
Principles of Software Testing for Testers Instructor Notes

Module 3 - The RUP Test Discipline 3 - 1

Instructor Notes:

Principles of Software Testing for
Testers

Module 3: The RUP Test Discipline

Principles of Software Testing for Testers Instructor Notes

Module 3 - The RUP Test Discipline 3 - 2

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 2

Objectives

Introduce concepts and vocabulary used in
this course:

The terminology of RUP
The testing discipline in RUP
The testing workflow structure

The important thing for

you to teach your students
in this module is some basic
RUP vocabulary. This is
important as the terms are
used throughout the
remainder of the course.

Your goal should be to help
your students understand
enough RUP terminology
that they can understand the
material presented in the
subsequent modules.

Go quickly. Everything will
be covered in detail in
subsequent modules.

Principles of Software Testing for Testers Instructor Notes

Module 3 - The RUP Test Discipline 3 - 3

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 3

What is the Rational Unified Process (RUP)?

The Rational Unified Process
(RUP) is a software engineering
process framework that provides a
disciplined yet flexible approach to
assigning tasks and
responsibilities within a software
development organization.

RUP’s goal is to support the production of high-quality
software that meets the needs of its end users within a
predictable schedule and budget.

Key Points:

Introduce the RUP.

If you haven’t already, point
out that RUP provides a
process framework for
recommended practices in
software engineering,
including software testing.

The Rational Unified Process is a generic process framework for
conducting object-oriented software engineering projects. It describes a
family of related software engineering practices sharing a common
structure and a common process architecture. The Rational Unified
Process captures the proven practices in modern software development
in a form that can be adapted for a wide range of projects and
organizations.

The RUP supports many software engineering practices:

•The dynamic structure (phases and iterations) of the Rational Unified
Process creates a basis for iterative development.

•The Project Management discipline describes how to set up and
execute a project using phases and iterations.

•The Use-Case Model and Risk List of the Requirements discipline help
determine what functionality you implement in each iteration.

•The Workflow Details of the Requirements discipline show the
activities and artifacts that make requirements management possible.

•The iterative approach allows you to progressively identify
components, decide which ones to develop, which ones to reuse, and
which ones to buy.

•The Unified Modeling Language (UML) used in the process represents
the basis of Visual Modeling and has become the de facto modeling
language standard.

•The focus on software architecture allows you to articulate the
structure: the components and the ways in which they integrate, the
fundamental mechanisms and patterns by which they interact

Principles of Software Testing for Testers Instructor Notes

Module 3 - The RUP Test Discipline 3 - 4

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 4

Module 3 - Agenda

Overview of the software lifecycle in RUP
Overview of the building blocks of RUP
Roles in the Test Discipline
Workflow Details in the Test Discipline

In this section, we introduce the structural elements of the Rational
Unified process that are referred to as the software lifecycle in the
RUP.

Transition Slide. Don’t
spend any time here.

Principles of Software Testing for Testers Instructor Notes

Module 3 - The RUP Test Discipline 3 - 5

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 5

RUP Process Architecture

Lifecycle

Disciplines

The figure at the top shows the overall architecture of the RUP.

The RUP has two dimensions:

•The horizontal axis represents time and shows the lifecycle aspects of
the process as it unfolds.

•The vertical axis represents disciplines, which group activities logically
by nature.

The first dimension represents the “dynamic” aspect of the process as it
is enacted, and it is expressed in terms of phases, iterations, and
associated milestones.

The second dimension represents the “static” aspects of the process as
it is described in terms of process components – the roles, activities,
artifacts, and their related disciplines.

The graph shows how the emphasis varies over time. For example, in
early iterations, we spend more time on requirements, and in later
iterations we spend more time on implementation.

Key Points:

• Present the overall RUP
architecture.

• Review concept of iterative
development discussed in
an earlier module.

• Introduce the concept of
RUP phases: you’ll go into
detail about each phase on
the next slide.

• Discuss concept of RUP
disciplines as high-level
partitioning of areas of
process responsibility.

• Point out testing activity on
the chart and discuss the
ramifications of the test
discipline profile on the
chart. Students should be
able to relate this to
concepts introduced in the
earlier module on proven
engineering practices.

Principles of Software Testing for Testers Instructor Notes

Module 3 - The RUP Test Discipline 3 - 6

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 6

Inception Elaboration Construction Transition

Process Structure - Lifecycle Phases

The Rational Unified Process has four phases:
Inception - Define the project scope, gain agreement
on project objectives, baseline the product Vision
Elaboration - Address key technical risks, produce an
evolutionary prototype, baseline the Architecture
Construction - Iteratively and incrementally develop an
operationally complete product
Transition - Deliver the product into the live end-user
environment

time

During Inception, we define the scope of the project based on our
initial understanding, identifying what is included, and what is not. We
do this by identifying actors and use cases, and by outlining the most
essential use cases (typically approximately 20% of the complete
model). A business plan and a vision of the product are developed and
assessed to determine whether resources should be committed to the
project.

During Elaboration, we focus on three things: getting a good grasp of
the requirements (80% complete), addressing key technical risks and
establishing an architectural baseline that proves the key concepts of
the solution. If we have a good grasp of the requirements and the
architecture, we can eliminate a lot of the risk inherent in software
development. This gives us a much better idea for what amount of
work remains to be done. We can make detailed cost/resource
estimations at the end of Elaboration with much more confidence.

During Construction, we build the product in several iterations,
evolving it progressively into a complete operationally capable system.
We might include a beta product release during or at the end of this
phase.

During Transition, we stabilize the product and transition it into the
end user’s environment(s). We also focus on end user training,
installation, and support.

The amount of time spent in each phase varies. For a very complex
project with a lot of technical unknowns and unclear requirements,
Elaboration will involve more iterations (e.g. 3-5). For a very simple
project, where requirements are known and the architecture is simple,
Elaboration may include only a single iteration.

The student notes are quite
extensive. There is no need
to go into that much detail
in class. The important thing
is to understand how the
RUP uses phases to organize
the lifecycle.

You can also mention that
we deliberately chose
names that do not match
the waterfall names
(analysis, design,
implementation, and test) to
emphasize that they are
NOT the same as the
waterfall phases.

Some ways of describing the
phases in common
terminology:

Inception – understanding
the key aspects of the
solution that is envisioned

Elaboration – objectively
proving the key concepts of
the solution (i.e.
architecture, features)

Construction – evolving a
complete and operational
system incrementally

Transition – deploying and
stabilizing the system in its
target environment(s)

Principles of Software Testing for Testers Instructor Notes

Module 3 - The RUP Test Discipline 3 - 7

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 7

The Lifecycle Has Phases and Iterations

Each iteration results in an executable release (internal or
external). Iterations are the “heartbeat” or rhythm of the
project and a governing principle for testing in RUP.

Preliminary
Iteration

Architect.
Iteration

Architect.
Iteration

Devel.
Iteration

Devel.
Iteration

Devel.
Iteration

Transition
Iteration

Transition
Iteration

Inception Elaboration Construction Transition

Minor Milestones: Releases

Lifecycle
Objective
Milestone

(LCO)

Lifecycle
Architecture

Milestone
(LCA)

Initial Operational
Capability
Milestone

(IOC)
Product
Release

At each of the major milestones, we review the project and decide
whether to proceed with the project as planned, to abort the project,
or to revise it. The criteria used to make this decision vary by phase.

Definitions:
LCO: scope agreed upon and risks understood and reasonable
LCA: key risks addressed and architecture stable
IOC: product is operationally complete and quality acceptable

Within each phase, there is a series of iterations. The number of
iterations per phase will vary. Each iteration results in an executable
release (either internal or external) encompassing larger and larger
subsets of the final application.

An internal release is kept within the development environment and
ideally demonstrated to a representative portion of the stakeholder
community. More significant external releases, typically for installation
in the end-user environment, are also provided. External releases are
much more expensive (they usually involve more ceremony and
therefore more resources) and thus typically occur at important
milestones.

The end of an iteration marks a minor milestone. At this point, we
assess technical results and revise future plans as necessary.

Animation note:
Mouse – The slide builds in
3 segments incrementally
based on mouse clicks:
Iterations, Major milestones,
and minor milestones. Note
that the blue arrow dims in
the bottom left corner to
indicate the animation has
ended.

Key points:
• Phases are subdivided
into iterations
• Testing assess the
executable release in each
iteration
• Major milestones are used
to assess Phase completion
• Minor milestones occur at
the end of each iteration.

The student notes give
enough basic information,
so there is no need to go
into detail with each
milestone.

Principles of Software Testing for Testers Instructor Notes

Module 3 - The RUP Test Discipline 3 - 8

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 8

Bringing It All Together: The Iterative Approach

Disciplines
group
activities
logically

In an
iteration,
you typically
address all
disciplines

This graphic illustrates how phases and iterations (the “dynamic” or
time dimension of RUP) relate to the development activities described
in the disciplines (the “static” dimension). Note that while the graphic
simply provides an example of how RUP might be enacted, the relative
size of the colored graphs gives a general indication of how much
relative effort is spent for each process discipline in each phase/
iteration.

Notice that with a few exceptions, each iteration involves activity in all
disciplines, and that the relative amount of effort expended in each
discipline changes between iterations. For instance, during late
Construction, the main effort is related to Implementation, Test and
Deployment with minimal effort expended on Requirements and
Environment work.

Note that in an iterative development process, requirements work is
typically not “complete” early in the project lifecycle – requirements
effort typically continues into late Construction. It is also common for
the final analysis and design work for well-understood portions of the
system to be delayed until Construction – this can be supported
because this incomplete design represents minimal unaddressed risk.

Animation note:
Automatic – The callouts
appear at 2 second
intervals, .5 second after the
main slide appears.

Can iterations overlap?

No. In a large project,
several teams may work in
parallel on their portions of
the iteration, but we do not
consider these to be
separate iterations. There
may be some small overlap
in the assessment and
planning activities from one
iteration to the next, but
that overlap is relatively
insignificant.

How many iterations should
you have?

It depends on many factors.
Err on the side of too many
iterations, but make sure
that each iteration
represents enough time for
reasonable progress to be
achieved.

Principles of Software Testing for Testers Instructor Notes

Module 3 - The RUP Test Discipline 3 - 9

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 9

Module 3 - Agenda

Overview of the software lifecycle in RUP
Overview of the building blocks of RUP
Roles in the Test Discipline
Workflow Details in the Test Discipline

Next, we’ll introduce the major static structural elements of RUP that
are used to define the detailed and unique process elements.

Transition Slide. Don’t
spend any time here.

Principles of Software Testing for Testers Instructor Notes

Module 3 - The RUP Test Discipline 3 - 10

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 10

Overview of Rational Unified Process Concepts

Role: A set of related
responsibilities that
may be assigned to an
individual or a team in
the development
organization

Activity: A unit
of work a Role
may be asked to
perform

Artifact: A piece
of information
that is produced,
modified, or used
by an Activity

A Role is an abstract definition of a set of related behavior and
responsibilities that will be fulfilled by an individual, or a set of
individuals working together as a team.

An Activity is the smallest piece of work that is useful to define in
terms of repeatable process. Dividing the work in this manner makes it
easier to monitor development. A specific role is responsible for one or
more Activities.

Artifacts are the work products of enacting the process. They are
produced in the course of developing the software product –Activities
evolve, maintain, or make use of Artifacts as input. This includes the
source code itself, as well as the models, documents, and other
products of the lifecycle. The UML provides notation for representing
many of the artifacts of the development process.

Some other basic terminology in the Rational Unified Process:

• Concepts – provide information which is important for
understanding the workflow.

• Guidelines – provides artifact guidelines with descriptive
information about an artifact type, and work guidelines containing
practical information about how to perform certain tasks.

• Tool Mentors – offer support for software-engineering tools.

• Checkpoints -- provide a quick reference to help you assess the
quality and completeness of an artifact.

• Templates – a number of ready-to-use templates for certain
artifacts are provided.

Animation note:
Automatic – The callouts
appear at 2 second
intervals, .5 second after the
main slide appears.

This shows how the RUP
represents the process
graphically. The UML
provides a notation for
representing the artifacts of
the process, but not the
process itself. These
conventions will be used in
describing each of the
disciplines of the process.

•Introduce RUP concepts:
roles, activities, artifacts.

•Emphasize that a role is
not a person; it’s a set of
activities performed and
artifacts owned.

Principles of Software Testing for Testers Instructor Notes

Module 3 - The RUP Test Discipline 3 - 11

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 11

Resource

Paul

Mary

Joe

Sylvia

Jane

Roles Are Used for Resource Planning

Each individual in
the project is
assigned to one or
more roles

Role

Architect

System Analyst

Requirements Specifier

Test Analyst

Tester

Activities

Identify Design Mechanisms

Find Actors and Use Cases

Detail a Use Case

Identify Test Ideas

Analyze FailureOne role can be
assigned to one or
more individuals

In developing a project plan, a project manager assigns the available
individuals to roles according to their skills and abilities. The project
manager assigns each individual on the project to one or more roles.
The association of individuals to roles is dynamic over time.

A project team member often fulfills many different roles. Roles are not
individuals; instead, they describe how individuals behave in the
business and what responsibilities these individuals have.

An individual may act as several different roles during the same day.
We can informally call this “wearing several hats.” For example, Sylvia
may be both a Requirements Specifier and a Test Analyst.

Several individuals may act in the same role to perform a certain
activity as a team. For example, Mary, Joe and Sylvia may all serve as
Use-Case Specifiers.

Artifacts are the responsibility of a single role, to help manage
accountability. However, even though one role "owns" the artifact,
different roles usually collaborate in evolving the artifact throughout its
life.

Animation note:
Automatic – The callouts
appear at 2 second
intervals, .5 second after the
main slide appears.

This is really standard
resource allocation and
should be familiar to all
project managers and tech
leads. One point to be
made is that typically the
roles defined in the RUP do
not correspond to the
activities of just one
individual (with the
exception of the architect,
perhaps). Otherwise, it is a
many to many mapping.

Principles of Software Testing for Testers Instructor Notes

Module 3 - The RUP Test Discipline 3 - 12

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 12

Module 3 - Agenda

Overview of the software lifecycle in RUP
Overview of the building blocks of RUP
Roles in the Test Discipline
Workflow Details in the Test Discipline

In this section, we introduce the test-related roles in the Rational
Unified Process.

Transition Slide. Don’t
spend any time here.

Principles of Software Testing for Testers Instructor Notes

Module 3 - The RUP Test Discipline 3 - 13

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 13

RUP Test Manager Role, Activities, and Artifacts

Test Manager Test Plan Test Evaluation
Summary

Test Manager
Agree Mission Identify Test

Motivators
Obtain

Testability
Commitment

Assess and
Advocate
Quality

Assess and
Improve Test

Effort

Activities:

Artifacts:

The Test Manager role is tasked with the overall
responsibility for the test effort's success.

The Test Manager role is tasked with the overall responsibility for the
test effort's success. The role involves quality and test advocacy,
resource planning and management, and resolution of issues that
impede the test effort.

Key Points:

• The next four slides
introduce the RUP testing
roles and discuss their areas
of responsibility.

• You do not need to go into
great detail about each of
the activities or artifacts. Just
give the students a general
sense of each role’s area of
responsibility.

• Be sure that students
understand that role does
not mean a single worker. A
single team member may
perform more than one of
these roles.

Principles of Software Testing for Testers Instructor Notes

Module 3 - The RUP Test Discipline 3 - 14

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 14

RUP Test Analyst Role, Activities, and Artifacts

Test Analyst
Identify Targets

of Test
Identify Test

Ideas
Define Test

Details
Define Assessment

and Traceability
Needs

Determine
Test Results

Test Analyst
Test Ideas

List
Test Case Workload

Analysis Model
Test Data Test Results

The Test Analyst role is responsible for initially identifying
and defining the required tests, and subsequently
evaluating the results of the test effort.

Activities:

Artifacts:

The Test Analyst role is responsible for initially identifying and
defining the required tests, and subsequently evaluating the results of
the test effort. This involves monitoring the test coverage and
evaluating the perceived software quality experienced during testing.
This role also involves specifying required Test Data.

Sometimes this role may be referred to as the Test Designer, or
considered part of the Tester role.

The Test Analyst role is the primary role that this course focuses on.

Principles of Software Testing for Testers Instructor Notes

Module 3 - The RUP Test Discipline 3 - 15

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 15

RUP Test Designer Role, Activities, and Artifacts

Test Designer
Define Test
Approach

Define Test
Environment

Configurations

Identify
Testability

Mechanisms

Structure the
Test

Implementation

Define
Testability
Elements

Develop Test
Guidelines

Test Automation
Architecture

Test
Guidelines

Test Interface
Specification

Test Environment
Configuration

Test
Suite

Test Designer

The Test Designer role is responsible for defining the test
approach and ensuring its successful implementation.

Activities:

Artifacts:

The Test Designer role is responsible for defining the test approach
and ensuring its successful implementation. The role involves
identifying the appropriate techniques, tools and guidelines to
implement the required tests, and to give guidance on the
corresponding resources requirements for the test effort.

Sometimes this role is referred to as the Test Architect, Test
Automation Architect or Test Automation Specialist.

Where test automation is being conducted, the Test Designer role
plays an important part in the work required to successfully achieve
automation.

The Test Designer role is a secondary role that this course focuses on.

Key Points:

• Explain to the students that
this role provides the
strategic and high-level
technical focus necessary to
achieve successful test
automation.

• Ideally, this role should be
filled by someone
experienced with test
techniques and (where
required) test automation.

Principles of Software Testing for Testers Instructor Notes

Module 3 - The RUP Test Discipline 3 - 16

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 16

RUP Tester Role, Activities, and Artifacts

Implement Test Implement Test
Suite

Execute Test
Suite

Analyze Test
FailureTester

Test
Scripts

Test LogTester

The Tester role is responsible for the core activities of the
test effort, which involves conducting the necessary tests
and logging the outcomes of that testing.

Activities:

Artifacts:

The Tester role is responsible for the core activities of the test effort,
which involves conducting the necessary tests and logging the
outcomes of that testing.

Where test automation is being conducted, the Tester role plays a large
part in the work required to successfully achieve automation.

The Tester role is a secondary role that this course focuses on.

Key Points:

• Explain to the students that
this role provides the tactical
focus necessary to achieve
successful test automation.

• Test automation requires a a
certain level of technical
skill. Some experience with
programming is desirable.

Principles of Software Testing for Testers Instructor Notes

Module 3 - The RUP Test Discipline 3 - 17

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 17

Module 3 - Agenda

Overview of the software lifecycle in RUP
Overview of the building blocks of RUP
Roles in the Test Discipline
Workflow Details in the Test Discipline

In this section, we introduce collections of Roles, Activities and
Artifacts that collaborate to achieve meaningful goals.

Transition Slide. Don’t
spend any time here.

Principles of Software Testing for Testers Instructor Notes

Module 3 - The RUP Test Discipline 3 - 18

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 18

Discipline Workflows Guide Iterative Development

Example Workflow:

Test

Example Workflow:

Requirements

Within a discipline, workflows sequence groups of activities that are
done together into workflow details. The Discipline workflows will be
enacted to various levels of completeness, largely dependent on the
lifecycle phase of the current iteration.

Animation note:
Automatic – The workflow
examples appear
incrementally, .5 second after
the main slide appears.

An activity diagram shows
multiple possible sequences
of workflow details. In some
cases, a workflow detail is the
lowest level of detail
represented when creating a
project schedule.

Make clear that the workflow
will vary, depending on the
phase, iteration location
within a phase, and the
technology being used. The
Project Management and
Analysis & Design disciplines
are good examples of this.

Principles of Software Testing for Testers Instructor Notes

Module 3 - The RUP Test Discipline 3 - 19

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 19

Discipline Workflows Sequence the Workflow Details

Example Workflow Detail: Validate Build Stability

This graphic illustrates the high-level view of the Test Discipline
Workflow. Each workflow detail on the workflow flowchart contains
finer-grained process guidance, as shown in the example workflow
detail diagram.

The workflow detail diagram shows a set of activities that are often
performed together to achieve a useful strategic objective. It also shows
input and output artifacts (indicated with arrows), as well as the roles
involved in conducting the work.

We’ll briefly define the workflows in the next few slides, and will use
them to structure the discussion in much of the rest of the class.

Note that within an iterative development lifecycle, each of these areas
of activity will typically be addressed to some degree within each
iteration.

Sometimes an area of activity will not require any work, in which case
you will simply review it and verify that no work is required. In other
situations, you may decide that entire areas of activity are not relevant
in the context of the current iteration.

Note: The remaining slides in this module are designed to give you
some context for the content covered in the subsequent modules of
this course. We will look at the work involved in each of these
workflow details in much more detail during each subsequent module.
For now, we just want to expose you to the range of work being done
in an iteration of testing.

Animation note:
Automatic – The workflow
detail example appears
incrementally, .5 second after
the main slide appears.

Key Points:

• This is an overview of the
Test Discipline workflow;
each workflow detail is
covered in the next few
slides, so you only need to
present the high-level view
here.

• Point out the iterative nature
of the workflow.

Principles of Software Testing for Testers Instructor Notes

Module 3 - The RUP Test Discipline 3 - 20

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 20

The RUP Test Discipline Workflow

Define Evaluation Mission
Identify the appropriate focus of
the test effort for the iteration.
Gain agreement with
stakeholders on the
corresponding goals that will
direct the test effort.

The purpose of this workflow detail is to:

Identify the appropriate focus of the test effort for the iteration.

Gain agreement with stakeholders on the corresponding goals that will
direct the test effort.

For each iteration, work is focused mainly on:

•Identifying the objectives for, and deliverables of, the testing effort

•Identifying a good resource utilization strategy

•Defining the appropriate scope and boundary for the test effort

•Outlining the approach that will be used

•Defining how progress will be monitored and assessed.

Move through these slides
fairly quickly. We will go
through the related subject
matter in much greater
detail in the subsequent
modules in this course.

You should use these slides
to convey a sense of context
to the students for the
subsequent material.

If the students won’t be
working on a project that
uses the RUP, you can
either go quickly through
these remaining slides, or
skip them all together.

Principles of Software Testing for Testers Instructor Notes

Module 3 - The RUP Test Discipline 3 - 21

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 21

The RUP Test Discipline Workflow

Test and Evaluate
Achieve appropriate breadth and
depth of testing to enable a
sufficient evaluation of the
targeted test items.

The purpose of this workflow detail is to:

Achieve appropriate breadth and depth of the test effort to enable a
sufficient evaluation of the Target Test Items—where sufficient
evaluation is governed by the Test Motivators and Evaluation Mission.
Typically performed once per test cycle, this work involves performing
the core tactical work of the test and evaluation effort: namely the
implementation, execution and evaluation of specific tests and the
corresponding reporting of incidents that are encountered.

For each test cycle, this work is focused mainly on:

•Providing ongoing evaluation and assessment of the Target Test Items

•Recording the appropriate information necessary to diagnose and
resolve any identified Issues

•Achieving suitable breadth and depth in the test and evaluation work

•Providing feedback on the most likely areas of potential quality risk

Move through these slides
fairly quickly. We will go
through the related subject
matter in much greater
detail in the subsequent
modules in this course.

Principles of Software Testing for Testers Instructor Notes

Module 3 - The RUP Test Discipline 3 - 22

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 22

The RUP Test Discipline Workflow

Achieve Acceptable Mission
Deliver a useful evaluation result
to the stakeholders of the test
effort.
Actively prioritize the test work
that remains to be conducted.

The purpose of this workflow detail is to:

Deliver a useful evaluation result to the stakeholders of the test effort—
where useful evaluation result is assessed in terms of the Evaluation
Mission. In most cases that will mean focusing your efforts on helping
the project team achieve the Iteration Plan objectives that apply to the
current test cycle.

For each test cycle, this work is focused mainly on:

•Actively prioritizing the minimal set of necessary tests that must be
conducted to achieve the Evaluation Mission

•Advocating the resolution of important issues that have a significant
negative impact on the Evaluation Mission

•Advocating appropriate quality

•Identifying regressions in quality introduced between test cycles

•Where appropriate, revising the Evaluation Mission in light of the
evaluation findings so as to provide useful evaluation information to
the project team

Move through these slides
fairly quickly. We will go
through the related subject
matter in much greater
detail in the subsequent
modules in this course.

Principles of Software Testing for Testers Instructor Notes

Module 3 - The RUP Test Discipline 3 - 23

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 23

The RUP Test Discipline Workflow

Verify Test Approach
Demonstrate the techniques
outlined in the Test Approach
will support the required testing.
Verify that the approach will
work, produce accurate results
and is appropriate for the
available resources.

The purpose of this workflow detail is to:

Show that the various techniques outlined in the Test Approach will
facilitate the required testing. Verify by demonstration that the
approach works, will produce accurate results and is appropriate for
the available resources.

The objective is to gain an understanding of the constraints and
limitations of each technique, and to either find an appropriate
implementation solution for each technique or find alternative
techniques that can be implemented. This helps to mitigate the risk of
discovering too late in the project life-cycle that the test approach is
unworkable.

For each iteration, this work is focused mainly on:

•Early verification that the intended Test Approach will work and
produces results of value

•Establishing the basic infrastructure to enable and support the Test
Approach

•Obtaining commitment from the development team to provide and
support the required testability to achieve the Test Approach

•Identifying the scope, boundaries, limitations and constraints of each
technique

Move through these slides
fairly quickly. We will go
through the related subject
matter in much greater
detail in the subsequent
modules in this course.

Principles of Software Testing for Testers Instructor Notes

Module 3 - The RUP Test Discipline 3 - 24

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 24

The RUP Test Discipline Workflow

Validate Build Stability
Validate that the build is stable
enough for detailed test and
evaluation work to begin.

The purpose of this workflow detail is to:

Validate that the build is stable enough for detailed test and evaluation
effort to begin. This work helps to prevent the waste of test resources
on a futile testing effort.

For each build to be tested, this work is focused on:

•Assessing the stability and testability of the build

•Gaining an initial understanding—or confirming the expectation—of
the development work delivered in the build

•Deciding to accept the build as suitable for use—guided by the
evaluation mission—in further testing, or to conduct further testing
against a previous build.

This work is also referred to as a smoke test, build verification test,
build regression test, sanity check or acceptance into testing.

Move through these slides
fairly quickly. We will go
through the related subject
matter in much greater
detail in the subsequent
modules in this course.

Principles of Software Testing for Testers Instructor Notes

Module 3 - The RUP Test Discipline 3 - 25

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 25

The RUP Test Discipline Workflow

Improve Test Assets
Maintain and improve the
evolving test assets.

(e.g. Maintain test suites and
test data; harvest test-ideas
into catalogs; clarify change
request details)

The purpose of this workflow detail is to:

Maintain and improve the test assets. This is important especially if the
intention is to reuse the assets developed in the current test cycle in
subsequent test cycles.

For each test cycle, this work is focused mainly on:

•Adding the minimal set of additional tests to validate the stability of
subsequent Builds

•Assembling Test Scripts into additional appropriate Test Suites

•Removing test assets that no longer serve a useful purpose or have
become uneconomic to maintain

•Maintaining Test Environment Configurations and Test Data sets

•Exploring opportunities for reuse and productivity improvements

•Conducting general maintenance of and making improvements to the
maintainability of test automation assets

•Documenting lessons learned—both good and bad practices
discovered during the test cycle.

Move through these slides
fairly quickly. We will go
through the related subject
matter in much greater
detail in the subsequent
modules in this course.

Principles of Software Testing for Testers Instructor Notes

Module 3 - The RUP Test Discipline 3 - 26

Instructor Notes:

Principles of Software Testing for Testers
Copyright © 2002 Rational Software, all rights reserved 26

Module 3 - Review

Presents an iterative testing process
Is Scalable and Customizable
Is designed for Flexibility

The RUP Test Discipline:

The RUP Test Discipline presents a process and set of recommended
practices to guide your testing effort. Unlike traditional waterfall testing
process, RUP advocates an iterative approach to testing. Iterative
testing allows you to:

• Mitigate high risks earlier in the development process

• Focus your resources when and where they can have the most
impact

• Maximize your effectiveness by adapting your approach, process, or
assets as you go

The RUP Test Discipline is designed to be flexible and adaptable. Its
process framework can support different sized organizations, and its
recommended approach can be adapted to formal or informal testing
styles within an organization.

A key focus of the Test Discipline is on maximizing the effectiveness of
an organization’s testing efforts.

Key Points:

• This slide summarizes some
of the key features of the
RUP Test Discipline. Its
intent is to give students a
basic understanding
regarding the focus of the
RUP testing process.

