Reporting (12/18)
Now let’s select part of that visible circle. We use our
freehand selection tool, draw kind of a square, circle-
ish, jaggy whatever and do CTRL-X. And what
happens is nothing. More precisely, what happens is
the marquee, the selection dots around it, they go
away. The circle stays. The selection marker
disappears. Time to do a little follow up testing.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 162

Slide 6.56: Exercise 6.3: Defect
Reporting (13/18)
We go out of the program and come back in, we’ll
color the background gray, we’ll draw a nice circle,
we set a 200% zoom and we’ll select the area and
we’ll do a move this time instead of a cut. It moved.
If you cut, it doesn’t. If you move, it moves.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 163

Slide 6.57: Exercise 6.3: Defect
Reporting (14/18)
We go out of the program and come back in, we’ll
color the background gray, we’ll draw a nice circle,
we set a 200% zoom and we’ll select the area and
then we’ll move a little bit and then we’ll cut. In that
case, it moves and it cuts.

So cut doesn’t cut unless you move first. Something
is wrong with the initialization of cut or something
like that but in the narrow case, cut first doesn’t cut
it.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 164

Slide 6.58: Exercise 6.3: Defect
Reporting (15/18)
So with just a little more follow up testing, we come
out of the program and we come back in, we color
the background gray, we draw a nice circle, we set a
200% zoom, but I want to see more of what’s going
on so I expand the window.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 165

Slide 6.59: Exercise 6.3: Defect
Reporting (16/18)
I grow the window, we’re still at 200% zoom, but the
window has grown bigger so we can see the whole
thing and now we’ll select the lower right hand
corner. You can see the selection marker, there’s a
box around the circle and we cut that but instead of
cutting all of this, …

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 166

Slide 6.60: Exercise 6.3: Defect
Reporting (17/18)
… this funny little area here gets cut.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 167

Slide 6.61: Exercise 6.3: Defect
Reporting (18/18)
Time to write a bug report. By the way, this bug is
fully reproducible. See there it is again. Alright, in
fact if you did it on your machine at least up to
Windows 2000, I just don’t know with Windows XP,
but at least up to Windows 2000 you would have the
problem. Now the bug report assignment is either:

• just write the headline, or

• write the headline and write the description
of how to reproduce.

For this group, you’re just going to write the problem
summary. Take five minutes and write the problem
summary. Have a nice time.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 168

Slide 6.61: Exercise 6.3: Defect
Reporting
So everybody I think is done writing the headlines. I
want to make one suggestion for the folks running the
exercise in their class. Make sure that the students
work simply from the printed page. Don’t have them
actually reproducing the bug on the screen. You are
trying to get things that can be compared. And as
they do troubleshooting further, they are going to find
other interesting things about the bug that will affect
how they write everything up.

What I’d like to get from you are some headlines.
Now some of you might be a little shy and might not
be willing to have anything you write appraised by
other people. After all, how do I put this, as a tester,
most of your writing is going to be appraised by other
people whether you like it or not.

So you may as well put it up here and have it
appraised by friends. But is anybody willing to have
their headline come up here so we can all look at it. I
will make some comments about it but they will tend
to be helpful. Okay.

• Cut fails when view is zoomed 200%.

• Cut fails at 200% zoom.

• Cut doesn’t work on all versions.

• Cut operation malfunctions

• Paint 95: at least two different cut function
failures at zoom 200%.

Okay. I generally get a little more diversity. I’m not
sure if that’s my teaching or if that’s the Unified
Rational approach. But I agree with you, there are
two different problems that I would write up in two
separate reports.

Let’s look at how to analyze this thing. First I want
to look at the observed failure. There were two
different failures.

1. It didn’t cut.

2. It cut the wrong thing.

If I see two different failures, that’s two different bug
reports. Now let’s take a look at what happens when
you try to combine two different bug reports under
one bug. Let’s keep it simple, right. Just describe one,
after all they’re probably related. It says cut fails.
Now if you read all of the headlines in the bug
tracking system and translated them all down to their
essence, it would be “feature name doesn’t work”. In
this case, “feature name” is “cut”. But, Feature name
doesn’t work when zoomed 200%. Feature name

doesn’t work at 200% zoom. Does that tell you
anything about the failure? This says something’s
wrong with cut. If all of the bug reports in the
tracking system were of the form “something is
wrong with feature name”, how many of those would
be subjected to executive review? How many would
be enticing for somebody to read? Would they
bother? They’d say, of course something is wrong.
They wouldn’t have put it into the bug tracking
system if something wasn’t wrong.

So, there’s no precision here. There’s no invitation to
read more. Let me illustrate the distinction. If my
headline was: Cut didn’t cut (200% zoom). That tells
you more than it failed. It tells that you tried
something and it didn’t do it. And if I said: Cut the
wrong area (200% and grow window). We have data
corruption on the second one. Feature not connected
might be a moderate severity bug, but for most folks
data corruption is priority one. Crash or corrupt data
about the same severity.

So we have a priority 1 bug here or least arguably a
priority 1. And, does this look like priority 1? No, I
don’t think so. This is too vague to be a priority 1.
This is just something is wrong with cut. But as soon
as we say Cut cut the wrong area, Cut operated on the
wrong data. We see something much more serious. In
one case, they might not have hooked up the feature.
In the other case, they hooked it to the wrong place.
Bad.

So, the first piece that I want to suggest to all of you
is that more precision invites, in cases where it’s
appropriate, more attention.

The second piece I want to mention is that most of
you got the most important words first. Paint 95 is
not the most important words. So probably that’s not
necessary. But if it was necessary, I’d probably still
wouldn’t put it in the front, I’d bury it in the back
because I only a few words before this person looses
attention. I say loses attention, you know when you
look at this room, you don’t see the whole room. You
only see a little part of it. There’s only so much
visual angle that goes into your eyes. When you look
at part of the page to look at the words, you see a few
words, the rest are blurry. To get to the next words,
you have to move your eyes. Your eyes move in jerks
when you’re reading. You focus on a few words,
jerk, you focus on a few more, jerk, you focus on a
few more. Every time you are going to the next few
words, you are making a choice. It isn’t smooth
skimming. It’s look, look, ah, don’t bother.

And now we have the decision, is it worth reading
any more? We don’t know. I’m not trying to be
critical, well I am trying to be critical in a friendly

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 169

way, just trying to get where are the decision points
where I entice the person to read further or don’t.

Now from there, at least two function failures - at
least you are identifying which the other folks didn’t
that there are two failures. But I would have written
the two failures as separate reports instead of trying
to make them here is something, you’re not telling
them what happened, you’re telling them something
is wrong with cut.

So, specificity is the first piece. The second piece in
terms of conditions, cut doesn’t work in all versions.
The vice president in charge of being upset by bugs,
reads this and comes out going; cut doesn’t work,
OH, NO. And now sitting outside this vice
president’s door is the programmer who’s role is to
calm down the vice president in charge of panicking
so this person runs out of his room and says, how
could cut not work this late in the season.

The programmer says calm down, calm down; let’s
take a look. Brings up the program, says, hmmmmm,
let’s draw something on the screen, them we’ll mark
it, then we’ll cut it, see it cuts. Yup, no problem. And
the vice president goes back and mutters because cut
does work at least under some circumstances and if I
read this I would think that cut never works. This is
an example of a case where there’s a critical missing
condition.

Now you don’t want to write all the replication
conditions on the thing, but where you know that it’s
restricted narrowly, I would end up – my way of
doing it is to put it into parentheses, Cut doesn’t cut
(zoom 200%) if in this particular organization they
wouldn’t understand that, I’d put: Cut doesn’t cut
(interacts with zoom). That’s okay and so the vice
president runs out and goes, cut doesn’t cut when I
zoom, that still might be panicked, but now it doesn’t
get dismissed immediately. That’s not the most
important piece. I wouldn’t put: At zoom 200% cut
fails. This is the right order, get the impact first then
your limitations your disclaimers. And I keep my
disclaimers as short as I can (zoom).

Now I said I was going to have four sections. My
four sections are:

1. how did it fail,

2. what were the interesting conditions,

3. what do I think was important (well there’s
zoom for the first one, and zoom and grow
window for the second and maybe freehand
selection),

4. then there are other conditions.

What are the other conditions? They’re the ones I
don’t know are relevant but which are common to
both and before I forget them, maybe I’ll write them
down. Where is this going BTW, this gets written
into my nice, happy tester’s notebook that no one is
ever going to see except me or it gets written on my
local stationary supplied in the cafeteria, right?

In my case, it gets written in my notebook. I just
draw a little chart and I say, what did I see, what do I
think some of the other relevant conditions are, what
are some of the other conditions that were
significant? Well, here are a few. It was in the lower
right hand corner. It was against a gray background.
It was a circle. It was selected with the freehand tool.
It was today, Sunday. Could be a bunch of others.
BTW, it turns out it doesn’t matter if it was a circle
but it does very much matter that it was the lower
right hand corner. You’ll get something very
different if you put your circle somewhere else.

So other conditions are interesting. A lot of what
you’ll do when you are troubleshooting is to vary out
the other conditions.

So you’ll say, gee, does it matter if it’s in the lower
right hand corner? I don’t know. Let me try it in the
upper left hand corner and see what happens. And if
you do that, you’ll see that you get a squiggly little
area that gets cut that is not the nice low __________
part, it’s something that’s no longer on the circle, it’s
off to the side and it’s certainly not the full size of the
circle, but it’s a blotch. Move the circle over a little
bit and now the squiggly little blank spot goes to the
left of the circle instead of to the right. You move the
circle up or down and sometimes the patch of
blankness gets a little bigger, sometimes it gets a
little smaller, sometimes it’s up sometimes it’s down
but it’s junk that happens somewhere. Who knows
what this is? It’s a floating deletion that you get to
see as a white spot in the gray. Do you need to have
the gray? No, you don’t but you won’t see white
spots very clearly if you don’t have it. But if you take
the gray out and do the replication, then you’ll see
every now and again in this nice circle of black dots,
oops a few of the dots disappear. So, it’s still going
away, it’s just harder to see.

So, what are the other conditions and then notes. And
then one of my critical notes is, it doesn’t happen, cut
cuts just fine if I move before I cut. And so in
describing the first bug report, I will have my
replication steps and at the end of the replication
steps, I’ll have a second column called notes and I’m
going to say: note, if you do moving before cutting
then it cuts normally. If you just do moving, it cuts
normally. It’s only cut before moving when you see
the failure.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 170

That’s the kind of feedback I give to folks in class. In
class what I find is that many people give much
longer summaries. I get summaries that we have a lot
of fun with them sometimes where I have a nice long
whiteboard and I go all the away across the
whiteboard and I go wait, wait, wait, and I go back to
the start of the whiteboard and I keep going and if
they speak to fast and it’s too long, I get to go, wait I
had a stack overflow, what was that again? And
eventually they get the whole thing out and I say
that’s great. And I count out sixty characters and I
cross out in red everything after that and I say, this is
what they don’t see. Now let’s take a look at this
report.

And I get to read something that is equivalent to:
Paint 95: at least two different – that’s the summary.
Now yours is within sixty characters I’m just
showing a proportional subtraction. Doing that kind
of exercise gets folks to say, oh that’s what’s going to
be seen. They are writing with the expectation of
what’s going to be seen.

We haven’t been trained, as computer scientists; we
haven’t been trained in writing for other people to
read. We haven’t been trained to persuasive writing.
In fact, I could ask the question, how many of you
have taken a course in persuasive writing? Three,
proportionally speaking, that’s a little higher than the
average in testing groups. But it’s certainly not the
majority in this room. In persuasive writing, you
learn to ask the question, who am I trying to
influence and how can I best say it for them? In
technical writing, quite often what you’re asking is
how do I get the information across in a way that is
accurate? Our writing is both, persuasive and
technical. If the only thing that is technical, we make
mistakes like saying too much and losing the reader.

So those are the things you can get to the headline
with and the key things that come across to the
students are:

• That they have to write for an audience.

• That the audience will pay attention to limited
numbers of things so they have to pick the
information they are going to give first.

• That they have to convey the information fairly
and credibly or they will get ignored.

• And, of course, they have to not be vague.

We also go through a much longer exercise where
everybody writes out the entire bug report.

(BTW, everybody will not write out the entire bug
report because some people don’t have English as
their first language and to halt the class long enough
for the slowest person to write the entire report would
be disastrous. Give them an extra 20 minutes, some
of them will write a full report and some of them will
not. But show mercy at the end of about 20 minutes
and stop it. And then take it up.)

There are a lot of ways to take it up. My most
effective way is not to have people put their bug
reports up on the board, because I’m going to talk
about people completely misunderstanding the
problem and that would be really embarrassing. Here
is just bad wording. I haven’t said anyone is dumb or
missed the point. If I’m going to do that, I want it to
be very anonymous.

What I’ve done over the 20 minutes is to look over
everybody’s shoulder and ask, what are you writing?
Here’s the most common single mistake: When I was
describing the bug, every time there was a new test I
said now get out of the program and come back in,
color the background gray, draw the circle, you know
I went through that nice little sing song. You will be
surprised how many students will forget that. And
when they write how to reproduce a bug they will
start with the very first test on slide 2 – color the
background, freehand select, then draw a circle,
freehand select again, cut the circle, color the
background again, draw the circle again, and on they
go until they finally say, and now the circle doesn’t
work.

Are all those steps relevant? No, we exited the
program, we came back in, we got a new screen. It
shouldn’t make any difference. Why are they doing
this? Because in the written stuff it never says exit
the program, come back in. It was only auditory. We
process information in two channels, we process a lot
of channels, sound, smell, sight – for most people,
sight is dominate. If there is visual information and
there is auditory information, visual will win over
sound. What you see is a description of the report in a
certain sequence. What you heard was a modification
of the sequence.

But especially if you give people over lunch or over
night, a few of them will forget the sequence and will
just write the entire thing. The longer you wait, the
more people will not do it. If it is a short break or a
short lunch, may be only 1 person will not do it. You
don’t want to subject that person to ridicule, it’s very
important that you wander around the room and look
and see the patterns of mistakes yourself. And then
say, here’s an example of something somebody did.
It’s also important to not say, here’s an example of

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 171

something some fool did. Because they’ll know you
got it off their paper and they won’t appreciate it.

Here’s an example of something somebody did, they
started on the first slide and they went through the
entire sequence. Now why is it relevant to set that
thing up in the first place? It’s relevant because
situations like this happen in bug reporting all the
time. Here’s the scenario that testers run into
regularly. You write a bug, it goes to the
programmer, the programmer calls you up and goes, I
don’t understand. You walk over to the
programmer’s cube, you show the programmer what
happens or you tell the programmer what happens.
The programmer goes, oh, I get it now. And then you
go away. And tomorrow the programmer starts
working with the bug again. And what she sees is the
written description of the bug. And what she doesn’t
remember is exactly what you told her in the
supplement.

So with that bug, it’s unlikely the programmer will
call you and say I just don’t remember what you told
me yesterday, would you mind coming back to my
cube and telling me again. More than likely she’s
going to react to this bug in an embarrassed way and
the embarrassed way she’s going to react to it unless
it’s a fatal bug is say, she’s going to react to it by
saying it’s a feature, it’s not a bug, I cannot
reproduce, no one would do this; which all really
means, rats, I’m too embarrassed to call up and find
out what it was, I’m just going to make it go away.

When you get someone calling you and telling you
there’s missing information, they’re giving you a bug
report against your bug. The fix is not to walk over
and fix it with the person, you have to do that too to
make interpersonal nice/nice, but the real fix for the
report is to go into the report and fix it. Add the extra
step or add the qualification or add the explanation, if
it’s not in writing, if it’s not in the same place, the
same medium as the dominate information, it will be
forgotten and it will not be linked when somebody
reads it again it just won’t tie together.

So just like some students will forget all of those
obvious cues, a reader who is told and demonstrated
what the problem is will forget that or will have a
reasonable non-zero probability of forgetting the
detail if it’s not in the report itself.

So if you write an incomplete report, the fix is not to
explain what else needs to be done person-to-person,
the fix is to explain in the report itself exactly what
needs to be done. And then to walk over to the person
and say, yeah, I updated the report let me show you
what I showed you the first time.

I don’t know if my visual was overriding my auditory,
but I could swear I heard you say, “write your
headline” not “headlines” and that felt to me like a
constraint to come up with one and only one which
then I felt like, don’t criticize me on not writing two,
you told me – if I was the angry student I would pop
off at that point. And the second thing I’d do is say all
right, would you please critique the last two in the
student notes on the same basis that you critiqued
ours.

So when I tell people to strike a bug, I know exactly
what you’re saying. In most classes I get a substantial
number of people writing two bugs anyway because I
throw them two failures with two bugs. You guys
follow directions too well. I have actually never had
anybody come back to me and say, but you told me
to write only one. They might have felt it but you are
the first person who raised it as an issue. I’m not
saying that it’s a bad thing.

I’ve had a lot of feisty students. But the sharp, feisty
ones express it by giving me two reports. And often
how that works in a class where there’s a little more
time, I wander around the room, I ask question.

I typically do this in a 20 minute session where I say
take 20 minutes and out of that make sure you
reserve 10 minutes for yourself for a break and we’ll
come back together at the end of 20 minutes. That
way, the people who can’t write anything in 10
minutes, can take 15. Now in that period I wander
around and people are likely to ask questions like, do
I really have to stick with one? And I go, do what’s
right. That might be the distinction. Almost every
exercise I do in the professional classes that I teach
do coincide with a break so that I have an extra 10
minutes for people who’s first language isn’t English
so they can write it without everybody else staying.
We still have to wait for slow writers, but not as
much.

Principles of Software Testing for Testers Supplementary Instructor Notes

Rational Software Confidential Page 172

