
Principles of Software Testing for Testers Instructor Notes

Module 1 - Software Engineering Practices 1 - 1

Instructor Notes:

Principles of Software Testing for
Testers

Module 1: Software Engineering Practices
(Some things Testers should know about them)

Principles of Software Testing for Testers Instructor Notes

Module 1 - Software Engineering Practices 1 - 2

Instructor Notes:

2
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

Objectives

Identify some common software
development problems.
Identify six software engineering practices
for addressing common software
development problems.
Discuss how a software engineering
process provides supporting context for
software engineering practices.

In this module, we explore a number of software engineering practices
and explain why these are considered to be good practices to follow.
We will also look at how a software engineering process helps you to
implement these and many other engineering practices.

The important thing for

you to teach your students
in this module is how each
of these practices relate to
software testing.

Your goal should be to help
your students understand
enough about each practice
that they can work
cohesively as productive
members of a software
project, especially one that
follows RUP.

Highlight how each practice
will have an effect on the
way in which testing is
undertaken in terms of
planning (i.e. iterations), the
role that testing will play
(i.e. objective assessment of
iteration objectives) and in
terms of the information
that is available to base
testing on (e.g. risks, use
cases, architecture).

Note that for many slides
the title offers a good cue to
talk to. You can also use the
animation callouts to cue
your delivery.

Principles of Software Testing for Testers Instructor Notes

Module 1 - Software Engineering Practices 1 - 3

Instructor Notes:

3
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

Module 1 - Content Outline (Agenda)

Software development problems
Six software engineering practices
Supporting software engineering practices
with process

In this section, we describe some common software development
problems and their root causes.

Transition Slide. Don’t
spend any time here.

Principles of Software Testing for Testers Instructor Notes

Module 1 - Software Engineering Practices 1 - 4

Instructor Notes:

4
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

Symptoms of Software Development Problems

User or business needs not met
Requirements churn
Modules don’t integrate
Hard to maintain
Late discovery of flaws
Poor quality or poor user experience
Poor performance under load
No coordinated team effort
Build-and-release issues

It can be effective to

present this slide as a group
discussion, asking the
students to give examples of
where they have seen these
symptoms.

This acts as an “ice breaker”,
encouraging early
participation and gives the
students the opportunity to
share some of their
experiences.

Alternatively, you might pick
one or two to talk about
from your own experience.
Avoid reciting the entire list
- it doesn’t add a lot of
value.

Be careful to limit any
discussion to an appropriate
amount of time.

Principles of Software Testing for Testers Instructor Notes

Module 1 - Software Engineering Practices 1 - 5

Instructor Notes:

5
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

Trace Symptoms to Root Causes

Needs not met

Requirements churn

Modules don’t fit

Hard to maintain

Late discovery

Poor quality

Poor performance

Colliding developers

Build-and-release

Incorrect requirements

Ambiguous communications

Brittle architectures

Overwhelming complexity

Undetected inconsistencies

Insufficient testing

Subjective assessment

Waterfall development

Uncontrolled change

Insufficient automation

Symptoms Root Causes Software Engineering
Practices

Develop Iteratively

Manage Requirements

Use Component Architectures

Model Visually (UML)

Continuously Verify Quality

Manage Change

Continuously Verify Quality

Poor quality

Undetected inconsistencies

Insufficient testing

Subjective assessment

Treat these root causes, and you’ll eliminate the symptoms. Eliminate
the symptoms, and you’ll be in a much better position to develop
quality software in a repeatable and predictable fashion.

The software engineering practices listed here are approaches to
developing software that have been commercially-proven. When used
in combination, they strike at many of the common root causes of
software development problems. These are also referred to as “best
practices,” not so much because we can precisely quantify their value,
but rather because they are observed to be the common practices
adopted by successful organizations.

These software engineering practices have been identified by observing
thousands of customers on thousands of projects and they align with
similar observations made by independent industry experts*.

*(CHAOS Report ©1999, The Standish Group International).

Animation note:
Automatic – timed over ~ 5
seconds

1.symptom highlighted
2.root causes highlighted
3.engineering practice

highlighted

Principles of Software Testing for Testers Instructor Notes

Module 1 - Software Engineering Practices 1 - 6

Instructor Notes:

6
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

Module 1 - Content Outline (Agenda)

Software development problems
Six software engineering practices
Supporting software engineering practices
with process

In this section, we describe some commonly recommended software
engineering practices.

Transition Slide. Don’t
spend any time here.

Principles of Software Testing for Testers Instructor Notes

Module 1 - Software Engineering Practices 1 - 7

Instructor Notes:

7
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

Practice 1: Develop Iteratively

Develop Iteratively
Manage Requirements

Use Component
Architectures

Model Visually (UML)
Continuously Verify

Quality
Manage Change

Software Engineering
Practices

Developing iteratively is a technique that is used to deliver the
functionality of a system in a successive series of releases of increasing
completeness. Each release is developed in a specific, fixed time
period called an “iteration.”

Each iteration is focused on identifying, defining and analyzing some
set of requirements, and designing, building and testing software based
on the understanding of those requirements.

If you want to learn more about how software can be developed
iteratively, you can take the Rational Unified Process Fundamentals
course.

Introduction Slide. Don’t
go into too much detail
here, or you will have little
to say on the subsequent
slides.

You will need to be
sensitive to testers who have
no control over this aspect
of their software
development project: don’t
leave them with a sense that
they will fail without it.

You should try to convey
the concept & benefits of
iterative development at a
very high level in this
module. Avoid getting
bogged down in detailed
discussion.

In the subsequent slides,
focus on how this practice
effects software testing.
Some main points you
should highlight for software
testing are:

• that each iteration should
result in an executable
release. This allows the
actual execution of the tests
to start much earlier than in
a waterfall lifecycle. This
will have an effect on the
way testing is planned and
resourced and the amount
of up-front documentation
that is done.

• that Iterations are usually
planned to address a set of
key risks, most often
technical ones. Testing
needs to help assess
whether those risks have
been adequately addressed.

Principles of Software Testing for Testers Instructor Notes

Module 1 - Software Engineering Practices 1 - 8

Instructor Notes:

8
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

Waterfall Development Characteristics

Delays confirmation of
critical risk resolution
Measures progress by
assessing work-
products that are poor
predictors of time-to-
completion
Delays and aggregates
integration and testing
Precludes early
deployment
Frequently results in
major unplanned project
extensions

Design

System Test

Waterfall Process

Requirements
Analysis

Code &
Unit Test

Total Elapsed Time

Integrate

Design

Waterfall is conceptually straightforward because it produces a single
deliverable. The fundamental problem of this approach is that it
pushes risk forward in time, where it’s costly to undo mistakes from
earlier phases. An initial design will likely be flawed with respect to its
key requirements, and furthermore, the late discovery of design defects
tends to result in costly overruns and/or project cancellation. The
waterfall approach tends to mask the real risks to a project until it is
too late to do anything meaningful about them.

Sometimes it can be

effective to present this slide
as a group discussion.
Here’s an example:

To illustrate a problem with
the waterfall model:

Context: Suppose you
estimate that a project will
take 2 years, and as you get
closer to the end of that
time you realize it will
actually takes closer to 3
years. At the end of 2 years,
the project is assessed to
consider whether it should
be continued.

Q: At 2 years, what artifacts
have been produced?

A: It is unlikely that there
will be any executable,
working software, certainly
not in terms of end-to-end
business value to the
customer. Waterfall
development doesn’t allow
for partial delivery: it’s
generally “all or nothing”.
Diagrams and models are
great interim artifacts, but
they can’t execute and as
such they don’t represent
anything of significant value
to the customer.

Principles of Software Testing for Testers Instructor Notes

Module 1 - Software Engineering Practices 1 - 9

Instructor Notes:

9
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

Iterative Development Produces an Executable

Initial
Planning

Planning

Requirements

Analysis & Design

Implementation

Deployment

Test

Evaluation

Management
&

Environment

Each iteration
results in an
executable
release

The earliest iterations address greatest risks. Each iteration produces an
executable release. Each iteration includes integration and test.
Iterations help to:

• resolve major risks before making large investments

• enable early objective feedback

• make testing and integration continuous

• focus the project on achievable short-term objective milestones

• make it possible to deploy partial implementations of the
completed final system

Iterative processes were developed to address the problems with the
waterfall discussed on the previous slide. With an iterative process, the
phase concerns of the waterfall process are addressed in each iteration
(although not typically in sequence, usually somewhat more in
parallel). Instead of developing the whole system in lock step, an
increment (i.e. a subset of system functionality) is selected and
developed, then another increment, etc.

The selection of each increment to be developed is based on its
potential to address key risks, the highest priority risks being addressed
first. To address the selected risk(s), a subset of use cases or use-case
instances are selected. The minimal set of use-case instances are
realized (developed) that will allow objective verification (i.e., through
a set of executable tests) of the risks that you have chosen to address.
The next increment addresses the next highest risks, and so on.

Animation note:
Automatic – The callout
appears .5 second after the
main slide appears.

Because each iteration
produces an executable,
test teams need to think
about test planning on an
iteration basis. This is in
addition to any longer-term
lifecycle plans (e.g. “Master”
Test Plans) they may want
to define.

Having access to an
executable release in each
iteration also has an effect
on how and when the test
team is resourced, and on
the way tests are defined,
implemented, and
executed.

Note that while you will
typically address each of the
waterfall “phases” within an
iteration, it won’t usually be
in sequence as a “mini
waterfall”. In an iterative
development cycle, each
iteration ideally follows a
dynamic structure that
reflects a similar
arrangement to the macro-
structure of the RUP phases:
an Iteration has a period of
inception, elaboration,
construction and transition,
where elaboration &
construction are based
around one or more
software builds.

Avoid going into detail
about RUP at this stage.

Principles of Software Testing for Testers Instructor Notes

Module 1 - Software Engineering Practices 1 - 10

Instructor Notes:

10
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

Risk Reduction

Time

R
is

k

Waterfall Risk

Iterative Risk

Risk Profiles

Iterative development drives risks out early.

Iterative development produces the architecture first, allowing
integration to occur “as the verification activity” of the design phase,
and allowing design flaws to be detected and resolved earlier in the
lifecycle. Continuous integration throughout the project replaces the
big bang integration at the end of a project.

Iterative development also provides much better insight into quality,
because system characteristics that are largely inherent in the
architecture (e.g., performance, fault tolerance, maintainability) are
tangible earlier in the process. Thus, issues are still correctable without
jeopardizing target costs and schedules.

Because addressing risk is a
key target for each iteration,
test teams need to think
about how testing can best
help the project assess the
likelihood and impact of
those risks. This includes
assessment of the mitigation
strategies and direct
solutions that are employed
by the project to address
those risks.

The test team should strive
to provide the project team
with objective and timely
assessments of risk based on
tests conducted against
executable software builds.

In assessing the known risks,
the test team also needs to
act as the “radar” for the
project in helping to identify
and uncover new potential
risks.

Principles of Software Testing for Testers Instructor Notes

Module 1 - Software Engineering Practices 1 - 11

Instructor Notes:

11
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

Practice 2: Manage Requirements

Develop Iteratively
Manage Requirements

Use Component
Architectures

Model Visually (UML)
Continuously Verify

Quality
Manage Change

Software Engineering
Practices

A report from the Standish Group confirms that a distinct minority of
software development projects is completed on-time and on-budget.
In their report, the success rate was only 16.2%, while challenged
projects (operational, but late and over-budget) accounted for 52.7%.
Impaired projects (canceled) accounted for 31.1%. These failures are
attributed to poor requirements management, incorrect definition of
requirements from the start of the project, and poor requirements
management throughout the development lifecycle. (Source: Chaos
Report, http://www.standishgroup.com).

If you want to learn more about how to manage requirements, you can
take the Requirements Management with Use Cases course.

Introduction Slide. Don’t
go into too much detail
here, or you will have little
to say on the subsequent
slides.

You might facilitate a

short discussion with the
students concerning how
requirements will be elicited
on their project and how
the project will manage
them. Reference this
discussion in subsequent
modules when you cover
quality and test techniques.

In the subsequent slides,
focus on how this practice
effects software testing.
Some main points you
should highlight for software
testing are:

• that requirements will
change. This means you will
need to strike a careful
balance with how much
planning and
documentation you will do
upfront.

• that traceability is a useful
technique to employ, but
that it needs to be managed
at an appropriate level of
detail.

• that uses cases are a
powerful technique that can
be applied to requirements
management, and that a
good set of use cases are
useful input to software
testing.

Principles of Software Testing for Testers Instructor Notes

Module 1 - Software Engineering Practices 1 - 12

Instructor Notes:

12
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

Problem

Solution
Space

Problem
Space

Needs

Features

Software
Requirements

Tests Design User
Docs

The
Product
To Be
Built

Traceability

Manage Requirements - Map of the Territory

Managing requirements involves the translation of stakeholder requests
into a set of key stakeholder needs and system features. These in turn
are detailed into specifications for functional and non-functional
requirements. Detailed specifications are translated into a design, user
documentation and tests.

The requirements for the software are a key input to testing. You will
often find important problems at the boundary between each section
of the pyramid – for example, are the needs appropriately reflected in
the features? Does the design appropriately reflect the requirements?
Later in this course we will discuss testing based on requirements.

To help manage the relationship between the requirements and the
tests derived from those requirements, you can establish traceability
relationships between those elements. Traceability assists us to do
many things, including:

• Assess the project impact of a change in a requirement

• Assess the impact of a failure of a test on requirements (i.e., if test
fails, the requirement may not be satisfied)

• Manage the scope of the project

• Verify that all requirements of the system are fulfilled by the
implementation

• Verify that the application does only what it was intended to do

• Manage change

Later in this course we will discuss traceability and assessment needs
for testing.

Avoid going too deep
here. Remember that
requirements-based testing
gets covered in detail in
subsequent modules, in
addition to traceability
strategies.

Requirements will change,
especially in an iterative
lifecycle where the
requirements are uncovered
over successive iterations
and evolve as the resulting
software is actually
experienced by the
stakeholders.
You will need to strike a
careful balance with how
much test planning and
documentation you will do
outside of the scope of an
iteration.

Traceability is a useful
technique to help manage
any potential impact to your
tests from subsequent
changes in requirements.
However, as a general rule
it will usually be more
appropriate to manage
traceability at some level of
parent element rather than
at the level of each
“unique” child element.

Principles of Software Testing for Testers Instructor Notes

Module 1 - Software Engineering Practices 1 - 13

Instructor Notes:

13
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

Manage Requirements - Use-Case Concepts

Actor Use Case

An actor represents a
person or another
system that interacts
with the system.

A use case defines a
sequence of actions a
system performs that
yields a result of
observable value to an
actor.

Use cases are a
rich source for
identifying test
scenarios

Use Cases represent a technique for defining requirements in a way
that focuses on the end-user goal. They have been popularized by
iterative development processes such as the Rational Unified Process.
However, the technique is not specific to iterative development – it
can be applied just as well to eliciting and managing requirements in a
waterfall development lifecycle.

An Actor:

•is not part of the system. It represents a role that users of the system
will play when interacting with it.

•can actively interchange information with the system.

•can be a passive recipient of information.

•can be a giver of information.

•can represent a human, a machine or another system.

A Use Case:

•specifies a dialogue between an actor and the system.

•is initiated by an actor to invoke certain functionality in the system.

•is a collection of meaningful, related flows of events.

•yields a result of observable value.

Taken together, all use cases provide a high-level, external view of all
possible ways of using the system.

Animation note:
Automatic – The callout
appears .5 second after the
main slide appears.

Uses cases are a powerful
technique that can be
applied to requirements
elicitation and
management. A good set of
use cases are useful input to
software testing.

To fully understand the
system's purpose you must
know who the system is for,
that is, who will use it.
Different user types are
represented as actors.

Principles of Software Testing for Testers Instructor Notes

Module 1 - Software Engineering Practices 1 - 14

Instructor Notes:

14
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

Practice 3: Use Component Architectures

Software Engineering
Practices

Develop Iteratively
Manage Requirements

Use Component
Architectures

Model Visually (UML)
Continuously Verify

Quality
Manage Change

Software architecture is the development product that gives the highest
return on investment with respect to quality, schedule, and cost,
according to the authors of Software Architecture in Practice (Len Bass,
Paul Clements & Rick Kazman [1998] Addison-Wesley). The Software
Engineering Institute (SEI) has an effort underway called the
Architecture Tradeoff Analysis (ATA) Initiative to focus on software
architecture, a discipline much misunderstood in the software industry.
The SEI has been evaluating software architectures for some time and
would like to see architecture evaluation in wider use. By performing
architecture evaluations, AT&T reports a 10% productivity increase
(from news@sei, Vol. 1, No. 2).

If you want to learn more about the use of component architectures in
software development, you can take the Object Oriented Design with
UML or Principles of Architecting Software courses.

Introduction Slide. Don’t
go into too much detail
here, or you will have little
to say on the subsequent
slides.

You might facilitate a

short discussion with the
students about architecture
– either common software
architecture issues (e.g. Thin
vs. Fat Client, n-tier), or use
the analogy of building
architectures (e.g. contrast a
fast food establishment vs. a
church, a dog house vs. a
sky scraper).

In the subsequent slides,
focus on how this practice
effects software testing.
Some main points you
should highlight for software
testing are:

• that testers will likely be
asked to conduct tests that
assess the architecture on
various dimensions of
quality: reliability,
performance, portability etc.

• finding architectural
weakness in an application
early provides immense
value to the project team,
therefore it is worth taking
time to assess the software
architecture early.

Principles of Software Testing for Testers Instructor Notes

Module 1 - Software Engineering Practices 1 - 15

Instructor Notes:

15
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

Resilient Component-Based Architectures

Resilient
Meets current and future requirements
Improves extensibility
Enables reuse
Encapsulates system dependencies

Component-based
Reuse or customize components
Select from commercially available components
Evolve existing software incrementally

Architecture is an aspect of design. It is about making decisions on
how the system will be built. But it is not all of the design. It stops at
the major abstractions, or in other words, the elements that have some
pervasive and long-lasting effect on the system’s performance and
ability to evolve.

A software system’s architecture is perhaps the most important aspect
that can be used to control the iterative and incremental development
of a system throughout its lifecycle.

The most important property of an architecture is resilience --
flexibility in the face of change. To achieve it, architects must
anticipate evolution in both the problem domain and implementation
technologies to produce a design that can gracefully accommodate
such changes. Key techniques are abstraction, encapsulation, and
object-oriented analysis and design. The result is that applications are
fundamentally more maintainable and extensible.

You might encourage

discussion at this point. A
single requirement, such as
throughput or fault
tolerance, affects almost
every design decision made
on a system. For example, if
building a transportation
system (such as for trains), it
is likely that they will have a
“no single point of failure”
requirement that must be in
every developer’s mind
every step of the way. Many
architectural mechanisms
will be developed to
accommodate that single
requirement.

If you can get some students
to describe their
architectural challenges, this
point is more effectively
driven home.

Principles of Software Testing for Testers Instructor Notes

Module 1 - Software Engineering Practices 1 - 16

Instructor Notes:

16
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

Purpose of a Component-Based Architecture

Basis for reuse
Component reuse
Architecture reuse

Basis for project management
Planning
Staffing
Delivery

Intellectual control
Manage complexity
Maintain integrity System-

software

Middleware

Business-
specific

Application-
specific

Component-based
Architecture with
layers

Definition of a (Software) Component:

Process Definition: A non-trivial, nearly independent, and replaceable
part of a system that fulfills a clear function in the context of a well-
defined architecture. A component conforms to and provides the
physical realization of a set of interfaces.

UML Definition: A physical, replaceable part of a system that packages
implementation, and conforms to and provides the realization of a set
of interfaces. A component represents a physical piece of
implementation of a system, including software code (source, binary or
executable) or equivalents such as scripts or command files.

Your testing will typically be constrained by and dependent on the
delivery and availability of software components. As noted on the
slide, planning and staffing of the project will often be based around
components, so your test plans will most likely need to reflect this as
well.

Components also help to manage complexity by hiding (or
encapsulating) unnecessary detail, making it easier to discuss how basic
and fundamental interaction occurs between components at different
levels of detail (or abstraction). This will assist in gaining an
understanding of how the software is designed to work, and will help
you to reason about useful tests to conduct.

In some cases components will be acquired from third-party suppliers
or reused from other projects within your organization. This poses
some interesting potential problems and challenges (as well as
opportunities) for testing software systems built using previously
developed components.

Because students vary in
how familiar they are with
the concept of architecture
applied to software, it is
best to get a sense of this
from the students before
beginning this section. If
they are fairly unfamiliar, it
helps to use the analogy of
buildings or civil
engineering. The more
complex the building, the
more critical a good
architecture is. The longer
you want the building to be
useful, the more effort and
expense you will put into
the architecture. And in
both of these cases, the
choice of architect is critical.

Regarding the last paragraph
in the student notes:
• One challenge is that
third-party component
developers may not have
provided adequate
testability features, making
testing – esp. automation –
difficult to implement.
• One problem is that if
you find defects in third-
party components, they
may be difficult to get
resolved.
• One opportunity is that
either the third-party
developer or other testers in
the community may already
have developed test assets
you can make use of.

Principles of Software Testing for Testers Instructor Notes

Module 1 - Software Engineering Practices 1 - 17

Instructor Notes:

17
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

Practice 4: Model Visually (UML)

Software Engineering
Practices

Develop Iteratively
Manage Requirements

Use Component
Architectures

Model Visually (UML)
Continuously Verify

Quality
Manage Change

A model is a simplification of reality that provides a complete
description of a system from a particular perspective. We build models
so that we can better understand the system we are modeling. We
build models of complex systems because we cannot comprehend any
such system in its entirety.

If you want to learn more about visual modeling in software
development, you can take the Fundamentals of Visual Modeling with
UML course.

You may wish to lead a
discussion about models
and why we build models in
general.

We build models because
the thing we are studying is
so complex that no one can
understand and remember
all of the details. Typically a
model will be looked at
from different perspectives
or views. Each view typically
leaves out the details that
are unimportant in the
context of that view.

A good model facilitates our
understanding of the larger
issues by hiding complexity.

Principles of Software Testing for Testers Instructor Notes

Module 1 - Software Engineering Practices 1 - 18

Instructor Notes:

18
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

Why Model Visually?

To help manage complexity
To capture both structure and behavior
To show how system elements fit together
To hide or expose details as appropriate

To keep design and implementation
consistent
To promote unambiguous communication

UML provides one language for all practitioners

Modeling is important because it helps the development team
visualize, specify, construct, and document the structure and behavior
of a system’s architecture. Using a standard modeling language such as
the UML (the Unified Modeling Language), different members of the
development team can communicate their decisions unambiguously to
one another.

Using visual modeling tools facilitates the management of these
models, letting you hide or expose details as necessary. Visual
modeling also helps you maintain consistency among a system’s
artifacts: its requirements, designs, implementations and tests. In short,
visual modeling helps improve a team’s ability to manage software
complexity.

Different techniques can be used to verify aspects of a model prior to
the physical implementation of program code associated with the
model. The UML itself provides rules to establish whether a model is
“well-formed”, and various software is commercially available to “walk
the model” looking for anomalies. That software can typically be
extended with user-defined rules.

Tools are also becoming available that take UML models as input and
allow the generation of test assets based on those models. For more
information about these tools, you might want to look at the Rational
Quality Architect product.

Visual modeling for software
is analogous to blueprints
for construction.

You might want to use the
blueprint analogy with your
students. For example:

• before building a bridge,
the architect builds a model
and has it reviewed.

• blueprints for an office
building contain different
levels of detail: foundations,
structural beams, electrical
wiring, heating and air-
conditioning, plumbing etc.
Each aspect typically has a
separate view or “overlay
layer” in the complete
blueprint “model”.

Principles of Software Testing for Testers Instructor Notes

Module 1 - Software Engineering Practices 1 - 19

Instructor Notes:

19
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

Visual Modeling Using UML Diagrams

user : Clerk

mainWnd : MainWnd

fileMgr : FileMgr

repository : Repository
document : Document

gFile : GrpFile

9: sortByNam e ()

L

1: Doc view request ()

2: fetchDoc()

5: readDoc ()

7: readFile ()

3: create ()

6: fillDocument ()

4: create ()

8: fillFile ()

Window95

¹®¼-°ü¸®
Å¬¶óÀÌ¾ðÆ®.EXE

Windows
NT

¹®¼-°ü¸® ¿£Áø.EXE

Windows
NT

Windows95

Solaris

ÀÀ¿ë¼-¹ö.EXE

Alpha
UNIX

IBM
Mainframe

µ¥ÀÌÅ º̧£ÀÌ½º¼-¹ö

Windows95

¹®¼-°ü¸® ¾ÖÇÃ¸́
Document

FileManager

GraphicFile

File

Repository DocumentList

FileList

user

mainWnd fileMgr :
FileMgr

repositorydocument :
Document

gFile

1: Doc view request ()

2: fetchDoc()

3: create ()

4: create ()

5: readDoc ()

6: fillDocument ()

7: readFile ()

8: fillFile ()

9: sortByName ()

Æ¯ Á¤¹®¼-¿¡ ´ëÇÑ º̧±â ¦̧
»ç¿ëÀÚ°¡ ¿äÃ»ÇÑ´Ù.

È-ÀÏ°ü¸®ÀÚ´ÂÀÐ¾î¿Â
¹®¼-ÀÇ Á¤º̧ ¦̧ ÇØ ḉ ¹®¼-
°´Ã¼¿¡ ¼³Á¤À» ¿äÃ»ÇÑ´Ù.

È-̧ é °´Ã¼´ÂÀÐ¾îµéÀÎ
°´Ã¼µé¿¡ ´ëÇØ ÀÌ¸§º°·Î

Á¤·ÄÀ» ½ÃÄÑÈ-̧ é¿¡
º̧¿©ÁØ´Ù.

Forward and
Reverse
Engineering

Target
System

Openning

Writing

Reading
Closing

add file [numberOffile==MAX] /
flag OFF

add file

close file

close file

Use-case
diagram

Class diagram

Collaboration
diagram

Sequence
diagram

Component
diagram

Statechart
diagram

GrpFile

read()
open()
create()
fillFile()

rep

Repository

name : char * = 0

readDoc()
readFile()

(from Persistence)

FileMgr

fetchDoc()
sortByName()

DocumentList

add()
delete()

Document

name : int
docid : int
numField : int

get()
open()
close()
read()
sortFileList()
create()
fillDocument()

fList

1

FileList

add()
delete()

1

File

read()

read() fill the
code..

Deployment
diagram

Actor A

Use Case 1

Use Case 2

Use Case 3

Actor B

Use-case diagrams
outline the system
scope

Visual modeling with the UML makes an application’s architecture
tangible, permitting us to assess it in multiple dimensions. How
portable is it? Can it exploit expected advances in parallel processing?
How might we modify it to support a family of applications? We’ve
discussed the importance of architectural resilience and quality. The
UML enables us to evaluate these key characteristics during early
iterations -- at a point when design defects can be corrected before
threatening project success.

If your software development team will be making use of visual
models, it is worth taking some time to learn how to read, interpret
and discuss these models. You will find this assists your communication
with the developers, and offers you new and unique insight into what
the software is designed to do. In turn, this will help you reason more
completely about the appropriate tests that you should conduct.

Advances in forward and reverse engineering techniques permit
changes to an application’s model to be automatically reflected in its
source code, and changes to its source code to be automatically
reflected in its model. This is critical when using an iterative process,
where we expect such changes with each iteration.

Animation note:
Automatic – The callouts
appears .5 second after the
main slide appears.

The point to be made is that
the UML is the language we
use to visually model. Since
it is a widely-adopted
standard, it facilitates the
understanding and
communication of the visual
models we create.

Activity diagrams are not
shown on the slide. Activity
diagrams can be used to
model workflows in
business process
engineering.

Discuss the diagrams that
testers might typically be
expected to read, review,
and discuss:

• use-case diagrams

• activity and state-chart
diagrams

• interaction diagrams
(sequence, collaboration)

• simple class diagrams
(entity-class domain models,
analysis classes)

• deployment diagrams.

Principles of Software Testing for Testers Instructor Notes

Module 1 - Software Engineering Practices 1 - 20

Instructor Notes:

20
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

Workbook Page: A Sample UML Diagram – Use Cases

Professor

Select Courses to Teach

Student

Course Catalog

Register for Courses

Maintain Student Information

Maintain Professor Information

Registrar Billing System

Close Registration

A University Course Registration System

Often a global use-case diagram will be included in the Use-Case-
Model Survey to give a graphical overview of the system.

This should include all use cases, actors, and their relationships that
cover the scope of the system being built.

Use case diagrams are used to show the existence of use cases and
their relationships, both to each other and to actors. An actor is
something external to the system that has an interface with the system,
such as end users. A use case models a dialogue between actors and
the system. A use case is initiated by an actor to invoke a certain
functionality in the system. For example, in the diagram above, one
class of user of the system is student. In this system, students have a
goal to use the system to register for courses. Hence, Register for
Courses is a use case.

The arrow (which is optional) indicates the direction in which
messages are invoked in the interaction. Here, the Student actor sends
messages to the Register for Courses use case.

A use case is a complete and meaningful flow of events. The flow of
events supplements the use case diagram and is usually provided in
text format.

Taken together, all use cases constitute all possible ways of using the
system.

The purpose of this diagram
is to familiarize the student
with the rich language of the
UML which is available to
represent software artifacts.
You should NOT try to
explain all the notation, just
the purpose of the diagram
and how to read it
(superficially).

A use case has a set of
properties: brief description,
flow of events, special
requirements, etc. Use cases
are enclosed in the use-
case-model artifact.

Principles of Software Testing for Testers Instructor Notes

Module 1 - Software Engineering Practices 1 - 21

Instructor Notes:

21
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

Practice 5: Continuously Verify Quality

Software Engineering
Practices

Develop Iteratively
Manage Requirements

Use Component
Architectures

Model Visually (UML)
Continuously Verify

Quality
Manage Change

Quality has many definitions. We’ll discuss some of the more
commonly held opinions about quality in a subsequent module.
However, it is fair to state that achieving quality is not simply about
"meeting requirements" or producing a product that meets user needs
and expectations. Quality also includes identifying the measures and
criteria (to demonstrate the achievement of quality), and the
implementation of a process to ensure that the resulting product has
achieved an appropriate degree of quality.

Software testing is an important aspect of Software Quality process.
Software testing accounts for 30% to 50% of software development
costs in many organizations, yet most people believe that software is
not well-tested before it is delivered. This contradiction is arguably
rooted in two interesting observations. First, testing software is
enormously difficult. The different ways a given program can behave
are almost infinite. Second, testing is typically done without a clear
methodology and without adequate supporting tools. While the
complexity of software makes “complete” testing an impossible goal,
an appropriate methodology for the project context, and use of
appropriate supporting tools, can help to improve the productivity and
effectiveness of the software testing effort.

Quality and Testing are not
synonymous, although
testing is an important
aspect of assessing quality.
While software testing is
most often the main
technique used to assess
software quality, there are
other techniques that we
will mention during the
course.

You may be drawn into
arguments here about
Quality Assurance vs.
Testing/ Quality Assessment.

Avoid this trap, if possible. If
you cannot, there are
additional instructor
materials with the course
that may help you manage
the discussion to closure
(see the section entitled
“common controversies”).

Principles of Software Testing for Testers Instructor Notes

Module 1 - Software Engineering Practices 1 - 22

Instructor Notes:

22
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

Continuously Verify Quality – in each Iteration

A Software Build
triggers a cycle of
testing

In traditional software development, there is a tendency to delay
certain types of assessment–such as black-box testing–until late in the
development cycle. In the case of black-box testing, delaying these
tests will delay the discovery of potentially important problems until
late in the development cycle. In many cases this will mean the
problems are too expensive to correct.

In iterative development, assessment activities are an integral part of
the effort in each iteration: they are needed to provide objective proof
that the goals of the iteration have been met. Without iteration-based
assessment, it isn’t possible to objectively evaluate whether an iteration
achieved its goals: Were the key risks addressed satisfactorily? Were
the planned features delivered? Did the software exhibit the required
quality attributes?

The design and development of tests can be as complex and arduous
as developing the software product itself. You can mitigate the risk of
expensive problems derailing the testing process by starting early. In
general it is best to start testing activities in the same iteration as the
first executable software release is planned.

Animation note:
Automatic – The callouts
appears .5 second after the
main slide appears.

Point out that the
independent test effort fits
within the iterative product
development lifecycle.
Contrast this early start with
the typical late start in
waterfall development.

Stress the key role that test
plays as part of the
assessment activities.
Without the objective proof
that test provides by
validating the executable
software, there can be little
confidence that the goals of
the iteration have been
realized.

Note that Assessment
activities are broader than
just “testing”. Assessment
also occurs in the form of
reviews and other types of
evaluation that don’t
execute the software
product itself. Instead, these
assessment activities help to
verify that the software
development process itself
is being followed and is
appropriate.

Principles of Software Testing for Testers Instructor Notes

Module 1 - Software Engineering Practices 1 - 23

Instructor Notes:

23
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

Continuously Verify Quality – Software Models

Various
disciplines
produce
Models …

Analysis &
Design

Require-
ments

Business
Modeling

Implement-
ation

Implemented
By

Implementation
Model

Design Model

Use-Case
Model

Business Use-
Case Model

Business
Object Model

Realized
By

Automated
By

Realized By

Assessment

Verified By Validated By

BBB

B

… each of
those models
is Assessed

Assessment
Artifacts are part of
and present in all
software models

The UML can be used to produce a number of models that represent
various perspectives or views on a software system as it evolves. Several
models are useful to fully describe the evolving system, with different
software disciplines producing those models. Each model is developed
incrementally over multiple iterations.

•The Business Model is a model of what the business processes are
and of the business environment. It is primarily used to gain a better
understanding of the software requirements in the business context.

•The Use-Case Model is a model of the value the system represents to
the external users of the system environment. It describes the “external
services” that the system provides.

•The Design Model is a model that describes how the software will
“realize” the services described in the use cases. It serves as a
conceptual model (or abstraction) of the implementation model and its
source code.

•The Implementation Model represents the physical software elements
and the implementation subsystems that contain them.

Assessment involves both Verification and Validation activities:
verifying that the software product is being built right, and validating
that the right software product is being built. This distinction refers to
assessing both the appropriateness of the process by which the
software product is built (verification) and the appropriateness of the
resulting software product that will be delivered to the customer
(validation).

Animation note:
Automatic – The callouts
appears .5 second after the
main slide appears.

You can consider all of the
models listed here, taken
together, to be “the system
model.”

The business model is a
little different in that it
describes the business as a
whole, not just the
automated part. The other
models describe various
aspects of an information
system that will support the
business model.

Point out that each of these
models is incrementally
developed across many
iterations.

As such, assessment
activities can make use of
these models from the
earliest iterations. However,
there needs to be
acknowledgement of the
incomplete nature of these
models in the earlier parts
of the lifecycle, and
acceptance that the models
will change and evolve over
time.

Principles of Software Testing for Testers Instructor Notes

Module 1 - Software Engineering Practices 1 - 24

Instructor Notes:

24
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

Practice 6: Manage Change

Software Engineering
Practices

Develop Iteratively
Manage Requirements

Use Component
Architectures

Model Visually (UML)
Continuously Verify

Quality
Manage Change

As we indicated earlier, we cannot stop change from being introduced
into our project. However, we must control how and when changes
are introduced into project artifacts, and who introduces the changes.
We also must synchronize change across development teams and
locations.

Unified Change Management (UCM) is Rational Software's approach to
managing change in software system development, from requirements
to release.

Control of change is
especially important in an
iterative project. Artifacts
are generally produced
incrementally. At the end of
each iteration, another
increment is put under
configuration control.
Otherwise, no progress will
be made, and iterations will
not converge on a complete
and consistent system. We
are not just talking about
changes to source code, but
also to requirements,
models, documents, plans,
and all development
artifacts.

Principles of Software Testing for Testers Instructor Notes

Module 1 - Software Engineering Practices 1 - 25

Instructor Notes:

25
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

ALERTREPORT

Workspace
Management

Process
Integration

Parallel
Development

Build
Management

Good CM practices
help to prevent
certain types of
software errors

What Do You Want to Control?

Changes to enable iterative development
Secure workspaces for each worker
Parallel development possible

Automated integration/build management

Establishing secure workspaces for each worker on the project provides
isolation from changes made in other workspaces and control of all
software artifacts -- models, code, docs, tests etc.

A key challenge to developing software-intensive systems is the need to
cope with multiple workers, organized into different teams, possibly at
different sites, all working together on multiple iterations, releases,
products, and platforms. In the absence of disciplined control, the
development process rapidly degrades into chaos. Progress can come
to a stop.

Three common problems that result are:

• Simultaneous update -- When two or more workers separately
modify the same artifact, the last one to make changes destroys
the work of the former.

• Limited notification -- When a problem is fixed in shared artifacts,
some of the workers are not notified of the change.

• Multiple versions -- It is feasible to have multiple versions of an
artifact in different stages of development at the same time. For
example, one software release is in use by the customer, one is
actively being developed and tested, and yet another one is
undergoing early prototyping of future features. If a problem is
identified in any one of the versions, the fix may need to be
propagated among all of them and change control can lead to
chaos and halt progress.

Animation note:
Automatic – The callouts
appears .5 second after the
main slide appears.

Good CM practices help to
prevent:
• resolved faults from
reappearing because the
fixed code is lost.
• developers overwriting
each others coding changes.

If possible, use an example
from your experience to
illustrate what can go wrong
when multiple staff work on
the same set of artifacts
without adequate controls.
For example, two
programmers attempting to
make simultaneous updates
to the same component, or
an entire test suite failing
because the wrong version
of the test suite was run.

Principles of Software Testing for Testers Instructor Notes

Module 1 - Software Engineering Practices 1 - 26

Instructor Notes:

26
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

Workbook Page: Aspects of a CM System

Change Request Management (CRM)
Configuration Status Reporting
Configuration Management (CM)
Change Tracking
Version Selection
Software Manufacture

Change Request Management (CRM) addresses the organizational
infrastructure required to assess the cost and schedule impacts of a
requested change to the existing product. CRM addresses the workings
of a Change Review Team or Change Control Board.

Configuration Status Accounting (Measurement) is used to describe
the “state” of the product based on the type, number, rate and severity
of defects found, and fixed, during the course of product
development. Metrics derived under this aspect, either through audits
or raw data, are useful in determining the overall completeness status
of the project.

Configuration Management (CM) describes the product structure and
identifies its constituent configuration items that are treated as single
versionable entities in the configuration management process. CM
deals with defining configurations, building and labeling, and
collecting versioned artifacts into constituent sets and maintaining
traceability between these versions.

Change Tracking describes what is done to components for what
reason and at what time. It serves as history and rationale of changes. It
is quite separate from assessing the impact of proposed changes as
described under “Change Request Management.”

Version Selection ensures that the right versions of configuration items
are selected for change or implementation. Version selection relies on
a solid foundation of “configuration identification.”

Software Manufacture covers the need to automate the steps to
compile, test and package software for distribution.

Discuss briefly some
different aspects of change
that software projects are
exposed to.
Unless your students
explicitly ask you to, you
shouldn’t discuss each one
of these aspects in detail.
Just pick one or two that
you feel comfortable talking
about.

Principles of Software Testing for Testers Instructor Notes

Module 1 - Software Engineering Practices 1 - 27

Instructor Notes:

27
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

Software Engineering Practices Reinforce Each Other

Validates architectural
decisions early on

Addresses complexity of design/
implementation incrementally

Measures quality early and often

Evolves baselines incrementally

Ensures users involved
as requirements evolve

Develop Iteratively

Manage Requirements

Use Component Architectures

Model Visually (UML)

Continuously Verify Quality

Manage Change

Software Engineering
Practices

In the case of our six software engineering practices, the whole is much
greater than the sum of the parts. Each of the practices reinforces and,
in some cases, enables the others. The slide shows just one example:
how iterative development leverages the other five software
engineering practices. However, each of the other five practices also
enhances iterative development.

For example, iterative development done without adequate
requirements management typically fails to converge on a solution:
requirements change at will, users can’t agree, and the iterations never
reach closure. When requirements are managed, this is less likely to
happen. Changes to requirements are visible, and the impact to the
development process assessed before they are accepted. Convergence
on a stable set of requirements is assured. Similarly, each pair of
practices provides mutual support. Hence, although it is possible to use
one practice without the others, additional benefits are realized by
combining them.

This slide may be confusing
unless it is explained
properly. We have
discussed each Proven
Practice individually in this
module. This slide is
intended to illustrate how
these Practices used
together provide more
benefit than each
individually. The slide only
illustrates how ONE of the
Practices (Develop
Iteratively) supports the
others.

As revision, you might

ask your students to share
their thoughts on how
Quality from the Start
relates to the other
practices. Many comments
are made in the preceding
slides that will help both
you as instructor and the
students understand some
of the interrelationships.

Be careful not to spend too
much time here. If you have
already taken enough time
on this module, skip the
discussion.

Principles of Software Testing for Testers Instructor Notes

Module 1 - Software Engineering Practices 1 - 28

Instructor Notes:

28
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

Module 1 - Content Outline (Agenda)

Software development problems
Six software engineering practices
Software engineering process and software
engineering practices

In this section, we briefly discuss how a defined process – such as the
Rational Unified Process (RUP) – helps you to implement software
engineering practices.

Transition Slide. Don’t
spend any time here.

The next three slides
introduce the basic features
of the Rational Unified
Process.

Principles of Software Testing for Testers Instructor Notes

Module 1 - Software Engineering Practices 1 - 29

Instructor Notes:

29
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

An Engineering Process Implements Engineering Practices

Software Engineering
Practices

Develop Iteratively
Manage Requirements

Use Component Architectures
Model Visually (UML)

Continuously Verify Quality
Manage Change

Software Engineering
Process

Why have a process?

• Provides guidelines for efficient development of quality software

• Reduces risk and increases predictability

• Promotes a common vision and culture

• Harvests and institutionalizes software engineering practices

A software engineering process should provide a disciplined yet
flexible approach to assigning tasks and responsibilities within a
software development organization. The goal is to ensure the
production of high-quality software that meets the needs of its end
users within a predictable schedule and budget.

The UML provides a standard for many of the artifacts of software
development (semantic models, syntactic notation, and diagrams): the
things that must be controlled and exchanged. But the UML is not a
standard for the development process.
Despite all of the value that a common modeling language brings, you
cannot achieve successful development of today’s complex systems
solely by the use of the UML. Successful iterative development also
requires employing a repeatable engineering process.

Animation note:
Automatic – The arrow
appears .5 second after the
main slide appears.

Talk generically about the
value of process guidance to
support the software
engineering practices you
wish to employ.

A documented process
helps to provide
repeatability and improve
predictability.

While you can mention the
RUP here, note that we’ll be
discussing the RUP
specifically in a subsequent
module.

Principles of Software Testing for Testers Instructor Notes

Module 1 - Software Engineering Practices 1 - 30

Instructor Notes:

30
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

A Team-Based Definition of Process

A process defines Who is doing What
When, and How, in order to reach a certain
goal.

New or changed

requirements

New or changed

system

Software Engineering
Process

This course is about the What, When and
How of Testers’ activities in the process.

It can be difficult to explain
what a process is if people
aren’t already familiar with
one. An informal example
most people can relate to is
the process of balancing a
checkbook or paying bills at
the end of the month. Most
of us have developed a
process we use -- the same
steps every month. It
shortens the time required
to accomplish the task and
ensures that we don’t forget
any steps.

The same applies to a
software engineering
process. We want it to be
repeatable and to ensure
that all required tasks are
accomplished when
required. Of course, a
software engineering
process is much more
complex than balancing a
checkbook – the good news
is that there is a tremendous
amount of information
contained in the RUP to
help you follow a good
software engineering
process.

Principles of Software Testing for Testers Instructor Notes

Module 1 - Software Engineering Practices 1 - 31

Instructor Notes:

31
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

Workbook Page: Implementing Software Engineering Practices

A modern engineering process ideally:

Supports a controlled, iterative approach
Supports the use of user-focused requirements to
coordinate and drive the work in requirements,
design, implementation and test
Enables architectural concerns to be addressed
early
Allows the process to be configured to suit the
context of the individual project
Provides guidance for conducting work (activities)
and producing work products (artifacts)

Talk briefly here about some
of the distinguishing features
of a good engineering
process.

Stress how important a
methodology (RUP or
otherwise) is to the success
of software development
and testing initiatives.

Avoid going into too
much detail about the RUP
here: you’ll cover the RUP
in more detail in the
subsequent module that
introduces the Test
discipline in the RUP.

Principles of Software Testing for Testers Instructor Notes

Module 1 - Software Engineering Practices 1 - 32

Instructor Notes:

32
Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved

Module 1 - Review

Software engineering practices guide
software development by addressing root
causes of problems.
Software engineering practices reinforce
each other.
Process guides a team on who does what
when and how.
A software engineering process provides
context and support for implementing
software engineering practices.

